
Technical Report
CMU/SEI-93-TR-4
ESC-TR-93-181

Process-Centered Development
Environments: An Exploration of
Issues

Alan M. Christie

 June 1993

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Unlimited distribution subject to the copyright.

Technical Report
CMU/SEI-93-TR-4

ESC-TR-93-181
June 1993

Process-Centered Development Environments:
An Exploration of Issues

Alan M. Christie
 CASE Environments Project

This report was prepared for the

SEI Joint Program Office
HQ ESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

FOR THE COMMANDER

(signature on file)

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright© 1992 by Carnegie Mellon University.

Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative
works.

Requests for permission to reproduce this document or to prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRAN-
TIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTIBILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 52.227-7013.

This document is available through Research Access, Inc., 800 Vinial Street, Pittsburgh, PA 15212.
Phone: 1-800-685-6510. FAX: (412) 321-2994. RAI also maintains a World Wide Web home page. The URL is
http://www.rai.com

Copies of this document are available through the National Technical Information Service (NTIS). For informa-
tion on ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of
Commerce, Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides ac-
cess to and transfer of scientific and technical information for DoD personnel, DoD contractors and potential con-
tractors, and other U.S. Government agency personnel and their contractors. To obtain a copy, please contact
DTIC directly: Defense Technical Information Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-
6145. Phone: (703) 274-7633.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents

1 Background 1

2 A Process Development and Usage Scenario 3

3 The ProNet Graphical Modeling Language 7
3.1 The Relationship Between Process Definition and Enactment 7
3.2 Entity Classes 8

3.2.1 Basic Graphical Elements 11
3.2.2 Some Properties of Stores 15

3.3 Relationship to Other Modeling Techniques 15
3.4 A ProNet Example 17

4 Enacting the Process 21
4.1 Mapping Activities to Rules 21
4.2 Generalizing the Rules 25
4.3 User Interaction with the Process Model 28
4.4 Managing the Rules 30
4.5 User Interaction with the Automated Process 30
4.6 A Relational Definition of the ProNet Notation 31

5 Software Process Verification 35
5.1 The Basis for Process Verification 36
5.2 Implementing the Approach 36
5.3 The Verification Demo Program 38
5.4 Implications for Verification 39

6 User-Oriented Issues with PCDEs 41
6.1 The Application of Automated Support 41
6.2 Organizational Factors 43
6.3 Process Needs of Managers and Developers 43
6.4 Adapting the Process to Unforeseen Circumstances 44
6.5 Lessons from Groupware 45
6.6 Configuration Management, Conflict, and Cooperation 46

7 Summary and Conclusions 49

Appendix A The Process Enactment Program 51
A.1 Typical Program Output 51
A.2 The Process Controller Listing 52
A.3 An Extension to Account for Nested Activities 59
CMU/SEI-93-TR-4 i

Appendix B The Process Verification Program 63

Bibliography 71
ii CMU/SEI-93-TR-4

List of Figures

Figure 2-1 The Process Development and Usage Scenario 3
Figure 3-1 Basic Representation of a Process Element 11
Figure 3-2 Augmented Representation of a Process Element 12
Figure 3-3 Example of a “CA” Junction 13
Figure 3-4 Example of a “DO” Junction 13
Figure 3-5 Example of a Complex Boolean Junction 14
Figure 3-6 A Simple Change Request Model 14
Figure 3-7 Definition of Activities Associated Only with “Store” Entities 15
Figure 3-8 A More Complex Change Request Process Model 18
Figure 4-1 The Mapping Between a Simple Process Element and Its Prolog

Expression 22
Figure 4-2 The Initial Step in the Process 23
Figure 4-3 Combining Disjunctive Inputs 23
Figure 4-4 Inserting a Product into a Database 24
Figure 4-5 Removing a Product from a Database 24
Figure 4-6 Making a Decision 24
Figure 4-7 Generating Multiple Output Decisions 25
Figure 4-8 Combining Inputs and Incrementing a Version Number 26
Figure 4-9 Process Controller for the Enactable ProNet Model 29
Figure 4-10 Backtracking to Define Activity Inputs 31
Figure 4-11 A Relational Model Linking ProNet Entities 33
Figure 5-1 A Simple Process Model with Process Data 37
Figure 5-2 Symmetry Between Process Enactment and Verification 38
Figure A-1 Expansion of the Activity review_cr 61
CMU/SEI-93-TR-4 iii

iv CMU/SEI-93-TR-4

List of Tables

Table 1 Entrance Relationships 9
Table 2 Exit Relationships 9
Table 3 Mapping a Graphical ProNet Model to Its Enactable Form 26
Table 4 Relationships Among Model Entities 32
CMU/SEI-93-TR-4 v

vi CMU/SEI-93-TR-4

Process-Centered Development Environments:
An Exploration of Issues

Abstract: Software development environments are beginning to move from
research communities to commercial applications. As this occurs, the need to
address process issues related to such environments is becoming increasingly
apparent. Thus there is a growing awareness of the need for process-centered
development environments (PCDEs). This report addresses process definition
and enactment issues which pertain to the specification and design of a PCDE.
The first part of the report explores some of the required characteristics of an
enactable graphical language and the relationship between process definition
and enactment. This process language naturally led to the ability to perform
process verification, i.e., a verification that the actual process path taken
throughout a project conforms to the defined process. The issue of process
verification is thus also explored. The success of PCDEs rests heavily on end-
user acceptance. Because of this, the report concludes with a review of user-
oriented process and social issues relevant to the successful adoption of
PCDEs.

1 Background

Software production has historically been a very labor-intensive, highly-skilled and costly busi-
ness. In addition, the more technically advanced Western nations have led the way in the rap-
idly changing field of software engineering. However, other nations, whose labor costs are far
below those of the West, are catching up [Firth 93]. These facts, coupled with the efficiency of
global communications, suggests that the competitive position of Western nations in software
development may soon erode. Software is a strategic technology, from both defense and com-
mercial points of view, and loss of this competitive edge could have profound consequences.

How can this competitive edge be maintained? Several elements are necessary. First, a vi-
brant infrastructure (such as Silicon Valley) where intense competition drives technology
ahead of outside competition is needed. Second, an educated workforce, capable of using
new technologies and of rapidly adapting to new circumstances, must be available. Third, an
emphasis on continuously improving software quality and hence organizational performance
is required. Since the process with which a product is built has a direct bearing on quality, an
understanding of the process is essential. Finally, once a well-defined process has been de-
veloped, the process may be automated as a means of assuring process consistency and of
reducing cost. Automation of the process includes, but is not limited to, providing software or-
ganizations with appropriate tools to perform specific tasks, relieving developers and manag-
ers of as much tedium as possible, eliminating error-prone activities, and guiding process-
critical tasks. Such support should allow developers and managers to concentrate on creative
non-automatable tasks. If such cost-reducing, quality-enhancing measures are not taken, the
competitive advantage currently held by those countries that have relatively high labor rates
CMU/SEI-93-TR-4 1

is likely to disappear. One such cost-reducing, quality-enhancing measure is to introduce pro-
cess-centered development environments (PCDEs).

A note of caution should, however, be observed with respect to automating software produc-
tion. When producing mechanical or electrical products, the number of component variants is
usually fewer than the number of software variants, logical complexity is less, and initial re-
quirements are usually better understood than with software products. These factors often re-
sult in mechanical and electrical products having logically simpler manufacturing processes.
As a result, while much of hardware manufacturing can be performed repetitively by machines,
software production, having a higher intellectual (and non-standardized) content, tends to be
manually produced. Thus any approach to software automation cannot simply rely on princi-
ples developed for hardware. In particular, software automation forces a very tight and com-
plex relationship between the computer environment and the software developer.
Consequently, an understanding of human-computer interaction is particularly important for
PCDEs to be effective. Simply automating the software production process without giving due
importance to end-user, process and even social issues could result in the erroneous conclu-
sion that automation does not work.
2 CMU/SEI-93-TR-4

2 A Process Development and Usage Scenario

This report addresses issues relevant to improving the software productivity and quality, as
they relate to PCDEs. First, it emphasizes that both technology and user issues affect suc-
cess. Second, it suggests that a graphical and enactable specification of the PCDE will con-
tribute significantly to the successful implementation of the PCDE. Third, it discusses process
verification. Process verification affects quality because it guarantees compliance with the de-
fined process.

Figure 2-1 illustrates a proposed process development and usage scenario.1 This figure sum-

marizes the technical steps necessary to implement a PCDE. The first step in Figure 2-1 de-
fines an appropriate process model with which to support the software development activity.

1. In the following text, the numbers down the right hand side of Figure 2-1 are referred to as
steps.

.

Define process model for PCDE usage

Generate executable form of model

Validate process model
(simulation, logical analysis)

Obtain agreement on process model

Develop PCDE specification using executable model

Build and debug PCDE using enactable specification

Instrument PCDE with process metrics

Build product and gather process metrics

Verify as-performed process against as-defined

Section 3

Section 4

Section 5

Figure 2-1 The Process Development and Usage Scenario

1

2

3

4

5

6

7

8

9
using metrics and process model

Step
CMU/SEI-93-TR-4 3

The process supported could be a modest one such as peer reviews or it could be a wide-
ranging one such as comprehensive project support. In any case, this process is defined using
a graphical language. In Step 2, the graphical model is compiled into a symbolic and execut-
able form. Through this executable form, the dynamics of the process can be studied at a high
level, without being encumbered at this point by the low-level implementational detail. Validat-
ing the model (Step 3) will likely involve logical (static) analysis to check for deadlock and
reachability and dynamic simulation to test the system’s behavioral characteristics. After the
model has been formally validated, managers and developers will be asked to agree upon its
adequacy from a user perspective. This buy-in of managers and developers is essential if the
process is to gain acceptance. By defining the model graphically, communication and agree-
ment on the process model will be significantly enhanced. Such a visible representation is
more readily comprehensible than a process defined through text or symbolic coding. In addi-
tion, modifying the defined process at this point is less expensive than to waiting until major
development of the actual PCDE has been performed.

Steps 1 through 4 are analogous to the process through which the specification of a software
product is developed using graphical techniques. As stated in [Osterweil 87]:

Because software processes are programs in what we now see as to be the classical
sense of the term, we should expect that they are best thought of as being only part of
a larger information aggregate. This information aggregate contains such other soft-
ware objects as requirements specifications (for the process description itself)...

This is indeed what we are doing by defining the process specification in Step 5. However,
[Oserweil 87] also states that “the process itself is a dynamic entity and the process descrip-
tion is a static entity.”

As we have seen above, our specification is also dynamic. This allows us not only to be pre-
cise and formally consistent in a static sense, but also to be more behaviorally correct. By al-
lowing for behavior in the specification, we can address, in a preliminary way, some basic end-
user issues prior to investing in the full-scale implementation. At this point, the enactable spec-
ification defines all significant high-level artifacts in the process, the agents or roles who will
perform the activities, and the decisions which are made or acted upon throughout the pro-
cess.

The architecture or implementation of the PCDE that occurs in Step 6 could take many forms.
At one end of the spectrum, tools can be directly coupled to allow for simple process enact-
ment (point-to-point integration). More complex process enactment is also possible, for exam-
ple, using an underlying framework which provides control and data integration mechanisms
for coupling diverse tools [Wallnau 91]. Recently, a number of commercial process support
and enactment tools have become available; these are in addition to those which have aca-
demic origins. Such process support tools may prove to be critical to finding a total PCDE so-
lution. However, they are not the main subject of this report.
4 CMU/SEI-93-TR-4

Collecting process metrics is essential to process understanding and improvement. Having a
defined model of one’s process significantly simplifies the selection of which metrics to gather
(Step 7). These metrics are gathered during the software product’s manufacture. Such metrics
may include decisions taken, intermediate product versions used, reviews completed, and
which agents involved in each of the activities (Step 8). Upon completion of the project, these
metrics can also be used to verify that the as-implemented process conforms to the as-defined
process (Step 9). Note that in Step 3 we have used “validate” to imply correctness of the en-
acted process model, while in Step 7 we have used the word “verify” to mean compliance of
the is-implemented process with the as-defined process. This convention will be used through-
out the rest of the report.

This report focuses on Steps 1, 2, and 9 which are discussed in Sections 3, 4, and 5 respec-
tively. These three areas; process definition, enactment, and verification can all rely on the
same graphical notation, independent of the specific PCDE used for implementation; hence it
makes sense to discuss them under the common heading of this report. Section 3 describes
the graphical language ProNet, which was explicitly developed for process modeling with en-
actment in mind. Section 4 discusses how models within this language can be translated into
an enactable form. Section 5 then explains how verification can be performed using the same
ProNet notation, together with process data gathered during product development. Finally,
Section 6 reviews some general issues associated with end-user needs, organizational fac-
tors, and process automation in light of the process modeling experience. Such issues as what
can and should be automated, environment support versus control, and developer needs ver-
sus management needs are discussed.

Implementation issues associated with PCDEs will not be addressed. Thus we will not inves-
tigate what tools are needed to support software development, how these tools are integrated,
or what use is made of environment frameworks. In summary, it is intended that the following
work form a basis for

• exploring issues associated with process definition and enactment in the
context of process model specification and validation,

• addressing the issue of software quality through process verification, and

• investigating end-user issues with respect to process automation.

It is intended that process models defined, enacted, and evaluated using the techniques de-
scribed in this report will actually be implemented through recently available process support
tools such as SynerVision [Cooley 92], ProcessWeaver [Ellen 92], or ProcessWise [Bruy-
nooghe 91]. These investigations will be the subject of another report.
CMU/SEI-93-TR-4 5

6 CMU/SEI-93-TR-4

3 The ProNet Graphical Modeling Language

This section discusses the graphical modeling language ProNet (Step 1 in Figure 2-1) which
forms a basis for process enaction. Section 3.1 first discusses why there should be close re-
lationship between graphical process definition and process enactment. The ProNet notation
itself is described in some detail in Section 3.2, while Section 3.3 compares this notation to
that of several other well-known modeling approaches. Finally, Section 3.4 illustrates the no-
tation with a small process modeling example.

One general definition of process is: A set of partially ordered steps intended to reach a goal
[Feiler 92]. Given this definition, steps, which are interpreted to be activities, take a central
position in ProNet. An activity may only occur if certain entrance conditions are met or if certain
products become available. As a consequence of the activity, exit conditions may change from
false to true (or vice versa) and certain products may be generated. Hence the firing of an
activity changes the state of the system, generating and setting up necessary entrance
conditions for other activities to fire. ProNet is thus a declarative model. Each activity and its
entrance and exit conditions bear a strong relationship to the elements of a rule in a rule-based
system, it is because of this characteristic that enactability is possible.

3.1 The Relationship Between Process Definition and Enactment

Why develop a graphical process notation with enactable characteristics? There are many val-
id reasons for doing so:

• Debugging an enactable process can be significantly easier if a graphical
form of the process model is used. Automatic transformation of the graphical
model to its enactable form then guarantees a degree of correctness not
found when the model is developed analytically.

• By having enactable characteristics, a process model can be used to explore
different process alternatives before any process is implemented. By
providing a debugged, enactable, and agreed-to process model, the
simulated process can be faithfully reproduced in the real world. This has
implications not only for establishing the initial process but for process
modification and improvement.

• Both the graphical model and its enactable form will provide guidance on tool
integration issues. The process model specifies the input and output data
and control information (through the products and conditions), thus providing
a rational basis for communication between tools. (Of course, actual
integration of the tools within a process support environment raises many
implementation issues not addressed in this report.)
CMU/SEI-93-TR-4 7

• There are significant advantages to defining the process graphically,
independent of enactability considerations:

-- Graphical specification provides a means to communicate to develop-
ers, management and others what the “new” process will look like. This
generates early feedback from those involved in the future use of the
process, thus encouraging its success.

-- Managers can thus sign-off on a defined process without having to un-
derstand a complex symbolic notation.

-- The graphical process model allows for accelerating training for new
employees.

• If incorporated into a PCDE, the graphical model can be used for real-time
process support, as a “front-end” for task selection and to obtain process-
related status information during product development.

The ProNet graphical process notation can readily be mapped to a set of production rules
through which the process can be enacted. The resulting symbolic model can then be used to
investigate the dynamic characteristics of the process or, equally importantly in our case, to
define the characteristics of a process driver for a PCDE.

3.2 Entity Classes

This section provides a definition of the notation. ProNet diagrams are based on a modified
Entity-Relation model [Chen 83] in which entities fall into one of eight classes. The following
list defines these entity classes:

• Activities provide the backbone to the process model. Other entity classes are
attached to and support activities. The existence of products and conditions (which
are defined below) provide the entrance conditions for activity initiation. Activities are
responsible for generating exit products and conditions.

• Products can either be required to support an activity or be produced by an activity.
Products may be the result of some activity internal to the model (e.g. a file
containing source code) or maybe generated outside of it.

• Conditions can either be required to initiate an activity or result from an activity (e.g.,
“review completed”) and take the values TRUE or FALSE. The existence or non-
existence of a product, agent, etc., can be equivalent to a condition.

• Composites are boolean combinations of conditions, products, agents, etc.
8 CMU/SEI-93-TR-4

• Agents are specific entities which perform activities. Humans or non-human entities
capable of performing activities (e.g., the software developer, Mary or the Vertex C
Compiler, Ver 5.0) are considered to be agents. Agents may support activities or may
be derived from, or identified by, activities.

• Roles are abstractions (i.e., a super-class) of the agents concept (e.g., reviewer,
editor). If the process model is enactable, the role must be instantiated by an agent
at run time. Like agents, roles may support multiple activities or may be derived from,
or identified by, activities.

• Stores allow for persistence of instantiated entities. Products, condition values and
even agents can be deposited in or retrieved from stores.

• Constraints are policy restrictions imposed on the performance of an activity. Unlike
conditions these do not take on boolean values but may reflect guidance on how
things are done (e.g., a quality assurance constraint such as on documenting written
code).

Most relationships link the entities to the activities. These relationships types are of the form
shown in Tables 1 and 2.

In the process diagrams, these relationships are all written in italics. The information they con-
tain allows the reader to identify the class of entity which is linked to the activity. Also, if a re-

Table 1 Entrance Relationships

Entrance relationships Inverse entrance relations

product_A is entrance product for activity_A activity_A has entrance product product_A

condition_A is entrance condition for activity_A activity_A has entrance condition condition_A

composite_A is entrance composite for activity_A activity_A has entrance composite composite_A

agent_A is entrance agent for activity_A activity_A has entrance agent agent_A

role_A is entrance role for activity_A activity_A has entrance role role_A

store_A is entrance store for activity_A activity_A has entrance store store_A

Table 2 Exit Relationships

Exit relationships Inverse exit relations

product_A is exit product for activity_A activity_A has exit product product_A

condition_A is exit condition for activity_A activity_A has exit condition condition_A

composite_A is exit composite for activity_A activity_A has exit composite composite_A

agent_A is exit agent for activity_A activity_A has exit agent agent_A

role_A is exit role for activity_A activity_A has exit role role_A

store_A is exit store for activity_A activity_A has exit store store_A
CMU/SEI-93-TR-4 9

lationship (such as “product_A is entrance product for activity_A”) holds, so does the inverse
relationship (“activity_A has entrance product product_A”).

In the process diagrams, activities can be identified since they always have a shadowed box
around the entity name. In addition, a black dot is placed next to the entity at the end of the
relationship. For example, in the relationship “ABC is entrance product for XYZ”, the dot would
appear in the graphical relationship close to the box surrounding the activity XYZ. Thus the dot
plays the same role as the tip of an arrow does in entity-relationship diagrams. The final entity
class, the constraint, is simply imposed on an activity, rather than being attached to the initia-
tion or conclusion of an activity. Thus, a constraint’s relationships to an activity are of the
forms:

• constraint_A is constraint for activity_A

• activity_A has constraint constraint_A

ProNet handles three other relationship types: inheritance, aggregation, and custom. With
respect to inheritance, there are two named relationships: is instance of and is generalization
of, each of which is the inverse of the other. Unlike the relationships discussed earlier, these
relationships link two arbitrary entities, so long as they are of the same class. With respect to
aggregation, there are also two named relationships: is part of and includes, each of which is
the inverse of the other. These also link arbitrary entities together, but there is no constraint
that the joined entities be of the same class. Occasionally there is a need to define a non-
standard relationship between two entities which does not fall into one of the predefined
categories. ProNet allows definition of a “custom” relationship. This feature allows creation of
an arbitrary relationship (i.e., one not belonging to the pre-defined set) to link two entities. For
example one might define the custom relationship depends on as in the example:

agent_A depends on resource_A2

ProNet provides a second way of substructuring entities besides use of the is part of
relationship. While the is part of relationship allows the components of an entity to be
displayed on the same graph as the entity itself, it is sometimes necessary to display the
detailed structure of an entity (particularly an activity) on a separate graph. Most real-world
process models have significant complexity, and this latter approach allows for multiple-levels
of hierarchical decomposition. If a particular entity in a process diagram has an underlying
structure, then the box representing that entity is enlarged so as to be twice as deep as the
normal entity box.

2. Because custom relationships are not defined within the standard set of relationships types,
they weaken the formalism. This option thus cannot be used in an enactable form of the mod-
el. However, from the point of view of describing process, as opposed to its enaction, custom
relationships can be useful if used with discretion.
10 CMU/SEI-93-TR-4

3.2.1 Basic Graphical Elements
As previously stated, the notion of activity is central. Generally the goal of the software process
is to produce software products. Thus, one outcome of activities is to produce products.
Another activity is making decisions, the outcomes of which are reflected in the values
attached to conditions. Also activities cannot generally begin unless certain products and
agents are available and certain conditions are satisfied. This view can be represented as
shown in Figure 3-1.

Note the following about this representation:

• It is an entity-relationship diagram, with the entity classes activity, product,
condition, agent, role, junction, and constraint being defined within the
notation.

• As shown in Tables 1 and 2, relationships have predefined types. In the
above diagram, is entrance condition for and is exit condition for relate
conditions to activities. Similar relationships exist for products. Inverse
relationships always hold.

Other entities must also support the notion of activity. At least one agent or role must be as-
sociated with any activity. A role represents an abstraction of an agent. For example manager
is an example of a role while Joe is an example of an agent that may take on the attributes of
a manager. The agent concept is thus a subclass of, and takes on the properties of, the role
concept.

Agents and roles may or may not be human. Examples of non-human roles are compilers and
editors. Agents not only support activities (through the relationship is entrance agent for), but
may be identified by, or generated by, an activity. Generally human agents are “identified”
while non-human agents are “generated”. The human/non-human distinction is not as critical
for process definition as it is for enaction. Thus ProNet does not explicitly distinguish between
human and non-human agents and, for both cases, the ProNet relationship is is exit agent for.
The same is true for roles. For process enaction, however, the distinction clearly is important
since automated agents may initiate activities without human intervention. These additions are
shown in Figure 3-2.

activity_A

product_A

condition_A

product_B

condition_B

is entrance product for

is entrance condition for

is exit product from

is exit condition from

• •

•
•

Figure 3-1 Basic Representation of a Process Element
CMU/SEI-93-TR-4 11

In defining an enactable process model, it may be necessary to establish some entities as role
since the specific agent will not be not known prior to process enactment. In other cases the
agent may be known. For example, it may be known that Fred will be manager of a project; it
may not be known which developer will perform a specific technical task for Fred. Thus agents
that are explicitly defined in the process model represent early bindings of roles.

Two entity-labeling conventions should also be noted. First, a numerical extension on classes
of entities which are not activities indicates instances of the same entity. For example, proj file
1 and proj file 2 are different instances of the same physical product, proj file. As will be seen
later, this can be convenient in defining the graphical process model. Such a labeling
convention is also sometimes necessary for reasons of uniqueness during process
enactment. On the other hand, numerical extensions on activities do indicate truly different
and separate activities.

An important concept in the basic notation is the junction class. Junctions allow boolean
combinations of entities to be logically related, either as input to an activity or as the output
from an activity. There are four instances of the junction class: CA, CO, DA, and DO, where C
stands for convergent, D stands for divergent, A stands for AND and O stands for OR. Since
convergent junctions are always implemented prior to an activity they are called entrance
junctions. Similarly, since divergent junctions are always implemented after an activity they are
called exit junctions. These are described below:

• CA: This stands for a convergent AND junction. In this kind of junction, an
example of which is shown in Figure 3-3, several entities must all be present
before the output from the junction is activated.

product_A

condition_A

product_B

condition_B

is entrance product for

is entrance condition for

has exit product

has exit condition

is entrance agent for

activity_A

agent_A agent_B

•
•

•

•
is exit agent for

is constraint for

role_A role_B

is entrance role for

constraint_A

•

is exit role for

Figure 3-2 Augmented Representation of a Process Element
12 CMU/SEI-93-TR-4

• CO: This stands for a convergent OR junction and is similar in structure to
the CA junction. In this case, however, only one branch of the inputs needs
to be activated before the activity can be fired.

• DA: This stands for a divergent AND junction. As a result of an activity, a
conjunction of conditions and products may result. While agents or
constraints may by required as components of an entrance junction (e.g.,
Fred or Mary may be the agent), only conditions and products can be linked
to exit junctions.

• DO: This stands for a divergent OR junction and is similar in structure to the
DA junction. In this case, however, only one branch of the outputs will be
activated. Thus in Figure 3-4, either product_A, product_B, or condition_A
will activate.

It should be noted that if multiple conditions and/or products tie directly into an activity, then
by default these are all assumed to be conjoined (i.e., no CA box is needed). The same rule
applies for conditions/products exiting an activity (i.e., no DA box is needed). This default can
be seen in Figure 3-2. Finally Figure 3-5 illustrates a complex boolean expression as input to
an activity which in turn generates a product and sets a condition.

product_A

condition_A

is entrance product for

is entrance condition for

is required agent for
is entrance composite for

activity_A
agent_A

CA

•

•

Figure 3-3 Example of a “CA” Junction

product_A

condition_A

has exit product

has exit condition

activity_A

product_B

DO
has exit product

has exit composite

•

•

•
•

Figure 3-4 Example of a “DO” Junction
CMU/SEI-93-TR-4 13

The last required basic concept is that of iteration. This is easily accommodated within the ex-
isting notation. Iteration is required, for example, when a product undergoes a series of revi-
sions, where each revision is different from the last. Figure 3-6 illustrates the implementation.

activity_A

product_C

condition_D

has exit product

has exit condition

condition_A

condition_B

condition_C

product_A product_B

is entrance product for
is entrance product for

is entrance condition for

is entrance condition for

is entrance condition for

is entrance composite for

is entrance composite for

is entrance composite for

CO

CA

CO

• •

•

•

•

•

•

• •

Figure 3-5 Example of a Complex Boolean Junction

initialize CR | i =1

CR | i

review CR

DO

revision request | i

CR OK

update CR | i++ CA

has exit product

has entrance composite

has exit composite

has exit product

has exit condition

has entrance product

has entrance product

has entrance composite

has exit product

CR | 1

CO

. . .has entrance product
has entrance product

•

•

•

•

•

•

•

••

•

developer

reviewer

•

•

has entrance role

has entrance role

•

has entrance role

Figure 3-6 A Simple Change Request Model
14 CMU/SEI-93-TR-4

A change request (CR) is initially composed at which time the incrementing variable is set to
an initial value (initialize CR | i=1). Each time the change request is updated, the variable is
incremented (update CR | i++). Versions of products are tagged with the variable i, and hence
versions of the product are defined. Thus revision request | i represents the ith version of the
change request. Clearly, nested loops can be implemented using this notation. It should be
noted that the nomenclature used to increment versions (i.e., | i, | i++, and | i=1) is not part of
the ProNet tool. This is simply a notational convention. The terms i++ etc. are simply added
after the entity names when these entities are defined.

3.2.2 Some Properties of Stores
Stores support collections of product and condition values, and thus allow for the modeling of
persistency of generated entities. Since we must be able to add these entities to or retrieve
these entities from a store, we introduce two special activities. These do not generate prod-
ucts, conditions, etc., but add products to and remove products from a store. The activity
types (put, get) are illustrated in Figure 3-7 and are added on to the front of the activity name
as shown in the figure. Note that in the case of the put operation, there must always be an
exit condition stating that the activity has taken place. Likewise, in the get operation, an
entrance condition must be present in order for the operation to be initiated.

3.3 Relationship to Other Modeling Techniques

The approach to process modeling taken by ProNet has connections to other modeling nota-
tions. In particular, there are similarities to Petri Nets, entity-relationship models, state transi-
tion diagrams, and data flow diagrams. ProNet can also be interpreted in a declarative rule-
based sense. However, since this is discussed in some detail in Section 4, it is not dealt with
here.

Petri Nets [Reisig 82] were initially developed to model synchronous and asynchronous events
in communication systems. These nets consist of three types of elements which can be dis-

product_X put_entity_X store_A

store_A product_Xget_entity_X

is entrance product for

is exit condition for

is exit store for

Adds product_X into store_A:

Retrieves product_X from store_A:

is exit product foris entrance store for

condition_Q

condition_Q

is entrance condition for

• •

•

••

Figure 3-7 Definition of Activities Associated Only with “Store” Entities
CMU/SEI-93-TR-4 15

played graphically: places (denoted by circles), transitions (denoted by rectangles), and direct-
ed arcs. Arcs connect places to transitions and transitions to places. In addition, the concept
of tokens (which are inserted into places) is used for process enaction to mark a place which
has been asserted in some way (e.g., is made “true”). Thus, the Petri Net concept of place is
a generalization of the ProNet concepts of conditions, products, or even agents. The Petri Net
transition is comparable to the ProNet concept of activity. In Petri Nets, transitions are never
connected directly to other transitions. In the same way, ProNet activities are not generally
connected directly to other activities (the exceptions being through the inheritance, aggrega-
tion and custom relationships).

The connection between ProNet diagrams and entity-relationship (E-R) diagrams [Chen 83] is
a fairly direct one. E-R diagrams define entities connected by directed arcs, and names de-
scribe the relationships (i.e., arcs) between the entities. Entities may have attributes or prop-
erties and, in the database world, these can stored in tables. However, it is the concept of
relationship, rather that the concept of data structure, which is of importance to ProNet. (See
Section 4.5 for a brief discussion of a data structure interpretation of ProNet.) While E-R rela-
tionships can, in general, take on arbitrary values, in a ProNet model the relationships, such
as is exit condition for, come from a predefined small typed set. (An exception to this rule is
the custom relationship discussed in Section 3.1.)

State-transition networks [Harel 87], based on finite-state machines, can be used to model the
dynamic (or behavioral) aspects of process. Such networks model states, events and the re-
lationships between them. An event occurs (in theory) instantaneously and represents control
or stimulus information required to activate a new state. A state can represent a particular con-
figuration of objects and may have an implied activity associated with it. Through this activity,
new events may be activated. In process modeling, the state-transition concept of state cor-
responds to the ProNet concept of activity while the concept of event corresponds loosely to
the ProNet concepts of condition. While a product may be interpreted as a physical object, its
existence or lack of existence can also be interpreted as a condition.

Finally, ProNet has much in common with data-flow (or functional) modeling techniques [Your-
don 89]. Data-flow diagrams define activities and the artifacts which flow between them. They
also allow for stores in which artifacts, generated by the activities, are kept, or retrieved. They
do not, however, consider the temporal sequence in which these activities occur and thus do
not consider behavior. ProNet borrows several concepts from data-flow diagrams:

• activities play a central role,

• stores are used to contain artifacts,

• activities can be hierarchically nested, and

• artifacts are explicitly generated by some activities and consumed by others.

However, ProNet has a combination of features which make it unique. First, it was designed
explicitly for software process modeling, and its entity classes are tailored to this goal. Second,
it was developed so that there is a direct and unique correspondence between graphical pro-
16 CMU/SEI-93-TR-4

cess modeling in ProNet and the symbolic enactment model (as will be seen in Section 4).
Third, ProNet provides for version management within a process definition/enactment context
and provides for persistency of entities generated during enactment. Finally, the underlying
model provides a basis for process verification (as will be seen in Section 5).

3.4 A ProNet Example

To illustrate the modeling concepts discussed in ProNet, the following simple change request
example is given. While this example is small, it illustrates many, but not all, of the concepts
which may go into a ProNet model. For a large and detailed ProNet model of a real software
maintenance organization, [Slomer 92] should be consulted.

Figure 3-8 shows the model. In this figure, the major process flow lines have been highlighted
for clarity. In addition, it should be noted that certain of the activities have circled numbers next
to them. These activities are the main ones which will be discussed with respect to process
enaction in the next section. One general point should be made about reading ProNet process
diagrams: they do not have arrows indicating in which direction the process is flowing in time.
Rather, the dots on the lines connecting the entities provide relationship information, not tem-
poral process flow information. To initiate the process, entry products or entry conditions are
placed along the left-hand edge of the diagram. In this case the process starts with either the
condition extern_prob_iden or intern_prob_iden. Similarly, the process terminates with exit
products or conditions being placed along the right-hand edge of the diagram. In this case
there is one exit condition, cr_appr. Thus, the process can be followed by starting on the left
of the diagram and working over to the right.

The process can start when either the condition extern_prob_iden or intern_prob_iden is initi-
ated. This means that an initial problem can be identified either externally, such as by a field
representative, or internally such as by a developer. When, for example, the condition
extern_prob_iden is set to true, the activity devel_extern_cr can proceed. The resulting prod-
uct is the initial version of the change request, field_cr. This version is then electronically trans-
mitted to the central office where it is identified as cr_extern. CRs generated internally are
designated by cr_intern. In either case the responsible developer formats the CR messages
(format_cr | k = 1) suitable for inclusion in the CR repository. At this point, the CR version in-
dicator i is initiated to 1. The output of this activity is cr1|1. The first “1” indicates from which
activity the CR has come (This is necessary for process enaction, as will be described later.)
The second “1” is the CR version number.

The next two activities are related to the repository. The put prefix on the activity indicates that
the entrance product will be stored in the repository, cr_repos, linked to this activity. While the
developer puts version k of the change request into the repository cr_repos, the reviewer re-
moves (i.e., gets) a copy of the same version of the CR for review. If the change request pass-
es the review then the condition cr_appr is generated; otherwise, version k of the product
rev_doc is generated. It will be noticed that there are three activities all with the name
CMU/SEI-93-TR-4 17

intern_prob_iden

cr _extern

put_into_repos_A

cr_added | k

get_from_repos_A

cr2 | k

review_cr

DO

cr_appr

rev_doc1 | k put_into_repos_B

rev_doc_added1 | k

get_from_repos_B

rev_doc2 | k

update_cr | k++

rev_doc_repos

devel_int_cr

has entrance condition

has exit product

has entrance product

has exit condition

has exit condition

has exit product

has entrance product

has exit composite

has exit product

has exit product

has entrance product

has exit product

has exit store

has entrance store

has entrance product
has entrance product

has exit product
•

•

•

•

•

• has entrance store

has exit store

•

•

cr_repos

has entrance condition

CA

•

has entrance condition has entrance condition

get_from_repos_C

cr3 | k

has exit product
•

•

rev_doc_added2 | k

•
has exit condition

•

has entrance store

•

developer

developer

reviewer

reviewer

DA

has entrance agent

has entrance agent

has entrance agent

has entrance agent

has entrance agent

has entrance agent

•

• •

•

•

•

has exit composite

has entrance compositeCO

extern_prob_iden

devel_extern_cr

field_cr

e-mail_cr

•

field_rep

has entrance agent

has entrance agent

has entrance agent

has entrance condition

has exit product

has entrance product

cr1 | k

cr_intern

format_cr | k= 1

has entrance agent

has exit product

•

•

has entrance product

has entrance product

has entrance composite

•

•
has exit product

has entrance agent

•

1

2

3

4

5

6

7

developer

Figure 3-8 A More Complex Change Request Process Model
18 CMU/SEI-93-TR-4

get_from_repos. These activities are distinguished with the suffixes _A, _B, and _C respec-
tively.

Beyond this point, the developer retrieves the appropriate version of the change request and
the corresponding review document, rev_doc2, makes updates to the change request, cr3,
and puts the updated change request (cr4 | k) back into the repository cr_repos. Note that the
version number k is incremented before the exit product cr1 | k is generated.

ProNet has been implemented in prototype form using HyperCard 2.0™ on the Apple Macin-
tosh™.
CMU/SEI-93-TR-4 19

20 CMU/SEI-93-TR-4

4 Enacting the Process

This section describes how the ProNet language defined in Section 3 can be used as a basis
for generating an enactable model (see Step 2 in Figure 2-1). As discussed in Section 2, the
focus of this report is, in part, to investigate issues associated with developing enactable pro-
cess specification. Thus the implementation of the PCDE (which would use the specification)
will not be discussed.

The approach taken to enactment uses logic programming. Logic programming and its princi-
ple implementation Prolog [Bratko 86], have previously been used by various researchers [He-
imbigner 90, Lee 91], and appear to be effective in capturing process data and enacting
process models. Prolog’s declarative characteristics not only allow for straightforward map-
ping between the graphic and symbolic forms of the model, but also provide an effective tool
for developing the driver through which a process can be enacted.

4.1 Mapping Activities to Rules

The manner in which the defined process is made enactable is not rigorous in a mathematical
sense, but requires 1) identifying appropriate Prolog rules for specific process model elements
and 2) generalizing these rules. The mapping exercise has been conducted using the process
elements of Figure 3-8. These elements do not cover all of ProNet’s modeling features but do
provide sufficient generality to indicate that the approach has a high chance of success.

Returning to Figure 3-8, it can be seen that before any activity is performed, certain entrance
conditions must be true. For example, in order to review version 3 of the change request
(review_cr), the product cr2 | 3 must be available. In addition, neither the condition cr_appr
(i.e., the change request has been approved) nor the product rev_doc1 | 3 must exist prior to
execution of the review_cr activity. If all of these conditions are met, then the activity cr_review
can take place and either cr_appr or rev_doc1|3 can be generated. During process enactment,
a sequence of statements (called log statements) is generated. These leave a trace of what
activities have been performed, and are principally required to assure that once activities have
been completed they are not performed again. On completion of each activity, a log statement
is generated and added to the database, thus indicating that the activity has been completed.
A log statement contains information indicating which activity has been completed, what inputs
were consumed and what outputs were generated. As will be discussed in Section 5, the trace
generated by the log statements is also useful in supporting the audit trail required for process
verification.

The above discussion provides an overview of the enactable model. It is a declarative model
in which each activity forms the core of a rule. A variety of approaches to dynamically enacting
rules exist. Examples include the production system OPS5 [Brownston 85] or Prolog [Bratko
86]. Prolog was chosen because an implementation was readily available and the language is
appropriate to this type of problem. A knowledge of Prolog will be useful in the discussions
below; however, an understanding of the general approach taken should not require a prior
CMU/SEI-93-TR-4 21

background in the language. The activities in Figure 3-8 will be used to define the mapping
procedure.

Before doing this, however, a simple process element will be first described to show what the
structure of the corresponding rule looks like. This is shown in Figure 4-1. Here the activity

activ_A requires product prod_A as input and generates the output condition cond_A. The
equivalent Prolog statement is shown to the right of the diagram. This statement indicates that
1) prod_A must exist in the Prolog database prior to performing the activity, and that 2) the
activity activ_A has not yet been performed (through the not (log (activ_A, _, cond_A)) state-
ment). When those two conditions are true, the statement (log (activ_A, prod_A, cond_A)) is
added to the Prolog database through the assert statement. This indicates that the activity has
now been performed and, as a result, the output condition cond_A can be added to the data-
base. The square brackets around the entities indicate lists in Prolog (albeit, in the above cas-
es, one element lists).

The above example illustrates that each activity can be treated as a separate chunk of knowl-
edge and is not explicitly coupled to any other activity. This allows for easier incremental
growth of the model. The generation of outputs from the activity (e.g., cond_A) then allows oth-
er activities to be initiated. In order for an activity to be initiated, not only must the entrance
conditions be satisfied, but the activity cannot have taken place already. This is tested for by
the not (log()) statement. We now look at a variety of typical process elements extracted from
Figure 3-8. The examples to be discussed are associated with the numbered activities in Fig-
ure 3-8. As a result of examining these examples, we will be able to define a more general
expression for the graphic-to-symbolic mapping. Once this is completed, we will then show
how the resulting rules can be used as part of an enactable model.

Figure 4-2 (1 in Figure 3-8) shows the initial activity in the process. Note that the role involved
(field_rep) is not specified in the rule. The manner of specifying the agents associated with ac-
tivities will be discussed later. The symbolic form of this process element is conceptually very
similar to the example of Figure 4-1. Figure 4-3 (2 in Figure 3-8) illustrates a more complex
activity. In this activity, either the initial change request or a revised change request is inserted
into the database. The 1 extension on cr (i.e., cr1) removes potential ambiguity from other, oth-
erwise identically named cr’s generated by different activities (for example, see cr2 in Figure

prod_A

activ_A

cond_A

•
has entrance product

has exit condition

act1:-
prod_A,
not (log (activ_A, _, cond_A)),
assert (log (activ_A, [prod_A], [cond_A])),
assert (cond_A).

Figure 4-1 The Mapping Between a Simple Process Element and Its Prolog Expression
22 CMU/SEI-93-TR-4

4-5). Version information is supplied by the version number after the vertical bar (for example,
the k in cr1 | k).

The next two rules, put_into_repos_A and get_from repos_A, deal with database support.
These process elements and their corresponding rules are shown in Figures 4-4 and 4-5 and
can be identified in Figure 3-8 (3 and 4 respectively). In Figure 4-4, the kth version of the
change request is stored in the database cr_repos. (Within the Prolog implementation, this
simply means that the name cr(1) is stored as an element of a list, called cr_repos, of cr ver-
sions.) The first statement in this rule (ver(k,K)) is added in order to instantiate the value of the
variable k. To indicate to other interested activities that this task has been accomplished, the
condition cr_added(k) is generated. Notice that this condition must also be given a version
number. The function put_ent in the Prolog rule of Figure 4-4 is responsible for adding the
change request to the database and also issuing the message that the transaction has taken
place. Finally, it should be noted that the put in front of the activity name put_into_repos_A has
a special significance in that this activity performs a put operation into the database. The get
operation is the inverse of the put operation. Thus a condition is required to initiate a get and
the get activity results in a copy of an entity in the database being released.

act1:-
extern_prob_iden,
not (log (devel_extern_CR, _, [field_cr])),
assert (log (devel_extern_CR, [extern_prob_iden], [field_cr])),
assert (field_cr).

devel_extern_cr

field_cr

extern_prob_iden

has entrance condition

has exit product
•

•

Figure 4-2 The Initial Step in the Process

cr1 | k

CO

format_cr | k = 1

cr_intern

cr_extern

act4:-
(cr_intern, X=cr_intern; cr_extern, X=cr_extern),
not (log (format_cr, _, cr1(1))),
assert (log (format_cr, [X], [cr1(1)])),
assert (cr1(1)).
set(k,1),has entrance product

has entrance product

has exit product

has entrance composite
•

•

•

•

Figure 4-3 Combining Disjunctive Inputs
CMU/SEI-93-TR-4 23

The review activity (5) can have two outcomes: either the review succeeds (and it generates
the condition cr_appr, or it fails to pass the change request, in which a review document
rev_doc1 | k is written. The process element for this is shown in Figure 4-6. Note that, as with

cr1 | k

put_into_repos_A

cr_added | k
cr_repos

•

• •
has exit condition

has entrance product

has exit store

act5:-
ver(k,K),
cr1(K),
not (log (put_into_repos_A1, _, [cr_added(K)])),
assert (log (put_into_repos_A1, [cr1(K)], [cr_added(K)])),
put_ent(cr_repos, cr1(K), [cr_added(K)]).

Figure 4-4 Inserting a Product into a Database

cr2 | k

get_from_repos_A

cr_added | k

cr_repos

•

• •
has exit product

has entrance condition

has entrance store

act6:-

ver(k,K),
cr_added(K),
not (log (get_from_repos_A1, _, [cr2(K)])),
assert (log (get_from_repos_A1,[cr_added(K)], [cr2(K)])),
get_ent(cr_repos, cr2(K)).

Figure 4-5 Removing a Product from a Database

cr2 | k

review_cr

cr_appr rev_doc | k

act7:-
cr2(K),
not (log (review_cr, _, [cr_appr])),

assert (log (review_cr, [cr2(K)], [Doc])),
decision (cr_appr, rev_doc1(K), Doc),

assert(Doc).

DO

•

•

• •

has entrance product

has exit producthas exit decision

has exit composite
not (log (review_cr, _, [rev_doc1(K)])),

Figure 4-6 Making a Decision
24 CMU/SEI-93-TR-4

K)])),
any divergent OR statement (the DO box), a decision must be made as to which path to take.
For simulation purposes, the decision function makes this choice based on a random number
and, through this function, the probability of which decision is made can be varied.

The process element for the activity put_into_repos_B (6) is shown in Figure 4-7. This is very

similar to the insertion of a product into a database as shown in Figure 4-4. However, this el-
ement generates two identical output conditions, rev_doc_added1 and rev_doc_added2. This
redundancy is not required for process enactment, since get_from_repos_B and
get_from_repos_C could use the same output condition during process enactment, but it is re-
quired for process verification (as will be described in Section 5). The final activity to be illus-
trated is update_cr (7 in Figure 3-8). This is shown in Figure 4-8 and demonstrates two
modeling concepts. First it shows how two entrance products (in this case, cr3 and rev_doc2)
support an activity through the use of the convergent AND (CA) junction. Secondly, it shows
how a version number is incremented. The products entering the activity are associated with
the unincremented number while the exit product is associated with the incremented number.

4.2 Generalizing the Rules

The above example and the associated Figures 4-2 through 4-8 provide insights into how to
define the graphics-to-symbolic mapping. Table 3 provides a general procedure for performing
this mapping. It can either be used as a basis for manually mapping a graphically-defined Pro-
Net process or as a mechanism for developing a computer-based approach. The latter has
not, to date, been done. This procedure is applied to each activity and the entities (i.e., prod-
ucts and conditions) upon which the activity is dependent. Table 3 has three columns. The first

put_into_repos_B

rev_doc_added1 | k

has exit condition
•

rev_doc_added2 | k

has exit condition

DA

has exit composite

rev_doc1 | k
has entrance. product

•

act8:-
ver(k,K),
rev_doc1(K),
not (log (put_into_repos_B, _, [rev_doc_added1(K), rev_doc_added2(K)])),
assert (log (put_into_repos_B, [rev_doc1(K)], [rev_doc_added1(K), rev_doc_added2(
put_ent(rev_doc_repos, rev_doc1(K), [rev_doc_added1(K), rev_doc_added2(K)]).

Figure 4-7 Generating Multiple Output Decisions
CMU/SEI-93-TR-4 25

Table 3 Mapping a Graphical ProNet Model to Its Enactable Form

Mapping Task Example Statements

1 Identify input entities prod_ai, prod_b, cond_c

2 Identify output entities prod_x, cond_yj

3 Add ver statements for versions ver(i, I), ver(j, J),

4 Add temporary increment statements I1 is I + 1

*5 Assert input entities:

5a convergent AND (CA) prod_ai, prod_b, cond_c,

5b convergent OR (CO) (prod_ai, X=prod_ai; prod_b, X=prod_b;
 cond_c, X=prod_c),

*6 Test for existence oflog statements:

6a divergent AND (DA) not (log (act_A, _, [prod_ai, prod_b, cond_c])),

6b divergent OR (DO) not (log (act_A, _, [prod_ai])),
not (log (act_A, _, [prod_b])),
not (log (act_A, _, [cond_c])),

*7 Assertlog statements:

7a convergent AND (CA),
divergent AND (DA)

assert (log (act_A, [prod_ai, prod_b, cond_c],
[prod_x, cond_yj])),

7b convergent AND (CA),
divergent OR (DO)

decision (prod_x, cond_yj, Y),
assert (log (act_A, [prod_ai, prod_b, cond_c],

Y)),

7c convergent OR (CO),
divergent AND (CA)

assert (log (act_A, X, [prod_x, cond_yj])),
--
(X as in 5b above)

cr1 | k

update_cr | k++

CA

cr3 | k rev_doc2 | k

•

•

• •

has exit product

has entrance composite

has entrance product
has entrance product

act11:-

K1 is K+1,
cr3(K),
rev_doc2(K),
not (log (update_cr, _, [cr1(K1)])),
assert (log (update_cr, [cr3(K), rev_doc2(K)], [cr1(K1)])),
assert (cr1(K1)),
inc(k).

ver(k,K),

Figure 4-8 Combining Inputs and Incrementing a Version Number
26 CMU/SEI-93-TR-4

column lists the item number. Some of these items are mandatory and must be included in
every Prolog rule (these are identified with an asterisk). Other items have sub-items (a, b,...)
which may be chosen depending on the nature of the current process element. For example,
if the current process element has a DO as an output, items 6b, 7b or 7d, and 10b are chosen.
Note that in Table 3, the only functions defined within the Prolog language are not and assert.
All other statements and functions (e.g. decision and put-ent) are defined as part of the rule-
driver.

To complete the discussion of the process model, three additional topics are addressed.
These deal with:

• the actual rule structure,

• modeling the agents which perform the activities, and

• the rule driver through which the rules are enacted.

In the actual implementation, each rule is separated into two parts. In the first part, the en-
trance conditions, which test whether the rule should fire, are grouped into a ‘test’ category
(under the heading test). These are items 5 and 6 in Table 3. Then the assertions, stating that
the activity has taken place and that the output products and conditions have been generated,
are placed in a second “action” category (under the heading act). These are items 7 through
12 in Table 4.1.This separation, which can be seen in the program listing provided in Appendix
A.2, is required in order to find all satisfied entrance conditions prior to performing any activity.
This provides a list of current actions which are then presented to the user. Statements linking
each entrance condition to its action are defined and have the form actRole(test3, act3,
field_rep, 'e-mail external CR'), where the test test3 is linked to the action act3. The third field
in this actRole data statement defines which role (e.g., field_rep) can perform this activity,

7d convergent OR (CO)
divergent OR (DO)

decision (prod_x, cond_yj, Y),
assert (log (act_A, X, Y)),
--
(X as in 5b above)

8 Add item to database (put_...) put_ent (repository_A, prod_b, [b_added]),

9 Remove item from database (get_...) get_ent (repository_A, prod_x,),

*10 Assert output entities:

10a divergent AND (DA) assert (prod_x),
assert (cond_yj),

10b divergent OR (DO) assert (Y),
--
Y as in 7b above

11 initialize version numbers set(i,1),

12 increment version numbers inc(i),

Table 3 Mapping a Graphical ProNet Model to Its Enactable Form

Mapping Task Example Statements
CMU/SEI-93-TR-4 27

while the last field provides textual information about the activity ('e-mail external CR'). It
should be noted that when an activity is performed, some implicit events may take place. For
example, tools may be invoked to perform the actual operations, or subprocesses may be in-
voked to define lower levels of process granularity. Invocation of tools is not investigated in
this paper. However, in Appendix A.3 an extension of the model defined in Section 4 illustrates
how the approach can be generalized to account for hierarchies of sub-processes.

The second topic relates to how agents are modeled. Each activity should have one or more
attached roles (or agents) responsible for the implementation of that activity. Prior to the actual
performance of an activity, we must assign actual agents to these roles. While these agents
are often persons, they can also be non-living entities such as a specific compiler version with
specific flags. The mapping between the role and the actual agent is given by statements
which have the form: hasRole(field_rep, howard). Hence a list of hasRole statements must be
part of the process definition in the enactable model.

Using Table 3, the rules which define the process can be generated. However, in order to
make the process enactable, a rule driver is required. While the rules themselves are depen-
dent on the process being defined, the rule driver is process independent and controls the or-
der in which rules are fired as the process is enacted. The rule driver is discussed in somewhat
more detail in Section 4.3, as this pertains to how the enactable model is used in a process
context.

Details of the full model, as described in Section 4, can be found in Appendix A. This provides
sample output from the demo process controller and lists the Prolog program, including the
test entrance conditions, the act activities, the actRole and hasRole definitions and the rule
driver.

4.3 User Interaction with the Process Model

Let us first look at how a user would interact with our simple enactable process model and then
address the issue of managing a large rule-base. We have referred above to the rule driver,
that is, the part of the system which selects and displays appropriate information (e.g., current
activities) to the user. From an implementation point of view, the name rule driver is appropri-
ate, but from the perspective of a user of the process, it is not. In this section it is more appro-
priate to rename it as the process controller.

The structure of the process controller is shown in Figure 4-9. It is (of course) defined in ProNet
notation. After the project is initiated, or after any project activity has been completed, a list of
all candidate activities which can currently be performed is generated. If this list is empty then
the project has been completed. If the list is not empty then a subset of the list is generated
which applies to the current user. The user then specifies which activity should now be per-
formed. Thus the process controller cycles round the activities defined in the rule-base and on
each cycle performs one of the activities. These cycles continue until the candidate list no
longer contains any activities. Thus the controller acts like an rule-based production system
28 CMU/SEI-93-TR-4

[Brownston 85]. From the above discussion and the model shown in Figure 4-9, it should now
be clear why the activity entrance conditions are separated from the actual activities. The en-
trance conditions must all be checked in order to generate the activity list prior to candidate
activity selection. (This selection process is the manual equivalent to conflict resolution in a
production system.) While the process is being enacted, products and conditions are being
generated, product versions are being added to and removed from databases, and a history

start next cycle

request user name and find assoc. role

user’s role

find current activities

activity list check activity list

filter activities for this role

list not empty

list empty - project complete

DO

filtered activity list

select next activity

next activityperform activity

has entrance product

has entrance conditon

has exit product

has exit condition

has exit composite

has entrance conditon

has entrance conditon

has entrance conditon

has exit product

has entrance product

has exit product

has entrance product

has exit product

has entrance product

start new projecthas exit condition

Figure 4-9 Process Controller for the Enactable ProNet Model
CMU/SEI-93-TR-4 29

of the user-defined process path used is being stored. Appendix A.1 provides sample output
from a user interacting with the process controller.

4.4 Managing the Rules

Declarative rule-based modeling, as discussed earlier, has appealing properties with respect
to building models incrementally. Since each rule defines an isolated activity, it is relatively
easy to build on or modify models as confidence and insight increase. In order to manage the
large number of process model variants which are likely to arise, configuration management
of these models will be essential.

One concern with the declarative approach is that of verification. With any complex process,
the numbers of rules may run into the hundreds. Thus the complexity of interactions can be
high, and verifying behavioral correctness or completeness may be difficult. Performing tests,
such as for deadlock and reachability, will help to reduce errors. In addition, process enact-
ment simulation will help to assure that the additions or improvements are well behaved before
they are fielded. A second verification issue is related to assuring that the agents that pro-
duced the end-products actually use the defined process. The log statements defined above
help provide a trace of the process used to develop the products. Through this trace, this his-
torical process can be identified and verified against the defined process. This is the main topic
of Section 5.

4.5 User Interaction with the Automated Process

A problem discussed in Section 3 is that of unnecessarily restricting the start of an activity until
all the necessary entrance conditions are met. In reality there are many cases where prelimi-
nary work can be performed on an activity prior to that point when all the formally specified
entrance conditions are satisfied. This restrictive behavior is unfortunately exhibited by the
above model. However, the problem can be overcome in the following simple way. Rather
than prevent the start of any activity, the process controller only requires that the exit products
and conditions of the activity become available after all the activity’s inputs exist. Thus an ac-
tivity can be started at any time during the process; the only imposed constraint is that the ac-
tivity cannot terminate until all the inputs are accounted for (and of course, the activity itself
has been performed).

Another restriction on the current model is that the process driver only accounts for forward
chaining and not backward chaining. Forward chaining implies that activities are performed
only when their entrance conditions are met (as described in the previous paragraph). How-
ever, it could be that an agent wishes to perform an activity, some of whose entrance condi-
tions are not met. The agent may wish to satisfy that constraint by “backtracking” through the
sequence of as-yet unperformed activities in order to generate the unmet entrance condition.
Figure 4-10 provides a simple example. Assume that activity A, activity E, and activity F have
been completed.
30 CMU/SEI-93-TR-4

The agent next wants to start on activity G. However, prod 3 is not yet available. To generate
prod 3, activity C must be performed. This in turn requires activity B be performed. Hence to
satisfy the entrance conditions to activity G, one option is to “backtrack” through these unper-
formed activities necessary to support prod 3. This control scheme is tighter than the one dis-
cussed immediately above, in that is still requires all input entities to be available before an
activity can be started. However, it does allow an agent to start an arbitrary activity at any time;
the system will then guide the user to perform the necessary precursor activities.

A limitation of process enaction, as it has been described, is related to the manner in which
activities are displayed to the user. The simple user model presented provides a list of possible
“next” activities to be performed (see Appendix A.1). However, this provides no context in
which to make the selection. A significantly improved interface would show the graphical pro-
cess model, driven by real-time execution data, and indicating project status [Mi 1992]. Color
or symbolic coding of such information as the degree of activity completion or ownership of
activities, would provide instant feedback on and control of the project. By clicking on an ac-
tivity, the agent would thus open that task for development.

4.6 A Relational Definition of the ProNet Notation 3

As discussed in Section 3, a model defined using ProNet notation has elements in common
with entity-relation models. However, the underlying ProNet modeling and enaction concepts
can be defined at a meta-level, also using a relational model [Monarchi 92]. This is briefly de-
scribed below.

Using Figure 3-6 as the basis for a process simulation, we might cycle through two unsuccess-
ful reviews (review CR) before satisfying the reviewer and generating the condition CR OK.
With this scenario, we would produce two versions of the revision request and three versions
of the change request before generating the CR OK condition. Table 4 lists the information
that both defines the process model and uniquely specifies this execution. Note that executed
activities (the Xi’s), product and condition versions, and agents assigned to executed activities
are required to complete the specification of the enacted process. Thus, it can be seen that
the essential entities required for ProNet enaction are: activities, artifacts (i.e., products and
conditions), executed activities (X1, X2, etc.), artifact versions (1,2,3, etc.), roles and agents.

3. I’d like to thank Alan Brown for suggesting this concept.

activity A

activity B activity C activity D

activity E activity F activity G

prod 1 prod 2 prod 3

prod 6prod 5prod 4

Figure 4-10 Backtracking to Define Activity Inputs
CMU/SEI-93-TR-4 31

Figure 4-11 then generalizes the model of the relationships between these entities, using Ta-
ble 4 as a basis. Note that the five entity structures on the left-hand side are required for pro-
cess definition, while the five on the right reflect the additional structures required for process
enaction. The symmetry of concepts on the definition side and the enactment side is quite
striking. This can be summarized as follows:

definition <--> enaction

roles <--> agents

artifacts <--> artifact versions

activities <--> activities executed

This relational database approach to process enaction is not pursued any further here, but
may have interesting implications.

Activities

initialize CR
update CR
review CR

Artifacts

CR
rev req
CR OK

Input artifacts

update CR
update CR
review CR

rev req
CR
CR

Output artifacts

initialize CR
update CR
review CR
review CR

CR
CR
rev req
CR OK

Activities executed

X1
X2
X3
X4
X5
X6

initialize CR
review CR
update CR
review CR
update CR
review CR

Artifacts consumed

X2
X3
X3
X4
X5
X5

CR
rev req
CR
CR
rev req
CR
CR

1
1
1
2
2
2
3

Artifacts produced

X1
X2
X3
X4
X5
X6

CR
rev req
CR
rev req
CR
CR OK

1
1
2
2
3
1

Artifact versions

CR
CR
CR
rev req
rev req
CR OK

1
2
3
1
2
1

Roles

developer

Agents

developer
reviewer

initialize CR
update CR
review CR

Jock
Susan
Paul
Ed

reviewer
developer
developer
reviewer

Susan
Ed
Paul
Ed
Paul
Jock

X6

Table 4 Relationships Among Model Entities
32 CMU/SEI-93-TR-4

Artifacts

Output artifacts Artifacts produced

Activities

Input artifacts

Activities executed

Artifacts consumed

Artifact versions

Process
Definition

Process
Enaction

Roles Agents

Figure 4-11 A Relational Model Linking ProNet Entities
CMU/SEI-93-TR-4 33

34 CMU/SEI-93-TR-4

5 Software Process Verification

This section of the paper presents an approach to assuring that any software product meets
the requirements of the defined process, while at the same time accounting for deviations from
the prescribed process [Stanley 92]. Process verification, as defined here, is a post-analysis
of process data gathered during product manufacture (down to an appropriate level of granu-
larity). The act of verification will identify where deviations from the agreed-to process oc-
curred and allow a determination of the severity of those deviations. (See Step 9 in Figure 2-1).

Deviations need not invalidate a non-conforming process path. Indeed, they could be benign
or even beneficial. Some process changes may be due to unforeseen circumstances such as
accounting for the replacement of an assigned developer by another developer in the execu-
tion of certain tasks. Others may be made to allow for creative improvements such as the re-
placement of a specified compiler by a more efficient one. Whatever deviations occur, a post-
project evaluation can be performed to assess their impact on the resulting software quality,
provided that the enacted process is tracked. The approach to verification follows. Throughout
a project, the artifacts which are produced by the developers are automatically recorded, along
with information on who produced them and how they were produced. On project completion,
the manner in which these artifacts were produced is then compared to the requirements of
the defined process.

The approach taken rests heavily on the process modeling concepts described in previous
sections. In particular, the log statements used to record process history are central to verify-
ing the correctness of the as-implemented process. If the process has been followed exactly
as specified in the enactment model, then a set of log statements, consistent with the defined
process, must exist. However, as described above, there are likely to be situations where no
path through the implemented process matches the defined process.

Process verification affects several aspects of software development. First, the tools used to
develop the software will have to be instrumented to record what is being performed. Second,
there are implications for metrics tools since process data will have to be recorded. Third, con-
sistency of intermediate product versions is essential to assure final product quality. Hence,
there are implications for configuration management. Finally, there are implications for pro-
cess, process specification, and process modeling.

It should be noted that process verification can be the basis for process certification. In this
context, “process-certified” software implies that either the final products are guaranteed to
have been generated using an agreed upon process, or non-conformances are identified and
justified. This does not guarantee that the software performs to specification, but certification
may be regarded as a necessary if not sufficient guarantor of software quality. Such certifica-
tion may be of interest to any organization which subcontracts out software development.
CMU/SEI-93-TR-4 35

5.1 The Basis for Process Verification

The basis for verification has already been laid through the ProNet notation presented in Sec-
tion 3 and the subsequent discussion on process enactment in Section 4. The verification pro-
cess is the inverse of the enactment process. In enactment, activities follow the forward flow
of time and the events are recorded (through the log data entities as described Section 4).
However, verification takes place by starting with the end product, applying the log statements
generated during process enactment, and working backwards. The object here is to prove that
the process, as defined through the log statements, is consistent with the defined process as
reflected through the process model. The final product establishes the “initial conditions” for
verification, and one log statement is consumed as the corresponding activity joins those in
the set of verified activities. While this approach is not as formal as proof of correctness of pro-
grams [Greis 81], it is interesting to note that both perform their verification proofs in this back-
ward manner.

In summary, the following sequence of activities is performed for process verification:

• Prior to initiation of the software project, the software development process
is established using an appropriate process modeling technique such as
ProNet. The level of process detail should be such that important products
can be tracked.

• During the project, all critical activities are instrumented such that their input
and output products and conditions (and their version identifiers) are
recorded. Conditions must be tracked, since these are important process
indicators.

• When the final product has been generated, comparison is made between
the process model and the log statements generated during project
execution. For verification of the final product, complete consistency must
exist between a subset of the intermediate artifacts produced and those
expected by the process model.

This sequence need not be applied only to a complete project. If the project is sufficiently large,
then intermediate products from sub-projects can be individually verified using the appropriate
sub-processes. These intermediate products then contribute to the verification of products at
a higher level in the overall project.

5.2 Implementing the Approach

In implementing process verification, the goal is to prove that at least one subset of the col-
lected log data statements is consistent with the defined process. Figure 5-1 illustrates the el-
ements of this theorem-proving approach. The diagram in Figure 5-1 shows a process model
element in which products prod1 and prod2 support activities act1 and act2, and where these
activities generate products prod3 and prod4. This process is defined by the two verify state-
ments also shown. The log statements represent the historical data gathered during execution
36 CMU/SEI-93-TR-4

of the process. The first log statement, for act1, uses versions v1 for both input products prod1
and prod2. The resulting version of product prod3 is also version v1. As with the enactment
model, the verification model is written in Prolog notation. In fact, as will be seen later, the im-
plementation of the verification procedure is very similar to that of the process enactment pro-
cedure.

Let us now compare the process model data (the verify statements) with the tracking data (the
log statements). The first verify statement asserts:

IF
prod4, version K exists

AND

v1
v2

v3

v1
v2

v1
v2
v3

v1

prod1

prod2

prod3

prod4

act1

act2

v4

Process model data:

Tracking Data:

log (act1, [prod1(1), prod2(1)], [prod3(1)])
log (act1, [prod1(1), prod2(2)], [prod3(2)])
log (act1, [prod1(2), prod2(2)], [prod3(3)])
log (act2, [prod2(3), prod3(4)], [prod4(1)])

verify:-

prod3(M),
retract (log (act1, [prod1(K), prod2(L)], [prod3(M)])),
assert (prod1(K)),
retract (prod2(L)),
retract (prod3(M)),
verify.

ver(m,M),

verify:-

prod4(K),
retract (log (act2, [prod2(L), prod3(M)], [prod4(K)])),

assert (prod2(L)),
assert (prod3(M)),

retract (prod4(K)),
verify.

ver(k,K),

Figure 5-1 A Simple Process Model with Process Data
CMU/SEI-93-TR-4 37

activity act2 generates prod4, version K as output and uses prod 2, version L and prod3,
version M as input

THEN
delete the log statement
add prod3, version M and prod2, version L to the database
delete prod4, version K from the database
find the next applicable verify statement to execute

The initial ver statement in the verify rule simply identifies the current value K of the version
number k. The second verify statement in Figure5-1 has a construction very similar to the first.
The values L and M of version numbers l and m, are determined when the appropriate log
statement is instantiated. In this example, prod4 takes on the version value 1, thus forcing
(through the log statement for act2), the version numbers l and m to take values of 3 and 4
respectively. Hence prod2, version 3 and prod3, version 4 are added to the database. Since
prod3 is now in the data base, the second verify rule is now activated. However, there is no
log statement which has prod3, version 4 in its output list. Hence there is a disconnect in the
process, and the verification fails.

This simple example also illustrates how the process verification procedure does not care
what activities have been performed (e.g., there may be many redundant log activities), so
long as there is a core set which can be threaded together consistently as defined by the pro-
cess model.

5.3 The Verification Demo Program

As with process enactment, process verification is implemented through a rule-based, forward
chaining production system. However, unlike the enaction program, verification is not, and
does not need to be, interactive. The “initial conditions” for verification are the name of the final
product and the log statements generated during execution of the project. As verification takes
place, intermediate products appear and disappear and log statements are consumed, as the
valid path extends further backwards in time. At the end of the verification procedure (assum-
ing the process is verified), all the log statements associated with the verified path will have
been be consumed and the entry products/conditions for the process will be generated. The
symmetry between process enactment and verification is shown in Figure 5-2.

entry products/
conditions

exit products/
conditions
+
log statements of
enacted process

enactment

verification

activities

Figure 5-2 Symmetry Between Process Enactment and Verification
38 CMU/SEI-93-TR-4

The verify program is listed in Appendix B. This program consists of:

• a set of clauses to support needed functionality, such as for adding entities
to, and removing entities from stores,

• a set of clauses which define the verification rules, each rule being
associated with an activity in the defined process, and

• a set of log statements which were previously generated during process
enactment.

The process used in verification is identical to that defined in Figure 3-8, and the log state-
ments were physically removed from the output of an enactment run. Thus there is complete
consistency between the enactment model and the verification model. It should be noted that,
while we have not discussed automatic generation of the rules for a verification model, such
automation could be performed using a mapping quite similar to that shown in Table 3.

5.4 Implications for Verification

The exploratory work described above has some significant implications. These fall under the
main headings of software quality and process certification, configuration management, tool
integration, user interaction, metrics and finally, process improvement. These are briefly
discussed below.

• Software quality and process certification . On completion of a project, a
verification analysis can formally be made to assure that all steps have been
completed and that they have been completed in the right order. Such formal
verification may have implications for contractor process certification and the
ISO 9000 standard [Kalinosky 90].

• User interaction . As discussed in the introduction, a major concern in
enforcing effective process is the imposed restrictions which software
developers feel either from a supervisor, or from an automated environment.
The approach to verification in no way restricts the manner in which work is
accomplished in terms of detailed oversight. It only requires that, when the
project is completed at least one consistent path through the agreed upon
process has been taken, or if deviations from the defined path have been
taken, they can be justified.

• Process improvement and metrics . Throughout a project which uses
process verification, significant quantities of historical data will be gathered.
This data can be used, along with like data from other projects, for long-term
process improvement. Data from each project can be analyzed to identify, for
example, where bottlenecks, inefficiencies, and inaccurate estimates occur.
By having formally-defined process models and data from their enactment,
considerable insight can be thus obtained. This provides all the necessary
ingredients for both qualitative and quantitative process improvement.
CMU/SEI-93-TR-4 39

40 CMU/SEI-93-TR-4

6 User-Oriented Issues with PCDEs 4

The previous sections have dealt primarily with technically-oriented issues associated with au-
tomating software production. However, implementing a process-centered development envi-
ronment involves much more than just addressing the technology. Indeed the success of
adoption rests at least as heavily on personnel, organizational and cultural elements. This sec-
tion thus looks briefly at a variety of more user-oriented problems facing organizations wishing
to adopt a PCDE. Many of these issues are also relevant to software development environ-
ments in general.

A significant fraction of software today becomes “shelfware” [Page 92], in part because it may
not meet users’ functional requirements, because of lack of appropriate user training, or be-
cause of lack of compatibility with the project’s process. Other elements may also contribute.
[Boone 91] discusses factors which have been impediments to the successful introduction of
CASE technology. Such factors include the difficulty which developers have in adapting to the
different philosophy which CASE tools impose upon them, and the discomfort which managers
have when coding doesn’t begin until much later in the development cycle. These changes in
working habits will only be magnified when complex PCDEs are introduced.

A PCDE will be costly to install, in terms of the initial investment in software, in terms of the
required training, and in terms of its adaptation to the needs of the projects using it. There will
also be financial and technical investments in its long-term maintenance. The likelihood of fail-
ure in using such a system will be higher than with individual products. Given the high cost of
this kind of investment, an organization may shy away from making more than one attempt at
installing a PCDE if the first attempt is perceived as a failure. However, using an approach
which relies heavily on graphical support for process definition, process enactment, user in-
terface, and process maintenance will increase the likelihood of success of such systems.

In order to develop an effective PCDE, a review of some relevant user-oriented, adoption and
technology transition issues is thus appropriate. These issues are the subject of the rest of this
section.

6.1 The Application of Automated Support

If not designed properly, automated support may get in the way rather than help. Automating
a process just because the technology exists can be like building a radar-activated mouse trap
-- it is too complex, too costly, and does not meet the user’s simple needs. What should be
automated? First, it is clear that automating those processes that are well understood (i.e., de-
fined) makes sense. Thus islands of automation may be established, with the later possibility
of building bridges between these islands. Second, tasks that are tedious should be automat-
ed, thus allowing the developer to concentrate on the more creative aspects of the job. Third,

4. Parts of this section have been adapted from an article appearing in IOPener, Volume 1 No. 5, November, 1992.
CMU/SEI-93-TR-4 41

tasks where manual involvement frequently introduces error should be candidates for automa-
tion.

Areas where automation can be of significant help include configuration management (CM),
change tracking and metrics. Others include code reviews, document reviews, requirements
management and project management. Today CM is already well automated and certain CM
tools [e.g., CaseWare 92] increasingly allow for a customized process to be defined by the
end-user. Much work still needs to be done in examining the overlap between CM and pro-
cess, but systems like ISTAR [Dowson 86] and others [Bernard 89, Mahler 90] have investi-
gated this topic. Process models can provide insight into what artifacts should be placed under
CM control and what process metrics should be gathered. In the CM case, our simple process
model provides some guidance. In a well-formed model, those artifacts which connect activi-
ties to activities are candidates for CM control. Thus, both product versions and condition ver-
sions should be placed under configuration management. In this context, tracking condition
versions allows us to roll back in time to any prior part of the process and reconstruct what has
occurred. This process data may best be maintained in a data structure similar to the log state-
ment of our process enaction notation. The required process information also provides guid-
ance on what metrics should be gathered from a process point of view. This information is
similar to the CM information just discussed.

Not only must process models be sufficiently flexible to account for a wide variety of scenarios,
but they must also allow for the adaptation of existing scenarios. Process modification can
take place in at least in two ways: 1) as part of a process improvement effort, or 2) “on the fly”
while in the middle of a project. The former is based on a long-term strategy, supported by met-
rics gathering and analysis, and implemented through process redesign and verification.
While this is challenging, with sufficient lead-time the inherent risks can be minimized. How-
ever, real-time modifications to an on-going process contain significant risk. Nevertheless
such changes may have to be made for a variety of reasons. For example, the process may
not be performing as expected (i.e., it was not adequately debugged), or as mentioned earlier,
circumstances such as new schedule constraints may force process changes. With a manu-
ally implemented process, changes can be made on an informal basis. However, if the pro-
cess is automated, the ability to adapt the process may be significantly restricted.

Process support tools must therefore have the flexibility to support rapid process modification.
Tools to support such needs as graphical process definition, automatic translation of graphi-
cally defined process to enactable form, verification of the completeness and correctness of
the process model, or part of it, and process simulation capability will be very useful in this re-
gard. These tools will of course also be of significant help in long-term process improvement
efforts. Finally, it may be necessary to design these tools so that a project can degrade grace-
fully into manual process control if the automated mode does not perform adequately.
42 CMU/SEI-93-TR-4

6.2 Organizational Factors

A PCDE must consider the needs of multiple roles, such as upper management, project man-
agement, and technical development. Each of these roles has different support and informa-
tion requirements; in general lower levels in the hierarchy will support the higher levels. For
example, developers will provide their project management with technical and status informa-
tion related to tasks. Metric information may or may not be gathered automatically for manage-
ment review and analysis. In addition, planning and schedule information will flow from project
managers to upper management. A PCDE must have an understanding of entities such as ac-
tivities, roles, products and of the relationships connecting those entities. Information about
the entities and relationships should be reflected in the data objects underlying the environ-
ment.

Because process support environments are likely to be large and relatively complex, they are
most appropriate for large structured organizations involved with major software systems. For
such organizations, having common data schemas is important for communications, project
integration, metrics gathering and for process improvement. Hence it seems appropriate that
these schemas should be defined at the organizational level. For similar reasons, defining a
user interface that is as consistent as possible is appropriate at this level. Different technical
departments within an organization will need different tool sets and may use processes tai-
lored to their specific needs. Hence, specification of tools sets and department-specific pro-
cesses may be needed at a lower level of organizational granularity.

6.3 Process Needs of Managers and Developers

In general, project management needs will include the ability to access information such as
quality assurance reports, test reports and status reports on products and tasks. On the basis
of this information, the manager can make decisions on future courses of action. These deci-
sions set broad constraints on how developers perform their technical work. The means of im-
posing management decisions on technical personnel should be through a well-defined
process; that is, the developers should understand the ground rules within which they can per-
form their work. This may be called the defined management process and is an enabling
mechanism for a productive working environment.

While the manager’s view of process tends to be one of control, the developer’s view is one
of support. Developer’s processes are related to product development and involve such activ-
ities as design, development, and testing of software products [Humphrey 92]; they are thus
quite different from management processes. The developer wishes to use automated process
support to provide guidance when it is requested and relieve menial chores when possible.
Automated process support tools need to provide a sufficiently broad range of functionality to
express these different needs. One area where automated support is critical is metrics collec-
tion, since developers may be reluctant to invest time in an activity that they may perceive to
be of primary benefit to management.
CMU/SEI-93-TR-4 43

Within these two extremes, there is a third category of process. In larger projects, groups of
developers must cooperate [Ellis 91] in product development. In this case, a cooperative pro-
cess should be defined which involves aspects of both support for and control of products.
Clearly, when multiple developers participate closely in a task, issues of control at the devel-
oper level must also be addressed. At a minimum, configuration management processes are
important here [Dart 91]. In the future, special tools which allow developers to interact, for ex-
ample in concurrent debugging [Dewan 93] may become more prevalent. Thus the potential
influence of groupware products in PCDEs needs to be investigated.

If a software technology does not meet the user’s needs, it will not be accepted. In a similar
way, if a PCDE is not well adapted to the way people work and interact, it is likely to be sub-
verted. By enforcing rigid conventions on the software process, an automated environment
may not only take away the feeling of personal control but may prevent a developer from show-
ing initiatives that improve efficiency. For example, in a rigidly automated process, a developer
may be unreasonably prevented from initiating a subsequent task because an earlier task has
not been completed. Thus, either the level of granularity of the modeled process was too
coarse (i.e., there was insufficient resolution to account for small tasks), or it was too intrusive
(it should not even have attempted to control tasks in this way). Section 4.5 suggests an alter-
native solution to this problem.

Automation should primarily liberate the software development team from chores which can
be automated (e.g., configuration control, gathering of metrics). Second, it should enforce pro-
cess in a broad sense i.e., provide a framework into which individual processes can operate
with significant freedom. Other constraints are probably appropriate for specific projects, but
in adding them, a trade-off between the perceived benefits (productivity, management control,
etc.) and the human impact of the constraint should be carefully assessed. As Humphrey
[Humphrey 89] states: “[T]he environment should provide strict enforcement of liberal pro-
cess.” Humans can be very creative in circumventing systems which do not support their
needs.

6.4 Adapting the Process to Unforeseen Circumstances

Producing a computer program with an effective understanding of user-oriented process is a
challenge. Like all knowledge-based computer models, process programs rely on reasoning
(for example, rule-based or state-transition-based) which explicitly takes into account only
specified and understood changes in the system behavior. While a well-regulated process will
have a significant degree of predictability; unaccounted circumstances may occur. These are
much more difficult to handle within an automated environment.

The problem of what mental models humans apply to particular situations is one which the
Danish industrial psychologist Jens Rasmussen has addressed. He perceives three levels of
cognitive abstraction. At the lowest level there is the reflexive “if this happens...then do that”
reasoning that is applied under normal conditions. This he calls the “skill” level. Computers
modeling this level have shown significant success using, for example, expert systems. At a
44 CMU/SEI-93-TR-4

second level, the expert may have to rely on past experiences to reason about a condition
which is not normally encountered; from these past experiences he will then formulate a plan.
An example might be how to modify the process if a hard deadline is approaching. This Ras-
mussen calls the “rule” level; while amenable to computer analysis, this is more challenging
than the skill-based regime. Finally the expert may encounter an altogether new situation
where reasoning from first principles is required. Examples of this might be loss of critical
project data through natural disaster or because of a virus-infected repository. This Rasmus-
sen calls the “knowledge” level; this level probably requires complete human intervention.

These examples indicate how the human expert modifies reasoning levels according to on the
complexity and novelty of the situation [Rasmussen 79]. It is difficult to build this kind of flexi-
bility in reasoning into a software system. This is not to say that automating the process is in-
appropriate, rather that the limitations must be understood. Addressing the limitations of
PCDEs may mean, for example, that they should have the facility to be modified “on the fly”
(so that incidents at the “rule” level can be accommodated), and should be designed to grace-
fully degrade to a manual process (so that incidents at the “knowledge” level can be accom-
modated).

6.5 Lessons from Groupware

Human-computer interaction has been extensively analyzed by people in the field of comput-
er-supported cooperative work (CSCW) [Ellis 91]. The products developed (usually called
groupware) are aimed at supporting teams of people who use networked computers to facili-
tate joint efforts. Generally groupware supports three functional categories: communication,
collaboration, and coordination. A common example of a communication package is e-mail;
an example of a collaboration package might be an editor that allows simultaneous update
from multiple terminals; an example of a coordination package might be a group scheduler.
Most of these tools are of a generic nature to support non-technical or management goals.
However, because they have to deal with how humans interact in tightly coupled settings, re-
search in this field offers insights into issues relevant to the process constraints on environ-
ments.

Within the context of PCDEs, there are several areas where groupware technology is likely to
be important:

• specification/design

• documentation

• code inspections

• project planning

• reviews (e.g., of change requests)

Some of the above (e.g., code inspections) are truly synchronous activities, that is, the group
participates at the same time, either at different terminals at the same location or geographi-
cally dispersed. In others (e.g., documentation) the mode of interaction is more likely to be
CMU/SEI-93-TR-4 45

asynchronous. Some lessons learned from groupware evaluations which bear on software
PCDEs are:

• Don't try to get too elaborate with sophisticated functionality. Instead focus
on a system which emphasizes basic functionality and ease of access and
does these well from a user point of view.

• If non-electronic analogies or metaphors can be used to describe entities/
attributes, use them.

• The system's architecture should be designed from the beginning to reflect
seamless data and control integration. The difference between a system
where one can move effortlessly between applications and one where such
movement is awkward can be crucial to success.

• Be careful in adding features which may have advantages for one group
while imposing the work on another group. (This is the “what's in it for me?”
syndrome.)

• Don't try to over-automate the process as all possible configurations that the
system may encounter cannot be predicted. The need for manual control
over process execution will therefore be necessary.

• Design the environment for changing requirements. Human needs are very
difficult to predict, and the system must be adaptable to account for user
experience.

These points are also discussed in [Bull 90, Grud 88, Sing 91].

6.6 Configuration Management, Conflict, and Cooperation

Those aspects of ProNet dealing with 1) versioned products or conditions and 2) the put and
get commands, allow the notation to explicitly model some basic configuration management
operations. In CM terms, put and get correspond to check-in and check-out. Currently, oper-
ations such as branch and merge have not been not addressed, nor has the ability to lock the
store after a product has been checked out. At a minimum, a locking mechanism could be add-
ed to the notation with little difficulty. However, to be fully responsive to users, any realistic pro-
cess enactment language needs to go beyond simple locking.

In any practical PCDE, the ability to handle products within a cooperative group environment
could be important, particularly at the software development level. Currently configuration
management tools do support cooperative development. For example, tools such as SHAPE,
SMS, and NSE provide isolated workspaces, and the ability to resolve conflicts when merges
are made between workspace product versions and the public repository [Dart 91]. In partic-
ular, NSE [Feiler 90] provides for multiple workspaces. Each workspace can have a virtual
copy of the original parent environment; only when a file is checked out in the workspace is a
physical copy of it made. If files in the parent environment have been updated by one devel-
oper, then modifications from another developer (one who has also removed a copy of the un-
modified parent) cannot be merged into the environment. The second developer must perform
46 CMU/SEI-93-TR-4

a local merge of the files and debug the two sets of changes before updating the parent envi-
ronment.

The above approach to parallel development does relax the constraint that development is
strictly serial. However, it still does not support close cooperative development. For example,
two persons may not be able to work in an interactive way on a section of code. As stated in
[Bargouti 90],

Having the development process explicitly encoded does not alone solve the
problem of supporting multiple users, a requirement for any large-scale soft-
ware development effort. The basic problem is the inability to allow concurrent
access to project components while still maintaining the consistency of these
components.

The above issues of concurrency and synchronization have been addressed neither within the
ProNet modeling language nor in its enactable form. However, work which investigates
graphical modeling in these areas is discussed by [Singh 92] using a role-centered approach
supported by Petri Nets. Such work may help illuminate some of the problems associated with
developing enactable PCDE specifications when, for example, close developer cooperation
is required.
CMU/SEI-93-TR-4 47

48 CMU/SEI-93-TR-4

7 Summary and Conclusions

This report has explored a variety of issues at the intersection of process definition, process
enactment, and process verification. The central focus has been to describe a unified ap-
proach to these topics. It was suggested that construction of a process-centered development
environment should be preceded with the development of a graphically-based specification of
the process to be automated. This specification should not only be graphically based, but
should allow for automatic compilation into an enactable form. The reasons for having such a
graphical, enactable specification are five-fold:

• The enactable specification allows a PCDE to be validated through dynamic
simulation and logical analysis prior to its construction. This approach will be
much less costly than developing and debugging a fully-fledged PCDE using
other approaches.

• Any real-world software development process will exhibit significant
complexity. This process needs to be understood by all interested parties,
from the managers who sign off on its acceptability to the personnel who will
use it. If the only people who understand the language in which the process
is defined are the process “gurus,” then it is unlikely to be adopted. This buy-
in is critical to success.

• The ability of the organization’s members to discuss the process and to
suggest improvements or “bug fixes” will depend on their understanding of
the process. This will be helped significantly if the process is documented
graphically.

• The graphical representation will be of considerable help to new employees
as they learn the elements of their jobs and how their jobs relate to other
activities.

• A record of the history of the process improvement efforts can be captured
automatically through the use of graphical process descriptions.

A graphical process notation was introduced (Section 3) which exhibits many of the needed
characteristics for process definition. This notation accounts for

• the agents, roles, artifacts, and activities,

• control flows and product version management, and

• hierarchical nesting of models.

To investigate issues associated with enactment, the ProNet notation was used. Fortunately,
this graphical notation is appropriately structured for translation into an enactable form. Exam-
ples of how different graphical process elements can be mapped to corresponding symbolic
forms was provided in Section 4. This mapping was done by hand and used the example of a
change request process. However, as was shown, a well-defined set of rules exists whereby
the mapping could be automated. The symbolic form is declarative and implemented in Pro-
log. It results in a production system in which each of the activities in the process model trans-
CMU/SEI-93-TR-4 49

lates into a rule. These rules are managed by a “process driver” which allows for process
interaction with the user. The actual program is listed in Appendix A.

Process verification, as defined here, is a post-analysis of process data gathered during
project execution (down to an appropriate level of granularity). This was discussed in Section
5. The object of verification is to determine if a subset of all the activities that have been per-
formed and products that have been produced conform to the prescribed process. With pro-
cess automation in place, gathering process data is essential (otherwise the system does not
know what needs to be performed next). Thus the data needed for verification comes at no
extra charge. If a project strictly adheres to the defined process during process execution, then
the data should, by definition, be valid. However, in real situations manual interventions, which
may compromise strict adherence to the defined process, are likely. Thus the verification pro-
cedure provides a final assurance that the process has been followed. It was found that a sym-
metry between process enactment and verification exists. While enactment moves forwards
in time and generates a trace of the process history, verification starts at the end and works
backwards in time, consuming the trace generated by the enactment activity. The program by
which process verification was investigated is provided in Appendix B.

In Section 6 we addressed a wide spectrum of issues related to the use of PCDEs. We started
out by reviewing areas that are good candidates for process automation, and discussed rea-
sons why the associated process models should be built with flexibility in mind. We then
looked at some organizational issues related to 1) information flows between developers,
project management and upper management, and 2) the need for the consistency of both data
structures and user interface across projects. The different needs of developers and manag-
ers was then addressed; how developers desire a PCDE to support their development needs
while managers desire a PCDE to provide mechanisms for project control and information ac-
cess. It was noted that both groups have a common need for a PCDE to alleviate chores. We
then moved on to discuss models of problem solving and how a PCDE must be have the
adaptability to address unexpected process-related problems. This was related to the work of
Jens Rasmussen. Of increasing importance in large projects, is cooperative development in
communication, collaboration and coordination. This field is generally referred to as “group-
ware” and, because of its increasing importance to software development, was also reviewed.
Finally, it was noted than any PCDE which satisfies the needs of software developers working
in a cooperative arena should include notions on configuration management, concurrency and
synchronization.

It is hoped that this report has shed some light on issues which need to be addressed before
process enactment becomes a practical and successful reality. Clearly, PCDE developers will
have to focus increasingly on process, first with respect to the usability of their products and
second with respect to the impact process modeling and enactment concepts will make on
current software development environments.
50 CMU/SEI-93-TR-4

Appendix A The Process Enactment Program
Appendix A provides information on the Prolog program which demonstrates simple process
enactment. Section A.1 first illustrates typical output from the program. The program (Section
A.2) is self-contained and does not require any input other than the requested name of the
user and the activity that the user has selected (as seen in Section A.1). Section A.3 provides
a modification to the program to show how hierarchical nesting of activities may be implement-
ed. All program listings in Appendices A and B were developed using AIS Prolog [AAIS 90] on
the Macintosh.

A.1 Typical Program Output

The following listing illustrates an interactive session with the automated process controller.
Once the user’s name is entered, the controller 1) checks the validity of the name, 2) identifies
the roles associated with this name, 3) finds the activities which can next be performed by that
role and then 4) presents the available activities to the user. The user selects the next activity
to be performed. Clearly at this point the process controller must communicate with the tools
(editor, compiler, etc.) necessary to perform the task, but the addition of such functionality is
beyond the scope of this investigation. The example below is extracted from the process de-
fined in Figure 3-8.

**

What is your name: alanC.
Available activities:
 act10 get CR from CR repos - for update
 act9 get review doc from doc repos - for update
Enter the ID of the activity you wish to perform: act10.
get CR from CR repos - for update -- done

**

What is your name: susan.
There are no activities currently available for this role.

**

What is your name: alan.
 Nobody by that name or no designated role
abort? (y/n): n.

What is your name: alanC.
Available activities:
 act9 get review doc from doc repos - for update
Enter the ID of the activity you wish to perform: act9.
get review doc from doc repos - for update -- done

**

What is your name: alanC.
Available activities:
CMU/SEI-93-TR-4 51

 act11 update CR
Enter the ID of the activity you wish to perform: act12.
act12 -- is not in the activity list.

Available activities:
 act11 update CR
Enter the ID of the activity you wish to perform: act11.
update CR -- done

**

A.2 The Process Controller Listing

The following Prolog listing is for the process controller. An overview of the program’s func-
tionality is described in Section 4.3.

/********************* process initiator **********************/
initProcess(InitEnt):-

initSystemVars,
initUserVars,
makeNameList,
assert(InitEnt),
doNextAct.

/*********************** driver functions *********************/
doNextAct:-

/* sets up the recursive loop for each activity in the process */
retractall(active(_)),
write('**'), nl, nl,
/* get the agents's name and check if it exists */
checkName(Role),
/* find activities which can be performed next*/
findActs(ActList),
/* remove these activities not appropriate for this role */
delActs(Role, ActList, [], ActList1),
/* select the activity which will be performed */
ask(Role, ActList1),
doNextAct.

findActs(_):-
/* test all activity perconditions to find currently valid activities */
actRole(Test, _, _, _),
TestX =.. [Test],
TestX,
fail.

findActs(ActList):-
/* group all currently valid activities into a list */
bagof(Act, active(Act), ActList).

findActs(_):-
/* no activities in list - process completed */
write('All activities have been completed'), nl,
abort.

nullActs(_).
52 CMU/SEI-93-TR-4

delActs(_, [], ActList, ActList).

delActs(Role, [Act|ActList], ActList1, X):-
/* eliminate these activities which cannot be performed by current role */
active(Act),
actRole(_, Act, Role, _),
delActs(Role, ActList, [Act|ActList1], X).

delActs(Role, [Act|ActList], ActList1, X):-
/* eliminate these activities which cannot be performed by current role */
retract(active(Act)),
delActs(Role, ActList, ActList1, X).

ask(_, []):-
/* present user with options */
write('There are no activities currently avaliable for this role.'),nl, nl,
doNextAct.

ask(_, _):-
/* present user with options */
write('Available activities:'), nl,
active(Act),
actRole(_, Act, _, Text),
write(' '), write(Act), write(' '), write(Text), nl,
fail.

ask(Role, ActList):-
/* present user with options */
write('Enter the ID of the activity you wish to perform: '),
read(ActID),
nextAct(ActID, Role, ActList).

nextAct(abort, _, _):-
abort.

nextAct(ActID, Role, ActList):-
/* activity selected is illegal */
not(member(ActID, ActList)),
write(ActID), write(' -- is not in the activity list. '), nl, nl,
ask(Role, ActList).

nextAct(ActID, Role, ActList):-
/* activity selected is illegal */
not(actRole(_, ActID, _, Desc)),
write(Desc), write(' -- cannot be performed by the role: '),
write(Role), nl, nl,
ask(Role, ActList).

nextAct(ActID, _, _):-
/* perform activity selected by user */
ActX =.. [ActID],
ActX.

initSystemVars:-
/* clear program of all garbage left from previous run */
retractall(ver(_,_)),
asserta(ver(0,0)),
retractall(log(_,_,_)),
asserta(log(nul,nul,nul)),
CMU/SEI-93-TR-4 53

retractall(subact(_)),
retractall(nameList(_)),
retractall(actList).

/*********************** utility functions *********************/
set(X,K):-

/* initialize version number X to value K */
retractall(ver(X,_)),
assert(ver(X,K)).

inc(K):-
/* increment version number K by 1 */
retract(ver(K,J)),
J1 is J+1,
assertz(ver(K,J1)).

put_ent(Store, Val, OutList):-
/* put an entity into a store and assert exit entities */
testfor_(Val,Val1),
retract(store(Store, Val_list)),
assertz(store(Store, [Val1|Val_list])),
assertList(OutList).

assertList([]).

assertList([First|Rest]):-
assert(First),
assertList(Rest).

get_ent(Store, Val):-
/* retrieve an entity from a store */
testfor_(Val, Val1),
store(Store, Val_list),
member(Val1, Val_list),
assertz(Val).

get_ent(Store, Val):-
/* retrieve an entity from a store - entity not found */
write(Val),
write(' is not contained in '),
write(Store),nl,
!,
abort.

testfor_(Val, Val1):-
/* remove digit from end of entity name - if entity has one */
Val =.. [Name,Var],
explode(Name, CharsList),
reverse(CharsList, [Last|List]),
string(Last, Str),
int2string(Int, Str),
integer(Int),
reverse(List, List1),
explode(Name1, List1),
Val1 =.. [Name1, Var].

testfor_(Val, Val).

decision(Doc1,Doc2,Doc):-
54 CMU/SEI-93-TR-4

/* needed to decide between two paths og an output OR */
random(10,Y),
(Y > 5, Doc=Doc1; Doc=Doc2).

random(R,N):-
retract(seed(S)),
N is (S mod R) + 1,
NewSeed is (125*S+1) mod 4096,
assertz(seed(NewSeed)), !.

seed(13).

textOut(Act):-
/* write out text associated with an activity */
actRole(_, Act, _, Text),
write(Text), write(' -- done'), nl, nl.

makeNameList:-
/* make a list of all agent names */
hasRole(_, Name),
asserta(oneName(Name)),
fail.

makeNameList:-
/* make a list of all agent names */
setof(Name, oneName(Name), Names),
retractall(oneName(_)),
assert(nameList(Names)).

checkName(Role):-
/* enter and check user name */
write('What is your name: '),
read(Name),
nameList(Names),
member(Name, Names),
hasRole(Role, Name).

checkName(_):-
/* invalid user name */
write(' Nobody by that name or no designated role'), nl,
write('abort? (y/n): '),
read('n'), nl,
checkName(_).

checkName(_):-
abort.

/********************* activity entrance conditions ***************************/
/*** these are all tested against at each cycle to current activities ***/
test1:-

?(intern_prob_iden),
not(log(devel_intern_cr, _, [cr_intern])),
asserta(active(act1)).

test2:-
?(extern_prob_iden),
not(log(devel_extern_cr, _, [field_cr])),
asserta(active(act2)).
CMU/SEI-93-TR-4 55

test3:-
?(field_cr),
not(log(e-mail_cr, _, [cr_extern])),
asserta(active(act3)).

test4:-
(?(cr_intern); ?(cr_extern)),
not(log(format_cr, _, [cr1(1)])),
asserta(active(act4)).

test5:-
ver(k,K),
?(cr1(K)),
not(log(put_into_repos_A, _, [cr_added(K)])),
asserta(active(act5)).

test6:-
ver(k,K),
?(cr_added(K)),
not(log(get_from_repos_A, _, [cr2(K)])),
asserta(active(act6)).

test7:-
ver(k,K),
?(cr2(K)),
not(log(review_cr, _, [cr_appr])),
not(log(review_cr, _, [rev_doc1(K)])),
asserta(active(act7)).

test8:-
ver(k,K),
?(rev_doc1(K)),
not(log(put_into_repos_B, _, [rev_doc_added1(K), rev_doc_added2(K)])),
asserta(active(act8)).

test9:-
ver(k,K),
?(rev_doc_added1(K)),
not(log(get_from_repos_B, _, [rev_doc2(K)])),
asserta(active(act9)).

test10:-
ver(k,K),
?(rev_doc_added2(K)),
not(log(get_from_repos_C, _, [cr3(K)])),
asserta(active(act10)).

test11:-
ver(k,K),
K1 is K+1,
?(cr3(K)),
?(rev_doc2(K)),
not(log(update_cr, _, [cr1(K1)])),
asserta(active(act11)).

test12:-
ver(k,K),
?(act7in(K)),
not(log(read_cr, _, [cr_read(K)])),
56 CMU/SEI-93-TR-4

asserta(active(act12)).

test13:-
ver(k,K),
?(cr_read(K)),
not(log(approve_cr, _, [rev_doc1(K)])),
not(log(approve_cr, _, [cr_appr])),
asserta(active(act13)).

/****************** activities and exit conditions ********************/
act1:-

assertz(log(devel_intern_cr, [intern_prob_iden], [cr_intern])),
assert(cr_intern),
textOut(act1).

act2:-
assertz(log(devel_extern_cr, [extern_prob_iden], [field_cr])),
assert(field_cr),
textOut(act2).

act3:-
assertz(log(e-mail_cr, [field_cr], [cr_extern])),
assert(cr_extern),
textOut(act3).

act4:-
(?(cr_intern), X=cr_intern; ?(cr_extern), X=cr_extern),
assertz(log(format_cr, [X], [cr1(1)])),
assertz(cr1(1)),
set(k,1),
textOut(act4).

act5:-
ver(k,K),
assertz(log(put_into_repos_A, [cr1(K)], [cr_added(K)])),
put_ent(cr_repos,cr1(K), [cr_added(K)]),
textOut(act5).

act6:-
ver(k,K),
assertz(log(get_from_repos_A, [cr_added(K)], [cr2(K)])),
get_ent(cr_repos,cr2(K)),
textOut(act6).

act7:-
ver(k,K),
decision(cr_appr,rev_doc1(K),Doc),
assertz(log(review_cr, [cr2(K)], [Doc])),
assertz(Doc),
textOut(act7).

act8:-
ver(k,K),
assertz(log(put_into_repos_B, [rev_doc1(K)], [rev_doc_added1(K),

rev_doc_added2(K)])),
put_ent(rev_doc_repos, rev_doc1(K), [rev_doc_added1(K), rev_doc_added2(K)]),
textOut(act8).
CMU/SEI-93-TR-4 57

act9:-
ver(k,K),
assertz(log(get_from_repos_B, [rev_doc_added1(K)], [rev_doc2(K)])),
get_ent(rev_doc_repos,rev_doc2(K)),
textOut(act9).

act10:-
ver(k,K),
assertz(log(get_from_repos_C, [rev_doc_added2(K)], [cr3(K)])),
get_ent(cr_repos, cr3(K)),
textOut(act10).

act11:-
ver(k,K),
K1 is K+1,
assertz(log(update_cr, [cr3(K), rev_doc2(K)], [cr1(K1)])),
assertz(cr1(K1)),
textOut(act11),
inc(k).

act12:-
ver(k,K),
assert(log(read_cr, [cr2(K)], [cr_read(K)])),
assert(cr_read(K)),
textOut(act12).

act13:-
ver(k,K),
decision(cr_appr,rev_doc1(K),Doc),
assertz(log(approve_cr, [cr_read(K)], [Doc])),
asserta(Doc),
textOut(act13).

/*********************** supporting model data *********************/
actRole(test1, act1, developer, 'initialize internal CR').
actRole(test2, act2, field_rep, 'initialize external CR').
actRole(test3, act3, field_rep, 'e-mail external CR').
actRole(test4, act4, developer, 'format CR for repository').
actRole(test5, act5, developer, 'put CR revision into CR repos').
actRole(test6, act6, reviewer, 'get CR from CR repos - for review').
actRole(test7, act7, reviewer, 'CR review').
actRole(test8, act8, reviewer, 'put review doc into doc repos').
actRole(test9, act9, developer, 'get review doc from doc repos - for update').
actRole(test10, act10, developer, 'get CR from CR repos - for update').
actRole(test11, act11, developer, 'update CR').
actRole(test12, act12, reviewer, 'read CR').
actRole(test13, act13, reviewer, 'approve CR').

/*********************** supporting model data *********************/
hasRole(developer, ed).
hasRole(developer, paul).
hasRole(developer, alanB).
hasRole(developer, alanC).
hasRole(reviewer, susan).
hasRole(reviewer, dennis).
hasRole(reviewer, jock).
hasRole(developer, mike).
hasRole(reviewer, cliff).
hasRole(field_rep, howard).
58 CMU/SEI-93-TR-4

/*********************** initialize variables *********************/
initUserVars:-

retractall(cr1(_)),
retractall(cr2(_)),
retractall(cr3(_)),
retractall(cr_added(_)),
retractall(rev_doc1(_)),
retractall(rev_doc2(_)),
retractall(rev_doc_added1(_)),
retractall(rev_doc_added2(_)),
retractall(cr_appr),
retractall(cr_read(_)),
retractall(active(_)),
retractall(intern_prob_iden),
retractall(extern_prob_iden),
retractall(field_cr),
retractall(cr_intern),
retractall(cr_extern),
asserta(store(cr_repos, [])),
asserta(store(rev_doc_repos, [])).

A.3 An Extension to Account for Nested Activities

The following program excerpts modify the listing of Section A.2 to account for hierarchical
nesting of activities. The changes take place in the rules and not the process driver routines.
The activity review_cr in Figure 3-8 is given two serial sub-activities: read_cr and approve_cr.
The resulting process fragment is illustrated in Figure A-1.

/************* modified activity ‘test’ clauses *******************/

test7in:-

ver(k,K),
?(cr2(K)),
not(log(review_cr_in, _, [act7in(K)])),
asserta(active(act7in)).

test7out:-
ver(k,K),
?(cr_appr); ?(rev_doc1(K)),
not(log(review_cr_out, _, [act7out(K)])),
assert(active(act7out)).

test8:-
ver(k,K),
?(act7out(K)),
not(log(put_into_repos_B, _, [rev_doc_added1(K), rev_doc_added2(K)])),
asserta(active(act8)).

/************* additional activity ‘test’ clauses *******************/

test12:-

ver(k,K),
?(act7in(K)),
not(log(read_cr, _, [cr_read(K)])),
asserta(active(act12)).
CMU/SEI-93-TR-4 59

test13:-
ver(k,K),
?(cr_read(K)),
not(log(approve_cr, _, [rev_doc1(K)])),
not(log(approve_cr, _, [cr_appr])),
asserta(active(act13)).

/************* modified activity ‘act’ clauses *******************/

act7in:-

ver(k,K),
assertz(log(review_cr_in, [cr2(K)], [act7in(K)])),
assert(act7in(K)),
textOut(act7in).

act7out:-
ver(k,K),
(?(cr_appr), X=cr_appr; ?(rev_doc1(K)), X=rev_doc1(K)),
assertz(log(review_cr_out, [X], [act7out(K)])),
assert(act7out(K)),
textOut(act7out).

/************* additional activity ‘act’ clauses *******************/

act12:-

ver(k,K),
assert(log(read_cr, [cr2(K)], [cr_read(K)])),
assert(cr_read(K)),
textOut(act12).

act13:-
ver(k,K),
decision(cr_appr,rev_doc1(K),Doc),
assertz(log(approve_cr, [cr_read(K)], [Doc])),
asserta(Doc),
textOut(act13).

/************* modified ‘actRole’ clauses *******************/

actRole(test7in, act7in, reviewer, 'start CR review').
actRole(test7out, act7out, reviewer, 'end CR review').
60 CMU/SEI-93-TR-4

review_cr_in

review_cr_out

read_cr

approve_cr

DOcr_appr

rev_doc | K

act7in | k

review_cr
cr_read | K

act7out | K

Figure A-1 Expansion of the Activity review_cr
CMU/SEI-93-TR-4 61

62 CMU/SEI-93-TR-4

Appendix B The Process Verification Program

The following is a short example of the output from the verification program. As verification
proceeds, the program checks the validity of the activities and consistency of their inputs and
outputs. When it finds an inconsistency, this inconsistency is identified and the program termi-
nates. As an example of a process error, the log statement below was commented out of the
set of log statements which define the process history. (See Section 4.1 for description of log
statements.)

/* log(get_from_repos_C,[rev_doc_added2(1)],[cr3(1)]). */

The resulting verification output looks like this:

******* review CR **********
******* get CR from CR repos - for review **********
******* put CR revision into CR repos **********
******* update CR **********

"get CR from CR repos - for update" - not performed

The following is a listing for the process verification program which is, like the process enact-
ment program, written in Prolog. While the structure of the program is similar to that of the en-
actment program (Appendix A), the verification program, as can be seen in the above
example, above is non-interactive.

startVerify(FinalEnt):-
initUserVars,
assert(FinalEnt),
verify.

/********************** utility functions **********************/
set(X,I):-

/* set the version variable X to the value I */
retractall(ver(X,_)),
assert(ver(X,I)).

dec(I,J):-
/* decrement the version variable I by 1 */
retract(ver(I,J)),
J1 is J-1,
assert(ver(I,J1)).

del_ent(Store, Val, Desc):-
/* inverse of 'put' - deletes entity from store, if it is in the store */
/* otherwise verification fails */
testfor_(Val, Val1),
retract(store(Store, Val_list)),
(member(Val1, Val_list); escape(Store, Val1, Desc)),
delete(Val1, Val_list, [], Val_list1),
CMU/SEI-93-TR-4 63

assert(store(Store, Val_list1)),
assert(Val).

delete(Val1, [Val1|Val_list], Val_listA, X):-
/* removes entity from list */
delete(Val1, Val_list, Val_listA, X).

delete(Val1, [Val|Val_list], Val_listA, X):-
delete(Val1, Val_list, [Val|Val_listA],X).

delete(_, [], Val_list, Val_list).

rem_ent(Store, Val, Val2, Desc):-
/* inverse of 'get' - tests if in store then deletes retrieved copy, if it is in

store */
/* otherwise verification fails */
Val,
testfor_(Val, Val1),
store(Store, Val_list),
(member(Val1, Val_list); escape(Store, Val1, Desc)),
retract(Val),
assert(Val2).

escape(Store, Val, Desc):-
/* verification fails */
write(Val),
write(' is not contained in '),
write(Store),nl,
write('Cannot perform operation: '),
write(Desc), nl,
!,
abort.

testfor_(Val, Val1):-
/* if last char on variable Var is an integer, remove it */
/* this removes numbered extensions on products/conditions */
/* before they are put into a store */
Val =.. [Name,Var],
explode(Name, CharsList),
reverse(CharsList, [Last|List]),
string(Last, Str),
int2string(Int, Str),
integer(Int),
reverse(List, List1),
explode(Name1, List1),
Val1 =.. [Name1, Var].

testfor_(Val, Val).

/********************* verify entrance conditions ***************************/

verify:-
?(cr_intern),
retract(log(devel_intern_cr, [intern_prob_iden], [cr_intern])),
assert(intern_prob_iden),
retract(cr_intern),
write('******* develop internal change request **********'), nl.

verify:-
64 CMU/SEI-93-TR-4

?(cr_intern),
not(log(devel_intern_cr, [intern_prob_iden], [cr_intern])),
write('"develop internal change request" - not performed'), nl,
abort.

verify:-
?(field_cr),
retract(log(devel_extern_cr, [extern_prob_iden], [field_cr])),
assert(extern_prob_iden),
retract(field_cr),
write('******* develop external change request **********'), nl.

verify:-
?(field_cr),
not(log(devel_ext_cr, [extern_prob_iden], [field_cr])),
write('"develop external change request" - not performed'), nl,
abort.

verify:-
?(cr_extern),
retract(log(e-mail_cr, [field_cr], [cr_extern])),
assert(field_cr),
retract(cr_extern),
write('******* mail external change request **********'), nl,
verify.

verify:-
?(cr_extern),
not(log(e-mail_cr, [field_cr], [cr_extern])),
write('"mail external change request" - not performed'), nl,
abort.

verify:-
cr1(1),
retract(log(format_cr, [Var], [cr1(1)])),
assert(Var),
retract(cr1(1)),
write('******* format change request **********'), nl ,
verify.

verify:-
cr1(1),
not(log(format_cr, _, [cr1(1)])),
write('"format change request" - not performed'), nl,
abort.

verify:-
ver(k,K),
cr_added(K),
retract(log(put_into_repos_A, [cr1(K)], [cr_added(K)])),
del_ent(cr_repos, cr1(K), 'put CR revision into CR repos'),
retract(cr_added(K)),
write('******* put CR revision into CR repos **********'), nl,
verify.

verify:-
ver(k,K),
cr_added(K),
not(log(put_into_repos_A, [cr1(K)], [cr_added(K)])),
CMU/SEI-93-TR-4 65

write('"put CR revision into CR repos" - not performed'), nl,
abort.

verify:-
ver(k,K),
cr2(K),
retract(log(get_from_repos_A, [cr_added(K)], [cr2(K)])),
 /* tests if cr is in DB then removes copy retrieved */
rem_ent(cr_repos, cr2(K), cr_added(K), 'get CR from CR repos - for review'),
write('******* get CR from CR repos - for review **********'), nl,
verify.

verify:-
ver(k,K),
cr2(K),
not(log(get_from_repos_A, [cr_added(K)], [cr2(K)])),
write('"get CR from CR repos - for review" - not performed'), nl,
abort.

verify:-
ver(k,K),
(cr_appr, Var = cr_appr; rev_doc1(K), Var = rev_doc1(K)),
retract(log(review_cr, [cr2(K)], [Var])),
assert(cr2(K)),
retract(Var),
write('******* review CR **********'), nl,
verify.

verify:-
ver(k,K),
(cr_appr, Var = cr_appr; rev_doc1(K), Var = rev_doc1(K)),
not(log(review_cr, [cr2(K)], [Var])),
write('"review CR" - not performed'),nl,
abort.

verify:-
ver(k,K),
rev_doc_added1(K),
rev_doc_added2(K),
retract(log(put_into_repos_B, [rev_doc1(K)], [rev_doc_added1(K),

rev_doc_added2(K)])),
del_ent(rev_doc_repos,rev_doc1(K),'put review doc into doc repos'),
retract(rev_doc_added1(K)),
retract(rev_doc_added2(K)),
write('******* put review doc into doc repos **********'), nl,
verify.

verify:-
ver(k,K),
rev_doc_added1(K),
rev_doc_added2(K),
(not(log(put_into_repos_B, [rev_doc1(K)], [rev_doc_added1(K),

rev_doc_added2(K)])),
 write('"put review doc into doc repos" - not performed'),nl),
abort.

verify:-
ver(k,K),
cr3(K),
66 CMU/SEI-93-TR-4

retract(log(get_from_repos_C, [rev_doc_added2(K)], [cr3(K)])),
rem_ent(cr_repos, cr3(K), rev_doc_added2(K), "get CR from CR repos - for update"),
write('******* get CR from CR repos - for update **********'), nl,
verify.

verify:-
ver(k,K),
cr3(K),
not(log(get_from_repos_C, [rev_doc_added2(K)], [cr3(K)])),
write('"get CR from CR repos - for update" - not performed'),nl,
abort.

verify:-
ver(k,K),
rev_doc2(K),
retract(log(get_from_repos_B, [rev_doc_added1(K)], [rev_doc2(K)])),
rem_ent(rev_doc_repos, rev_doc2(K), rev_doc_added1(K), 'get review doc from doc re-

pos - for update'),
write('******* get review doc from doc repos - for update **********'), nl,
verify.

verify:-
ver(k,K),
rev_doc2(K),
not(log(get_from_repos_B, [rev_doc_added1(K)], [rev_doc2(K)])),
write('"get review doc from doc repos - for update" - not performed'), nl,
abort.

verify:-
ver(k,K),
K1 is K-1,
cr1(K),
retract(log(update_cr, [cr3(K1), rev_doc2(K1)], [cr1(K)])),
assert(rev_doc2(K1)),
assert(cr3(K1)),
retract(cr1(K)),
dec(k,K),
write('******* update CR **********'), nl,
verify.

verify:-
ver(k,K),
cr1(K),
(not(log(update_cr, [cr3(I1), rev_doc2(I1)], [cr1(K)])),
 write('"update CR" - not performed'),nl),
 abort.

/*********************** initialize variables *********************/

initUserVars:-
retractall(cr1(_)),
retractall(cr2(_)),
retractall(cr3(_)),
retractall(cr_appr),
retractall(cr_added(_)),
retractall(rev_doc1(_)),
retractall(rev_doc2(_)),
retractall(rev_doc_added1(_)),
retractall(rev_doc_added2(_)),
retractall(cr_read(_)),
CMU/SEI-93-TR-4 67

retractall(active(_)),
retractall(intern_prob_iden),
retractall(extern_prob_iden),
retractall(field_cr),
retractall(cr_intern),
retractall(cr_extern),
set(k,2).

cr1(0).
cr2(0).
cr3(0).
rev_doc1(0).
rev_doc2(0).
rev_doc_added1(0).
rev_doc_added2(0).
cr_added(0).

/************************ process history ************************/
/* these were generated by enacting the process - see Appendix A */

log(devel_intern_cr,[intern_prob_iden],[cr_intern]).
log(format_cr,[cr_intern],[cr1(1)]).
log(put_into_repos_A,[cr1(1)],[cr_added(1)]).
log(get_from_repos_A,[cr_added(1)],[cr2(1)]).
log(review_cr,[cr2(1)],[rev_doc1(1)]).
log(put_into_repos_B,[rev_doc1(1)],
 [rev_doc_added1(1),rev_doc_added2(1)]).
log(get_from_repos_B,[rev_doc_added1(1)],[rev_doc2(1)]).
log(get_from_repos_C,[rev_doc_added2(1)],[cr3(1)]).
log(update_cr,[cr3(1),rev_doc2(1)],[cr1(2)]).
log(put_into_repos_A,[cr1(2)],[cr_added(2)]).
log(get_from_repos_A,[cr_added(2)],[cr2(2)]).
log(review_cr,[cr2(2)],[cr_appr]).

store(rev_doc_repos,[rev_doc(1)]).
store(cr_repos,[cr(2),cr(1)]).
68 CMU/SEI-93-TR-4

Acknowledgments

I would like to thank Edward Averill, Alan Brown, Michael Caldwell, David Carney, Susan Dart,
and Dennis Smith for their insightful reviews of the report. They have done much to improve
its quality. I would also like to thank Sandra Bond and Julia Deems for their excellent editorial
review of the document. However, I take full responsibility for any errors, omissions or lack of
clarity that may be found.
CMU/SEI-93-TR-4 69

70 CMU/SEI-93-TR-4

Bibliography
[AAIS 88] AAIS Reference Manual, Version M-2.0, Advanced A. I. System’s Prolog, Inc., P.O.
Box 39-0360, Mountain View CA 94039-0360

[Boone 91] Boone, G., “CASE and its Challenge for Change”, International Journal of Soft-
ware Engineering and Knowledge Engineering, Vol 1, No 2, pp 151-163, 1991

[Barghouti 90] Barghouti, N.S. et al, “Modeling Concurrency in Rule-Based Development
Environments”, IEEE Expert, December, 1990

[Bernard 89] Bernard, Y., Lavency, P., “A Process-Oriented Approach to Configuration Man-
agement”, Trans ACM, pp 320-327, 1989

[Bratko 86] Bratko, I., Prolog Programming for Artificial Intelligence, Addison-Wesley, 1986

[Brownston 85] Brownston, L., et al, Programming Expert Systems in OPS5, Addison-Wes-
ley, 1985

[Bruynooghe 91] Bruynooghe, R. F. et al, “PSS: A System for Process Enactment”, First Inter-
national Conference on Software Process, Redondo Beach, CA, Oct, 1990

[Bullen 90] Bullen, C. V., Bennett, J.J., “Learning from User Experience with Groupware”, Pro-
ceedings of the Conference on Computer-Supported Cooperative Work, October, 1990, Los
Angeles, California

[CaseWare 92] “CaseWare User’s Guide”, CaseWare, Inc., Irvine, CA, 1992

[Chen 83] Chen, P.P., (Editor) Entity-Relationship Approach to Information Modeling and
Analysis, North-Holland, Amsterdam, The Netherlands, 1983

[Cooley 93] Cooley, J., “Adding Process Management to the Paramax SEE”, Volume 3 of Pro-
ceedings of STARS ‘92

[Dart 91] Dart, S., “Concepts in Configuration Management Systems”, Third International
Software Configuration Management Conference, ACM Press, June 1991

[Dewan 93] Dewan, P., “Toward Computer Supported Software Engineering”, IEEE Com-
puter, January 1993

[Ellen 93, Ellen, L. W., “IBM Support Environment for Megaprogramming”, Volume 3 of Pro-
ceedings of STARS ‘92

[Ellis 91] Ellis, C. A. et al, “GroupWare, Some Issues and Experiences”, Communications of
the ACM, Vol 43, No 1, January 1991

[Feiler 90] Feiler, P., Downey, G., “Transaction-Oriented Configuration Management: A Case
Study”, SEI Technical Report CMU/SEI-90-TR-23, ADA 235510, 1990
CMU/SEI-93-TR-4 71

[Greis 81] Greis, D., The Science of Programming, Springer-Verlag, 1981

[Grudin 88] Grudin, J., “Why CSCW Applications Fail: Problems in the Design and Evaluation
of Organizational Interfaces”, Proceedings of the Conference on Computer-Supported Coop-
erative Work, September, 1988, Portland, Oregon

[Harel 87] Harel, D., “Statecharts: A Visual Formalism for Complex Systems”, Science of
Computer Programming 8, pp 231-274, 1987

[Heimbigner 90] Heimbigner, D., “P4: A Logic Language for Process Programming”, Proceed-
ings of the 5th International Software Process Workshop, Kennebunkport, Maine, 1989

[Humphrey 89] Humphrey, W. S., Managing the Software Process, Addison-Wesley, 1989.

[Humphrey 92] Humphrey, W., “Toward a Discipline for Software Engineering”, Sixth SEI Con-
ference on Software Engineering Education, San Diego CA, 1992

[Kaiser 90] Kaiser, G., et al, “Preliminary Experience with Process Modeling in the Marvel
Software Development Environment Kernel”, Proceedings of the Twenty-Third Annual Hawaii
International Conference on System Sciences. 1990

[Lee 91] Lee, S., Sluizer, S., “An Executable Language for Modeling Simple Behavior”, IEEE
Transactions on Software Engineering, Vol 17, No. 6, June 1991

[Mahler 90] Mahler, A., Lampen, A., “Integrating Configuration Management into a Generic
Environment”, SIGSOFT, Volume 15, No. 6, Proceedings of the Fourth ACM SIGSOFT Sym-
posium on Software Development Environments, 1990

[Mi 1992] Mi, P., Scacchi, W., “Process Integration in CASE Environments”, IEEE Software, pp
45-53, March 1992

[Monarchi 92] Monarchi, D.E., Smith, J. R., “The Representation of Rules in the ER Model”,
Data and Knowledge Engineering, Volume 9, No. 1, pp 45-61, October, 1992

[Osterweil 87] Osterweil, J. “Software Processes Are Software Too”, 9th Conference on Soft-
ware Engineering, Monterey, California, 1987

[Page 92] Page-Jones, M., “The CASE Manifesto”, CASE Outlook, January-February, 1992

[Rasmussen 79] Rasmussen, J., “On the Structure of Knowledge: A Morphology of Mental
Models in a Man-Machine System Context”, Technical Report, November 1979, Riso Nation-
al Laboratory, Riso, Denmark

[Singh 92] Singh, B., “Interconnected Roles (IR): A Coordination Model”, Technical Report CT-
084-92, Microelectronics and Computer Technology Corp., Austin Texas, July 1992

[Reisig 82] Reisig, W. Petri Nets, Springer-Verlag,1982

[Slomer 92] Slomer, H. M., Christie, A.M., “Analysis of a Software Maintenance System”, SEI
72 CMU/SEI-93-TR-4

Technical Report CMU/SEI-92-TR-31, 1992

[Stanley 92] Stanley, M. E., “Verifying the Design Process”, AI Expert, pp 42-49, September
1992

[Wallnau 91] Wallnau, K.C., Feiler, P.H., “Tool Integration and Environment Architectures”,
SEI Technical Report CMU/SEI-91-TR-11, ADA 237810,1991
CMU/SEI-93-TR-4 73

74 CMU/SEI-93-TR-4

13a. TYPE OF REPORT

Final

2a. SECURITY CLASSIFICATION AUTHORITY
N/A

15. PAGE COUNT13b. TIME COVERED

FROM TO

14. DATE OF REPORT (year, month, day)

11. TITLE (Include Security Classification)

1a. REPORT SECURITY CLASSIFICATION

Unclassified

5. MONITORING ORGANIZATION REPORT NUMBER(S)4. PERFORMING ORGANIZATION REPORT NUMBER(S)

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

N/A

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for Public Release
Distribution Unlimited

1b. RESTRICTIVE MARKINGS

None

10. SOURCE OF FUNDING NOS.

6c. ADDRESS (city, state, and zip code)

Carnegie Mellon University
Pittsburgh PA 15213

7a. NAME OF MONITORING ORGANIZATION

SEI Joint Program Office
6b. OFFICE SYMBOL
(if applicable)

6a. NAME OF PERFORMING ORGANIZATION

Software Engineering Institute

7b. ADDRESS (city, state, and zip code)

HQ ESC/ENS
5 Eglin Street
Hanscom AFB, MA 01731-2116

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F1962890C0003
8b. OFFICE SYMBOL
(if applicable)

8a. NAME OFFUNDING/SPONSORING
 ORGANIZATION

SEI Joint Program Office

16. SUPPLEMENTARY NOTATION

12. PERSONAL AUTHOR(S)

17. COSATI CODES 18. SUBJECT TERMS (continue on reverse of necessary and identify by block number)

PROGRAM
ELEMENT NO

PROJECT
NO.

TASK
NO

WORK UNIT
NO.

FIELD SUB. GR.GROUP

SEI

ESC/ENS

REPORT DOCUMENTATION PAGE

UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

63756E N/A N/A N/A

8c. ADDRESS (city, state, and zip code))

Carnegie Mellon University
Pittsburgh PA 15213

CMU/SEI-93-TR-4 ESC-TR-93-181

Process-Centered Development Environments: An Exploration of Issues

June 1993 73 pp.

development environments software development environment
environments
modeling

Alan M. Christie
19. ABSTRACT (continue on reverse if necessary and identify by block number)

Software development environments are beginning to move from research communities to commer-
cial applications. As this occurs, the need to address process issues related to such environments is
becoming increasingly apparent. Thus there is a growing awareness of the need for process-cen-
tered development environments (PCDEs). This report addresses process definition and enactment
issues which pertain to the specification and design of a PCDE. The first part of the report explores
some of the required characteristics of an enactable graphical language and the relationship
between process definition and enactment. This process language naturally led to the ability to per-
UNCLASSIFIED/UNLIMITED SAME AS RPT DTIC USERS

22a. NAME OF RESPONSIBLE INDIVIDUAL

Thomas R. Miller, Lt Col, USAF

21. ABSTRACT SECURITY CLASSIFICATION

Unclassified, Unlimited Distribution

22c. OFFICE SYMBOL

ESC/ENS (SEI)
22b. TELEPHONE NUMBER (include area code)

(412) 268-7631

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

DD FORM 1473, 83 APR EDITION of 1 JAN 73 IS OBSOLETE UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS

(please turn over)

ABSTRACT — continued from page one, block 19
form process verification, i.e., a verification that the actual process path taken throughout a
project conforms to the defined process. The issue of process verification is thus also explored.
The success of PCDEs rests heavily on end-user acceptance. Because of this, the report con-
cludes with a review of user-oriented process and social issues relevant to the successful adop-
tion of PCDEs.

	1 Background
	2 A Process Development and Usage Scenario
	3 The ProNet Graphical Modeling Language
	3.1 The Relationship Between Process Definition an...
	3.2 Entity Classes
	3.2.1 Basic Graphical Elements
	3.2.2 Some Properties of Stores

	3.3 Relationship to Other Modeling Techniques
	3.4 A ProNet Example

	4 Enacting the Process
	4.1 Mapping Activities to Rules
	4.2 Generalizing the Rules
	4.3 User Interaction with the Process Model
	4.4 Managing the Rules
	4.5 User Interaction with the Automated Process
	4.6 A Relational Definition of the ProNet Notation...

	5 Software Process Verification
	5.1 The Basis for Process Verification
	5.2 Implementing the Approach
	5.3 The Verification Demo Program
	5.4 Implications for Verification

	6 User-Oriented Issues with PCDEs
	6.1 The Application of Automated Support
	6.2 Organizational Factors
	6.3 Process Needs of Managers and Developers
	6.4 Adapting the Process to Unforeseen Circumstanc...
	6.5 Lessons from Groupware
	6.6 Configuration Management, Conflict, and Cooper...

	7 Summary and Conclusions
	Appendix A The Process Enactment Program
	A.1 Typical Program Output
	A.2 The Process Controller Listing
	A.3 An Extension to Account for Nested Activities

	Appendix B The Process Verification Program
	Acknowledgments
	Bibliography

