

Software Architecture for Shared
Information Systems

Mary Shaw

March 1993

TECHNICAL REPORT
CMU/SEI-93-TR-003

Unlimited distribution subject to the copyright.

http://www.sei.cmu.edu

Technical Report
CMU/SEI-93-TR-3

ESC-TR-93-180
March 1993

Software Architecture for
Shared Information Systems

Mary Shaw

School of Computer Science
and Software Engineering Institute

Software Engineering Information Modeling Project

This report will also appear as Carnegie Mellon University
School of Computer Science Technical Report No. CMU-CS-93-126.

Accesion For

NTIS CRA&l
DIC TAB
U. announced E3
J'I,-ification . -D5•2•

By B
Dist ibLution /

Availability Codes

Avail and/or
Dist Special

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office
ESC/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

The Software Engineering Institute is sponsored by the U.S. Department Defense.

This report was funded by the U.S. Department of Defense.

Copyright 0 1993 by Mary Shaw.

The work reported here was supported by the Carnegie Mellon University School of Computer Science and
Software Engineering Institute (which is sponsored by the U.S. Department of Defense), by a grant from
Siemens Corporate Research, and by the Department of Defense Advanced Research Project Agency under
grant MDA972-92-J-1002. The views and conclusions are those of the author.

This document is available through the defense Technical Information Center. DTIC provides access to and
transfer of scientific and technical information for DoD personnel, DoD contractors and potential contractors,
and other U.S. Government agency personnel and their contractors. To obtain a copy, please contact DTIC
directly: Defense Technical Information Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Service. For
information on ordering, please contact NTIS directly: National Technical Information Service, U.S.
Department of Commerce, Springfield, VA 22161.

Copies of this document are also available from Research Access, Inc., 3400 Forbes Avenue, Suite 302,

Pittsburgh, PA 15213.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents
1. Introduction 1

1.1 Systems Integration 2
1.2 Shared Information Systems 3
1.3 Design Levels 4
1.4 External Software Systems 6

2. Database Integration 9
2.1. Batch Sequential 9
2.2. Simple Repository 12
2.3. Virtual Repository 16
2.4. Hierarchical Layers 18
2.5. Evolution of Shared Information Systems in Business Data

Processing 20
3. Integration In Software Development Environments 23

3.1. Batch Sequential 23
3.2. Transition from Batch Sequential to Repository 23
3.3. Repository 26
3.4. Hierarchical Layers 27
3.5. Evolution of Shared Information Systems in Software

Development Environments 29
4. Integration In Building Design 31

4.1. Repository 32
4.2. Intelligent Control 34
4.3. Evolution of Shared Information Systems in Building Design 36

5. Architectural Structures for Shared Information Systems 37
5.1 Variants on Data Flow Systems 37
5.2. Variants on Repositories 38

6. Conclusions 41
Acknowledgments 43
References 45

CMU/SEI-93-TR-3

II CMU/SEI-93-TR-3

Software Architectures for Shared
Information Systems,

Abstract: Software system design takes place at many levels. Different
kinds of design elements, notations, and analyses distinguish these
levels. At the software architecture level, designers combine subsystems
into complete systems. This paper studies some of the common patterns,
or idioms, that guide these configurations. Results from software
architecture offer some insight into the problems of systems integration-
the task of connecting individual, isolated, pre-existing software systems
to provide coherent, distributed solutions to large problems. As
computing has become more sophisticated, so too have the software
structures used in the integration task. This paper reviews historical
examples of shared information systems in three different applications
whose requirements share some common features about collecting,
manipulating, and preserving large bodies of complex information.
These applications have similar architectural histories in which a
succession of designs responds to new technologies and new
requirements for flexible, highly dynamic responses. A common pattern,
the shared information system evolution pattern, appears in all three
areas.

1. Introduction

Software system design takes place at many levels, each with its own concerns.
We learn from computer hardware design that each of these levels has its own
elements and composition operators and its own notations, analysis tools, and
design rules. From the 1960s through the 1980s software developers
concentrated on the programming level. At this level, so-called higher-level
programming languages provide for the definitions of algorithms and data
structures using the familiar programming language control statements, types,
and procedures. Now we are turning our attention to the architectural level, in
which patterns for organizing module-scale components guide software system
design.

1To appear in Mind Matters: Contributions to Cognitive and Computer Science in Honor of Allen
Newell. David Steier and Tom Mitchell (eds.), Hillsdale, N.J.: Lawrence Eribaum Associates (to
appear).

CMU/SEI-93-TR-3

1.1 Systems Integration

Large software systems are often integrated from pre-existing systems. The
designer of such a system must accommodate very different-often
incompatible-conceptual models, representations, and protocols in order to
create a coherent synthesis. Systems integration is a problem-solving activity
that entails harnessing and coordinating the power and capabilities of
information technology to meet a customer's needs. It develops megasystems in
which pre-existing independent systems become subsystems--components
that must interact with other components. Successful integration requires
solution of both organizational and technical problems:

"* understanding the current organizational capabilities and processes

"* re-engineering and simplification of processes with a system view

"* standardizing on common data languages and system architectures

"• automation of processes and systems

Five kinds of issues motivate companies to invest in systems integration (CSTB
1992, pp. 16-21):

"• For many organizations, experiences with information technology have
not lived up to expectations.

"• The proliferation of information technology products and vendors has
produced the need for connectivity and interoperability.

"• An installed base of information technology has to accommodate new
technology and new capabilities.

"* Advances in technology, combined with growing appreciation of what
can be accomplished with that technology, have prompted firms to
search for new applications and sources of competitive advantage.

" In an increasingly global economy, firms must rely on
telecommunications and information technology to manage and
coordinate their operations and to stay abreast of international
competitors.

Corporate mergers and reorganizations, in particular, create needs for
compatibility among systems developed under different assumptions about
representation and interaction. The task is difficult: it involves large, untidy
problems; incomplete, imprecise, and inconsistent requirements; and "legacy"
systems that must be retained rather than replaced. For systems integration to
be useful, it must be globally effective within the organization. The focus of this
paper is on the enabling technologies rather than the organizational questions.

The essential enabling technologies are of several kinds (CSTB 1992, Nilsson
et al 1990):

2 CMU/SEI-93-TR-3

" Architecture: System organization; kinds of components, kinds of
interactions, and patterns of overall organization; ability to evolve;
consistency with available modular building blocks for hardware,
software, and databases; standardization and open systems

"* Semantics: Representations; conceptual consistency; semantic
models; means for handing inconsistencies

"* Connectivity: Mechanisms for moving data between systems and
initiating action in other systems; communication platforms with flexible
linkages or interfaces; network management and reliability; security

"* Interaction: Granularity; user interfaces; interoperability; simplicity;
underlying consistency of presentation

The technologies for architecture are of primary interest here; to a certain extent
these are inseparable from semantics.

1.2 Shared Information Systems

One particularly significant class of large systems is responsible for collecting,
manipulating, and preserving large bodies of complex information. These are
shared information systems. Systems of this kind appear in many different
domains; this paper examines three. The earliest shared information systems
consisted of separate programs for separate subtasks. Later, multiple
independent processing steps were composed into larger tasks by passing data
in a known, fixed format from one step to another. This organization is not
flexible in responding to variations or discrepancies in data. Nor is it tolerant of
structural modification, especially the addition of components developed under
different assumptions. It is also not responsive to the needs of interactive
processing, which must handle individual requests as they arrive.

Still later, often when raquirements for interaction appear, new organizations
allowed independent processing subsystems to interact through a shared data
store. While this organization is an improvement, it still encounters integration
problems-especially when multiple data stores with different representations
must be shared, when the system is distributed, when many user tasks must be
served, and when the suite of processing and data subsystems changes
regularly. Several newer approaches now compensate for these differences in
representation and operating assumptions, but the problem is not completely
solved. A common pattern, the shared information system evolution pattern, is
evident in the application areas examined here.

CMU/SEI-93-TR-3 3

1.3 Design Levels

System design takes place at many levels. It is useful to make precise
distinctions among those levels, for each level appropriately deals with different
design concerns. At each level we find components, both primitive and
composite; rules of composition that allow the construction of nonprimitive
components, or systems; and rules of behavior that provide semantics for the
system (Bell and Newell 1971, Newell 1982, Newell 1990). Since these differ
from one level to another, we also find different notations, design problems, and
analysis techniques at each level. As a result, design at one level can proceed
substantially autonomously of any other level. But levels are also related, in
that elements at the base of each level correspond to-are implemented by-
constructs of the level below.

The hierarchy of levels for computer hardware systems is familiar and appears
in Figure 1 (Bell and Newell 1971, p. 3). Note first that each level deals with
different content. Different kinds of structures guide design with different sets of
components. Different notations, analysis techniques, and design issues
accompany the differences of content matter. Note also that each level admits
of substructure: abstraction and composition take place within each level, in
terms of the components and structures of that level. In addition, there is an
established transformation from the primitive components at the bottom of each
level to (probably nonprimitive) components of the level below.

4 CMU/SEI-93-TR-3

Structures: Network/N, computer/C

.9 Components: Processors/P. memories/M,
(A switches IS. controls/K, transducers / r,

data operators /0, links/L
06

Structure: Programs, subprograms

Components: State (memory ceils),
instructions, operators, controls,
interpreter ,

Circuits: Arithmetic unit

Components: Registers, transfers,
4 controls, data operators (+.-,etc.)

Circuits: Counters, controls, sequential Stae
transducer, function generator, system
register arrays le

Components: Flip-flops-., reset-set/ ,
RS, JK, delay/0, toggle/r, latch,
delay, one shot ,

distributors, iterative networks I Components:
, , ,, , ' ,I states, inputs,

Components:ANO. OR, NOT. NANO, NOR I outputs

Circuits: Amplifiers, delays, attenuators,

multivibrators, clocks, gates, differentiator

Active components: Relays, vacu•im tubes,
transistors

Passive components: Resistor/ R, capacitor/
C, inducter/k. diode, delay lines

Figure 1: Computer hardware design levels

CMU/SEI-93-TR-3 5

Software, too, has its design levels. We can identify at least

" Architecture, where the design issues involve overall association of
system capability with components; components are modules, and
interconnections among modules are handled in a variety of ways, all
of which seem to be expressed as explicit sets of procedure calls.

" Code, where the design issues involve algorithms and data structures;
the components are programming language primitives such as
numbers, characters, pointers, and threads of control; primitive
operators are the arithmetic and data manipulation primitives of the
language; composition mechanisms include records, arrays, and
procedures.

" Executable, where the design issues involve memory maps, data
layouts, call stacks, and register allocations; the components are bit
patterns supported by hardware, and the operations and compositions
are described in machine code.

These roughly track the higher levels of hardware design. The executable and
code levels for software are well understood. However, the architecture level is
currently understood mostly at the level of intuition, anecdote, and folklore. It is
common for a description of a software system to include a few paragraphs of
text and a box-and-line diagram, but there is neither uniform syntax nor uniform
semantics for interpreting the prose and the diagrams. Our concern here is in
improving understanding and precision at the software architecture level. At
this level the components are programs, modules, or systems; a rich collection
of interchange representations and protocols connect the components; and
well-known system patterns guide the compositions (Garlan and Shaw 1993).

1.4 External Software Systems

Recent work on intelligent integration of external software systems offers some
hope for improving the sophistication of our integration techniques. Newell and
Steier (1991) suggest that the work on agent-ESS systems may contribute to
software engineering by making the power of computer software more easily
accessible in the service of computational tasks. An intelligent system would
learn to recognize aberrations when they arise and compensate for them, and it
would adapt to new protocols and representations when the suitq of available
components changes.

This paper explores what happens when independent systems become
components of larger systems. It examines three examples of shared
information systems:

6 CMU/SEI-93-TR-3

"• Data processing, driven primarily by the need to build business
decision systems from conventional databases

"* Software development environments, driven primarily by the need to
represent and manipulate programs and their designs.

"* Building design, driven primarily by the need to couple independent
design tools to allow for the interactions of their results in structural
design

We will see how the software architectures of these systems changed as
technology and demands on system performance changed. We close by
surveying the architectural constructs used to describe the examples and
examining the prospects for intelligent integration.

CMU/SEI-93-TR-3 7

8 CMU/SEI-93-TR-3

2. Database Integration

Business data processing has traditionally been dominated by database
management, in particular by database updates. Originally, separate
databases served separate purposes, and implementation issues revolved
around efficient ways to do massive coordinated periodic updates. As time
passed, interactive demands required individual transactions to complete in
real time. Still later, as databases proliferated and organizations merged,
information proved to have value far beyond its original needs. Diversity in
representations and interfaces arose, information began to appear redundantly
in multiple databases, and geographic distribution added communication
complexity. As this happened, the challenges shifted from individual
transaction processing to integration.

Individual database systems must support transactions of predetermined types
and periodic summary reports. Bad requests require a great deal of special
handling. Originally the updates and summary reports were collected into
batches, with database updates and reports produced during periodic batch
runs. However, when interactive queries became technologically possible, the
demand for interaction made generated demand for on-line processing of both
individual requests and exceptions. Reports remained on roughly the same
cycles as before, so reporting became decoupled from transaction processing.

As databases became more common, information about a business became
distributed among multiple databases. This offered new opportunities for the
data to become inconsistent and incomplete. In addition, the representations,
or schemas, for different databases were usually different; even the portion of
the data shared by two databases is likely to have representations in each
database. The total volume of data to handle is correspondingly larger, and it is
often distributed across multiple machines. Two general strategies emerged for
dealing with data diversity: unified schemas and multi-databases.

2.1. Batch Sequential

Some of the earliest large computer applications were databases. In these
applications individual database operations-transactions-were collected into
large batches. The application consisted of a small number of large standalone
programs that performed sequential updates on flat (unstructured) files. A
typical organization included:

• a massive edit program, which accepted transaction inputs and
performed such validation as was possible without access to the
database

CMU/SEI-93-TR-3 9

"* a massive transaction sort, which got the transactions into the same
order as the records on the sequential master file

"• a sequence of update programs, one for each master file; these huge
programs actually executed the transactions by moving sequentially
through the master file, matching each type of transaction to its
corresponding account and updating the account records

"• a print program that produced periodic reports

The steps were independent of each other; they had to run in a fixed sequence;
each ran to completion, producing an output file in a new format, before the next
step began. This is a batch sequential architecture. The organization of a
typical batch sequential update system appears in Figure 2 (Best 1990, p. 29).
This figure also shows the possibility of on-line queries (but not modifications).
In this structure the files to support the queries are reloaded periodically, so
recent transactions (e.g., within the past few days) are not reflected in the query
responses.

Fpgure 2: Data TAow SagCT Ior batdp databses

1 10 CMU/SEI-93-TR3

DAT EDI "017 ,xOT '1 Ir T III I

Figure 2 is a Yourdon data flow diagram. Processes are depicted as circles, or

"bubbles"; data flow (here, large files) is depicted with arrows, and data stores
such as computer files are depicted with parallel lines. This notation

conventional in this application area for showing the relations among processes
and data flow. Within a bubble, however, the approach changes. Figure 3

(Best 1990, p.150) shows the internal structure of an update process. There is
one of these for each of the master data files, and each is responsible for

handling all possible updates to that data file.

TRANSAC•TION
DRIVER

DRIVER PROGRAM
FUNCTIONS

(GENERIC TO AU. APR ICAT'10td
"ACCESSBATCH

NEXT RANS"UNIMU
MOO~t.EFUNCTIONS

------------------------------------- ------- ------ ------- ---------

SUBPROGRAM CONSSTECv ACC1T417I ACCOWNT4ATEM ACOWIATEM

FUNCTIONS A=83 VALDATmI PWThiSUSRORAd K•M1111100" StAPROGRAM sw!IrOONU
PECIFC TO NE

APPLICA7TMRANSAMr"P

NOTE: TIE DRI.ER CALLS A DIFERENT ET OF SLJIPROGRAMS FOR EACN lrRUANCTlON TypE

Figure 3: Internal sicture of batch update process

CMU/SEI-93-TR-3 11

In Figure 3, the boxes represent subprograms and the lines represent
procedure calls. A single driver program processes all batch transactions.
Each transaction has a standard set of subprograms that check the transaction
request, access the required data, validate the transaction, and post the result.
Thus all the program logic for each transaction is localized in a single set of
subprograms. The figure indicates that the transaction-processing template is
replicated so that each transaction has its own set. Note the difference even in
graphical notation as the design focus shifts from the architecture to the code
level.

The essential-batch sequential-parts of Figure 2 are redrawn in Figure 4 in a
form that allows comparison to other architectures. The redrawn figure
emphasizes the sequence of operations to be performed and the completion of
each step before the start of its successor. It suppresses the on-line query
support and updates to multiple master files, or databases.

a tape

Figure 4: Batch sequential database architecture

2.2. Simple Repository

Two trends forced a change away from batch sequential processing. First,
interactive technology provided the opportunity and demand for continuous
processing of on-line updates as well as on-line queries. On-line queries of
stale data are not very satisfactory; interaction requires incremental updates of
the database, at least for on-line transactions (there is less urgency about
transactions that arrive by slow means such as mail, since they have already
incurred delays). Second, as organizations grew, the set of transactions and
queries grew. Modifying a single large update program and a single large
reporting program for each change to a transaction creates methodological
bottlenecks. New types of processing were added often enough to discourage
modification of a large update program for each new processing request. In
addition, starting up large programs incurred substantial overheads at that time.

These trends led to a change in system organization. Figure 5 (Best 1990, p.
81) shows a "modern!-that is, interactive-system organization. The notation
is as for Figure 2. This organization supports both interactive and batch
processing for all transaction types; updates can occur continuously. Since

12 CMU/SEI-93-TR-3

these are no longer periodic operations, the system also provides for periodic
operations. Here, though, the transaction database and extract database are
transient buffers; the account/item database is the central permanent store. The
transaction database serves to synchronize multiple updates. The extract
database solves a problem created by the addition of interactive processing-
namely the loss of synchronization between the updating and reporting cycles.
This figure obscures not only the difference between a significant database and
a transient buffer but also the separation of transactions into separate
processes.

DIRECT INPUT

/ \ ON-UNE

2ON-UNE INFORMATION
ON-UNE INOUIRY

VAUDATION
AND

UPDATE

ACCOUNTATEM

TRANSACTION E ADATABASE C6

DATABSEC EXCEPTIEONP'E

OUTPUT

Figure 5: Data fow diagram for interactive database

CMU/SEI-93-TR-3 1 3

, RNA PR•OCESSIING

It is possible for transaction processing in this organization to resemble batch
sequential processing. However, it is useful to separate the general overhead
operations from the transaction-specific operations. It may also be useful to
perform multiple operations on a single account all at once. Figure 6 (Best
1990, p.158) shows the program structure for the transactions in this new
architecture. Since the transactions now exist individually rather than as
alternatives within a single program, several of the bubbles in Figure 5 actually
represent sets of independent bubbles.

DAMA •T= IAT*A.•I'II
UPAT u,.%••1PtoRT,• I

DRIVER PROGRAM
FUNCTIONS W.OT F

SUBPROGRAM UDT

FUNCTIONSo
ISPECIM TO ONE 1 ý T
WPICATIONITRNASAMT"

NOTE: ONE DRIE PROGRAM FOR EACH FLE PROCESSED SEOUENTIALULV

Figure 6: Internal structure of interactive update process

14 CMU(SEI-93-TR-3

There is not a clean separation of architectural issues from coding issues in
Figures 5 and 6. It is not unusual to find this, because explicit attention to the
architecture as a separate level of software design is relatively recent. Indeed,
Figures 5 and 6 suffer from information overload as well. The system structure
is easier to understand if we first isolate the database updates. Figure 7
focuses narrowly on the database and its transactions. This is an instance of a
fairly common architecture, a repository, in which shared persistent data is
manipulated by independent functions each of which has essentially no
permanent state. It is the core of a database system. Figure 8 adds two
additional structures. The first is a control element that accepts the batch or
interactive stream of transactions, synchronizes them, and selects which update
or query operations to invoke, and in which order. This subsumes the
transaction database of Figure 5. The second is a buffer that serves the
periodic reporting function. This subsumes the extract database of Figure 5.

transi trans3
trans3

Database

Figure 7: Simple repository database architecture

Databas

Figure 8: Repository architecture for database showing control and reporting

CMU/SEI-93-TR-3 15

2.3. Virtual Repository

As organizations grew, databases came to serve multiple functions. Since this
was usually a result of incremental growth, individual independent programs
continued to h~e the locus of processing. In response, simple repositories gave
way to databases that supported multiple views through schemas. Corporate
reorganizations, mergers, and other consolidations of data forced the joint use
of multiple databases. As a result, information could no longer be localized in a
single database. Figure 9 (Kim and Seo 1991, p.13) gives a hint of the extent of
the problem through the schemas that describe books in tour libraries. Note, for
example, that the call number is represented in different ways in all four
schemas; in this case they're all Ubrary of Congress numbers, so the more
difficult case of a mixture of Library of Congress and Dewey numbering doesn't
arise. Note also the assortment of ways the publisher's name, address, and
(perhaps) telephone number are represented.

Library Table ntame Attributes General descripi iwwt

CDs I -Main
(main l.ibrary) item (if*. title. autblorname, subject. IMp. language) Library items

k-nurn (I10. c-letter. l'-digit. s-dilIt. culttcerinS UI'rary of Consiess
numiber

publisher (40. name. icl. street. city, sip. slate. country) Pubi~shers
lend-into (100. lenld-period. library. use -only. cliecked-omi) Lending

I Information
checkout-inl, (it*, id-num. hour, day, month. year) Dortower and due

date

(iU:Enginecerisis
(Engineering itenis fil. title. a-name. type. c-letter, f-digit. %-digit.
I tbrury) cultering) Library jtcnes

itcn.-subijcct (Wl. subject)I Subject ~fo each item
heitouum-i.'ttiatc lidil' - i~nguarcl L angua~ge tacd in

each, item
publislive (if*. pitamle. sit-num. stritante. city). zip. state) l'uhii~lwr.
k-nalisiefit (if*, knod-peu.'r. library-u~tc-ti.slY. cl.~icchd-touq) I cildint

i,,iel-rnatiun
cimuckitui .inetl. (if*. id-num. hour. day. month. iiar)I Iltinrowee and diaL-

C08I3: City
(rety Public Library) books (iW. k-iunt. saen title. subject) Library items

publisher (100. p-nasme, pi-address) Publishers
lend-info (ii'. I-period. reference, checked-out) Lending

informstiou
checkout -info (49. dil-num, day, month. year) Borrower and due

date

(111114: Ctn,.at
(Community item (if*. Ic-nunater. title. a-inioe) Library ilcisa%
(aallcie Libraryl publiseer-inslo 088. Poo. Ma"e. tell rubhishven

pub'iii~wt-zade (1pV. st-nuen. si-nwtnac. rmnu.rittr. 'inic. pip) rulslidict aiktrc'v%
41vl~t-el,-ifet.' 1;01. idI. day. InMt~h. y-lar) lt40rr.,wul andi oitia-

dLate
It "1111a Jim-. Cat-plovy. WW~I -suname) I it-Cal cal at

- ~ pe-. ,, a,,~.-0 1991 IEEE

FRgure 9: Diversity of schemas for a single constnud

16 CMUISEI-93-TR-3

Developing applications that rely on multiple diverse databases like these
requires solution of two problems. First, the system must reconcile
representation differences. Second, it must communicate results across
distributed systems that may have not only different data representations but
also different database schema representations. One approach to the
unification of multiple schemas is called the federated approach. Figure 10
(Ahmed et al 1991, p. 21) shows one way to approach this, relying on the well-
understood technology for handling multiple views on databases. The top of
this figure shows how the usual database mechanisms integrate multiple
schemas into a single schema. The bottom of the figure suggests an approach
to importing data from autonomous external databases: For each database,
devise a schema in its native schema language that exports the desired data
and a matching schema in the schema language of the importer. This
separates the solutions to the two essential problems and restricts the
distributed system problem to communication between matching schemas.

a Integrated scceman

Database IntegratedIntegration schema x

Ntive I m I mport IE

Figuem 10:combnIn shmulil di2iue schema n

9
3Nativ1

database

I %

• Local L alLocal %
• schema 1 schoema' 2 schema n I

Full Full
autonomy autonomy

• 1"1 IEEE

Figure TO: Combining multiple distributed schemas

CMU/SEI-93-TR.3 1 7

Figure 10 combines solutions to two problems. Here again, the design is
clearer if the discussion and diagram separate the two sets of concerns. Figure
11 shows the integration of multiple databases by unified schemas. It shows a
simple composition of projections. The details about whether the data paths are
local or distributed and whether the local schema and import schema are
distinct are suppressed at this level of abstraction; these communication
questions should be addressed in an expansion of the abstract filter design
(and they may not need to be the same for all of the constituents).

Figure 11: Integration of multiple databases

2.4. Hierarchical Layers

Unified schemas allow for merger of information, but their mappings are fixed,
passive, and static. The designers of the views must anticipate all future needs;
the mappings simply transform the underlying data; and there are essentially no
provisions for recognizing and adapting to changes in the set of available
databases. In the real world, each database serves multiple users, and indeed
the set of users changes regularly. The set of available databases also
changes, both because the population of databases itself changes and
because network connectivity changes the set that is accessible. This
exacerbates the usual problems of inconsistency across a set of databases. The
commercial database community has begun to respond to this problem of
dynamic reconfiguration. Distributed database products organized on a client-
server model are beginning to challenge traditional mainframe database

18 CMU/SEI-93-TR-3

management systems (Hovaness 1992). This set of problems is also of current

interest in the database research community.

Figure 12 (Wiederhold 1992, p. 45) depicts one research scenario for active

mediation between a constantly-changing set of users and a constantly-

changing set of databases. Wiederhold proposes introducing active programs,
called experts, to accept queries from users, recast them as queries to the

available databases, and deliver appropriate responses to the users. These

experts, or active mediators, localize knowledge about how to discover what

databases are available and interact with them, about how to recast users'
,ueries in useful forms, and about how to reconcile, integrate, and interpret

information from multiple diverse databases.

Queryl Relevant responses" lnspection1l

Meator' Mediator ... Meato/r I Mediator m4.- Experts

Formatted queryI. Bulky responses Triggered events, T

'atabase w-.. Database x a.. Dataoasez : Da

All Nmodues are distributed over nationwide networks.

Figure 12: Muftidatabase with mediators

CMU/SEI-93-TR-3 19

In effect, Wiederhold's architecture uses hierarchical layers to separate the
business of the users, the databases, and the mediators. The interaction
between layers of the hierarchy will most likely be a client-server relation. This
is not a repository because there is no enforced coherence of central shared
data; it is not a batch sequential system (or any other form of pipeline) because
the interaction with the data is incremental. Figure 13 recasts this in a form
similar to the other examples.

Users

Client-Server..........
Mediators

Client-Server

Databases. ,.

Figure 13: Layered architecture for multidatabase

2.5. Evolution of Shared Information Systems in Business Data
Processing

These business data processing applications exhibit a pattern of development
driven by changing technology and changing needs. The pattern was:

* Batch processing: Standalone programs; results are passed from one
to another on magtape. Batch sequential model.

• Interactive processing: Concurrent operation and faster updates
preclude batching, so updates are out of synchronization with reports.
Repository model with external control.

* Unified schemas: Information becomes distributed among many
different databases. One virtual repository defines (passive) consistent
conversion mappings to multiple databases.

2 0 CMU/'SEI-93-TR-3

......

* Multi-database: Databases have many users; passive mappings don't
suffice; active agents mediate interactions. Layered hierarchy with
client-server interaction.

In this evolution, technological progress and expanding demand drive progress.
Larger memories and faster processing enable access to an ever-wider
assortment of data resources in a heterogeneous, distributed world. Our ability
to exploit this remains limited by volume, complexity of mappings, the need to
handle data discrepancies, and the need for sophisticated interpretation of
requests for services and of available data.

CMU/SEI-93-TR.3 21

22 CMU/SEI.93-TR-3

3. Integration In Software Development Environments

Software development has relied on software tools for almost as long as data
processing has relied on on-line databases. Initially these tools only supported
the translation from source code to object code; they included compilers,
linkers, and libraries. As time passed, many steps in the software development
process became sufficiently routine to be partially or wholly automated, and
tools now support analysis, configuration control, debugging, testing, and
documentation as well. As with databases, the individual tools grew up
independently. Although the integration problem has been recognized for
nearly two decades (Toronto 1974), individual tools still work well together only
in isolated cases.

3.1. Batch Sequential

The earliest software development tools were standalone programs. Often their
output appeared only on paper and perhaps in the form of object code on cards
or paper tape. Eventually most of the tools' results were at least in some
magnetic-universally readable-form, but the output of each tool was most
likely in the wrong format, the wrong units, or the wrong conceptual model for
other tools to use. Even today, execution profiles are customarily provided in
human-readable form but not propagated back to the compiler for optimization.
Effective sharing of information was thus limited by lack of knowledge about
how information was encoded in representations. As a result, manual
translation of one tool's output to another tool's input format was common.

As time passed, new tools incorporated prior knowledge of related tools, and
the usefulness of shared information became more evident. Scripts grew up to
invoke tools in fixed orders. These scripts essentially defined batch sequential
architectures.

This remains the most common style of integration for most environments. For
example, in unix both shell scripts and make follow this paradigm. ASCII text is
the universal exchange representation, but the conventions for encoding
internal structure in ASCII remain idiosyncratic.

3.2. Transition from Batch Sequential to Repository

Our view of the architecture of a system can change in response to
improvements in technology. The way we think about compilers illustrates this.
In the 1970s, compilation was regarded as a sequential process, and the
organization of a compiler was typically drawn as in Figure 14. Text enters at

CMU/SEI-93-TR-3 23

the left end and is transformed in a variety of ways-to lexical token stream,
parse tree, intermediate code-before emerging as machine code on the right.
We often refer to this compilation model as a pipeline, even though it was (at
least originally) closer to a batch sequential architecture in which each
transformation (upass") ran to completion before the next one started.

Figure 14: Traditional compiler model

In fact, even the batch sequential version of this model was not completely
accurate. Most compilers created a separate symbol table during lexical
analysis and used or updated it during subsequent passes. It was not part of
the data that flowed from one pass to another but rather existed outside all the
passes. So the system structure was more properly drawn as in Figure 15.

SymTab

Text x eCode

Figure 15: Traditional compiler model with symbol table

As time passed, compiler technology grew more sophisticated. The algorithms
and representations of compilation grew more complex, and increasing
attention turned to the intermediate representation of the program during
compilation. Improved theoretical understanding, such as attribute grammars,
accelerated this trend. The consequence was that by the mid-1980s the
intermediate representation (for example, an attributed parse tree), was the
center of attention. It was created early during compilation, manipulated during
the remainder, and discarded at the end. The data structure might change in
detail, but it remained substantially one growing structure throughout. However,
we continued (sometimes to the present) to model the compiler with sequential
data flow as in Figure 16.

24 CMU(SEI-93-TR-3

Figure 16: Modem canonical compiler

In fact, a more appropriate view of this structure would re-direct attention from
the sequence of passes to the central shared representation. When you
declare that the tree is the locus of compilation information and the passes
define operations on the tree, it becomes natural to re-draw the architecture as
in Figure 17. Now the connections between passes denote control flow, which
is a more accurate depiction; the rather stronger connections between the
passes and the tree/symbol table structure denote data access and
manipulation. In this fashion, the architecture has become a repository, and this
is indeed a more appropriate way to think about a compiler of this class.

ght be

Sem Opti rule-based
Syn ,Opree

Lex Treode

SymTab

Figure 17: Repository view of modem compiler

CMU/SEI-93-TR-3 25

Happily, this new view also accommodates various tools that operate on the
internal representation rather than the textual form of a program; these include
syntax-directed editors and various analysis tools.

Note that this repository resembles the database repository in some respects
and differs in others. Like the database, the information of the compilation is
localized in a central data component and operated on by a number of
independent computations that interact only through the shared data. However,
whereas the execution order of the operations in the database was determined
by the types of the incoming transactions, the execution order of the compiler is
predetermined, except possibly for opportunistic optimization.

3.3. Repository

Batch sequential tools and compilers--even when organized as repositories-
do not retain information from one use to another. As a result, a body of
knowledge about the program is not accumulated. The need for auxiliary
information about a program to supplement the various source, intermediate,
and object versions became apparent, and tools started retaining information
about the prior history of a program.

The repository of the compiler provided a focus for this data collection.
Efficiency considerations led to incremental compilers that updated the previous
version of the augmented parse tree, and some tools came to use this shared
representation as well. Figure 18 shows some of the ways that tools could
interact with a shared repository.

"* Tight coupling: Share detailed knowledge of the common, but
proprietary, representation among the tools of a single vendor

" Open representation: Publish the representation so that tools can be
developed by many sources. Often these tools can manipulate the data,
but they are in a poor position to change the representation for their
own needs.

" Conversion boxes: Provide filters that import or export the data in
foreign representations. The tools usually lose the benefits of
incremental use of the repository.

" No contact: Prevent a tool from using the repository, either explicitly,
through excess complexity, or through frequent changes.

These alternatives have different functional, efficiency, and market implications.

26 CMU/SEI-93-TR-3

,o query/ open
update rep 0.vP l

4I Proprietary
project

too13'Aar dictionary

'ool4 •no contact

loser conversion

Figure 18: Software tools with shared representation

3.4. Hierarchical Layers

Current work on integration emphasizes interoperability of tools, especially in
distributed systems. Figure 19 (Chen and Norman, 1992, p.19) shows one
approach, the NIST/ECMA reference model. It resembles in some ways the
layered architecture with mediators for databases, but it is more elaborate
because it attempts to integrate communications and user interfaces as well as
representation. It also embeds knowledge of software development processes,
such as the order in which tools must be used and what situations call for
certain responses.

CMUISEI-93-TR-3 27

Toallayy 0eve

Figure 9: NISTeCsmonarefernc moel o evromn Itgrto

28 CMU/SEI-93.TR.3e

Note, however, that whereas this model provides for integration of data, it
provides communication and user interface services directly. That is, this model
allows for integration of multiple representations but fixes the models for user
interfaces and communication.

In one variation on the integrated-environment theme, the integration system
defined a set of "events" (e.g., "module foo.c recompiled") and provides support
for tools to announce or to receive notice of the occurrence of events. This
provides a means of communicating the need for action, but it does not solve
the central problem of sharing information.

3.5. Evolution of Shared Information Systems in Software
Development Environments

Software development ha ifferent requirements from database processing.
As compared to databases, . oftware development involves more different types
of data, fewer instances of each distinct type, and slower query rates. The units
of information are larger, more complex, and less discrete than in traditional
databases. The lifetime of software development information, however, is not
(or at least should not be) shorter than database lifetimes.

Despite the differences in application area and characteristics of the supporting
data, the essential problem of collecting, storing, and retrieving shared data
about an ongoing process is common to the two areas. It is therefore not
surprising to find comparable evolutionary stages in their architectures.

Here the forces for evolution were

"• the advent of on-line computing, which drove the shift from batch to
interactive processing for many functions

"• the concern for efficiency, which is driving a reduction in the granularity
of operations, shifting from complete processing of systems to
processing of modules to incremental development

"* the need for management control over the entire software development
process, which is driving coverage to increase from compilation to the
full life cycle

Integration in this area is still incomplete. Data conversions are passive, and
the ordering of operations remains relatively rigid. The integration systems can
exploit only relatively coarse system information, such as file and date.
Software development environments are under pressure to add capabilities for
handling complex dependencies and selecting which tools to use. Steps
toward more sophistication show up in the incorporation of metamodels to

CMU/SEI-93-TR-3 29

describe sharing, distribution, data merging, and security policies. The process-
management services of the NIST/ECMA model are not yet well developed, and
they will initially concentrate on project-level support. But integration across all
kinds of information and throughout the life cycle is on the agenda, and
intelligent assistance is often mentioned on the wish-list.

30 CMU/SEI-93-TR-3

4. Integration in Building Design

The previous two examples come from the information technology fields. For
the third example we turn to an application area, the building construction
industry. This industry requires a diverse variety of expertise. Distinct
responsibilities correspond to matching sets of specialized functions. Indeed,
distinct subindustries support these specialties. A project generally involves a
number of independent, geographically dispersed companies. The diversity of
expertise and dispersion of the industry inhibit communication and limit the
scope of responsibilities. Each new project creates a new coalition, so there is
little accumulated shared experience and no special advantage for pairwise
compatibility between companies. However, the subtasks interact in complex,
sometimes non-obvious ways, and coordination among specialties (global
process expertise) is itself a specialty (Terk 1992).

The construction community operates on divide-and-conquer problem solving
with interactions among the subproblems. This is naturally a distributed
approach; teams independent subcontractors map naturally to distributed
problem-solving systems with coarse-grained cooperation among specialized
agents. However, the separation into subproblems is forced by the need for
specialization and the nature of the industry; the problems are not inherently
decomposable, and the subproblems are often interdependent.

In this setting it was natural for computing to evolve bottom-up. Building
designers have exploited computing for many years for tasks ranging from
accounting to computer-aided design. We are concerned here with the
software that performs analysis for various stages of the design activity. The
1960s and 1970s saw a number of algorithmic systems directed at aiding in the
performance of individual phases of the facility development. However, a large
number of tasks in facility development depend on judgment, experience, and
rules of thumb accumulated by experts in the domain. Such tasks cannot be
performed efficiently in an algorithmic manner (Terk 1992).

The early stages of development, involving standalone programs and batch-
sequential compositions, are sufficiently similar to the two previous examples
that it is not illuminating to review them. The first steps toward integration
focused on support-supervisory systems, which provided basic services such as
data management and information flow control to individual independent
applications, much as software development environments did. The story picks
up from the point of these early integration efforts.

CMU/SEI-93-TR-3 31

Integrated environments for building design are frameworks for controlling a
collection of standalone applications that solve part of the building design
problem (Terk 1992). They must be

"* efficient in managing problem-solving and information exchange
"* flexible in dealing with changes to tools
"* graceful in reacting to changes in information and problem solving

strategies

These requirements derive from the lack of standardized problem-solving
procedures; they reflect the separation into specialties and the geographical
distribution of the facility development process.

4.1. Repository

Selection of tools and composition of individual results requires judgr, nt,
experience, and rules of thumb. Because of coupling between subproblems it
is not algorithmic, so integrated systems require a planning function. The goal
of an integrated environment is integration of data, design decisions, and
knowledge. Two approaches emerged: the closely-coupled Master Builder, or
monolithic system, and the design environment with cooperating tools. These
early efforts at integration added elementary data management and information
flow control to a tool-set.

The common responsibilities of a system for distributed problem-solving are:

" Problem partitioning (divide into tasks for individual agents)
" Task distribution (assign tasks to agents for best performance)
" Agent control (strategy that assures tasks are performed in organized

fashion)
"* Agent communication (exchange of information essential when

subtasks interact or conflict)

The construction community operates on divide-and-conquer problem solving
with interactions among the subproblems. This is naturally a distributed
approach; teams independent subcontractors map naturally to distributed
problem-solving systems with coarse-grained cooperation among specialized
agents. However, the nature of the industry--its need for specialization-forces
the separation into subproblems; the problems are not inherently
decomposable, and the subproblems are often interdependent. This raises the
control component to a position of special significance.

Terk (1992) surveyed and classified many of the integrated building design
environments that were developed in the 1980s. Here's what he found:

32 CMU/SEI-93-TR-3

"* Data: mostly repositories: shared common representation with

conversions to private representations of the tools

"* Communication: mostly shared data, some messaging

"* Tools: split between closed (tools specifically built for this system) and
open (external tools can be integrated)

"* Control: mostly single-level hierarchy; tools at bottom; coordination at
top

"* Planning: mostly fixed partitioning of kind and processing order; scripts
sometimes permit limited flexibility

So the typical system was a repository with a sophisticated control and planning
component. A fairly typical such system, IBDE (Fenves et al 1990) appears in
Figure 20. Although the depiction is not typical, the distinguished position of the
global data shows clearly the repository character. The tools that populate this
IBDE are

" ARCHPLAN develops architectural plan from site, budget, geometric
constraints

"* CORE lays out building service core (elevators, stairs, etc.)

"• STRYPES configures the structural system (e.g., suspension, rigid
frame, etc.)

" STANLAY performs preliminary structural design and approximate
analysis of the structural system.

"• SPEX performs preliminary design of structural comporients.

"* FOOTER designs the foundation.

"• CONSTRUCTION PLANEX generates construction schedule and
estimates cost.

CMU/SEI-93-TR-3 33

rchplan

LFIH Controller

grows to be a significant problem. Indeed, as this component grows more

complex, its structure starts to dominate the repository structure of the data.
The difficulty of reducing the planning to pure algorithmic form makes this
application a candidate for intelligent control.

The Engineering Design Research Center at CMU is exploring the development
of intelligent agents that can learn to control external software systems, or
sys itemsaintended for use with interactive human intervention. Integrated
building design is one of the areas they have explored. Figure 22 (Newell and
Steier 1991) shows their design for an intelligent extension of the original IBDE
system, Soar/IBDE. That figure is easier to understand in two stages, so Figure
21 shows the relation of the intelligent agent to the external software systems
before Figure 22 adds the internal structure of the intelligent agent. Figure 21 is
clearly derived from Figure 20, with the global data moved to the status of just

another external software system. The emphasis in Soar/IBDE was control of
the interaction with the individual agents of IBDE.

From the standpoint of the designer's general position on intelligent control this
organization seems reasonable, as the agent is portrayed as interacting with
whatever software is provided. However, the global data plays a special role in
this system. Each of the seven other components must interact with the global
data (or else it makes no sense to retain the global data). Also, the intelligent

34 CMU/SEI-93-TR-3

agent may also find that the character of interaction with the global data is
special, since it was designed to serve as a repository, not to interact with
humans. Future enhancements of this system will probably need to address the
interactions among components as well as the components themselves.

% %%%%N %% %%%% N N %%%%%%%%

e . -%0 % % %6- Archpa....... % .4.4% % %% % % %% % %% %%% .44444444........444444

%% %%%% % % %%%%% %%%.% % %% % %
.4..4..44.44.%% .4.% .4.44%4% .4.4.% .4.% .4.%% U%%

.% %4. %4. %4.%4. %4.%4.%4.% 4.% % .%.%.%%.4.%4. %.4.%4.%4%4%4.4.4e
.4.4.%4%.44% . 4 4%.e.%%e.% %4%4%e%.4 4 4 4 .% % % .%% %-eaI%

.4.4.4 .4 4 4 .4 4. .4 4 4..e4 4..%4

.%%.4% .4%%%%.44.% .4%% .4.% .4..44.% .4..4.% .4% % I

.4% .%4.4%4% .4% .4%.4.%4 .44444 %4..%4.44.%4..4

.44..44..44. % %44.. %4..%4..% A.SYS

.%.e%.e%.e% . e%%.4.4.4%%.4.I14%%*4%.%%%.%%% % (fxeCr

.4%~~~~~~~~~ .44 .444444 , %.%4.. . 44 .4. .4.4.4.4.4%

%%.%4.4%.e4%.%4.4.4..1.1.%%%%%%%%%%%%%%.%.% %I%

.%4%.%.%4%%% %%.4%..% .. %.%%%.4.4%
.,.., ..,..,, .,,.,,.,,.. , ,, , , ,. , ..S16. n laye

di ' uuuuuuuututd d' Jd''' t''' '''t Ope

Figure 21: High-level architecture for intoelligent IBDE

Figure 22 adds the fine structure of the intelligent agent. The agent has six
major componerttq It must be able to identify and formulate subtasks for the set
of external software systems and express them in the input formats of those
systems. It must receive the output and interpret it in terms of a global overview
of the problem. It must be able to understand the actions of the components as
they work toward solution of the problem, both in terms of general' knowledge of
the task and specific knowledge of the capabilities of the set of external software
systems.

The most significant aspect of this design is that the seven external software
systems are interactive. This means that their input and output are incremental,
so a component that needs to understand their operation must retain and
update a history of the interaction. The task becomes vastly more complex
when pointer input and graphical output are included, though this is not the
case in this case.

CMU/SEI-93-TR-3 35

%.% % % % % % %%%% %% %% % %.% %

,ýntl; i GI D a at

I;
:';;;IKnowledge for using ESSs Archplan':

"""""t ["''"'t •.Archlan

Formulate Create

U

_M Simulate Operate % = Sy
ESS SWsys 0 [ixed) CoreII

0I

l"-•J••Interpret•l-r Convert•':ii[]
,,-'•,'ILresult output J .,,,,J=JFooter

..... Planex

Figure 22: Detailed architecture for Soar/IBDE

4.3. Evolution of Shared Information Systems In Building Design

Integration in this area is less mature than in databases and software
development environments. Nevertheless, the early stages of integrated
building or facility environments resemble the early stages of the first two
examples. The evolutionary shift to layered hierarchies seems to come when
many users must select from a diverse set of tools and they need extra system
structure to coordinate the effort of selecting and managing a useful subset.
These systems have not reached this stage of development yet, so we don't yet
have information on how that will emerge.

In this case, however, the complexity of the task makes it a prime candidate for
intelligent control. This opens the question of whether intelligent control could
be of assistance in the other two examples, and if so what form it will take. The
single-agent model developed for Soar/IBDE is one possibility, but the
enrichment of database mediators to make them able of independent intelligent
action (like knowbots) is ciearly another.

36 CMUISEI-93-TR-3

5. Architectural Structures for Shared Information Systems

While examining examples of software integration, we have seen a variety of
general architectural pattems, or idioms for software systems. In this section we
re-examine the data flow and repository idioms to see the variety that can occur
within a single idiom.

Current software tools do not distinguish among different kinds of components
at this level. These tools treat all modules equally, and they mostly assume that
modules interact only via procedure calls and perhaps shared variables. By
providing only a single model of component, they tend to blind designers to
useful distinctions among modules. Moreover, by supporting only a fixed pair of
low-level mechanisms for module interaction, they tend to blind designers to the
rich classes of high-level interactions among components. These tools certainly
provide little support for documenting design intentions in such a way that they
become visible in the resulting software artifacts.

By making the richness of these structures explicit, we focus the attention of
designers on the need for coherence and consistency of the system's design.
Incorporating this information explicitly in a system design should provide a
record that simplifies subsequent changes and increases the likelihood that
later modifications will not compromise the integrity of the design. The
architectural descriptions focus on design issues such as the gross structure of
the system, the kinds of parts from which it is composed, and the kinds of
interactions that take place.

The use of well-known patterns leads to a kind of reuse of design templates.
These templates capture intuitions that are a common part of our folklore: it is
now common practice to draw box-and-line diagrams that depict the
architecture of a system, but no uniform meaning is yet associated with these
diagrams. Many anecdotes suggest that simply providing some vocabulary to
describe parts and patterns is a good first step.

By way of recapitulation, we now examine variations on two of the architectural
forms that appear above: data flow and repositories.

5.1 Variants on Data Flow Systems

The data flow architecture that repeatedly occurs in the evolution of shared
information systems is the batch sequential pattern. However, the most familiar
example of this genre is probably the unix pipe-and-filter system. The similarity

CMUISEI-93-TR-3 37

of these architectures is apparent in the diagrams used for systems of the
respective classes, as indicated in Figure 23. Both decompose a task into a
(fixed) sequence of computations. They interact only through the data passed
from one to another and share no other information. They assume that the
components read and write the data as a whole-that is, the input or output
contains one complete instance of the result in some standard order. There are
differences, though. Batch sequential systems are

"* very coarse-grained

"• unable to do feedback in anything resembling real time
"• unable to exploit concurrency
"* unlikely to proceed at an interactive pace

On the other hand, pipe-and-filter systems are

"* fine-grained, beginning to compute as soon as they consume a few
input tokens

"• able to start producing output right away (processing is localized in the
input stream)

"• able to perform feedback (though most shells can't express it)
"* often interactive

Figure 23 a, b: Comparison of (a) batch sequential and
(b) pipe/filter architectures

5.2. Variants on Repositories

The other architectural pattern that figured prominently in our examples was the
repository. Repositories in general are characterized by a central shared data
store coupled tightly to a number of independent computations, each with its
own expertise. The independent computations interact only through the shared
data, and they do not retain any significant amount of private state. The
variations differ chiefly in the control apparatus that controls the order in which

38 CMU/SEI-93-TR-3

the computations are invoked, in the access mechanisms that allow the
computations access to the data, and in the granularity of the operations.

Figures 7 and 8 show a database system. Here the control is driven by the
types of transactions in the input stream, the access mechanism is usually
supported by a specialized programming language, and the granularity is that
of a database transaction.

Figure 17 shows a programming language compiler. Here control is fixed
(compilation proceeds in the same order each time), the access mechanism
may be full conversion of the shared data structure into an in-memory
representation or direct access (when components are compiled into the same
address space), and the granularity is that of a single pass of a compiler.

Figure 18 shows a repository that supports independent tools. Control may be
determined by direct request of users, or it may in some cases be handled by an
event mechanism also shared by the tools. A variety of access methods are
available, and the granularity is that of the tool set.

One prominent repository has not appeared here; it is mentioned now for
completeness-to extend the comparison of repositories. This is the
blackboard architecture, most frequently used for signal-processing
applications in artificial intelligence (Nii 1986) and depicted in Figure 24. Here
the independent computations are various knowledge sources that can
contribute to solving the problem-for example, syntactic-semantic connection,
phoneme recognition, word candidate generation, and signal segmentation for
speech understanding. The blackboard is a highly-structured representation
especially designed for the representations pertinent to the application. Control
is completely opportunistic, driven by the current state of the data on the
blackboard. The abstract model for access is direct visibility, as of many human
experts watching each other solve a problem at a real blackboard
(understandably, implementations support this abstraction with more feasible
mechanisms). The granularity is quite fine, at the level of interpreting a signal
segment as a phoneme.

CMU/SEI-93-TR-3 39

ksl ks2

ks8 ks3

Blackboard
(shared

data)

ks7 _________ks4

Figure 24: Blackboard architecture

40 CMU/SEI-93-TR-3

6. Conclusions

Three tasks arising in different communities deal with collecting, manipulating,
and preserving shared information. In each case changing technologies and
requirements drove changes in the architectural form commonly used for the
systems. We can identify that sequence as a common evolutionary pattern for
shared information systems:

"* isolated applications without interaction

"• batch sequential processing

"* repositories for integration via shared data

"* layered hierarchies for dynamic integration across distributed systems

Since problems remain and new technology continues to emerge, this pattern
may grow in the future, for example to add active control by intelligent agents.

These examples show one case in which a common problem structure appears
in several quite different application areas. This suggests that attempts to
exploit "domain knowledge" in software design should characterize domains by
their computational requirements-e.g., shared information systems-as well as
by industry-e.g., data processing, software development, or facility design. In
addition, the examples show that within a single domain, differences among
requirements or operational settings may change the preferred architecture.
Taken together, this suggests that the notion of a single domain-specific
architecture serving a segment of an industry may not fully exploit our growing
architectural capabilities.

The models, notations, and tools for specifying software architectures remain
informal. Although even informal models are useful, research in several areas
is required to make these more precise and robust.

"• Complete a taxonomy of common architectural patterns.

"• Define and implement better abstractions for the interactions among
components; at present system descriptions are cast in terms of
procedure calls no matter what the abstractions may be.

"* Establish ways to encapsulate stand-alone systems and express the
resulting interfaces so they can be used as subsystems; linguistically
this is a closure problem.

"* Continue the exploration of independent agents for integration,
especially in dynamically changing distributed systems.

CMU/SEI-93-TR-3 41

42 CMU/SEI-93-TR-3

Acknowledgments

This paper was written in honor of Allen Newell. Although we never
collaborated directly, our professional interests touched from time to time, and
these encounters often shaped the subsequent path of my research. This paper
was so shaped at both ends: we discussed design levels many years ago, and I
became acquainted with Soar/IBDE only a year or so ago. I also owe thanks to
David Steier for discussions about Soar/IBDE and to David Garlan for ongoing
collaboration in software architectures.

Several figures are reprinted by permission: Figure 1 from (Bell and Newell
1971), Gordon Bell. Figures 2, 3, 5, and 6 from (Best 1990) copyright © 1990
John Wiley and Sons Inc. Figures 9 from (Kim and Seo 1991), 10 from (Ahmed
et al 1991), 12 from (Wiederhold 1992), and 19 from (Chen and Norman 1992)
copyright © 1991, 1992 IEEE. Figures 20 and Figure 22 from (Newell and
Steier), David Steier.

CMU/SEI-93-TR-3 43

44 CMU/SEI-93-TR-3

References

(Ahmed et al 1991) Rafi Ahmed et al. "The Pegasus
Heterogeneous Multidatabase System." IEEE
Computer, December 1991, 24,12, pp. 19-27.

(Bell and Newell 1971) C. Gordon Bell and Allen Newell. Computer
Structures: Readings and Examples.
McGraw-Hill 1971.

(Best 1990) Laurence J. Best. Application Architecture:
Modern Large-Scale Information Processing.
Wiley 1990.

(Chen and Norman 1992) Minder Chen and Ronald J. Norman. "A
Framework for Integrated CASE." IEEE
Software, March 1992, 9, 2, pp. 18-22.

(CSTB 1992) Computer Science and Telecommunications
Board. Keeping the US Computer Industry
Competitive: Systems Integration. National
Academy Press 1992.

(Fenves et at 1990) S. J. Fenves et al. "An Integrated Software
Environment for Building Design and
Construction." Computer-Aided Design, 22, 1,
pp. 27-36.

(Garlan and Shaw 1993) David Garlan and Mary Shaw. "An
Introduction to Software Architecture." In V.
Ambriola and G. Tortora (eds.), Advances in
Software Engineering and Knowledge
Engineering, I, World Scientific Publishing
Company, 1993 (to appear).

(Hovaness 1992) Haig Hovaness. "Price War: There's Fierc,
Combat Ahead over the Cost of Client-Server
Databases." Corporate Computing,
December 1992, 1, 6, pp. 45-46.

(Kim and Seo 1991) Won Kim and Jungyun Seo. "Classifying
Schematic and Data Heterogeneity in
Multidatabase Systems." IEEE Computer,
December 1991, 24, 12, pp. 12-18.

(Newell 1982) Allen Newell. "The Knowledge Level."
Artificial Intelligence, 1982, 18, pp. 87-127.

(Newell 1990) Allen Newell. Unified Theories of Cognition.
Harvard University Press 1990.

CMU/SEI-93-TR-3 45

(Newell and Steier 1991) Allen Newell and David Steier. "Intelligent
Control of External Software Systems." Al in
Engineering, to appear (was Carnegie Mellon
University, Engineering Design Research
Center Report EDRC 05-55-91).

(Nii 1986) H. Penny Nil. "Blackboard Systems." Al
Magazine, 1986, 7, 3, pp. 38-53 and 7, 4, pp.
82-107.

(Nilsson et al 1990) Erik G. Nilsson et al. "Aspects of Systems
Integration." Systems Integration '90, Proc.
First International Conference on Systems
Integration, 1990, pp. 434-443.

(Terk 1992) Michael Terk. A Problem-Centered Approach
to Creating Design Environments for Facility
Development. PhD Thesis, Civil Engineering
Department, Carnegie Mellon University,
1992.

(Toronto 1974) Proceedings of Workshop on the Attainment of
Reliable Software. University of Toronto,
Toronto, Canada, June 1974.

(Wiederhold 1992) Gig Wiederhold. "Mediators in the
Architecture of Future Information Systems."
IEEE Computer, March 1992, 25, 3, pp. 38-48.

46 CMU/SEI-93-TR-3

Ut,.IMnIE, UNCLASSIFIED
SaUUrrY CLASSW.ICATION OFTIS PAGE

REPORT DOCUMENTATION PAGE
Ua. REPORT SECURLY CLASSIFICATION IbF RESTRiCTIVE MARKINGS

Unclassified None

21. SECURrTY CLASSIFICATION AUTHORITY 3, DISTRIBU1O•NAVAABILIrY OF REPO.R

N/A Approved for Public Release
2b. DECLASSIFnCAMONXDOWNGRADING SCHEULE Distribution Unlimited
N/A
4. PERFORMING ORGANIZATON REPOIG NUMBER(S) 5. MONITrORING ORGANIZATION RFPOQR NUMBER(S)

CMU/SEl-93-TR-3 ESC-TR-93-180

G. NAME OF PERORMING ORGANIZATION 6b. OFFICE SYMBOL 7&. NAME OF MONITORING ORGANIZATION

Software Engineering Institute (if aplicble) SEI Joint Program Office
SEI

.ADDRLSS (city, gam. and mp ccde) 7b6 ADDRESS (ciy, ate., and zp code)

Carnegie Mellon University HO ESC/ENS
Pittsburgh PA 15213 Hanscom Air Force Base, MA 01731-2116

La. NAME OFFUNDING/SPONSORING Sb& OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT W1TIFICATION NUMBER

ORGANIZATON (ifapplimble) F1962890C0003
SEI Joint Program Office ESC/ENS

9c. ADDRESS (city. saaw and zip code)) 10. SOURCE OF FUNDING NOS.

Carnegie Mellon University PROGRAM PROECT TASK WORK UNIT
Pittsburgh PA 15213 ELEMENT'NO NO. NO NO.

63756E N/A N/A N/A
11. TITLE (Include Secumy Caaaificaton)

Software Architecture for Shared Information Systems
12. PERSONAL AUTrHOR(S)

Mary Shaw

13a. TYPE OF REPORr 13b. TIME COVERED 14. DATE OF REPORW (yur.rmnt.h. day) 15. PACE COUNT

Final FROM TO March 1993 46 pp.
16. SU•RLEM'TARY NOTrATION

17. COSATI CODES S 8. SUBJECT TERMS (coumia an nuverse d onccia and identfy by block number)

FIELD GROUP SUB. GR. Allen Newell

software architectures
info. systems

19. AB JT (continue o;e=e f ,eceu•ary and identify by Nok number)

Software system design takes place at many levels. Different kinds of design elements, notations, and analyses dis-tinguish these levels. At the software arct~ecure Level, designers combine subsystems into complete systems. This
paper studies some of the common patterns of idioms, that guide them configurations. Results from software archi-
tecture offer some insight into the problems of systems ineration-the task of comnecting individual, isolated, pre-exist-
ig software systtins to provid coeren, dituted eo.tinsto probems, As compig .becomee
sophisticated, so too have the software structures used inthe i o task This paper revo hstrical exampes
of shared infonmation systems in three different applications whose requirements share some common features about,coflecting..marnipulati~ng,.and preservi.ng large bodies of conrleix information. These applications, have similar archi-
t.eclu ral histories in whc a succession of designs r.espon.s to new technolog~ie.. and new requirernents for flexible,
hidghly dynam~ic responses. A common pattern, the shared kiorrnaton systems eivokkn pattern, appears in al three

(pleme bam ova)

20. DISTRIBTIfON/AVAJLABIITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

uNcLASSsFiUNumMrrED N SAME AS RE] anc USERS I Unclassified, Unlimited Distribution

22,. NAME OF RESPONSIBLE INDIVIDUAL '22. TELEPHONE NUMBER (include ame code) 22c. OFFICE SYMBOL

Thomas R. Miller, Lt Col, USAF (412) 268-7631 ESC/ENS (SEI)

DD FORM 1473,83 APR EDITION of I JAN 73 IS OBSOLETE UNUMITED. UNCLASSIFIED
S•mCURY aSF CATION OF This

cr -finm pe pap aebkck 19

area&

