
Technical Report

CMU/SEI-92-TR-029
ESC-TR-92-029

Ada Adoption Handbook:
A Program Manager’s Guide
Version 2.0

William E. Hefley
John T. Foreman

Charles B. Engle, Jr.
John B. Goodenough

October 1992

Ada Adoption Handbook:
A Program Manager’s Guide

Version 2.0

AB

Unlimited distribution subject to the copyright.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Technical Report
CMU/SEI-92-TR-029

ESC-TR-92-029
October 1992

William E. Hefley
SEI Services

John T. Foreman
Defense Advanced Research Projects Agency

Charles B. Engle, Jr.
Florida Institute of Technology

John B. Goodenough
Real-Time Systems Program

This report was prepared for the

SEI Joint Program Office
HQ ESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

FOR THE COMMANDER

(signature on file)

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1992 by Carnegie Mellon University.

Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative
works.

Requests for permission to reproduce this document or to prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRAN-
TIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTIBILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 52.227-7013.

This document is available through Research Access, Inc., 800 Vinial Street, Pittsburgh, PA 15212.
Phone: 1-800-685-6510. FAX: (412) 321-2994. RAI also maintains a World Wide Web home page. The URL is
http://www.rai.com

Copies of this document are available through the National Technical Information Service (NTIS). For informa-
tion on ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of
Commerce, Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides ac-
cess to and transfer of scientific and technical information for DoD personnel, DoD contractors and potential con-
tractors, and other U.S. Government agency personnel and their contractors. To obtain a copy, please contact
DTIC directly: Defense Technical Information Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-
6145. Phone: (703) 274-7633.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

viii CMU/SEI-92-TR-29

CMU/SEI-92-TR-29 ix

Preface to the Second Edition

This new edition of the Ada Adoption Handbook: A Program Manager’s Guide extensively updates the
original 1987 SEI report [109]. Since that time, over 1,500 copies of the first edition have been distributed
by the SEI, and almost 500 copies by NTIS and DTIC, making this one of the most-frequently requested
documents in DTIC holdings. It is impossible to estimate the number of copies of the first edition that have
been reproduced and distributed by readers.

In the intervening years, the technology supporting Ada has improved dramatically, Ada has come into
wider use, and the mandate to use Ada for defense systems has been strengthened. This second edition
is motivated by the need to update the earlier version to address current issues regarding the use of Ada.
In 1987, the issues revolved around the technical adequacy of Ada, its tools, and its initial adoption and
use; in 1992, the compilers and tools have greatly improved and a much larger usage base has provided
experience and results to better understand the issues of adopting Ada and managing Ada projects.
Today, the issues emphasize the management aspects of using Ada in the development of software-
intensive systems.

The intent of this second edition is to help program managers become better consumers of Ada products
and systems by understanding:

• the management, personnel, and technical implications of Ada
• Ada’s role in the software development process

Understanding these topics will aid managers in moving their organizations toward widespread use of
Ada in building and maintaining software-intensive systems.

x CMU/SEI-92-TR-29

CMU/SEI-92-TR-29 xi

Acknowledgements

As part of the development of this document, we received assistance, reviews, and comments from a
wide spectrum of people, including:

• Ada technologists
• Department of Defense (DoD) policy makers
• system developers and support organizations
• DoD and industry program managers

We thank them all. We are also grateful to the following individuals who gave so generously of their time:

Neal Altman, SEI
Christine M. Anderson, Phillips Laboratory, USAF
Judy Bamberger, Loral Western Development Labs
Rick Barbour, SEI
Capt. Jim Cardow, USAF,

Air Force Institute of Technology
Susan Carlson,

Ada Information Clearinghouse
Currie Colket, Ada Joint Program Office
Pat Donohoe, SEI
Les Dupaix, Software Technology Support

Center, USAF
Michael Feldman, George Washington University
Robert Fritz, Orincon Corporation
Dale Gaumer, Magnavox Electronic Systems

Company
Col. Rick Gross, USAF

Audrey Hook, Institute for Defense Analyses
Steve Jacobs, TRW
Kent Johnson, Software Productivity Consortium
Reed Little, SEI
Steven Litvintchouk, MITRE
Robert Mathis
Nancy Mead, SEI
Geoff Mendal,

Systems Engineering Research Corporation
Jim Moore, IBM
Cdr. Melinda Moran, USN, Naval Computers and

Telecommunications Command
Patricia Oberndorf, Naval Air Warfare Center
John Pates, SEI
Tom Ralya, SEI
Gordon Smith, Southern Methodist University
Doug Waugh, SEI

The authors express special appreciation to several of our colleagues for their exacting reviews and
pragmatic insights: Nelson Weiderman, Dan Roy, and Daniel Burton, all of the Software Engineering
Institute.

This second edition of this handbook has also benefited from a tutorial seminar Adopting Ada: Manage-
ment Perspective that has been presented at a number of conferences and meetings, including SIGAda
and TRI-Ada, and as an elective within the Program Manager’s Course at the Defense Systems Manage-
ment College. The tutorial is derived from the two volumes of the Ada Adoption Handbook series, specifi-
cally: A Program Manager’s Guide [109] and Compiler Evaluation and Selection [226]. John
Goodenough, John Foreman, Dan Burton, Judy Bamberger, and Bill Hefley contributed to the various
versions of this seminar. Our heartfelt thanks go to all the attendees and students who have indirectly
contributed by asking hard questions and bringing their concerns with them.

Additionally, Sandra Bond (Software Engineering Institute Information Management group) has been in-
valuable throughout the preparation of two editions of this handbook for trying to "make every word
count."

CMU/SEI-92-TR-29 1

Ada Adoption Handbook: A Program Manager’s Guide

Abstract. The Ada Adoption Handbook provides program managers with information about
how best to tap Ada’s strengths and manage the transition to fully using this software tech-
nology. Although the issues are complex, they are not all unique to Ada. Indeed, many of the
issues addressed in this handbook must be addressed when developing any software-intensive
system in any programming language. The handbook addresses the advantages and risks in
adopting Ada. Significant emphasis has been placed on providing information and suggesting
methods that will help program and project managers succeed in using Ada across a broad
range of application domains.

The handbook focuses on the following topics: Ada’s goals and benefits; program management
issues; implications for education and training; software tools with emphasis on compiler valida-
tion and quality issues; the state of Ada technology as it relates to system design and im-
plementation; and the pending update of the Ada language standard (Ada 9X).

1. Introduction

1.1. Purpose and Scope

Ada is a programming language for developing software, including information systems,
mission-critical, and embedded applications. This handbook presents program managers with
information to make effective use of Ada.

This handbook1 provides program managers with information about how best to tap Ada’s strengths and
incorporate this software technology into their programs. Although the issues are sometimes complex,
adopting Ada can be managed. Similar issues must be addressed when using any programming lan-
guage for building sophisticated software-intensive systems. Although Ada’s origins were strongly in-
fluenced by the needs of the defense mission-critical computing community, the language design team
placed emphasis on supporting modern software engineering practices; the result is a language with wide
applicability in developing well-engineered, quality software.

This handbook addresses the advantages and risks inherent in Ada adoption. Significant emphasis has
been placed on:

• providing information and suggesting methods that will help program and project managers
succeed in using Ada, and

• presenting that information in an objective manner.

This handbook should not be construed as supplanting DoD policy.

This handbook has been written for use across many application domains and covers a large number of
fundamental Ada issues. However, it does not address issues that are unique to individual application
domains (for example, ground-based command and control systems or embedded avionics) or specific
programs.

1This handbook is one of two volumes of the Ada Adoption Handbook series produced by the SEI, which also includes the Ada
Adoption Handbook: Compiler Evaluation and Selection [226]. The Compiler Evaluation and Selection volume provides a substan-
tive overview of the issues confronted by software managers and lead technical personnel tasked with evaluating and selecting Ada
compilers.

2 CMU/SEI-92-TR-29

1.2. Handbook Overview

This section describes the organization of this handbook.

This handbook is organized as stand-alone chapters that address program managers’ questions about
Ada and provide plans for adopting and inserting Ada into an organization. The chapters are:

1. Introduction: This chapter. Includes the purpose of this handbook and provides guidance
for using the handbook.

2. Program Manager Considerations: Commonly asked questions, succinct answers, and,
where needed, pointers to more detailed information. Topics include general information,
technical, management, cost, and program control issues. This chapter can be used (among
other purposes) as an executive summary for the rest of the handbook and to review par-
ticular points.

3. The Need for Ada: An overview of Ada’s goals and benefits, and policies for Ada’s use.

4. Management: An overall view of the impact of Ada on the management process and
management factors relating to the transition to Ada use.

5. Learning Ada: Training implications and education issues.

6. Software Production Technology: An overall view of software tools, with particular em-
phasis on compiler validation and compiler quality issues.

7. Ada Applicability: An overall view of the current state of Ada technology, and discussion of
system engineering issues.

8. System Design and Implementation Issues:

• Designing for Portability and Reuse: Discusses how Ada facilitates developing
portable and reusable software.

• Using Ada with Other Standards and Protocols: Using Ada interfaces to other
systems and standards for successful integration of Ada software in overall systems
environments.

• Using Special-Purpose Languages: The application of special-purpose lan-
guages such as ATLAS, simulation programming languages, LISP (or other artificial
intelligence languages), and fourth-generation languages.

• Mixing Ada with Other Languages: Possible approaches for dealing with existing
operational systems, including language translation and hybrid (mixed language)
systems.

9. From Ada 83 to Ada 9X: A discussion of the Ada 9X Project, the evolving Ada 9X language
standard, and the expected impact on present and future programs of moving from the
present language standard (Ada 832) to the revised standard (Ada 9X).

The following appendices are also included:

A. Ada Information: Recommended readings and resources for individuals looking for fun-
damental Ada information.

B. Ada Working Groups and Resources: Information about organizations involved in Ada
issues, standardization, and policy.

2Although the International Standards Organization (ISO) standard was approved in 1987, the existing Ada language is often
called Ada 83, at least in the United States, as the American National Standards Institute (ANSI) standard [13] was approved in
1983.

CMU/SEI-92-TR-29 3

1.3. Tips for Readers

This section highlights techniques for quick and efficient use of this handbook.

In addition to the question-and-answer approach used in Chapter 2, several other techniques have been
used to help the reader make maximum use of this handbook:

• Summaries: A summary begins each major section. Each summary is centered and italicized
for easy identification.

• Bold and Bullets: Major points are emphasized by using bold headings within bulleted lists.
The major points are then followed by detailed discussion.

• Action Plans: Actions to facilitate the adoption of Ada are presented at the end of some major
sections.

• Reading Lists: Detailed additional material on specific topics are identified at the end of some
chapters.

• Software Development Tutorial: The terms and concepts of software development discussed
in this handbook are defined in Section 6.1. Readers unfamiliar with these terms and concepts
are strongly encouraged to read that section first.

The following topics are not covered in this handbook:

• Details of the Ada language or software engineering concepts.

• Details of particular methodologies such as structured analysis, object-oriented design (OOD) or
any specific OOD techniques such as hierarchical object-oriented design (HOOD); other design
or analysis methods such as process abstraction method (PAMELA), Ada-based Design Ap-
proach for Real-Time Systems (ADARTS), or rate monotonic analysis (RMA).

1.4. Changes in Version 2

This version of the handbook has been extensively revised to reflect the current state of Ada
usage. This section summarizes those revisions.

Although the Ada language definition has remained constant since its standardization in 1983, much has
changed with respect to the Ada milieu since the previous version of this handbook — the number and
quality of compilers have increased, and many additional efforts have used Ada successfully in the inter-
vening years. This edition has been revised and expanded to incorporate some of the lessons learned
since 1987. Major changes include:

• Chapters 2 Program Manager Considerations and Chapters 3 The Need for Ada have been
updated.

• Chapter 4 Management has been added.

• Chapter 5 Learning Ada: Training Implications has been extensively revised.

• Chapter 7 Ada Applicability has been updated.

• Chapter 8 System Design and Implementation Issues has added material about Ada bindings
to other standards and protocols, as well as material on portability.

• Chapter 9 From Ada 83 to Ada 9X has been added to introduce the Ada 9X efforts and the
enhanced capabilities that are defined in the evolving Ada 9X standard.

4 CMU/SEI-92-TR-29

• For More Information sections containing reading lists have been added to several chapters.

• Appendix A Ada Information has been added to provide the reader with additional sources of
information about Ada.

• Appendix B Ada Working Groups and Resources has also been updated.

• An acronym list has been added to aid the reader.

• The reference list has been extensively updated.

• Appendices on Ada textbooks, Ada compilers, and Ada programs have been deleted because
more current information can be obtained from the Ada Information Clearinghouse or the
Language Control Facility Ada-JOVIAL Newsletter. See Appendix B for contact information.

CMU/SEI-92-TR-29 5

2. Program Manager Considerations

Ada offers considerable advantages over other languages used for software development.
Because Ada technology and its use are still evolving, program managers may have questions
about this technology. Questions fall into several categories: general, costs, technical issues,
program management, and getting help.

This handbook provides program managers with information to make well-informed decisions about using
Ada. Some frequently asked questions and answers are presented on the following pages. Where
needed, pointers to supplemental information and appropriate actions are provided.

2.1. General

The following questions are covered in this section:

• What is Ada and why was it developed?

• For what application domains should Ada be used?

• What is DoD policy on Ada use?

• What are the advantages of using Ada?

• What are some of the inhibitors to adopting Ada?

• Who manages Ada?

• What is the Ada 9X Project? What will its impact be?

Question: What is Ada and why was it developed?

Answer: Software development and post-deployment support are increasingly recognized as serious
problems for software-intensive system development. Ada, the computer programming language
(ANSI/MIL-STD-1815A [13]) developed under the sponsorship of the Department of Defense (DoD),
addresses these problems by:

• reducing the need for multiple programming languages, so effort can be focused on support-
ing fewer languages and making one language work well, and

• enabling the use of modern software development methods, thereby reducing the costs and
risks of software development and facilitating improved maintenance during post-deployment
support.

Ada is a United States, North Atlantic Treaty Organization (NATO), international, and DoD standard
programming language. The Ada language standard does not itself define software development
methods and processes for using that programming language.

See: Sections 3.1, 3.2.

Question: For what application domains should Ada be used?

Answer: Ada is a programming language designed to meet the needs of developing and maintaining
large, complex software systems. Although Ada was originally designed to support real-time and
embedded systems, usage has shown that Ada is applicable to many other application domains, such
as large-scale information systems, scientific computation, and systems programming. Ada has been
successfully used in applications that vary widely in size and application domains in both the public

6 CMU/SEI-92-TR-29

and private sectors.3 In domains such as scientific computing or management information systems
(MIS) applications, a number of existing utilities (numeric libraries, report generation tools, etc.) may
have to be re-created or interfaced with to achieve with Ada the same degree of usefulness that they
had with other languages.

The development of the Ada language focused programming development methods and tools on a
single language that supports modern software engineering techniques. These techniques are ap-
plicable regardless of the application domain.

See: Sections 3.3, 4.1.1.2, 7.1.

Question: What is DoD policy on Ada use?

Answer: By legislation and policy, Ada has been defined as the required language for developing
Department of Defense software development, where cost effective. Ada’s role as the single, com-
mon, high-order programming language is a major step forward in addressing DoD software develop-
ment problems. Current DoD policy regarding the use of Ada is described in DoD Directive 3405.1
[77] and DoD Instruction 5000.2 [79]. This latter instruction [79], which implements the legislation
mandating Ada’s use within the DoD, requires that Ada be the only programming language used in
new defense systems and major software upgrades (the redesign or addition of more than one-third of
the software) of existing systems.

This policy places the responsibility of applying the Ada mandate on the individual program
manager — to comply, managers will have to be aware of issues such as appropriate hardware and
software selection (to ensure that validated Ada implementations are selected), implications of life-
cycle costs, and the size or magnitude of planned systems or upgrades.

Each DoD component has designated a senior official as the Software Executive Official, who will
serve as a focal point for Ada usage within its organization.

See: Sections 3.2, 6, 7, Appendix B.4.

Question: What are the advantages of using Ada?

Answer: Ada’s expected overall advantage can be summarized as increased quality per dollar spent.
Specifically, benefits have been reported in productivity, software portability, portability of program-
mers among projects using a single language, and software maintainability and reliability
[193, 29, 107, 191]. An area where Ada’s impact has been positive is in increased productivity.
While productivity may decline by 10 to 20 percent during the first two to three Ada projects, produc-
tivity after complete transition to Ada has been shown to increase on average about 20 percent [193].
Ada projects seem to concentrate greater effort in the early stages of the software development
process and have achieved sizable reductions in error rates — signs of improved software engineer-
ing practices that have been facilitated through the use of Ada. Additionally, Ada provides a common
basis for using tools and methodologies along with new capabilities for managing system complexity.
Cost savings accrue in terms of the numbers of unique configurations needed to maintain software
written in Ada.

See: Sections 3.1, 3.3, 4.1.1.2.

3Information identifying many efforts that have used Ada, both defense-related and commercial, is available from the Ada
Information Clearinghouse Ada Usage Database. (See Appendix B.3 for contact information.)

CMU/SEI-92-TR-29 7

Question: What are some of the inhibitors to adopting Ada?

Answer: The following inhibitors have been encountered in adopting Ada:

Compiler availability: Most major processors in use today, ranging from specialized digital signal
processors (DSP) to microprocessors to mainframe computers and super computers, have Ada com-
pilers. There were 501 total validated Ada compilers on the official AJPO list (as of October 1992).
This number has grown from 78 validated compilers in May 1987, and only 14 in early 1986. See
Appendices A.2 and B.3 for online and printed sources of the current listing. If no compiler is avail-
able for the selected hardware, see Section 7.2.1 for an action plan and several alternative solutions.

Ada and embedded systems: The Ada language design team emphasized supporting modern
software engineering practices; the result is a language with wide applicability in developing well-
engineered, quality software. In fact, Ada has been used successfully for MIS and Corporate Infor-
mation Management (CIM) applications [87]. There are no technical reasons why Ada cannot be used
successfully, and cost-effectively, for such applications [64, 87].

DoD policy and Ada: Current DoD policy requires that Ada be used for new defense systems and for
major software upgrades of existing systems, where cost effective. See Section 3.2 for a brief descrip-
tion of the waiver process for efforts that cannot comply with the policy.

New technology: A new technology always introduces risks, but now that Ada has matured, the risks
from adopting Ada have been significantly reduced. Recent studies have shown that, in organizations
that have completed several Ada projects, Ada can be at least as cost-effective, if not more so, as
other languages that have traditionally been used for developing large, software-intensive
systems [39, 193, 81].

Lack of knowledge: A lack of knowledge of software engineering and Ada can delay the transition to
Ada. Software engineering has not yet attained the recognition or acceptance of other academic
disciplines. Education in software engineering is not as available, comprehensive, or complete as in
established engineering disciplines. An effective training program is a key part of developing an
organization’s software engineering capability [147]. Ada training, supported by appropriate software
engineering training, can assist an organization in improving that capability.

DoD procurement process: The current procurement process may not be conducive to Ada adop-
tion and long-term software engineering improvement. A recent survey of Ada adoption indicates that
lowest development cost still is the major award factor on DoD contracts, and that defense contractors
perceive the DoD as unwilling to trade lower life-cycle cost for greater development cost [49].

Early perceptions: In the face of criticisms of early, and thus immature, Ada implementations, there
has been little advertising of successful Ada efforts, such as those described in [87, 94] or the
Experience track of the TRI-Ada conferences [108, 97, 38], and little concerted effort to gather,
analyze, and distribute objective data about the economic impact of Ada on the software engineering
discipline. The early bad press has left a legacy because of weaknesses of early implementations and
the experiences of early Ada projects.

Language issues: Real and perceived language limitations have hampered the adoption of Ada.
The Ada Joint Program Office (AJPO) has emphasized a strict validation process that has yielded
hundreds of validated compilers. Great progress has been made in Ada compiler technology, includ-
ing the development of optimizing compilers for many processors. Clearly, the image of Ada im-
plementations having poor performance and quality is much outdated; projects should evaluate Ada
implementations in light of their specific requirements.

8 CMU/SEI-92-TR-29

Integration with computer-aided software engineering (CASE) tools: Current CASE tools are
poorly integrated with most Ada implementations. Integrated environments that support some of the
software engineering discipline encouraged by Ada are continuing to be developed.

See: Sections 3.2, 4.2.2.

Question: Who manages Ada?

Answer: The Ada language effort is managed by the Ada Joint Program Office (AJPO), a DoD office
whose responsibilities include:

• maintaining Ada as military, Federal Information Processing Standard (FIPS), ANSI, and ISO
standards, among others,

• developing compiler validation4 procedures and guidelines,

• certifying facilities that perform validation of Ada compilers,

• coordinating the development of evaluation suites for Ada compilers, and

• coordinating DoD Ada training and education activities.

Stability of the language is an important consideration. Unlike many other languages where dialects
and multiple versions have emerged, consistency over an extended period of time has been stressed.
Subsets and supersets are discouraged, and compiler validation is used to ensure compliance to the
language standard. The Ada 9X Project Office is managing the efforts to revise the Ada language
standard (ANSI/MIL-STD-1815A) and to coordinate this revision with the international community to
ensure Ada 9X adoption as an ISO standard.

See: Appendix B.3.

Question: What is the Ada 9X Project? What will its impact be?

Answer: The Ada language standard, ANSI/MIL-STD-1815A, was published in 1983. In 1988, it was
recommended that the Ada standard be revised.5 The Ada 9X Project6 is the effort to revise the
standard for the Ada programming language, obtain adoption of the revised standard, and effect a
smooth transition from Ada 83 to Ada 9X.

The revisions leading to Ada 9X are intended to include only those changes that improve the usability
of the language and minimize the disruptive effects of changing the standard. This is critical, as a
significant infrastructure and investment exist in Ada 83. Ada 9X is planned to be mostly upwardly
compatible with Ada 83 (i.e., most Ada 83 programs will compile and run under Ada 9X compilers).

The Ada 9X standard will incorporate improvements in object-oriented programming, programming-in-
the-large, and real-time capabilities. ANSI approval of the Ada 9X standard is expected in 1994. DoD
and National Institute of Standards and Technology (NIST) adoption of the ANSI Ada 9X standard will
follow, and ISO approval will take at least two years after ANSI approval, due to voting procedures. In
addition, the Ada 9X Project is taking several steps to hasten the availability of usable Ada 9X tools,
including a change in the concept of the Ada language standard in terms of a core language and
several annexes, which provide extended features for specific application areas.

4See Sections 2.3 and 6.2.1 for an explanation of compiler validation.

5Standards organizations (such as ISO or ANSI) require that all standards be periodically reaffirmed, revised, or allowed to lapse.
This is not unique to Ada; all standards (including standardized languages) must undergo this process periodically.

6For more information about the Ada 9X Project, see Section 9. For contact information on the Ada 9X Project Office, see
Appendix B.3.

CMU/SEI-92-TR-29 9

For the program manager, some Ada 9X issues will be especially relevant (e.g., which Ada standard
to apply, when to transition the program to Ada 9X or to continue doing upgrades using Ada 83). Use
of Ada 83 for some projects is anticipated to continue well into the next decade.

See: Section 9, Appendix B.3.

2.2. Costs

The following questions are covered in this section:

• Will Ada save money?

• What impact will Ada have on hardware requirements?

Question: Will Ada save money?

Answer: Software development and maintenance organizations that use a single, modern, high-order
language will save money. Individual programs that have not already adopted Ada will incur some
one-time start-up costs for software tools, training, and development hardware (although in some
cases, these costs may be shared by several programs). However, in the long run, the use of Ada is
expected to reduce:

• individual program development and maintenance costs because of better software develop-
ment methods, and

• overall costs through reduced post-deployment software support (PDSS) costs by using a
single language for many programs.

See: Sections 3.1, 3.3, 5, 6.2, 6.3.

Question: What impact will Ada have on hardware requirements?

Answer: This question requires an examination of both host (or development) computer resources
and target computer resources.

• Host computer: Ada compilers require somewhat more host computing resources than do
compilers for most other languages, in part because Ada compilers detect many more pro-
gramming errors earlier in the development process (thereby saving time during software
integration) and provide greater levels of support for building large software systems than do
other languages.

• Target computer: Ada compilers have been demonstrated to be as efficient as compilers for
other languages. It is quite reasonable today to expect that Ada compilers will generate
efficient code for resource-constrained machines. Of course, as with selecting any program-
ming language, candidate compilers should be evaluated to ensure that they satisfy the
needed code efficiency; not every vendor has emphasized target code efficiency.

See: Sections 6.2.2, 6.2.2.1, 6.2.2.2, 7.2, 7.3.

10 CMU/SEI-92-TR-29

2.3. Technical Issues

The following questions are covered in this section:

• What is the current status of Ada compilers? Which compilers are most appropriate for a
program?

• What is validation? How does the requirement to use only validated compilers affect a program
that must modify its compiler?

• What is the purpose of an Ada program design language (PDL)?

• Can Ada be used on MIL-STD-1750A [73] computers? On the Motorola 68000 family? On
reduced instruction set computers (RISC) processors or 32-bit processors? Are any of these
processors more appropriate to use with Ada?

• Should every processor in a system be programmed in Ada?

• Can Ada be used in distributed applications?

• What is runtime software and why are runtime issues important?

• What is software portability? How can portability be maximized?

• Can Ada be mixed with other languages?

• Are there risks in automatically translating existing systems to Ada?

• Can commercial off-the-shelf (COTS) software, database management packages, and fourth-
generation languages still be used with Ada?

• Can Ada help with software reuse?

• Is Ada an object-oriented programming language? Can Ada be used to implement an object-
oriented design?

• Can cost and schedule risk be reduced by using C++ instead of Ada?

Question: What is the current status of Ada compilers? Which compilers are most appropriate for a
program?

Answer: Robust Ada compilers are now available for a variety of processors, especially the more
common ones and those used in mission-critical environments. Execution time appears to be com-
parable to other languages, although runtime checks (which are important in many safety-critical or
fault tolerant applications) do add to execution time. A variety of utility programs, CASE tools, and
training aids are available to support the Ada development environment.

Ada compilers are suitable now for applications that run on general-purpose computers with no
severe memory or time-critical performance constraints. For performance and resource-constrained
applications (avionics, fire control, etc.), numerous Ada compilers and runtime systems exist and have
matured. Production quality compilers exist today. Today, the availability of a robust compiler for any
specific host-target pair is more likely affected by market considerations than technical ones. That is,
compiler vendors will support those products for which there is sufficient demand.

Each program should evaluate the quality and maturity of compilers based on their criteria, consider-
ing such factors as compile-time efficiency, object-code efficiency, additional compiler services, and
support for embedded system requirements. Project-specific benchmarks, addressing project-unique
requirements, provide a basis for evaluating compilers [226]. The Ada Compiler Evaluation Capability
(ACEC) [100, 153, 154, 155] provides a standard method for evaluating Ada compilers.7 Another
method of compiler evaluation is embodied in the Ada Evaluation System (AES), developed in the
United Kingdom [162]. These two benchmark suites are currently being merged. Also in use are the

7The first release of the ACEC occurred in August 1988. The current ACEC (Version V3) was released in August 1992.

CMU/SEI-92-TR-29 11

Performance Issues Working Group (PIWG) benchmarks [187], which test performance characteris-
tics of the software, and the Hartstone benchmarks [93, 92], which test a system’s ability to handle
hard real-time applications.

See: Sections 6.2.2, 7.1, 7.2, 7.3, 7.4, Appendix B.1, B.3.

Question: What is validation? How does the requirement to use only validated compilers affect a
program that must modify its compiler?

Answer: Validation is a process developed by the AJPO to test the compliance of an Ada compiler
with the language definition. To achieve validation, an Ada compiler must pass the Ada Compiler
Validation Capability (ACVC) standard test suite. The validation process could be viewed as an initial
test of a compiler; however, validation does not address performance areas such as compiler speed
or efficiency of the generated code, so validation does not imply that a compiler is suitable (in terms of
quality or features) for use by a specific program. According to the current validation guidelines [3],
changes can be made to a compiler as long as they do not change the language. The validation tests
should be run against a customized compiler to ensure there are no deviations from the standard.

See: Section 6.2.1, Appendix B.3.

Question: What is the purpose of an Ada program design language (PDL)?

Answer: A PDL is a formal notation used to capture design decisions. Ada’s features for structuring
and organizing programs are also usable during the design process to describe software architecture
(the structure of a system), its interfaces, and its overall behavior, as well as to document that design.
A design language should be used as a part of an overall software methodology. When placing an
Ada PDL on contract, attention should be paid to how well it is integrated into the developer’s
methodology. Many ongoing procurements have called for the use of an Ada PDL, and DoD Instruc-
tion 5000.28 [79] suggests the use of a PDL.

Some advantages of an Ada PDL are:

• Using an Ada PDL is a good transition strategy — the designers work with and think in Ada
terms earlier in the development, thereby potentially easing the transition from design to
code.

• An Ada PDL should be compilable Ada (conforming to the language standard); then it can be
checked by an Ada compiler on the host machine for consistency and completeness. An
Ada PDL also provides a description of a design, useful not only to reviewers and others, but
which can also be checked for interface errors.

• When made a part of the documentation requirements for software design documents, an
Ada PDL can also be an indicator of the status and quality of a contractor’s design efforts
early in the development.

Some disadvantages of an Ada PDL are:

• Ada PDL has sometimes been applied in cases where the eventual implementation has been
in a language other than Ada. While this is technically feasible, it has been difficult to carry
out in practice, and should perhaps be avoided unless the designers can demonstrate an
adequate understanding of modern software engineering principles and implementation
tradeoffs.

8DoD Instruction 5000.2 [79] calls for the use of capable software processes and practices, including the "use of automated tools,
such as computer aided software engineering (CASE) tools or formal manual techniques such as program design language and
structured flowcharts." For more information about applying formal methods to Ada efforts, see [156, 188].

12 CMU/SEI-92-TR-29

• Some aspects of design (e.g., performance requirements, traceability to requirements docu-
ments) are not readily captured in an Ada PDL. Structured comments known as annotations
can be used to capture some of this information so that the resulting design is still compil-
able. Other aspects of a design (e.g., the overall design structure) are better represented
with other notations [129].

There is no standard Ada PDL; however, several PDL processing tools are available, and there is an
IEEE standard recommended practice for Ada as a PDL [132].

Question: Can Ada be used on MIL-STD-1750A [73] computers? On the Motorola 68000 family? On
reduced instruction set computers (RISC) processors or 32-bit processors? Are any of these processors
more appropriate to use with Ada?

Answer: Many existing compilers are mature for these processors. However, the mere existence of a
compiler is not indicative of its quality or maturity. The quality of the code generated by the compiler
(how well the application software will run) is somewhat dependent on the capabilities of the target
hardware. While Ada does run on the processors mentioned above, Ada (and all modern program-
ming languages) is best supported on processors with large memory capability and instructions for
conveniently accessing that storage.

See: Sections 6.2.2, 7.2, 7.3.

Question: Should every processor in a system be programmed in Ada?

Answer: Certain situations require the use of special processor technology that is incompatible with
any general-purpose language, including Ada. Some processors have highly specialized functions
(e.g., a Fast Fourier Transform chip). Often these processors cannot in any practical sense support
all the functions typically required by a high-order language. Other small processors are often used to
provide limited functionality in a given situation (e.g., processors with limited address space and
register set used for built-in test functions within an electronics assembly or as an input-output proces-
sor for a control panel). It may not always be appropriate to use Ada or any other general-purpose,
high-order language on such processors because the expense of building the necessary support tools
is expected to be high, and the advantages inherent in these specialized processors may be lost by
using languages for which the hardware was not intended. However, since it is likely that these
processors will be used in systems in conjunction with general-purpose processors whose software
has been developed in Ada, the interfaces and communication between the processors are important
for system engineering attention.

See: Sections 7.2, 7.3.

Question: Can Ada be used in distributed applications?

Answer: Some forms of distributed applications, especially loosely coupled distributed systems, can
be implemented using Ada today, as was previously done with other languages, such as JOVIAL and
FORTRAN. With the introduction of software technology currently in development, more sophis-
ticated methods that take advantage of Ada’s tasking features should become available. Ada 9X is
planned to provide increased support for distributed applications.

See: Sections 7.4, 7.5, 9.

CMU/SEI-92-TR-29 13

Question: What is runtime software and why are runtime issues important?

Answer: Runtime software provides the additional supporting functions required for executing Ada
programs on a specified target computer. Each target computer and each language places require-
ments on the runtime software. Ada runtime software is responsible for functions such as scheduling,
parameter passing, storage allocation, and some kinds of error handling (much like the custom "ex-
ecutive software" written for applications developed in other languages, such as CMS-2, JOVIAL, and
FORTRAN).

For further detailed discussion of runtime systems, see [224, 16, 17, 18, 89, 90, 91, 28, 10, 25, 26].

See: Sections 6.2.2.2, 7.4.

Question: What is software portability? How can portability be maximized?

Answer: Software portability describes the extent to which computer software can be moved without
source-level modification between different computer systems. Portability has traditionally been a
significant problem due to the proliferation of programming languages and their dialects. (FORTRAN
is a classic example of a programming language with many dialects.) While some modification will
almost always be required when moving software from system to system, Ada compares favorably to
other languages because of:

• enforcement of the standard via the requirement for compiler validation, and

• language features (packages and private types) that allow software developers to isolate
machine-dependent software. Through use of these features, the scope of required
modifications is localized and chances of errors diminished.

Of course, Ada software must be properly designed to maximize portability; portability must be con-
sidered a design objective.

See: Sections 8.1.1, 8.1.3, 6.2.1, 6.2.2.4.

Question: Can Ada be mixed with other languages?

Answer: Mixing languages is possible and can result in productivity enhancements. Various projects
have accomplished this successfully. An example of mixing languages is calling the FORTRAN Inter-
national Mathematical and Statistical Library (IMSL) from Ada.

However, program managers should realize that if multiple language support is required, then poten-
tial Ada compilers must be evaluated with respect to their capability to mix languages. There are
various levels of integration that can be achieved when interfacing Ada with other languages, existing
systems, or commercial off-the-shelf (COTS) software. In some instances, the desired integration can
be obtained, but will be unique to the particular implementation or not easily portable to another
implementation.

See: Sections 6.2.2, 8.2, 8.4.1.

Question: Are there risks in automatically translating existing systems to Ada?

Answer: There are significant risks in attempting automatic translation from any programming lan-
guage to another, and this strategy is generally not recommended as a means of achieving Ada-
based software. A thorough analysis of technical, cost, and life-cycle issues should be accomplished
before committing to an automatic translation approach. Re-engineering existing systems may be the
most effective way to achieve the desired results [46].

See: Section 8.4.4.

14 CMU/SEI-92-TR-29

Question: Can commercial off-the-shelf (COTS) software, database management packages, and fourth-
generation languages (4GL) still be used with Ada?

Answer: Ada applications can effectively use whatever resources (i.e., operating systems or com-
munications services, database management systems, graphics packages or user interface manage-
ment systems, or interfaces to COTS software or other existing systems) are needed to produce a
complete system. Ada interfaces to many other systems and standards are available [133]. For
example, Ada-SQL interfaces, or bindings, exist. New implementations of interfaces (or bindings) are
continuing to emerge. Since much attention is presently being paid to successful integration of Ada
software in overall systems environments, program managers should determine if bindings exist be-
fore beginning additional development.

Fourth-generation languages, when used in their proper domain, make significant increases in
productivity possible. Some applications may indeed be suitable for fourth-generation language ap-
proaches. However, 4GLs typically provide productivity gains only through reductions in coding ef-
forts and can prove very costly if used to satisfy requirements even slightly outside their domain of
applicability. Service-specific policies identify the requirements for waivers or exceptions when using
such technologies.

See: Sections 8.2, 8.3.4, 3.2.3.

Question: Can Ada help with software reuse?

Answer: Many functions in new software systems are similar, if not identical, to those in previously
developed systems. Reusing existing system requirements, design, and code and applying them to
new development efforts or porting existing software to new hardware configurations has the potential
to significantly reduce development costs and to produce more reliable systems. Ada’s standar-
dization and some of its special features mean that Ada is especially suitable for promoting software
portability and reuse. These language features are available to facilitate portability and reuse of both
software code and software architectures.

See: Section 8.1.

Question: Is Ada an object-oriented programming language? Can Ada be used to implement an object-
oriented design?

Answer: Object-oriented methodologies can be used in specifying requirements, designing, and im-
plementing systems using Ada [177, 203, 120, 2, 20, 150].

Ada 83 has been referred to as an "object-based" language, but it is not a complete "object-oriented"
programming language because it does not support full inheritance and runtime polymorphism.9 Ada
9X will extend the "object-based" features of Ada 83 (such as abstract data types and derived types)
to incorporate the object-oriented class concept10 and will be fully supportive of object orientation.

Object-oriented design (OOD) typically refers to a variety of design strategies (e.g., Booch) that Ada
supports well. Object-oriented programming (OOP) refers to a programming paradigm involving in-
heritance of classes, which Ada 83 does not support well [201], but Ada 9X will support better. Com-
mercial products, such as language preprocessors, are available to give Ada full object-oriented

9See [223] for a discussion of the distinction between "object-based" languages and "object-oriented" languages. Inheritance is a
means for incrementally building new abstractions from existing ones by "inheriting" their properties — without disturbing the original
abstractions’ implementation or other inherited uses [7]. Polymorphism is a means of factoring out differences among a collection of
abstractions such that programs may be written in terms of their common properties [7].

10For a more detailed summary of these enhancements, see [215].

CMU/SEI-92-TR-29 15

capabilities. There is nothing in the language to prevent software from being implemented in Ada
based on object-oriented requirements analysis (OORA) or object-oriented design.

See: Section 9.

Question: Can cost and schedule risk be reduced by using C++ instead of Ada?

Answer: Software for large, complex applications must be engineered. It was precisely these kinds of
large applications that Ada was designed for. In general, DoD policy requires that Ada be used for
defense software, and a waiver must be approved to use another language. A waiver request must
address the justification for the request, life-cycle cost analysis, and risk analysis addressing technical
performance and schedule impact.

Although it is apparent that C/C++ has gained widespread market acceptance in recent years,
popularity and market acceptance are not always indicators of technical superiority, nor are they
reasons for choosing one language over another for a particular application. Language comparisons
are often futile efforts because they fail to consider the context (i.e., application domain and require-
ments, hardware and software tradeoffs, projected system life cycle, and associated development and
support costs) in which the language will be used.

The Air Force conducted a study to examine the circumstances in which the use of C++ might be
justified for DoD software development [81]. Each portion of this study reached the same conclusion:
"there is no compelling reason to waive the Ada requirement" to use C++. Particularly noted were
Ada’s suitability for large systems, its safety (ability to detect errors), and its maturity (through standar-
dization and compiler validation) as compared to C++.

Until Ada 9X is available, C++ may provide some advantages for object-oriented programming. For
small systems or prototypes where existing class libraries can be used to build systems from com-
ponents, it may be possible to justify C++ on a cost and schedule basis, just as 4GLs can be justified
for certain applications. However, waivers will generally not be justified by lower development cost or
lower risk for large, long-lived, or safety-critical DoD applications, as life-cycle issues are the drivers
for these systems.

See: Section 4.2.2.

2.4. Program Management

The following questions are covered in this section:

• What Ada training sources exist? What topics should be emphasized?

• What is the best strategy for an organization that has little or no experience developing systems
in Ada?

• How should those proposing Ada be evaluated during the source selection process?

• Will changes be required in software management methods (e.g., design walkthroughs and code
inspections)?

• Compared to other languages, how many source lines of code (SLOC) will Ada require for equiv-
alent functions?

• Will Ada affect cost-estimating models?

• How productive can Ada software developers be?

• Can Ada be used with DoD software development standards?

• What effect does Ada have on configuration management (CM)?

16 CMU/SEI-92-TR-29

Question: What Ada training sources exist? What topics should be emphasized?

Answer: Ada training courses are available from a wide variety of government, academic, and com-
mercial sources. To obtain the full benefits of using Ada, software engineering concepts should be
taught as an integral part of the overall training program, since many software developers do not have
the appropriate background in this area. Additionally, hands-on design and programming exercises
are essential for software developers. The training needs of managers and other personnel (e.g.,
application specialists, lead designers, software engineers, and testing personnel) should be con-
sidered in planning a transition to Ada.

See: Section 5, Appendix B.3.

Question: What is the best strategy for an organization that has little or no experience developing sys-
tems in Ada?

Answer: There are many approaches (for example, addressing compiler and tool acquisition and
system engineering concerns) that are detailed in other chapters of this handbook. Perhaps most
important, given this situation, is to develop an internal cadre of skilled Ada personnel.

See: Sections 4.1.2, 4.3, 5, Appendix B.

Question: How should those proposing Ada be evaluated during the source selection process?

Answer: In general, contractor evaluation should be done in a manner similar to that used for other
software developments [40, 80, 47, 82, 62, 51, 22 (Section 10)]. Expertise in Ada and software en-
gineering should be a major discriminator in contract awards. A proven record of application-domain
expertise and meeting cost, schedule, and quality requirements is important. Additionally, an assess-
ment of Ada capabilities is necessary in terms of people, software tools, training, methodology,
management, ongoing internal research and development efforts, and previous developments;
program risk increases if a contractor attempts a large Ada development without any Ada experience.
Finally, Ada-knowledgeable staff can be consulted as part of the evaluation process.

Question: Will changes be required in software management methods (e.g., design walkthroughs and
code inspections)?

Answer: While software management techniques such as design walkthroughs and code inspections
still apply, experience on Ada projects indicates that the levels of effort and time associated with the
various phases of the software life cycle have changed with the use of Ada. Experience to date
indicates the need to spend more time in the definition and design phases and less time in testing and
integration than was spent in previous efforts. Increased emphasis on the design phase will lessen
the time involved in testing and integration, since many errors will be identified early in the develop-
ment [24, 29], and may also decrease the time required in the coding phases [175, 193]. Some rules
of thumb to use regarding levels of effort are:

Phase Other Ada
Languages

Design 40% 50% +
Code 20% 15%-30%
Test and Integration 40% 20%-35%

See: Section 4.1.1.2.

CMU/SEI-92-TR-29 17

Question: Compared to other languages, how many source lines of code (SLOC) will Ada require for
equivalent functions?

Answer: Software measures are useful for gaining insight into a software program. Software size,
often measured in terms of source lines of code (SLOC), is one such measure.11 There are many
different views of what a source line of code is and how to use the computed values [104]. Although
the validity of SLOC has been questioned, and numerous definitions and counting schemes exist, an
understanding of the issues and concerns is important, since SLOC is sometimes used as an in-
dicator of system complexity, system hardware requirements (processors and memory), and as a
basis for computing system cost.

Any estimates comparing Ada and other languages are inexact since factors such as individual
capabilities, application characteristics, domain complexity, design and coding techniques, and lan-
guage feature use will exert strong influences. The counting technique used will also make a substan-
tial difference [104]. A number of sources have identified definitions of SLOC and counting methods;
these include [182, 230, 194, 176]. Regardless of the definition used, it is imperative that lines of
code be estimated and counted in a consistent fashion.

Following are general comparisons between Ada and other languages using the number of source
statements per function point12 [139]; it should be noted, however, that as software reuse and
generics become more common, the number of original lines (that have to be written from scratch)
may well decrease.

Language Source Statements
per Function Point

Assembly 320

C 128

FORTRAN 77 105

ANSI COBOL 74 105

Pascal 91

Ada 71

Fourth generation language (4GL) 20

Table 2-1: General Comparison of Ada and Other Languages

Jones [139] notes that these are general trends and that great variability caused by many factors,
including differences in programming styles, can influence these comparisons. An example of this sort
of difficulty in making language comparisons is seen in comparing parallel Ada and FORTRAN efforts
[168]. The resulting two systems differed in several measures of SLOC, depending on what was
counted. A major difference between the smaller FORTRAN and the larger Ada program is that a
substantial amount (at least 30,000 SLOC) of additional functionality was built into the Ada user
interface, and that the coding styles for Ada were not the same as the FORTRAN styles (i.e., Ada
used longer prologues and more commenting). Again, much of this comes down to how measure-
ments are made, what is being measured, and the variability of the people and processes used.

11A description of several common software development measures, including software size, can be found in [197].

12The function point metric was developed as a relative measure of the amount of user function delivered to the user or customer
independent of the particular technology, language, or design approaches used [9]. The function point measure is claimed to be
more useful than SLOC as a prediction of work effort because this measure can be estimated from the basic requirements for a
program early in the development cycle.

18 CMU/SEI-92-TR-29

Managers are urged to gather and use data as part of a meaningful software measurement process
[30, 197]. In this way, meaningful numbers for both lines of code and productivity can be developed.

Question: Will Ada affect cost-estimating models?

Answer: Several of the major cost-estimating models (REVIC, COCOMO, SOFTCOST, etc.) have
been revised to reflect experience with Ada [34, 142, 193, 143]. Experience from initial Ada programs
indicates that several cost factors will change, including productivity, definition of lines of code, and
levels of effort associated with various phases of development [29, 191]. Cost models need to be
recalibrated to reflect differences as a result of an organization’s use of Ada [193].

See: Section 4.1.1.2.

Question: How productive can Ada software developers be?

Answer: While only a few definitive Ada productivity studies have been conducted
[193, 168, 29, 107, 191], Ada software development efforts generally report that overall productivity is
higher than for other languages. Improvements (after an organization’s initial Ada effort) as high as a
factor of two have been reported informally [168]. Studies have concluded that the productivity on a
third-time Ada project result in a slightly lower cost than that of an equivalent FORTRAN project and
that these projects show significant decreases in error rates [8, p. 6-2]. Once an organization has
adopted Ada, average productivity gains of 20 percent have been reported [193]. It is difficult to tell
how much of these productivity gains is a direct result of using Ada, and how much is attributable to
the use of software engineering methods and techniques, improved software processes, increased
levels of reuse, and domain-specific architectures.

However, program managers should be aware that it is also not unusual for productivity at the begin-
ning of a program or with first use of a technology such as Ada to be low due to a learning
curve [193, 145]. (A good training program is essential in reducing the learning curve.) Additionally,
cautious use of reported data is recommended since productivity will vary due to:

• the experience and capabilities of people,
• the size and complexity of the system under development,
• volatility of requirements specifications,
• maturity and sophistication of the software development environment, and
• documentation requirements.

Question: Can Ada be used with DoD software development standards?

Answer: Ada can be used with DoD software development standards [74, 75, 72]; however, as with
any DoD standard, tailoring may be required for the particular needs of any program. Discussion of
some DoD-STD-2167 and DoD-STD-2167A related issues may be found in [221, 103, 116]. Sig-
nificant work in this area has also been accomplished by the ACM SIGAda Software Development
Standards and Ada Working Group (SDSAWG). Several documents, such as DoD-HDBK-287
[76] and program-specific guidance [148], have been developed to provide guidance in tailoring DoD-
STD-2167A.

See: Section 4.1.1.1, Appendix B.1.

Question: What effect does Ada have on configuration management (CM)?

Answer: Disciplined CM practices are a prerequisite to effectively managing Ada software develop-
ment. CM for small and moderately sized Ada systems (less than 100,000 lines), as supported by
traditional file oriented tools,13 is largely indistinguishable from CM for systems written in other pro-
gramming languages.

13Examples would be DEC’s MMS and CMS or UNIX sccs and make.

CMU/SEI-92-TR-29 19

However, the CM requirements for large software systems tend to be much more complex than for
smaller systems, independent of programming language. This is especially true for Ada, which is
intended for the design and development of large systems. Among the issues that have to be ad-
dressed are multiple implementations of package bodies, and the growing number of interdepen-
dencies among objects as systems increase in size.

For large systems, proper system management will require support from the program library since the
compiler is involved in supporting functions that previously had been managed by the environment
support tools. Since CM for large Ada systems is an area for concern, the program manager should
ensure that Ada program libraries provide support for automatic recompilation, and evaluate the level
of integration between the Ada compiler and the project-selected CM tools. Ada does have an impact
on CM practices because Ada code sequences are placed under configuration control much earlier in
the development process than was true for other languages, primarily because of Ada’s use as a PDL
and its separate compilation features. Performing CM for Ada requires substantially more computing
resources than for other languages because Ada enforces interface compatibility among indepen-
dently compiled modules.

2.5. For More Information . . .

Many sources of information are listed in the appendices to this handbook. Two sources are included
here for quick reference:

• Ada Joint Program Office (AJPO): Contact Dr. John Solomond, Director, AJPO, The Pen-
tagon, Washington, D.C., (703) 614-0208.

• Ada Information Clearinghouse (AdaIC): Contact the AdaIC at (703) 685-1477,
(800) AdaIC-11, FAX (703) 685-7019, or electronically via adainfo@ajpo.sei.cmu.edu or Com-
puServe 70312,3303.

See: Sections 5.5, Appendices A, B.

20 CMU/SEI-92-TR-29

CMU/SEI-92-TR-29 21

3. The Need for Ada

3.1. The Software Problem and Ada’s Role

Software is increasingly being recognized as a serious problem in the development of mission-
critical systems, regardless of whether these systems are embedded systems or information
systems necessary for ongoing operations. Two difficult aspects of this software problem are
proper development (i.e., on time, within budget, with required functionality) and recognition of
the need to prepare for many years of ongoing software support and enhancements. Ada was
designed to address these problems by:

• reducing the number of programming languages needed so effort could be focused
on making one language work well; and

• facilitating the use of modern software development methods, thereby reducing the
costs and risks of software development, and facilitating improved maintenance
during post-deployment support.

Many DoD and industry studies have documented that software is assuming a greater share of system
complexity and cost, and demand for quality software has been rising faster than the ability to produce it.
About 40 percent of the functionality of the F-16 fighter depends on software as does about 80 percent of
the functionality of the F-22 advanced tactical fighter [144]. Indeed, systems of hundreds of thousands,
even millions of lines of code are becoming increasingly common, resulting in situations where computing
systems are on the critical path to systems acquisition and among its leading problems.14

The growing importance of software, in terms of dollars or necessary capabilities, cannot be overstated.
Some estimates have predicted that DoD software costs could rise as high as $50 billion by 2006 [218].
Col. Donald Carter, U.S. Air Force, former acting deputy undersecretary of Defense for Research and
Advanced Technology, told the House Armed Services Subcommittee on Research and Development
that "software is the human intelligence that is programmed into our systems. It allows advanced sensors
to discriminate and track, navigation systems to follow prescribed routes, guidance systems to control
trajectories, and communications systems to properly route thousands of messages. Software keeps
track of the status of our forces, maintains intelligence information on enemy forces, and aids our com-
manders in deciding on target actions" [141].

Software engineering is the discipline in which quality (efficient, reliable, maintainable) software is
produced within the constraints supplied by contractually specified acquisition, development, operational
performance, and life-cycle support considerations. Software engineering practice today lags the ideal of
a robust, mature engineering practice [219]. The DoD is aware of the software cost and technology
insertion problems in the development and post-deployment support of software, and established a
software initiative consisting of the Ada Program, the Software Technology for Adaptable, Reliable Sys-
tems (STARS) Program, and the Software Engineering Institute (SEI) to address the problem. The Ada

14To illustrate the magnitude of a delivered 1,000,000 (106) line application software system, assume that it is printed on 8.5" x
11" paper with 50 lines per page. The resulting listings would be a stack of more than 20,000 pages. Assuming that 500 sheets is
about 1.5" thick, the stack would be approximately 5 feet high. Note that the above sizing omits any consideration of code to
provide the software development environment, simulation software, and test software, and also omits documentation, contractually
required data items, and presentation material [118].

22 CMU/SEI-92-TR-29

language effort focuses programming development methods and tools on a single language that supports
modern software engineering techniques. Ada’s role as the single, common, high-order programming
language for defense systems [79] is a major step forward in addressing DoD software development
problems. By late 1989, over 58 million lines of Ada code for defense and commercial applications were
planned, in development, or being maintained [207].

3.2. Policies on the Use of Ada

Although Ada is an internationally recognized standard, there are specific policies that man-
date its use. This section discusses the congressional mandate, DoD policy, and the policies
of the DoD services and other agencies.

In March 1987, the International Standards Organization (ISO) approved Ada as an international stan-
dard, ISO/8652-1987, Programming Languages — Ada.15 This ISO standard is identical to the DoD
standard adopted for Ada [13] and provides a standard language definition that can be used throughout
the DoD, industry, and the world.

3.2.1. Federal Legislation

Within the United States, policies mandating Ada’s use flow in part from federal legislation.

The U.S. Congress enacted legislation (in the FY91 DoD appropriations bill, Public Law 101-511, Section
8092) specifying the use of Ada for DoD software development:

Notwithstanding any other provisions of law, after June 1, 1991, where cost effective, all
Department of Defense software shall be written in the programming language Ada, in the
absence of special exemption by an official designated by the Secretary of Defense.

This congressional action was motivated by a belief that "there are still too many other languages being
used in the DoD, and thus the cost benefits of Ada are being substantially delayed" (House Report
101-822).

3.2.2. Department of Defense Policy

Department of Defense policies implement the federal legislation mandating the use of Ada.

The two major DoD statements of policy guidance regarding the use of Ada are found in:

1. DoD Instruction 5000.2 [1991] - Defense Acquisition Management Policies and Procedures
[79]

2. DoD Directive 3405.1 [1987] - Computer Programming Language Policy [77]

DoD Instruction 5000.2 [79] requires that:

Ada is the only programming language to be used in new defense systems and major software
upgrades16 of existing systems.

15Although the ISO standard was approved in 1987, the existing Ada language is called Ada 83, at least in the United States,
because the ANSI standard [13] was approved in 1983.

16A major upgrade is defined as the redesign or addition of more than one-third of the software.

CMU/SEI-92-TR-29 23

This policy establishing Ada as the only programming language included:

• Approval of ATLAS [131] for use in automatic test equipment.

• Approval to use languages other than Ada for deployment or software maintenance (but not for
major system upgrades), if they were approved languages when used in engineering and
manufacturing development.

• A preference (but not a requirement) for Ada in commercial, off-the-shelf (COTS) applications
procured for use by the DoD.

• The requirement that only validated Ada compilers be used.

DoD Directive 3405.1 defines as Department of Defense (DoD) policy the use of "modern software con-
cepts, advanced software technology, software life-cycle support tools, and standard programming lan-
guages." It defines DoD policy to transition to the use of Ada to limit the number of programming lan-
guages used within the Department of Defense. This policy also declares the DoD intent to "reduce
software obsolescence and the cost of software maintenance through the use of approved programming
languages and appropriate advanced software technology during all phases of the software life cycle."

This directive defines Ada as:

"the single, common, computer programming language for Defense computer resources used
in intelligence systems, for the command and control of military forces, or as an integral part of
a weapon system."

According to the directive, Ada will also be used for all other applications, except when the use of another
DoD-approved high-order programming language (HOL) is shown to be more cost effective in a life-cycle
cost analysis. In fact, the directive defines a hierarchical preference for the use of software technology to
meet functional requirements, based on an analysis of life-cycle costs and impacts. These preferences
are (in order of preference):

1. Off-the-shelf application packages and advanced software technology
2. Ada-based software and tools
3. Other approved standard HOLs

This directive defines a waiver mechanism for systems or subsystems that cannot comply with the pro-
gramming language requirements of the policy. Each waiver request must address these factors:

• life-cycle cost analysis
• risk analysis, addressing both:

• technical performance risks
• schedule impact

3.2.3. Service Policies

DoD policies on Ada use are reflected in the policies of each of the services.

Each of the services (and their subunits) has developed implementing policies regarding the use of Ada
within their service. These are the:

• Army Implementation of the Ada Programming Language [83]
• Navy Interim Policy on Ada [84]
• Marine Corps Ada Implementation Plan [85]
• Air Force Interpretation of FY 1991 DoD Appropriations Act [70]

24 CMU/SEI-92-TR-29

3.2.4. Other Policies on Ada Use

Numerous governmental agencies have defined policies regarding Ada’s use.

Ada has been a NATO standard for several years. And in the civilian sector, the Federal Aviation Ad-
ministration, in its Software Procedures, has selected Ada as the single, common, high-order program-
ming language used in the National Airspace System (NAS) [86]. Although there is currently no NASA-
wide requirement to use Ada, the NASA Space Station Freedom Project is currently required to use Ada.

3.3. Ada Benefits

Ada’s major advantage is in providing the means to achieve the benefits of modern software
engineering methods.

Ada was designed to address increasingly serious problems in development and post-deployment sup-
port of mission-critical systems by:

• Standardization: Reduce the number of DoD programming languages (estimated in the early
1970s at between 300 and 1000).17 Ada is a now a DoD, FIPS, ANSI, ISO, and NATO standard,
among others.

• Discipline: Encourage the use of modern software development methods.

In a word, cost is why Ada was developed: to address increasing costs due to use of multiple languages
and old languages and technologies. Ada was designed with three overriding concerns in mind: program
reliability and maintenance, programming as a human activity, and efficiency [13]. By addressing these
concerns, Ada offers potential solutions to many software development problems.

The following benefits become more important with increasing project size:

• Reuse: Ada’s constructs and features are particularly well suited for the development of reus-
able components and subsystems. Ada’s software modules can be made generic to maximize
reusability.

• Code portability: Ada makes it easier to move source code between different computers with a
minimum of changes (often referred to as machine independence). This can be a real issue in
maintaining systems with long lifetimes.

• People portability: With language standardization, software personnel will be more able to
move from project to project with significantly less need to learn a new language. (While Ada is
standardized, differences among compiler and tool implementations still exist.) Additionally, with
time, there should be a larger pool of people able to work on any given project.

• Maintainability: Ada can reduce costs to make modifications, enhancements, and upgrades in
software.

• Reliability: Ada can reduce errors during development and maintenance activities by providing
earlier identification of certain types of programming errors. Such capabilities will help increase
system reliability.

17The DoD moved toward language and processor standardization when there were more than 300 different computer program-
ming languages and more than 1000 dialects in use on DoD systems, as well as perhaps hundreds of target processors. This
created an N × M (languages × processors) problem of enormous proportion, as the system development and post-deployment
software support (PDSS) costs of this situation in terms of tools, people, training, and maintenance rapidly escalated.

CMU/SEI-92-TR-29 25

• Common basis for tools and methodologies: Ada is serving as a focal point for investing in
and developing high-quality tools and methodologies. Previously, tool and methodology
development efforts were diffused across many languages, resulting in less capable and lower
quality tools.

• Managing complexity and modularity: Complexity has become a major factor limiting
progress in the software industry. Ada helps manage complexity by explicitly supporting the
process of dividing a problem into well-understood pieces whose interfaces and interactions with
other software and hardware components are well defined. This support is critical because, in
general, the approaches, techniques, and languages that have historically been used to build
software systems do not address larger problems very well. Ada is therefore becoming a neces-
sity for large systems to function correctly and reliably. It a tool that was designed to support the
complexity and versatility required.

• Management visibility, more emphasis on a system view: Ada’s features encourage a more
disciplined approach to defining interfaces and making design decisions; hence, managers have
the opportunity to better understand and control their progress against schedule.

• Productivity: After experiencing a productivity loss during initial Ada projects, organizations that
have adopted Ada report average productivity gains of 20% after Ada adoption [193].

While the potential advantages of using Ada are great, its mere presence and supporting technology do
not guarantee success. Achieving Ada’s benefits means investing in training, tool development, pilot
projects, and development standards to achieve the resulting benefits over the entire system life cycle.18

Will Ada save the DoD money? Savings could be made by the DoD overall in:

• Anticipated cost reductions due to the aggregate use of a single modern, high-order language.
• Anticipated benefits through standardization and more up-to-date tools/management procedures.
• Possible amortized costs due to software reuse.

An individual DoD program manager looking only at development costs may recognize that individual
programs may incur some one-time start-up costs; for example, in acquiring software tools, training, and
development hardware. However, these costs may possibly be amortized across programs through stan-
dardization. Taking a life-cycle perspective, a DoD program manager should expect the use of Ada to
reduce individual program development and maintenance costs in the long run. This perspective is
crucial, as post-deployment software support (PDSS) is perhaps the most rapidly growing segment of the
DoD software workload [207].

Ada’s importance in supporting software engineering has also been recognized outside the DoD. Ada
has achieved market acceptance in certain civilian application domains (e.g., air traffic control, commer-
cial avionics, and space applications); it is also being used in a selected number of other commercial
developments. Commitments to use Ada in commercial developments have been made by companies
such as IBM, Weirton Steel, Shell Oil, Wells Fargo Bank, Motorola, and Boeing Commercial Airplane
Company in the United States, Nippon Telephone and Telegraph in Japan, and Thomson-CSF,
BOFORS, Philips, Nokia, and Volvo in Europe. These companies have chosen Ada because they are
convinced that the technology is mature enough for their applications (which include communications,

18The system life cycle is the span of time over which a system is in existence, starting with its conception and ending with its last
use. System life cycles are usually divided into conceptual, developmental, production, and operational phases, and span many
years.

26 CMU/SEI-92-TR-29

manufacturing, air traffic control, defense systems, banking, and teleprocessing) and the advantages are
worth pursuing. In fact, foreign usage of Ada is growing faster than domestic usage [136]. Ada is not just
a DoD language. Its success is important to private companies as well, and the DoD can share in the
benefits of commercial interest and development.

However, it takes management action, not just mandates, to reap the benefits of Ada. Managers have
found that through careful management attention, they can go beyond the minimal rewards of mere policy
compliance and reap benefits from using Ada. The following chapter addresses these management
issues in light of adopting Ada.

CMU/SEI-92-TR-29 27

4. Management

The transition to Ada should be accompanied by adoption of other software engineering tech-
nologies, methods, and tools. Consequently, the costs of transitioning to Ada may appear to
be higher than the costs of transitioning to other languages in the past.

Size (in lines of code) and complexity (system functionality implemented) of many software
systems has increased dramatically, making it a pacing item. These increases in size and
complexity, regardless of language used, deserve management attention.

The resulting management strategy must incorporate considerations for software process, per-
sonnel, and technologies that are appropriate for organizations adopting Ada and software
engineering techniques.

Adoption of Ada may require adjustments in management strategy.19 Ada has been called an "enabling
technology" — a technology that facilitates or enables the use of other technologies. What Ada has
enabled is the introduction, in a more systematic way, of many of the fundamentals and discipline of
software engineering.

Not only must managers adopt strategies for dealing with Ada, but they often must also simultaneously
incorporate strategies for improving the end result of the software engineering processes. For such
strategies to be successfully applied, management should be aware of, and plan for, the possibility that
initial projects using the new technology may be more expensive than later projects and may even be
more expensive than with the old technology20 [193]. Although these strategies may address general
issues relevant to the introduction of any new technology or the improvement of software engineering
practice, we will look at them in the context of Ada.

Ada, even though it was standardized in 1983, may still be a "new" technology in many organizations or in
organizations where Ada is used in other parts of the organization. Adopting Ada and new software
engineering practices presents a number of choices that must be made in the context of the organization.

4.1. Management Issues

Management issues in adopting Ada and managing Ada projects reflect Ada’s impact on the
software process (tasks and activities, people, and tools and technology).

Many oft-revisited software-related problems relate to management and not the technology itself.21 Ada
is part of a larger strategy for improving software production and support capabilities; however, Ada itself
is not a silver bullet. One of its major strengths is that it supports the use of sound software engineering

19This section is not intended to be an overview of managing software acquisition or software development. Other sources (such
as [160, 198]) already provide a broad coverage of such topics. This section is intended to deal specifically with the impacts of Ada
and Ada adoption on management. The general issue of using and managing Ada efforts has been discussed for some time (for
example, [173]). But it is important to note that many of the concerns cited in earlier reports, such as [173], do not have the import
that they had a few years ago — the compilers have matured and more is known about using Ada.

20Kemerer [145] discusses this phenomenon in the adoption of CASE tools.

21See also [68] and predecessor studies for further elaboration on this point.

28 CMU/SEI-92-TR-29

practices; its successful use requires an understanding and appreciation of software engineering and
project management. In comparing U.S. software strengths and weaknesses, it has been noted that, in
general, problems are centered on managerial issues, and strengths are focused on tool and technical
staff skills [139]. This is also true of Ada efforts, as program management problems encountered by
managers of large Ada software developments are often not specific to the Ada language, but are related
to difficulties in software engineering and program management [185].

Large software systems can be well engineered and well managed, and Ada has shown that it can help.
Like any technology, Ada:

• has up-front costs
• requires educated and trained professionals
• yields real benefits when intelligently applied

In adopting Ada (or any new technology), managers must be aware that the technology is not only new,
but has the potential for enabling changes and improvements in the organization and its software
process; specifically in the tasks and activities performed (Section 4.1.1), the people who manage and
develop software (Section 4.1.2), and the tools used (Section 4.1.3). These relationships are depicted in
Figure 4-1 below.

4.1.1. Software Tasks and Activities

An organization’s defined software process is the basis for managing its software tasks and
activities.

Fundamental problems in software engineering today involve an inability to manage the ever-increasing
complexity of software systems and the lack of a disciplined engineering approach.22 A consequence of
this is the need to understand normal corporate capability and capacity. This is true not only of defense-
related software engineering. Similar problems are affecting the latest generations of personal computer
(i.e., mass market) software [200]. These issues can occur whenever the size and complexity of the
systems being built exceed the abilities of one or two people to have intellectual control. In essence, this
is where software engineering "in the large" comes into play.

If Ada supports good software engineering practices (or is adopted with, or encourages the use of, such
practices), part of the difficulty in quantifying the impact of the language is that Ada’s impact is intertwined
with the improvements brought about by the use of these modern practices. Transition and start-up costs
are also intermingled with the ongoing costs of doing business (at least for the first few Ada projects).
Many firms and acquisition organizations have an inadequate collection of prior cost, quality, or produc-
tivity data to compare against actual results from new projects using Ada.

Characterizations of the state of the practice of software engineering have indicated that many software
organizations are operating at an immature level of software process maturity [147, 126]. According to
the SEI five-level process maturity model, current software engineering practice is largely at the initial

22In thinking about a disciplined engineering approach, a comparison to bridge-building is a good one. That activity has
well-determined techniques for soil characteristics analysis, cost estimation procedures, known formulas, and generally assumed
reliability of both process and product. A similar domain knowledge base generally does not yet universally exist for engineering
software systems.

CMU/SEI-92-TR-29 29

Technology

ENVIRONMENT

Ada

Tasks
 • procedures
 • methods
 • technical
 • non-technical

A
B

D
C

Tools

 • skills
 • training
 • motivation
 • values
 • work styles
 • management

People

PROCESS

Organization

• strategy
• culture
• processes

• CASE
• compilers
• programming environments
• metrics
• development computers
• target processors/simulators

Figure 4-1: Potential Influences of Ada Adoption

(level 1, or lowest) level of maturity. Only a small number of organizations have repeatable (level 2) or
defined (level 3) processes [147, 126, 229, 127].

Nearly all level 1 software organizations urgently need to improve their management systems for controll-
ing their software engineering efforts [126]. These organizations need improvements in conducting
project reviews, measuring and examining key indicators of engineering progress, and applying basic
management methods and techniques. Level 2 organizations were found to typically have their costs and

30 CMU/SEI-92-TR-29

schedules under reasonable control, but not to have orderly methods in place for monitoring, controlling,
and improving the quality of their software or the software processes that they use [126].

However, many of these organizations have begun steps toward long-term improvement; Hughes has
reported an almost ten-fold return on investment from these efforts [127]. One such step is the establish-
ment of a software engineering process group (SEPG), a group of software professionals specifically
chartered to focus on software process improvement.23 In addition to focusing on software process
improvement [146], this group can facilitate the mapping of generic improvements in technology,
processes, tools, methods, or environments into the specific context of the organization. Many organiza-
tions adopting Ada have used a similar group to develop and spread Ada expertise throughout the
organization.24

One of Ada’s design goals was to encourage the use of modern software development methods, thereby
reducing the costs and risks of software development and facilitating improved maintenance throughout
the complete software life cycle. An organization’s successful use of the Ada programming language may
enable that organization to make other improvements in its application of software engineering principles
and management of the software engineering process while implementing Ada. Thus, Ada may serve as
an enabling technology for broader organizational improvement.25

4.1.1.1. Software Development Process

Ada supports the development process, not the other way around. In fact, Ada should be a
small part of the overall process. Using Ada should not obscure the fact that there is a
specific problem to be solved, as systems are created to do a function, not solely as an
exercise in applying a specific language.

While serving as a new technology that may enable improvements, Ada must become an integral part of
an organization’s software development process. This is true at all levels of consideration, from the
life-cycle management plan [79, Part 6, Section D] defining acquisition strategies, to the individual
software development plans for developing software.

Existing standards [74, 75, 72] can be used with Ada. However, as with any DoD standard, tailoring may
be required for the particular needs of any program. Discussion of some DoD-STD-2167 and DoD-
STD-2167A related issues may be found in [221, 103, 116]. Significant work in this area has also been
accomplished by the ACM SIGAda Software Development Standards and Ada Working Group
(SDSAWG). DoD-HDBK-287 [76] and other documents, such as [148], have been developed to provide
guidance in tailoring DoD-STD-2167A. Others [120, 2] have suggested tailorings appropriate for object-
oriented techniques.

23See [110] for more information on establishing a software engineering process group and related software engineering process
improvement functions.

24See [209, pp. 43-44] for a representative set of responsibilities for an Ada-focused support group.

25A broader discussion of such an improvement framework using Ada as an enabling technology can be found in [119].
Numerous lessons learned that are relevant to understanding the adoption of Ada [32, 208], introduction of related software
engineering technologies [32, 124], or software process assessment as a starting point for continuous improvement [146] can
provide insight when planning improvement efforts using Ada as an enabling technology.

CMU/SEI-92-TR-29 31

DOD-STD-2167A specifies a set of activities that must take place during a software development project,
and states that: 1) it is not intended to specify or discourage the use of any particular software develop-
ment method, and 2) the contractor is responsible for selecting software development methods that best
support the achievement of contract requirements. This standard can also be tailored to match the
planned efforts. For example, strategic defense system (SDS) software development has addressed this
issue in light of selected life-cycle approaches, and have developed a set of guidelines for tailoring DoD-
STD-2167A for SDS software development [148]. Other efforts [130, 222] define the processes and prac-
tices that are necessary for successful software development. For example, IEEE STD 1074 emphasizes
the software processes themselves, rather than the time-sequencing of those processes.

It is incumbent on each development organization, as a normal part of software development, to select
and follow an appropriate life-cycle model. The most common problem in federal information technology
efforts has been inadequate management of the development life cycle [112]. The software processes
(such as those described in 2167A or the IEEE standard) and the activities that comprise those processes
must be mapped into and managed as part of the selected life-cycle model, regardless of which model
the selected model is based on.26

In performing this planning, compatibility with the developer’s existing methods, tools, and capabilities
needs to be considered, as well as the impact of Ada on the development process. Not only should the
process model adopted by an organization be compatible with its needs in developing software, but the
software engineering practices and methodologies used should support the adopted process model.

4.1.1.2. Ada’s Impact on the Software Development Process

Ada alone will not solve all software management problems. But, Ada has been shown to
have an impact on the software development process and on the resulting products.

Most of the problems encountered by Ada programs are management-related, not Ada-related, problems
[176]. In addition, some problems recur across many projects, such as:

• lack of training and/or experience
• failure to employ a risk engineering approach
• improperly specified contract requirements for software-related items and processes
• inadequate estimates of computational resources needed
• immaturity of Ada development tools and environments
• insufficient incremental testing discipline

While software management methods such as design walkthroughs and code inspections still apply, the
levels of effort and time associated with the various phases of the software life cycle change somewhat
with the introduction of Ada. Experience to date indicates the need to spend more time in the definition
and design phases and less time in testing and integration than was spent in previous efforts. This is
probably because Ada enforces strict adherence to certain software engineering practices, resulting in
more up-front analysis and design. This is offset by fewer programming changes prior to customer
acceptance and easier maintenance throughout the life of the program. Some Ada efforts, such as the air
traffic control efforts for the FAA, have experienced increased effort and resources during the design

26Life-cycle models include: waterfall model [196]; spiral model [35]; software-first life cycle [128]; risk-driven process model
[161]; incremental (or evolutionary) development [1, 69, 42, 164]; and the Ada Process Model [195].

32 CMU/SEI-92-TR-29

phase (50% to CDR) [175]. Increased emphasis on the design phase, caused in part by increased
emphasis on software engineering, will lessen the time involved in testing and integration, since many
errors will be identified early in the development [24, 29], and may also decrease the time required in the
coding phases [175, 193].

Some rules of thumb to use regarding levels of effort are:

Phase Other Ada
Languages

Design 40% 50% +
Code 20% 15%-30%
Test and Integration 40% 20%-35%

In understanding these rules of thumb, it is important to note that NASA’s experience [167] indicates that
although the major milestones indicating phases (such as CDR) changed, the distribution of effort by
activity (design, code, test) across the phases was quite similar in both Ada and FORTRAN efforts. This
shows that software development tasks or activities changed little using Ada, but the processes for con-
trolling and managing those tasks (as indicated by phases of the development life cycle) were modified as
a result of using Ada.

Ada’s impact during development has been perceived by many to cause more up-front design effort. This
is not so much an impact of the language itself, as it is the impact of more software engineering efforts
being applied early in the life cycle. For example, projects have shifted effort into design from later
stages, such as testing [29]. They spent more time defining requirements, writing test documentation and
user manuals early, but found savings in test and integration. From studies of implementing a spacecraft
flight dynamics simulator in FORTRAN, and in parallel in Ada, NASA discovered that a higher percentage
of errors was discovered in the Ada project during the implementation phase than in the FORTRAN
project, i.e., more errors were found earlier (when cost to correct is lower) [113] and the Ada code had
somewhat fewer interface errors [167].

Other lessons learned from Ada experiences are that more computer resources are needed, both host
and target, and that configuration management with Ada is more technically demanding, because of the
extra complexity added by integrating Ada program libraries with existing configuration management prac-
tices.

Cost and schedule are driven more strongly by product characteristics and developer practices than by
development languages, although different languages may have differing support environments and
productivity characteristics. Factors that have been identified as having an impact on the cost of an Ada
project [135, 142] include:

• Project factors:

• system architecture
• complexity of organizational interfaces
• required development schedule
• resource availability
• security requirements

CMU/SEI-92-TR-29 33

• Process factors:

• allocation of effort/costs to life-cycle phases
• degree of standardization
• scope of support
• use of modern software methods/practices
• use of peer reviews
• use of software tools/environments
• stability of software tools/environment

• Product factors:

• product complexity
• requirements volatility
• degree of optimization
• degree of real-time requirements
• degree of Ada usage (percentage of code written in Ada)
• degree of reuse (percentage of Ada code to be packaged for reuse internally and exter-

nally to the project, usage of reusable software)
• database size

• Personnel factors:

• analyst capabilities
• applications experience
• Ada environment experience
• Ada language experience
• Ada methodology experience
• team capabilities

Cost drivers that have a significant impact on Ada projects [142] are:

• degree of standardization
• use of modern software methods/practices
• use of software tools/environments
• stability of software tools/environment

Another key factor is the learning curve, reflected in the experience levels of the project team [142].
Although learning curve effects are typically overcome after two to five Ada projects [193], they must be
considered in the planning of an organization’s adoption of Ada. Such factors are discussed in the next
section.

4.1.2. People

An organization’s people are essential in implementing its software process. Enhancement of
their skills should be considered in developing management strategies for adopting Ada.

Many acquisition programs using new technologies for the first time are technology transition programs
(whether they were planned that way or not), and the acquirers should expect to learn along with the
developers. For both contractor and customer, implementing a new technology like Ada will require that:

• time be allocated for education and training, and
• technology experts be available for consultation and review.

Very often, it is the program office staff or the program manager on the contractor side who is faced with
using new technology. The good manager will recognize this situation and plan for it in several ways, as

34 CMU/SEI-92-TR-29

the use of Ada will bring with it a need for training (both methodology and language).27 For a successful
team, skills must encompass three critical areas:

1. Software engineering skills, including systems analysis, requirements analysis, and design
methodology.

2. Ada-specific skills, including Ada design methodology and Ada implementation knowledge.
3. Tools and techniques necessary for implementing specific design methodologies [181].

Management may also need training in the selected Ada design methodology [168]. Existing expec-
tations about development efforts and applying standards, especially those that are rooted in an
organization’s historical use of another language or another methodology, may be incompatible with Ada
technology [168].

4.1.3. Tools and Technology

There are technical issues associated with the adoption of Ada and Ada tools as with the
adoption of almost any technology. Software development tools and their use should reach a
level of maturity before being used extensively in production.

Tools are valuable aids for increasing productivity and improving software quality. Software tools, includ-
ing compilers and CASE tools, have a development life cycle very similar to the life cycle of other
software:

• requirements development
• design
• product development
• in-house (or alpha) testing
• beta testing28

• initial delivery
• continued refinement
• production quality
• maturity
• obsolescence

The maturation process from initial delivery to production quality is a key period and can take significant
time. Immature tools (just out of development) can have a negative impact on productivity if software
developers must concurrently debug new applications software, new tools, and new hardware. Often new
tools are abandoned because they are not understood or they fall short of expectations. Program
managers should allow time in program schedules for learning how to use a new tool, developing
proficiency, and discovering and correcting problems and limitations.

Some of Ada’s early implementations were not sufficiently efficient for specific applications. However, this
has changed with the maturation of compilers and tools; today, many large systems would be worse off
without Ada. The Ada language itself has facilities for handling complexity; however, one must trade off
front-end costs versus life-cycle costs, such as host machine resources and necessary tools and com-
pilers.

27See Section 5 for more on the subject of learning Ada.

28Beta testing is a limited, constrained test/evaluation performed very close to final completion of a product for the purposes of
getting user reaction and finding additional bugs. It is usually performed outside the development group.

CMU/SEI-92-TR-29 35

Ada facilitates (rather than enforces) the application of software engineering discipline. Ada has facilities
that allow explicit use of modern software engineering techniques, including modularity, information
hiding, data abstraction, and object orientation (to a limited point). It is still possible to write poor code,
and Ada can be (and has been) used as a scapegoat for poorly developed and poorly managed system
development efforts. However, to gain many of the benefits that Ada facilitates, not only do they have to
be used correctly by the practitioners who build the software, but the computer resources on the host
computer (memory, processor cycles) and development tools may be more costly overall than typically
needed for other programming languages. Ada compilers do more work, in checking interfaces or in
separate compilation, for example, than do many other language compilers, and thus require more
resources. The belief is that overall life-cycle costs will be lower; this up-front investment will save much
more than it costs in the long run. As there is not yet sufficient experience in maintaining numerous Ada
systems, this is largely conjecture; data over a 3 - 10 year period are needed before conjecture about
maintaining large systems can be confirmed (or denied!).

Throughout procurement (and operational upgrades), it is important to assess the applicability of Ada to a
system. If a subsystem is to be upgraded and the interfaces are not clean, nor can they be made clean in
a cost-effective manner, maybe Ada is not the right choice. And, if the system is identified as resource-
constrained, an assessment of the system to identify those pieces that really are resource-critical can
assist in isolating them neatly, and provide risk identification of those pieces where additional managerial
and technical attention is applicable.

The goals of a program manager are not to make use of Ada (or any new technology), but are larger: to
produce the specified system on time, within budget, usable and maintainable over the projected life
cycle, and within the projected scope of the system.

4.2. Adopting New Technology

4.2.1. A Model of Technology Development and Insertion

Any new technology goes through a readily identifiable process of development and matura-
tion. The Ada language and its supporting technology are following this same process. Few
adoption issues are unique to Ada. Many are simply issues associated with using any new
technology.

Many of the issues that are raised regarding the adoption of Ada are generic concerns encountered when
introducing any new technology [27]. Moreover, most issues relating to programming languages can be
generalized to more than just Ada.

The process of technology development in both hardware and software generally includes the following
phases:

• identification of problem or need
• development and insertion of initial product solution
• iteration:

• use
• feedback
• refinement

• maturity

36 CMU/SEI-92-TR-29

Ada is generally following this model and is now in the latter phases of the product use, feedback, and
refinement iteration; the approval of the Ada 9X standard will signal a major milestone in refinement
efforts.

Adoption of new hardware technology has often been faster and smoother than adoption of software
innovations. This may be because hardware is tangible, while software is abstract and intangible. Per-
haps because of this, introduction of software technologies, including Ada, suffer from a very high degree
of inertia. Since introduction of new technology requires change, and human beings are, by nature,
conservative, it almost always takes a certain minimal amount of time before new technology can actually
be introduced into the workplace.

The use of Ada and supporting methodologies, once demonstrated on a "real" project, can not only serve
as a catalyst for the introduction of Ada, but also for other new methods, tools, or techniques [119]. Ada
has been called an "enabling technology" — a technology that facilitates the use of other technologies.
For example, Ada enables building very portable software. Ada also enables writing very low-level,
machine-dependent software. Both capabilities can be necessary. If bits have to be packed into a
hardware-defined message packet and the operating system used to transmit the packet over a specified
standard bus, then non-portable code may be needed, and Ada will allow that. At the same time, Ada
supports writing code that is very portable.

In understanding software technology adoption, two key points stand out [45]:

1. The transfer of a technology to an organization without the maturity to understand, absorb,
and apply it is likely to cause problems, rather than to improve that organization’s
capabilities.29

2. The process of software technology transfer is complex, and it involves many roles and
phases.

A generic model of technology transition, such as that in Figure 4-2, shows that technology adoption is a
phased activity that moves an organization through a sequence of transition stages for a given
technology. When attempting to introduce a new technology, target audiences within that organization
pass through different levels of commitment to the technology [158]. The early stages (contact,
awareness, and understanding) focus on the acquisition and comprehension of information about the
technology; the later stages (trial use and adoption) focus on relative commitment to actual use of the
technology, leading to institutionalization or widespread use of the technology throughout the organiza-
tion. Transition is successful when the target audience reaches the stage of commitment appropriate for
that technology in their organization.

When adopting a new technology, more than just the technological factors must be taken into account.
Cultural resistance and difficulties must also be overcome. As noted in Figure 4-2, moving through the
stages of adoption requires increasing levels of commitment throughout the organization, not just from
individuals. The cultural barriers can be pathological; people do not like to change. So transition to any
new technology, including Ada, must also address the human issues, the organizational issues, and the
process issues.

29See [117] for an interesting analysis of how this has happened with Ada and the U.S. Air Force.

CMU/SEI-92-TR-29 37

Trial Use

Awareness

Contact

Understanding

Institutionalization

Adoption

Information
Transition

Pilot Test

Technology
Transition

Figure 4-2: Stages of Adoption of New Technology

How does this affect managers? Certainly, a program manager may witness some resistance in dealing
with developers; more than likely, their own organization will go through many of the same changes itself.
Ada (a "product technology") often brings along with it other "process technologies," such as more
modern software engineering discipline or tools to support that discipline. Process technologies invariably
affect organizational ways of doing business, so plan on changes occurring.

Ada adoption across the community is at the institutionalization stage in Figure 4-2; however, individuals
and organizations may just be starting to move up this curve and address the issues of Ada use.

4.2.2. Inhibitors to the Widespread Use of Ada

As use of Ada has progressed through this process of development and maturation, numerous
inhibitors have slowed the widespread use of Ada. These inhibitors can be overcome and
planned for in adopting Ada.

Inhibitors to innovation and adoption of new technologies stem from both a lack of awareness and an
inability to assimilate the new technology into an organization and its capabilities [45]. Redwine et al.
[190] discuss some of the inhibitors to software technology transition. Examples of these encountered in
the adoption of Ada are described in [117].

Inhibitors to Ada adoption address many management and technical issues, as well as many myths that
developed as a result of early Ada efforts. Many of the inhibitors are not real but only perceived and can
be overcome with proper planning and management. The following inhibitors are encountered specifically
in using Ada.

38 CMU/SEI-92-TR-29

Compiler availability: Although Ada compilers are not available for every computer, most major proces-
sors in use today, ranging from specialized DSP processors to microprocessors to mainframe computers,
have Ada compilers. There are 501 total validated Ada compilers listed on the official AJPO list (as of
October 1992). This number has grown from 78 validated compilers in May 1987, and only 14 in early
1986. This listing of validated compilers is widely available through online and printed sources (see
Appendices A.2 and B.3).

Ada and embedded systems: Although Ada’s origins were strongly influenced by the needs of the
defense mission-critical computing community, the Ada language design team placed emphasis on sup-
porting modern software engineering practices; the result is a language with wide applicability in develop-
ing well-engineered, quality software. In fact, Ada has been used successfully for MIS/CIM
applications [87]. There are no technical reasons why Ada cannot be used successfully, and cost-
effectively, for such applications [64].

DoD policy and Ada: Many managers of DoD software efforts were not aware of the DoD policy on the
use of Ada or believed they were an exception to the Ada policy. Current DoD policy requires that Ada be
used for new defense systems and for major software upgrades of existing systems, where cost effective.
For efforts that cannot comply with the policy, a waiver must be obtained. See Section 3.2 for a brief
description of the waiver process for efforts that cannot comply with the policy.

New technology: Development personnel are cost- and schedule-driven, and they are evaluated on
these factors. Using any new technology introduces risks, but those risks can be managed. Now that Ada
has matured, the risks to cost and schedule from adopting Ada have been significantly reduced. Recent
studies have shown that Ada can be at least as cost-effective as, or more so than, languages that have
traditionally been used for developing large, software-intensive systems [39, 193, 81].

Lack of knowledge: A lack of knowledge in software engineering and Ada perpetuates inertia and
inappropriate business practices, delaying the transition to Ada. An effective training program is a key
part of developing an organization’s software engineering capability, and is an area where many or-
ganizations find a need for improvement [147]. Ada training, supported by appropriate software engineer-
ing training, is available and can assist organizations in improving capabilities. Even though Ada lan-
guage training addresses a small portion of the knowledge need, software engineering training (in stan-
dards, architectures, environments, processes, methods, and reuse) can greatly contribute to the im-
provement of software engineering practices. This fact is often missed due to a lack of understanding of
the relationships between software engineering and Ada.

For example, although software development standards permit tailoring, the lack of knowledge to properly
define such tailoring can be an impediment to the use of tailoring; often the perceived incompatibilities
between the standards and usage with Ada is blamed on Ada. It is essential, therefore, that there be
carefully planned education and training programs that teach fundamental software engineering concepts,
design methodologies, and the effective use of the Ada language. Such training programs can be tailored
to ensure that system acquirers, as well as software managers and technical staffs, develop an ap-
propriate working knowledge of Ada.

A recent study of software technology transition [32] states that the Ada champion comes from the tech-
nical staff 42% of the time, from middle management 36% of the time, and from top management only

CMU/SEI-92-TR-29 39

14% of the time. It also indicated that a middle management/technical staff consensus was achieved in
only about 7% of the cases for Ada adoption compared to 26% of the cases for a more established
software technology, such as structured programming. Another recent study [232] has indicated for one
large organization that over half of the people in software positions have had no Ada education or train-
ing. Another study [205] concluded that the low acceptance rate of Ada within their organization is due
largely to the lack of a formal education and training program affecting all categories of software profes-
sionals. These factors indicate that a successful Ada education program must address all levels in an
organization.

DoD procurement process: The current procurement process may not be conducive to Ada adoption
and long-term software engineering improvement. A recent survey of Ada adoption indicates that lowest
development cost still is the major award factor on DoD contracts, and that industry perceives the DoD as
unwilling to trade lower life-cycle cost for greater development cost [49]. This short-term disincentive to
educate, improve the process, design for reuse, and engineer for quality is at the root of a range of
inappropriate business practices that hamper the evolution of software development toward a true en-
gineering discipline.30

The excessive concern for lowest development costs often results in an antagonistic relationship between
the contractor and the customer and serves as a disincentive to investment in start-up costs such as
training, equipment, tools, and methods. It can also result in unrealistic assumptions (particularly at
proposal time) about cost and schedules on an organization’s early Ada projects. It may be necessary for
the program managers to make creative use of current procurement practices, such as:

• Including Ada and software engineering capabilities, transition activities, or past performance
(including quality and reuse) on Ada projects in the proposal evaluation criteria.31

• Accounting for increased development costs on an organization’s early Ada projects.

Among defense contractors, Ada capabilities are developed in earnest, and Ada is used earlier in produc-
ing real systems when organizations believe that they will be more likely to get a government
contract [32]. Industry must be convinced that the government is serious about successfully adopting
Ada.

Early perceptions: In the face of early disparaging reports on Ada, there has been little advertising of
the successfully fielded Ada systems (e.g., [87, 108, 97, 38, 94]) and little concerted effort to gather,
analyze, and distribute objective data about the economic impact of Ada on the software engineering
discipline. The early bad press has left a legacy because of the weaknesses of early implementations and
the experiences on early Ada projects. It is also tempting for all concerned to blame the failure of a
project on a new technology. Experiences from successful Ada projects are often withheld by organiza-
tions for reasons of competitive advantage [166].

Language issues: Real and perceived language limitations hampered the adoption of Ada. The AJPO
has emphasized a strict validation process that has yielded hundreds of validated compilers. Great
progress has been made in Ada compiler technology, including the development of optimizing compilers

30For further discussion of these issues, see [163].

31See [80, 47, 82, 40, 62] for more information about evaluating contractor capabilities.

40 CMU/SEI-92-TR-29

for many platforms. Clearly, the image of Ada implementations having poor performance and quality is
much outdated.

However, many projects still lack the depth of expertise and the understanding of the complex interactions
between runtime system (see Section 6.1), language features, and design style to evaluate and select
compilers [226] and tools. The quality of compilation systems is an issue of compiler evaluation; evalua-
tion (see Section 6.2.2), as well as validation (see Section 6.2.1), should be emphasized.

The difficulties of interfacing with other languages (e.g., limitations on pragma32 INTERFACE) hinder the
introduction of Ada where a large body of reusable software in other languages is available. Some
excellent implementation-dependent variations exist but when used may limit future portability.

Previous complaints about the size and complexity of Ada have somewhat subsided to be replaced by
laments about Ada’s lack of inherent support for OOD, distributed applications, and formal reasoning.
C++ and the OSI model are often seen as solutions to OOD and distributed support, although Ada 9X will
address many of these concerns.33

Tasking is still a concern for some, but continuing runtime performance improvements, Ada 9X enhance-
ments (see Section 9), and rate monotonic analysis (RMA) [204] address many of these concerns.
Projects should evaluate Ada implementations in light of their specific requirements.

Integration with CASE tools: Current CASE tools are poorly integrated with most Ada implementations.
An integrated development environment should help enforce some of the software engineering discipline
encouraged by Ada. Development of such environments is continuing [186]. For example, a standard
binding for CASE tools interfacing with Ada libraries (Ada Semantic Interface Specification — ASIS) has
been developed and is planned for standardization as an interface for Ada 9X.

4.2.3. Adopting Ada

The real or perceived inhibitors to the adoption of Ada can be overcome by systematically
planning and managing the process of learning and using the new technology. Certain con-
siderations can facilitate transition and mitigate risks in transitioning to Ada.

The software industry has been engaged in Ada transition since the early 1980s. Many of the uncer-
tainties faced by the early adopters are better understood today, including:

• Validated Ada compilers are generally available and their quality, though already acceptable,
continues to improve.

• Though tools exist, project-selected tools may not be integrated into a software support environ-
ment.

• For certain embedded computer systems, real-time designers require control and favor deter-
ministic schedulers not available with Ada tasking [98].

• Research in using Ada for distributed systems is promising but not yet demonstrated for some
forms of distributed systems.

32Pragmas are used to convey information to the compiler, for example, as an instruction to the compiler to perform some special
action such as compiler optimization or to interface to software written in other languages.

33See [81] for one analysis of the applicability of C++.

CMU/SEI-92-TR-29 41

• To achieve portability, projects must state portability as a design objective.

• Training for Ada programmers is available; training and experience for Ada designers and
managers is crucial.

Managing the transition to Ada adoption is an exercise in risk management, that is, managing uncertainty.
There may be uncertainty about the readiness of an organization to accept a commitment to produce
software products using Ada. In addition, there may be uncertainty about the specific project needs and
their interaction with Ada’s capabilities. A management strategy for adopting Ada must incorporate risk
management strategies to match an organization’s readiness for Ada with specific project needs to iden-
tify and resolve any uncertainties.

Thus, if transitioning to Ada is simply an exercise in risk management, why is it difficult? Expertise has
been identified as playing a large role in the adoption decisions made by firms with respect to Ada [208].
That study found that firms that have developed greater software engineering expertise appear to value
Ada more, and expect to incur fewer costs of adoption. This expertise or sensitivity to software engineer-
ing principles, manifested in both contractor and acquisition organizations, was found to be a critical factor
in the adoption of Ada. Developing that expertise, with Ada and in the context of an organization’s current
capabilities, is crucial in an organization’s adoption of Ada.

An organization planning to improve its capabilities by adopting Ada must examine its current capabilities
and develop risk management strategies for dealing with Ada’s impacts in each of the areas shown in
Figure 4-1: tasks, people, and tools.

• Tasks: Management tasks must focus on planning and controlling costs and schedules, con-
figuration management, product assurance, and measurement; and on the degree to which
project plans and estimation factors for product size, productivity, and quality are Ada-sensitive.

Methodological concerns deal with the degree to which Ada design methods are exploited and
how early in the life cycle, how many software engineers are involved, the size of the system to
be developed, and the degree to which the requirements are well defined and understood. Risk
assessment in this area is influenced by the technological expertise of the organization, the
selected life-cycle model, and whether systematic approaches are used for requirements,
design, code, and test.

• People: Assessment of personnel capability is determined by the degree to which qualified
Ada-trained personnel exist. Training needs are determined by the number of software en-
gineers and managers to be trained and the expected knowledge foundation on which that train-
ing is based. Existing capabilities and training needs will influence the training resource selected,
the extent of the training, and the number of software engineers and managers to be trained.
Organizations that have used in-house training have developed their Ada capabilities faster [32].

• Tools: Selection of tools can be very important in adopting Ada. The selected and acquired Ada
compiler must meet the host and target needs of the project in terms of the capacity require-
ments (time and space) for both host and target systems, the performance demanded by the
application domain, the computer system architecture selected for the target system, and re-
quirements for growth and adaptation. An active process of compiler specification, selection,
and acquisition can aid in this evaluation and selection (see Section 6.2.2, as well as [226]).

The extent to which Ada and CASE tools support the technical and management activities of the
life cycle and the degree to which these tools operate as an integrated environment during both

42 CMU/SEI-92-TR-29

product creation and post-deployment support is another important factor. Each activity of the
life cycle must be assessed for tool and methodology congruence.

The organization that wants to adopt Ada as a programming language and recognizes that Ada adoption
must be managed may find these considerations useful in planning and managing the transition to Ada.
The question no longer is, "Is Ada ready?"; but rather, "How ready are we for Ada?" Organizations that
acquire Ada capabilities and an Ada compiler early in this adoption effort are using Ada sooner for
production work [32].

4.3. Managing Ada Adoption Efforts

An organization successfully adopting Ada will invest in, plan, and manage Ada adoption ef-
forts as it moves through the various stages of adoption.

Introducing Ada effectively necessitates that an up-front investment be made to reap longer term benefits.
There are several classes of economic investments and cost drivers:

• Compiler and other tools.

• Hardware testbeds.

• Development hardware costs, as routine computer facility expenses can be somewhat higher
than expected because of increased compile time and storage costs.

• Software development environment costs.

• Training costs, including language training, and training in new software engineering practices,
disciplines, and methodologies for management and software personnel in developer and ac-
quirer organizations.

Several of these costs are one time in nature and will decrease as Ada training is completed, Ada pro-
gramming environments are widely installed, as software tools mature, and as hardware
cost/performance continues to drop. Although incurring up-front costs is acceptable, it presents a special
problem for Ada acceptance by program managers and contractors. The costs of training, compiler and
associated tool acquisition, and associated hardware are real and readily measured, while the benefit is
more difficult to measure and will accrue in the future over the life cycle of the software and subsequent
projects. Program budget and schedule must reflect the costs and risks.

Program managers need to understand several key points:

• Education for software engineering and software project management is required for both cus-
tomer and contractor.

• Software discipline and planning must be enforced. For example, the use of a common program
formatting style is a simple technique to improve the readability, understandability, and main-
tainability of the code. In addition, a common style can be enforced using a tool known as a
pretty printer (see Section 6.2.2.3).

• Periodic risk assessments should be planned and executed.

• Performance issues and risks should be addressed (see Section 7.4.1).

Organizations just developing Ada capabilities will often develop their initial capabilities through training
and the acquisition of compilers and tools that meet project needs. Programmers will be trained to design,

CMU/SEI-92-TR-29 43

read, and write Ada programs, and managers will be trained to read Ada designs recorded in the style of
the project, as well as in management topics. Perhaps most important is the development of an internal
core group of skilled Ada personnel.

The following action plan is recommended for sprinkling a larger effort with personnel drawn from this
initial core group of skilled personnel:

• Develop and execute a long-term, phased training plan that includes management, application
specialists, lead designers, software engineers, and testing personnel. Management training is a
must. Course material must include software engineering principles and application concepts.
Insights into various training strategies can be obtained from Section 5 and [181].

• Structure the development schedule to contain a few non-critical Ada tasks that can be ac-
complished very early in the program (in parallel with requirements definition and preliminary
design). The main purpose of these tasks, which could be prototypes of parts of the system
under development, is to develop some personnel experienced in using Ada. Emphasis should
be on:

• small team efforts,
• extensive review of the ongoing development,
• document lessons learned and distribution of this information, and
• management observation.

• Since Ada has been shown to change the levels of effort applicable to various phases of the life
cycle, management should not attempt to rigidly control the development of these tasks, but
rather should use them as a vehicle to understand what will happen in the mainline development.

• Sprinkle the experienced personnel from the small Ada projects in as leaders of the mainline
development [191].

• Based on the results of the early Ada tasks, adjust the software development plan (SDP) and the
training plan for the mainline effort.

• Consider bringing in some outside experts with experience developing similar systems in Ada to
evaluate the system design (hardware and software) and implementation strategy.

An organization that is institutionalizing its Ada capabilities is able to make effective use of its manage-
ment processes and methodology mechanisms to develop Ada software. The organization has selected
a life-cycle model, one that exploits Ada in the earlier activities of the project. For each activity in the
selected life cycle, appropriate methods and tools have been chosen and personnel trained in their use.
Organizations that have accomplished this will often look to other advantages to be gained through reuse
or domain architectures.

Gaining the benefits of software engineering does not happen magically. Both the customer and the
contractor must be educated in software engineering and its management; both must be actively
involved — by setting a good example — in the application of sound software engineering and manage-
ment practices. And even if the management is excellent and the requirements are stable, risk assess-
ments (of Ada, of system requirements, and of new, upcoming technological solutions) should still be
done.

44 CMU/SEI-92-TR-29

4.4. For More Information . . .

The resource recommendations below are intended as an initial starting point for those looking for more
information about the topics addressed in this chapter.

Software Process Management

• Capability Maturity Model for Software [183]
• Key Practices of the Capability Maturity Model [222]
• Software Capability Evaluation (SCE) Tutorial [47]
• Managing the Software Process [125]

Software Process Improvement

• Software Process Improvement at Hughes Aircraft [127]
• Software Engineering Process Group Guide [110]
• Implementing Software Engineering Practices [44]
• A Guide for Implementing Total Quality Management [66]
• An Introduction to the Continuous Improvement Process: Principles and Practices [159]
• Implementing Total Quality Management: An Overview [137]

Ada Adoption

• Software Engineering as a Radical Novelty: The Air Force Ada Experience [117]
• Process Maturity as a Guide to Phased Ada Adoption [172]
• Ada and Software Management in NASA: Assessment and Recommendations [8]
• Adoption of Software Engineering Innovations in Organizations [32]
• Understanding the Adoption of Ada [208]
• Software Technology Transition [158]
• Ada Risk Handbook [212]

Ada Project Management

• Department of the Navy Ada Implementation Guide [176]
• Experiences in Delivering a Large Ada Project [50]
• TRW’s Ada Process Model for Incremental Development of Large Software Systems [195]
• The Second Ada Project: Reaping the Benefits [152]
• What Every Good Manager Should Know About Ada [27]
• Advanced Automation Systems Experiences with Ada [101]

CMU/SEI-92-TR-29 45

5. Learning Ada: Training Implications

5.1. Rationale for Ada Training

Maximizing the benefits of Ada requires knowing the software engineering techniques and
disciplines that Ada supports as well as the language. It is more expensive to teach software
engineering and Ada than to teach just Ada, and it is necessary to teach software engineering
in conjunction with the introduction of Ada. Of course, Ada training will vary among employees
as not everyone needs the same level of expertise in Ada and software engineering.

An effective training program is a key part of developing an organization’s software engineering capability
and an area in which many organizations find a need for improvement [147]. A training program involves
identifying the training needs of the organization, the projects, and the individuals, and developing and
procuring training courses to address these needs [183].

Appropriate software engineering training, supported by appropriate levels of implementation training
(Ada, other languages, tools, etc.), is required to realize Ada’s positive impact on schedule, cost, and
quality goals. An effective training program should be based on the following points:

• Using Ada effectively requires more than just knowing the language — it requires understanding
the software engineering techniques that the language supports [217]. For example, data
abstraction and information hiding, while easy to understand in principle, may present some
difficulty in application [140]. As a result, quality Ada training must be different from and more
extensive than training for other languages. While Ada training will cost more initially because
more will be taught, in the long run, the use of Ada and its associated software engineering
concepts can reduce individual program development and maintenance costs.

• Training is necessary for both acquisition and development/maintenance personnel. Software
designers, system engineers, Ada programmers, and software managers in both industry and
government all need to know about Ada and its associated software engineering techniques.
Ada training should address all these groups, but the depth and kind of knowledge needed will
vary for each. Because of Ada’s new concepts, the learning curve for all concerned can be
steep.

• Management training is especially critical. To capably manage and direct programs involving
new technology, program managers must understand how to apply the technology
[205, 23, 140] and how it differs from existing approaches. In particular, managers should under-
stand how to acquire and apply metrics in software development [30, 197, 48]. Ada projects have
different profiles from projects in other languages and managers should be aware of this in
tracking and evaluating metrics.

• Selecting or creating the training program for all levels deserves special attention. Many trainers
have excellent, well-integrated courses available; many teach only old programming
methodologies and concepts wrapped up in Ada syntax. Teaching Ada correctly, from cur-
riculum development through course delivery and evaluation, is a difficult and time-consuming
task. The right trainer and training course can be hard to find.

• It is useful for a project to build a core group of knowledgeable, well-trained individuals to serve
as mentors for more junior personnel. These individuals must be very knowledgeable in both the
application of Ada and software engineering, and in the project domain. Experience has shown
that a few such individuals, placed in key positions within the project, can have a stimulating
effect on other engineers.

46 CMU/SEI-92-TR-29

In the absence of any recognized standard for evaluating the abilities of software engineers,
training will continue to be the responsibility of the project manager. Managers may have to
select personnel using project-specific criteria and then train them to achieve the required level
of software development expertise.

5.2. Audiences and Course Content

All personnel need some training in Ada and its associated software engineering concepts to
obtain the maximum benefits from using Ada. In addition, an Ada training program should
always consider the background of students and the goals of the project.

There are several target audiences, each with their own perspectives, that may require education or
training [205, 192]. These include:

• Management personnel

• Executives: focused on business issues
• Software managers: focused on technical issues and risks
• Non-software managers: focused on management implications of Ada use

• Technical personnel

• Engineers: including systems engineers and top-level designers
• Programmers and analysts: including implementers and testers
• Project support personnel: including administrative, configuration management, and

software quality assurance personnel
• Trainers

Following are some guidelines regarding target audiences and key content material:

• Prior programming language: The background of students attending the classes must be
considered in course design. For example, software engineers who have not used languages
with dynamic data capabilities (i.e., access types) will probably need more extensive training
than those with prior exposure to these concepts. Examples of languages without these
capabilities are assembler and FORTRAN. Such individuals can be easily overwhelmed in train-
ing courses that are too intensive and too short. Initial training for these individuals can take 3
weeks; becoming truly productive using Ada can take 4 to 6 months of experience. Those who
already know a structured high-order language like PASCAL should assimilate the new tech-
niques more rapidly. However, beware of teaching by analogy (i.e., by showing a construct in an
old language and then demonstrating how to accomplish the same thing in the same way in
Ada). This leads to a continuation of the problems of earlier software development generations
written in new syntax, e.g., AdaBOL or AdaTRAN. The student is less likely to readily adopt new
ways of accomplishing old tasks that are more powerful and more suited to Ada, taking advan-
tage of "new" Ada features such as packages, tasking, exceptions, aggregate assignments, use
of Boolean expressions, etc. Students must be taught to think in Ada [202].

• Prior training: The knowledge and experience of students should be considered; prior atten-
dance in programming courses, software engineering courses, or software acquisition courses
cannot be assumed to have prepared students adequately for project needs. Certain aspects of
software issues may have been taught, but the inclusion of appropriate Ada material should not
be assumed. Indeed, a paradigm shift is required to think in terms of libraries and reuse as first
options.

• Software engineering: All personnel need an introduction to the concepts of software
engineering [217]. System and software engineers and software testing personnel need an in-
depth exposure to the concepts, principles, and practices of software engineering. In addition,

CMU/SEI-92-TR-29 47

these development personnel will need to be learn techniques for implementing these software
engineering concepts in Ada.

• Ada programming language: Although the management and technical audiences described
above need Ada training, the content and level of the training may vary significantly with the
audience [192]. Managers need an overview and an understanding of Ada capabilities, risks, and
impact on their processes, while software engineers, systems engineers, and software test per-
sonnel will need more extensive Ada training.

• Software design: Engineers concerned with software design will need training in the use of
Ada-based program design languages (PDL). In addition, there are several new methodologies
that take advantage of the concepts in Ada as part of the design process
[211, 58, 53, 54, 65, 55]. The challenge for any training program is to provide effective training
for software engineers to design systems that are elegant, while stressing the implications of the
design options to performance concerns. Designers need to become especially cognizant of the
long-term maintenance costs of their design efforts.

• Compilers and software tools: Software engineers developing Ada software for embedded
systems need to understand how the Ada compiler, runtime system, and tools used on a project
affect memory and throughput constraints. In particular, in embedded systems programming
there may be a need to use compiler vendor-supplied routines to integrate with the operating
system or runtime environment. These needs should be examined for an Ada solution (see
[151] and Section 8.4) before interfacing to another language to obtain this runtime support.

• System engineers: System and software engineers responsible for hardware and software
integration will need a thorough understanding of the systems engineering impact of high-order
language selection. Tradeoffs to be considered include: whether a compiler is available for the
chosen processor, its capabilities, and its requirements in terms of space and speed.

• Software testing: Software testing personnel need to understand how Ada language constructs
such as packages, generics, and tasks affect testing approaches [216]. In addition, separate
compilation in Ada affords earlier testing of some modules through drivers.

• Configuration management: Configuration management personnel need to understand how
Ada language features such as packages and program libraries affect configuration manage-
ment procedures. They may also require special training on tools that provide configuration
management for Ada software systems. The addition of libraries for reuse purposes may also
complicate the configuration management aspects of new development projects. These con-
cepts should be part of the training for software engineers as well.

• Management: Managers should obtain an understanding of software engineering principles,
Ada concepts, the impact of methodologies on the software architecture, the impact of Ada on
the software and system life cycle, the costs and capabilities of tools, and hardware and software
interaction. Senior managers may not need to know detailed language syntax, but they may
need an understanding of certain language concepts, such as the package concept (to ap-
preciate Ada’s defined support for modularity), or exceptions (Ada’s mechanism for error han-
dling). This becomes critically important if design reviews or inspections are done using
Ada/PDL or Ada code. Managers should be taught the means whereby metrics can be acquired
and used in the development of a software project. Understanding these concepts may improve
the overall understanding of a development or maintenance effort. In addition, the total quality
concepts (i.e., TQM or TQL) must be understood as part of a continuous effort to improve the
end product through software process improvement.

• Design reviews: Personnel attending design reviews should have some understanding of how
Ada will affect the software architecture. Design cannot always be language-independent if the
language affords a capability worth exploiting in the design.

• Subcontractors: Training requirements should be consistently applied throughout the organiza-
tion, as well as by any subcontractors. This will help ensure continuity in methodology, stan-
dards, and approach across the entire development effort [140].

48 CMU/SEI-92-TR-29

5.3. Evaluating Training Programs

The most important aspects of any Ada training program are a software engineering emphasis
and hands-on practice. The quality of the course material and the background and experience
of the instructor are also important considerations.

Following are some guidelines for evaluating Ada training programs:

• Tailoring: Training can be purchased or developed internally. Curricula developed internally or
customized for an organization tend to be more effective because they:

• provide for curriculum coordination
• can embody specific methodologies and standards
• can be oriented toward specific tools and hardware considerations
• are generally more responsive to sudden, short-term needs

The price for this extra effectiveness is continual improvement of the material through the intro-
duction of new material and ideas. Internal trainers will need to be assigned full-time respon-
sibility for preparing and updating this training.

Training prepared by in-house personnel is industry’s preferred way for Ada training and was
used by 36 percent (the largest percentage) of the organizations surveyed [32]. Extensive use of
training prepared by in-house personnel while acquiring an organization’s first Ada compiler or
while developing an organization’s Ada capability has been shown to be significantly related to
early use of Ada for software development projects [32].

• Emphasis: The emphasis of courses should be on understanding what the language can do
and how it should be used to produce well-engineered systems. Courses that teach only the
syntax and semantics (the grammar and meaning) of Ada should be avoided. Course content
should emphasize software engineering principles with Ada examples showing how to implement
them. Care should be taken to evaluate the training program to insure that the entire life cycle
and its implications are considered.

Training courses often tend to focus solely on the coding phase. There are two separate schools
of thought on this problem. One is to have the student begin writing code immediately so as to
provide some immediate gratification, then the rest of the life cycle will become meaningful. The
other school of thought stresses that students need to know the implications of what they are
doing before they start writing code. In general, the second school of thought is the preferred
approach.

• Length and topics: For any introductory course, a minimum of five class days is required to
teach the basics of the language and to introduce the underlying software engineering principles.
These class days should be spread over a minimum of two weeks and reinforced with hands-on
design and programming exercises. Additional classes, which include Ada’s more sophisticated
features and implementation tradeoffs, will be required for people who will use Ada heavily, who
do not have previous HOL background, or who will be responsible for design activities.
Refresher courses should be offered periodically after the initial training.

• Equipment: All training should be on the specific compiler and tool set to be used in the
development effort. The user interface for different vendor compilers is significantly different,
and there is no standardization on the means of managing libraries or invoking tools. Thus, to
avoid retraining costs and time, it is advisable to conduct the training on the actual compiler and
tool set to be used. Only validated compilers should be used.

• Documentation: In addition to handouts of course materials, model solutions to problems
should be available; they are an especially useful way to teach the Ada language and its under-
lying principles. The contents of reuse libraries can also be used for familiarizing students with
the tools at their disposal.

CMU/SEI-92-TR-29 49

• Hands-on lab: It is imperative that hands-on programming exercises be a major component of
the training process. Just as it is difficult to learn how to repair radar sets or jet engines without
practical, applied work, the same is true for building computer software and learning computer
languages. In fact, the more detailed the training, the more imperative hands-on exercises be-
come. For example, in classes dealing with using Ada for a specific embedded processor, there
is no substitute for writing software with the compiler and tool set that will be used on the actual
development program. The software engineers working at this level need to understand the
performance and limitations of a particular tool set.

• Monitoring progress: The training program should have methods for measuring student
progress, providing student feedback, and evaluating course effectiveness.34 Since hands-on
training is essential, a careful and complete review of each programming project should be made
by the instructor. This will include detailed comments on the design approach, the selection of
Ada features used to accomplish the design, and the use of new Ada concepts where ap-
propriate.

• Instructor availability: A trained instructor must be available to help students and provide
guidance when required. The instructor must have a wide-ranging experience in both the use of
Ada and in design problems for the likely domain. Finally, the instructor must be well versed in
the concepts of software engineering. Practical experience in the development of software-
intensive systems would also be particularly valuable for the instructor.

• Computer-assisted instruction (CAI) and video tapes: These are good supplemental tools
for teaching language syntax and providing overviews and review. However, they should not be
the focus of the training effort because they generally do not have a software engineering em-
phasis. Even when they do, nothing can replace the effectiveness of good classroom instruction.

• Real project use: To achieve maximum training effect, personnel should be assigned im-
mediately to an Ada project where experienced Ada software engineer(s) are available for con-
sultation for the first 4 to 6 months. If the student does not apply the new knowledge soon after
instruction, the knowledge rapidly diminishes.

In addition, some organizations have improved training success by training project teams. These
teams can also be exposed to continuing training which stresses applying Ada within the context
of the project’s processes and infrastructure.

5.4. Selecting Training Programs

An Ada training program should be planned and selected based on an understanding of the
learning needs of those who will be trained and the requirements of their projects.

As discussed previously, there are many factors to consider when selecting a training curriculum, not the
least of which is the material to be covered, the depth of training, who should be trained, and the
qualifications of the instructor. As a general guide, the following items can be used to prepare for the
selection of appropriate training:

• A thorough curriculum outline for each different learner population in the organization, with learn-
ing objectives, content outline, instructional strategy, and suggested training media (at least two
general populations can be anticipated: management and engineering).

• A vendor selection guide that identifies how to select vendor training materials for the Ada train-
ing. This is not an easy task and could take several weeks to create. The guide must be

34A possible approach here is the use of before and after course testing.

50 CMU/SEI-92-TR-29

predicated on a thorough needs assessment of the populations and the curricula tailored accord-
ingly. This is a time-consuming and labor-intensive effort, requiring investigation and analysis for
each learner group. All persons to be trained will need software engineering concepts35 as a
significant part of any Ada training.

A guide with two parts should be created for this purpose. The first part should discuss general issues
relevant to vendor selection and can be prepared to be applicable organization wide. The second part
should discuss detailed considerations of how to customize the first part to tailor it for a specific project or
group within the organization.

The selection materials can take the form of a document and briefing for senior management in the
organization, with a more detailed planning document developed for project approval and use. This
planning document should contain a statement of need, appropriate project objectives, a suggested ap-
proach to the task, expected benefits, and expected product.

Other factors that an organization may consider in selecting a vendor include:

• Third party references: observations from people from different organizations that have taken the
training.

• Evaluations of selected individuals who attend the training before committing an organization to
its use.

• Availability of "train the trainer" training.

5.5. For More Information . . .

The following resource recommendations are intended as an initial starting point for those looking for
more information about Ada training. Refer to Appendix B for contact information.

• Ada: Helping Executives Understand the Issues [220]
• The Pedagogy and Pragmatics of Teaching Ada as a Software Engineering Tool [174]
• Practical Methods for Introducing Software Engineering and Ada into an Actual Project [41]
• Holistic Case Study Approach to Ada-Based Software Engineering Training [181]

Ada Information Clearinghouse (AdaIC): AdaIC has information about upcoming classes, seminars,
etc. For more detailed information, the AdaIC publishes the CREASE: Catalog of Resources for Educa-
tion in Ada and Software Engineering [134].

Ada-JOVIAL Newsletter: This newsletter is published at Wright Patterson AFB, Ohio. Several pages in
each issue are allocated to training and other product announcements.

Ada Software Engineering Education and Training Team (ASEET): This group examines issues in
providing quality and timely Ada education and training. The team is producing a database of information
on Ada training and education material known as the ASEET Material Library (AML). The AML consists
of course syllabi, lecture notes, overhead transparencies, books, articles, notes, etc., that can be obtained
by DoD personnel and copied at cost by non-DoD personnel. All courseware is non-copyrighted.

35How much content in software engineering will be needed can be expected to vary with the different learner groups.

CMU/SEI-92-TR-29 51

6. Software Production Technology

6.1. Software Development Terms and Concepts

The following terms and concepts are explained in this section: host/development computer,
target computer, embedded computer, source code, object code, runtime software, program
library, compilers, linking, debugging, downloading, and program execution.

This section introduces generic software development terms and concepts discussed in the rest of this
handbook. To focus on areas of critical importance and to provide a basis for subsequent discussions,
this section concentrates on the process of transforming source code developed by a software engineer
into object code that will execute/run on a target computer. The process of code transformation is a
small, but vital, part of the overall systems development life cycle. Readers already familiar with these
items can skip to Section 6.2, which discusses Ada compilers.

An Ada implementation (or an Ada compilation system) is an Ada compiler, linker, library manager, run-
time software, and any other necessary software associated with its host computer and the target com-
puter. These two computers are used in the process of software development:

• Host (or development) computer: The software development process typically takes place on
the host or development computer. This computer, whether it be a large mainframe computer or
a personal workstation or a personal computer, serves as the host for the development software.

• Target computer (or target processor): The computer that runs the developed software; em-
bedded systems examples are various RISC processors, MIL-STD-1750A, Intel 80x86 family,
and the Motorola 68000 family.

While the host and target computers can be the same, the host computer is often different from the target
computer because:

• More (and different) resources may be needed to design, develop, document, compile, and
maintain software than to execute it. Such resources might include system memory and
peripherals such as disk drives.

• In many systems, such as weapons systems or other real-time systems (air traffic control), the
target computer is embedded in and functions as an integral part of the system. Embedded
computers are typically small, special-purpose machines dedicated to specific operations or
functions and therefore not suitable for developing software. Examples of embedded computers
are processors found in automobiles, household appliances, industrial robots, navigation sys-
tems, and process control equipment.

When the target computer is different from the host computer, the executable code must be transferred
(downloaded) to the target computer before it can be run.

As Figure 6-1 shows, the software developer uses an interactive software tool called an editor to create
and save (and later modify) the source code for each of the many units (or modules) that will constitute
the completed system. The source code is, for the purposes of this handbook, written in a high-order
language (HOL), a programming language such as Ada, COBOL, JOVIAL, or FORTRAN. HOLs enable a
software engineer to write in an English-like, readable form rather than in a binary machine language
unique to each type of computer system. Not shown in this figure are various front-end CASE tools that
aid in designing the system.

52 CMU/SEI-92-TR-29

Printed
Outputs

Intermediate
StorageProcess

Legend

Editor

Source
Program

Unit

Program
Library

Compiler

Symbol
Tables

Object
Modules

Linker

Simulator/
Debugger

Executable
Module

Listings

Link Map

Target
Processor

Reused
Code

Downloader

Runtime
Support

Executive

Figure 6-1: Tools Used in the Software Development Process

CMU/SEI-92-TR-29 53

After each unit is created, a compiler checks the source code for first-level correctness by ensuring that
the syntax (grammar) of the code is correct. If errors are identified, the process cannot continue, and the
developer then uses the editor to correct the error(s) and resubmits the module to the compiler. If no
errors are found, the compiler:

• translates the source code into object modules that will (eventually) run on the target computer
(in applications where often the host and target computers are different, a compiler that trans-
lates source code into a machine language for other than the host computer is known as a cross
compiler),

• produces various output listings (see Section 6.2.2.3), and

• produces symbol tables that are used in conjunction with debuggers.

Relationships among object modules (and in some cases, the object modules themselves) are maintained
in a program library; libraries vary in their sophistication, depending on the requirements and capabilities
of the high-order language being used. Ada libraries are much more sophisticated than libraries for other
languages.

The independently compiled object modules must be linked together before the program can be ex-
ecuted. When the application code is linked, the appropriate runtime software is automatically included.
Runtime software provides the additional supporting functions required for executing programs on a
specified target computer. Each target computer and each computer language requires its own specific
runtime support library. For Ada, functions most likely handled by runtime software include scheduling,
parameter passing, storage allocation, and some kinds of error handling. As part of the linking process,
additional consistency checks are performed; in particular, any missing or possibly obsolete compilation
units are reported. The outputs of the linking step include:

• an executable (ready to run) module
• printed listings, generally called a link map, that describe the structure of the executable module

The executable module can be executed and tested on either the host or the target machine. Usually, the
host machine will continue to be used, especially during the early phases of software debugging and
testing, because of the greater resources available on the host. If the host machine is not the target
computer, it is possible to simulate execution of the developed software by using a simulator/debugger.
The simulator/debugger, which is also referred to as a target simulator, runs on the host machine and
mimics the timing and functional behavior of the target machine, thereby providing a good view of execu-
tion in the target domain. An additional level of problems can then be discovered before the software is
downloaded to the target. If logic errors (errors in functionality and operation) are discovered, the
software developer must return to the editor to begin the correction process.

After a certain confidence level is reached using the host-based simulator/debugger, the ultimate test is to
download the executable software to the target computer and execute it there. While simulators or
emulators are intended to mimic the timing and functional behavior of the target machine, they may have
some differences in performance or execution that may mask problems. There is no substitute for hot
testing software (i.e., testing on the target processor). On the target processor, debugging tools are very
helpful for locating errors. Errors discovered during software execution are the most expensive to
resolve.

54 CMU/SEI-92-TR-29

6.2. Ada Compilers

Initial Ada compilers primarily focused on adhering to the language standard and/or establish-
ing a market presence. Subsequent generation, production-quality compilers are available for
many more processors, and are focused on optimized object code. Some important issues to
consider when selecting an Ada compiler are compiler validation and compiler evaluation.

While all tools used in the software development process are important, the Ada compiler continues to
attract the most attention, in part because of:

• the requirement for compiler validation to ensure that a compiler conforms to the language stan-
dard; and

• the need for compiler evaluation, which should be used to determine the usability of a validated
compiler for a particular application’s needs.

These issues are briefly addressed below. The Ada Adoption Handbook: Compiler Evaluation and Selec-
tion [226] addresses these issues in greater depth.

6.2.1. Compiler Validation

To ensure that program-dependent dialects of Ada do not arise, the DoD requires that
validated Ada compilers be used for creating software to be delivered to or maintained by the
government. However, not all validated compilers may be suitable for every program. Each
program must select an appropriate compiler and tool set, and make allowable improvements
when necessary. Compiler modifications are acceptable if they do not change the language.
Modified compilers must be revalidated, but at the discretion of the program manager.

While Ada has been mandated as a standard by the Department of Defense, it is not enough just to have
a standard — the standard must be enforced. The purpose of validation is to require conformity of Ada
implementations with the language standard. Currently, validation measures conformity with the current
language standard [13]; after the adoption of the Ada 9X standard, the validation process will measure
conformity with the Ada 9X standard. The official AJPO list (October 1992) contains 270 validated base
Ada compilers and 231 derived compilers,36 which are available for a wide variety of host-target combina-
tions. In general, only validated Ada compilers can be used for DoD applications.

36 Once an Ada compiler has a current validation certificate (the base compiler), then variations or modifications to that compiler
and/or its configuration result in a derived compiler. A derived compiler must conform to the Ada programming language in every
respect and by the same measure as does the base compiler from which it was derived. To be considered a derived compiler, and
therefore acquire status as an Ada validated compiler, derived compilers must be registered by vendors with the AJPO. Example:
Consider a validated compiler hosted and targeted to a VAX 750. The vendor could then indicate that the same compiler running on
VAX 780, 785, 8600, 8800 and other members of the VAX family is derived because it meets the four criteria for derived validations:

1. the validation certificate for the base implementation has an expiration date at least three months beyond the time of
derivation;

2. the host and target computer systems of both the base and derived Ada implementations have compatible instruction
sets and operating systems;

3. the derived Ada implementation contains an Ada compiler that was obtained (derived) from the Ada compiler of the
base implementation;

4. the ACVC result for the Ada implementation is either the same as or has minor justifiable differences from the base
implementation.

For more details, refer to the Ada Compiler Validation Procedures [3].

CMU/SEI-92-TR-29 55

The validation process is carried out by the Ada certification body consisting of the Ada Joint Program
Office (AJPO) for overall direction, the Ada Validation Organization (AVO) and the Ada Compiler Valida-
tion Capability (ACVC) Maintenance Organization (AMO) for technical support, and the Ada Validation
Facilities (AVF) for performing validations.

There are two ways of obtaining validated status: by AVF testing; and for "derived" compilers only, by
registration. With Ada, validation by testing is achieved by testing for compliance with the ACVC, an
integrated set of tests, procedures, software tools, and documentation used to validate Ada compilers.
37 After a compiler has been validated by on-site testing at an Ada Validation Facility (AVF), the AVF
issues a Validation Summary Report (VSR), which reports the results of the compiler’s validation
testing.38 Expiration dates for these validation certificates is twelve months after the expiration of the
ACVC version used to obtain the certificate.

Since first introduced in 1983, the ACVC has been extended and revised to increase both the depth and
breadth of the test coverage. The first version of the ACVC had approximately 1700 tests; the current
version V1.11 has 3719 tests. If a compiler passes all the applicable ACVC tests, it is said to be
validated. Depending on the characteristics of the target computer, some tests may not be applicable.
Current policy regarding Ada validation is tending toward a more stable test suite based on expected
usage. After removing tests of little value and adding tests for Ada 9X, the suite will stabilize at about
4000 tests.

Although ensuring that Ada implementations conform to the standard has a long-term benefit, the value of
validation to an individual program is limited. Validation should be regarded as a necessary, but not
sufficient, condition. The program manager should know that:

• Validation does not mean a compiler is free of errors — no tests can detect all errors in a com-
plex software product.

• Revalidation is required periodically. The general rule is that a compiler must be revalidated
under each new release of the ACVC to retain its validation certificate, but the rules for project
compilers incorporated into a project baseline allow this compiler to be used throughout the life
cycle of the project.

• The validation process is not concerned with performance or usability issues such as compile-
time and object-code efficiency (see Section 6.2.2). Validation implies only a minimal level of
usability, a level that may not meet the needs of a particular program or application. Con-
sequently, each program must determine whether a validated compiler meets (or can be
modified to meet) its needs.

It is not always possible to have the final delivered system compiled with a validated (under the current
validation suite) Ada compiler. Validation policies [3] include the concept of a baselined project
compiler — a particular Ada implementation selected for use for the life of a particular project. It may be
necessary to ensure proper and systematic implementation baselining of the software development en-
vironment, because that compiler and environment will be used upon system delivery to maintain that
system.

37The ACVC test suite is available through the National Technical Information Service (NTIS) Federal Computer Products Center,
U.S. Department of Commerce, Springfield, VA 22161.

38Copies of these Validation Summary Reports can be obtained from either the NTIS or the Defense Technical Information
Service (DTIC), Cameron Station, Alexandria, VA 22304-6145.

56 CMU/SEI-92-TR-29

The requirement to use only validated compilers may appear to pose a risk when combined with the DoD
requirement to revalidate compilers periodically. After all, if a program’s compiler fails revalidation, it must
be corrected, and the application code must be recompiled and completely retested, which can have cost
and schedule implications. The validation procedures and guidelines document addresses these con-
cerns by providing the following guidance:

• Any compiler placed under baseline project control must be a validated compiler. Once placed in
the baseline, the compiler does not have to be revalidated until the program manager finds it
prudent to confirm that the compiler still conforms to the standard.

• Program managers are encouraged to use the validation tests to ensure that compiler main-
tenance changes and modifications have not affected the ability of the compiler to pass the tests.

• Retesting is recommended at major program baseline milestones.

In short, revalidation testing is completely under the control of the program manager and can be
scheduled at times when it is least disruptive to the program. The intent of the AJPO guidelines is to
ensure that compilers continue to conform to the standard without imposing an undue burden on program
managers.

Validation ensures conformance with the ACVC test suite, but is no substitute for evaluation. Evaluation
ensures compatibility between the capabilities of an Ada implementation and the project’s needs.

6.2.2. Compiler Evaluation

A number of factors are indicative of compiler quality and usability. A project should select a
compiler after a thorough evaluation based on its specific needs. In some cases, compiler
improvements and/or customization may be needed for certain programs.

The validation process is not concerned with performance or usability issues such as compile-time and
object-code efficiency. As validation only measures conformance to the language standard, compiler
evaluation efforts should determine the usability of a validated compiler for a particular application’s
needs. Each program must determine whether a validated compiler meets (or can be modified to meet)
its needs.

The production quality of an Ada compiler is usually measured minimally in terms of:

• Compile-time efficiency: Speed at which the compiler transforms various language features
and compiler capacity in terms of the size of components that can be processed and generated.

• Object code efficiency: Size and speed of the resulting object code, including runtime software.
These factors are often compared against assembly language for the same algorithm.

• Compiler services: Quality of error messages, types of error recovery, output listings, and diag-
nostic information.

• Support for embedded system requirements: Ability to precisely control and interface with
hardware system functions.

The following sections address these issues. Other factors that should be considered include the number
of known bugs or limitations in the compiler (if any), stability of vendors and their products, documen-
tation, and vendor support.

CMU/SEI-92-TR-29 57

Each program should consider these factors in evaluating the quality and maturity of compilers based on
their criteria. The Ada Compiler Evaluation Capability (ACEC) [100, 153, 154, 155] provides criteria and
tests for evaluating Ada compilers.39 Another method of compiler evaluation that has been used is em-
bodied in the Ada Evaluation System (AES), which was developed in the United Kingdom [162].40 Also in
use are the PIWG benchmarks [187], used to test performance characteristics of the software, and the
Hartstone benchmarks [93, 92], which test a system’s ability to handle hard real-time applications.

6.2.2.1. Compile-Time Efficiency

Ada compilers require more host computer resources than compilers for most other lan-
guages, in part because the compilers are required to check for more kinds of programming
errors.

Ada compilation costs can be significantly reduced if a compiler has special support tools for
managing separately compiled units efficiently. These costs can also be reduced by careful
use of information hiding and abstraction in the design of the software.

Ada is intended to be used not just for small, embedded systems, but also for large systems — systems
that contain hundreds of thousands, even millions, of lines of code. The software in such systems may be
compiled hundreds of times. Some compilers are not adequate for this level of use, due to speed or
capacity limitations.

There are several reasons why Ada compilers use more computing resources than compilers for other
programming languages:

• Language capability: Ada’s inherent power and complexity generally mean additional process-
ing is required by the compiler.

• Earlier error detection: Ada compilers can detect certain kinds of programming errors earlier
than they would normally be detected in other languages. A type of error Ada will catch early is
the classic ‘‘apples and oranges’’ problem. For example, while other languages might allow
numbers representing velocity and volume to be added together, with the error eventually found
during integration testing, Ada can catch such errors during compilation. Although checking for
such errors has a price, a well-proven software engineering principle is that the earlier an error is
detected, the cheaper it is to fix. (Of course, some errors will not be detected by a compiler for
any language; these must still be caught during unit or integration testing.)

• Library management: If a compiler is not designed properly, some required error checks can
consume significant resources. The key issue here is how the compiler accesses and updates
an auxiliary file called the library. Some Ada compilers can minimize the costs of accessing and
maintaining the library, and these implementations are particularly effective in their support for
programming large systems. For example:

39The first release of the ACEC occurred in August 1988. The current ACEC (Version V3) was released in August 1992. The
ACEC is being maintained by the Language Control Facility (see Section B.3) and is distributed by the Data & Analysis Center for
Software (DACS), P.O. Box 120, Utica, NY 13503, Tel. (315) 734-3696.

40AES is not currently being distributed, as these two methods are in the process of being merged.

58 CMU/SEI-92-TR-29

• Checking for inconsistencies between separately compiled units41 can contribute to
compile-time inefficiency if the compiler does not efficiently process interface infor-
mation declared in separately compiled packages.

• When an interface package is changed, some compilers cannot assess the impact of
the changes. As a result, large portions of the system must be recompiled unneces-
sarily to ensure no inconsistencies have been introduced.

• Optimization: Optimization refers to the process of making the generated object code more
efficient for execution while insuring that the functionality of the code remains unchanged. Op-
timization techniques include removing redundant code, eliminating unnecessary runtime error
checking, and consolidating memory usage. Since optimization of object code is especially
important in embedded systems, some, but not all, Ada compilers devote considerable attention
to generating high-quality code. This is perhaps the area of greatest progress since the first
edition of this handbook [109]. Such optimization requires extensive machine analysis of the
developed software, which may consume considerable resources. The use of host resources to
produce code with increased target performance is an excellent tradeoff, after the software being
optimized is logically correct. Many compiler products provide different levels of optimization so
software development personnel can choose the most effective level of optimization for a par-
ticular stage of development.

6.2.2.2. Object Code Efficiency

Experts disagree about the time and space penalties incurred for code generated by compilers
relative to optimal hand coding in assembly language. It is clear, however, that rapid progress
is being made in optimized code generation and that compilers are already able to generate
better code than the "average" assembly language coder [151]. Furthermore, production-
quality Ada compilers have the potential to generate code that is more efficient than code
generated for other languages.

Efficient object code can be generated by Ada compilers, although some current compilers may not yet
achieve this goal. Just because some compilers may generate inefficient code does not imply that Ada
code must be inefficient; more highly optimized compilers generate code that is as efficient as code
generated for other high-order languages. Good optimizers are more the rule now than in the past. In
fact, some Ada features potentially allow Ada compilers to surpass the object-code efficiencies of other
languages. For example:

• More efficient machine operations can be used to manipulate Ada’s composite data structures.

• Certain subprogram calls can be eliminated by putting the subprogram code ‘‘inline’’ in place of
the call, thus saving time.

• Compact representations for data can be specified when compared to the compiler’s normal data
layout strategy, saving space.

• Certain unnecessary data compatibility checks ordinarily performed at runtime can be omitted,
saving both time and space.

These features should be considered by those programs with severe object-code efficiency requirements.
However, other language features, such as data compatibility checks and exceptions, can also decrease
object code efficiencies. And the runtime system for any language can be a source of inefficiency as well.
Some items of concern are:

41As part of its error checking, the compiler will ensure that a separately compiled Ada subprogram cannot be called with the
wrong number of parameters. Using separately compiled units also means portions of the system can be changed without having to
recompile the entire system.

CMU/SEI-92-TR-29 59

• Loading runtime software: With some compilers, the entire runtime software is loaded, whether
it is needed or not, making the executable code unnecessarily large. Thus, the ability to include
only those functions that an application needs would save space. This capability should not
cause any validation concerns, but may require some additional intelligence in the compiler and
the linker. Many compilers already have intelligent linking, eliminating this problem.

• Runtime customization: Significant efficiencies can be gained if portions of the runtime system
are tuned to a particular application.

Where severe time and space limitations exist, it is often necessary to invest in program-specific custom
optimizations. With properly designed compilers, the process of creating, testing, and documenting such
optimizations can be relatively inexpensive when compared to creating a totally new compiler. But, this
process is usually not cheap and should only be undertaken when a serious need for such optimizations
and sufficient resources to fund such efforts exists.

6.2.2.3. Compiler Services

The usability of a compiler is affected by the services it provides beyond the generation of code.

Compilers differ in the extent to which they provide helpful services to software engineers. The compiler
services indicated below have been helpful in many efforts [121]. For more information, see [226, 179].

• Formatted source code listing: An indented listing revealing the structure and control flow of
the source code. This capability is sometimes referred to as a pretty printer; these tools can
often be tailored to allow each software development effort to establish its own formatting
conventions.42

• Assembly code listing: A listing showing the absolute memory location of each machine in-
struction in the target computer.

• Interleaved assembly code listing: A listing showing the machine code generated for each
Ada statement. (It is not always possible to produce such a listing for highly optimizing com-
pilers.)

• Set/use listing: A listing showing where variables are modified and/or read.

• Compiler error messages: Explanations of programming errors found by the compiler. These
messages are provided at the point of the error, in a consolidated listing, or both.

In addition, the following services are specifically Ada oriented:

• Compilation order tool: A capability that, when given a set of Ada units, determines the com-
pilation order.

• Automatic recompilation option: An option whereby the compiler finds and automatically
recompiles all modules requiring recompilation.

• Recompilation analyzer: A capability (in some cases, a separate tool) that analyzes the struc-
ture of software and indicates how much recompilation will be caused by various changes.

42The guidelines contained in [138] are a starting point for such conventions. Although this is the AJPO’s recommended style
guide, it can be tailored to allow establishment of project formatting conventions.

60 CMU/SEI-92-TR-29

6.2.2.4. Support for Embedded System Requirements

Ada compilers are now being built to address the special needs of embedded systems.

Ada was intended for DoD embedded system applications, some of which impose special requirements
on compilers. For example, embedded systems typically need to:

• process hardware interrupts

• place data in particular memory locations (e.g., to support memory-mapped I/O)

• specify storage-efficient representations of data

• implement code in read-only memory (ROM)

• access specialized low-level machine instructions, e.g., those that compute trigonometric func-
tions or that allow memory checks (referred to as a built-in test — BIT) to be run when a system
would otherwise be idle

• accomplish required actions at precisely specified times

Early Ada implementations did not, in general, address these specialized needs because of the pressures
and demands of achieving validation. However, validated compilers that meet the special needs of em-
bedded and mission-critical systems are now available from many vendors.

6.2.3. Compilers: Action Plan

Several factors should be considered in evaluating the quality and maturity of compilers.

Guidance regarding compiler and tool evaluation is available from a number of sources, including the
Evaluation and Validation Reference System [56, 57], and the Ada Adoption Handbook: Compiler
Evaluation and Selection [226]. Other sources include [233, 179].

The following suggestions provide general guidance for compiler acquisition:

• Host machine resources: Plan to support larger host machine resources (more memory and
computing power) than for other languages.

• Compiler evaluation:

• Specify additional criteria and tests a validated compiler must satisfy to meet program-
specific needs.

• Develop coding guidelines based on evaluation results. (Such guidelines should con-
form with the recommendations of [138].)

• Compiler services: Ensure that needed user support services are provided by the compiler.

• Recompilation costs: Assess vendor support for reducing the costs of compiling (and recom-
piling) large software systems.

• Revalidation: Balance the costs of revalidation (including recompiling and retesting all mission
software) with the advantages a new compiler version may have in terms of reliability (fewer
bugs) and improved object-code quality, as well as life-cycle support for the new compiler ver-
sion.

CMU/SEI-92-TR-29 61

6.3. Programming Support Environments

6.3.1. Overall Status

As software support environments will never reach their full potential for any programming
language, program managers should concentrate on tool functionality and compatibility.

The function of a software engineering environment (SEE) is to support the development and main-
tenance of large-scale software systems. The SEE should provide support across the development and
maintenance cycle to include specification development, test generation and testing, program manage-
ment, coding, debugging, and configuration management. The goals of a SEE complement the goals of
Ada, and include:

• common tools and interfaces,
• tool integration, and
• software transportability.

Program managers should primarily concentrate on:

• tool functionality
• operational compatibility between tools (including interfaces)

The following sections provide action plans for both required and optional development tools.

6.3.2. Required Tools: Action Plan

A minimal tool set is needed for use with a compiler.

As a first objective, a program manager should ensure that a good basic tool set is used. In addition to a
compiler, the minimally required tools include:

• Editor: An interactive tool for creating documentation and source code.

• Debugger: Symbolic debuggers43 for Ada are fast becoming essential development and produc-
tivity tools. The debugger and compiler work as a complementary pair, where both tools share
common data structures known as symbol tables (see Figure 6-1) and are therefore best pur-
chased from the same vendor.

• Linker: The linker joins together the various object modules and the runtime software into an
executable module that will run on the target machine. As part of this process, it may make
adjustments to the code based on the intricacies of the target processor.

• Configuration manager: This tool is used to achieve, at a minimum, configuration management
of both documentation and code.

• Target simulator: While development can be accomplished without simulators, they are becom-
ing essential development and productivity tools. They allow more development work to be done
on the host machine, as opposed to repeated and often time-consuming downloading to the
target.

• Downloader: This tool is used to download the executable code from the host machine to the
target processor. Sometimes downloader software is supplied by target computer vendors.

43While development can be accomplished (sometimes with great difficulty) without debuggers, symbolic debuggers allow for
execution of software under programmer control. They provide methods for stopping software execution at specific points and for
examining and modifying data locations using source code names.

62 CMU/SEI-92-TR-29

6.3.3. Optional Tools: Action Plan

Optional tools should be evaluated in light of identified needs and the tools’ usefulness in
supporting the software development process.

There are many other tools that are useful, but not essential, to the software development process.
Several of these are briefly explained in Table 6-1. This table addresses only those tools that are directly
a part of the programming process; many other tools (desktop publishing and presentation, e-mail, etc.)
can also have an impact on productivity throughout the life cycle.

Before decisions are made to acquire and develop additional tools, consideration should be given to:

• Size of the software development effort: Small development efforts, such as those ac-
complished on a personal computer (PC), may not warrant additional tools. However, for large,
multi-team efforts, possibly involving geographically distant participants (such as the Army Com-
anche helicopter and the Air Force F-22 fighter programs), tools and capabilities beyond those
described in Table 6-1 will be required, as will significant management attention to the develop-
ment process.

• Documentation requirements: User guides and online documentation should be evaluated for
availability and quality.

• Functionality, interfaces, methodologies, and compatibility: New tools should be evaluated
for compatibility with an organization’s existing tools and methodologies and the Ada language
[233, 105, 106, 231, 225]. An example is design tools: Are they compatible with Ada’s assump-
tions about software organization such as packages? When public domain tools are being con-
sidered, the degree of modification required must be determined.

6.4. For More Information . . .

Details about validation, including commonly used Ada validation terms, the organizational structure for
managing, coordinating, and directing the Ada validation process, steps in the process, and guidance to
DoD program managers on the acquisition, use, and maintenance of Ada compilers are contained in the
AJPO validation procedures [3]. Additionally, guidance for compiler evaluators is found in the Ada Adop-
tion Handbook: Compiler Evaluation and Selection [226] and for tool evaluators in Issues in Tool Acquisi-
tion [233].

CMU/SEI-92-TR-29 63

Tool Purpose

Source-code formatter Also known as pretty printers, these tools format source code using
predefined coding conventions, thereby ensuring a standard visual for-
mat. Since formatting conventions may differ between software develop-
ment efforts, the formatter tool should allow an organization to specify its
own conventions. Sometimes pretty printing is supplied as part of com-
piler services, as opposed to a stand-alone tool (See Section 6.2.2.3).

Object-code analyzer Analyzes execution paths in object code. This information can aid in test-
ing and determining which code could be further optimized.

Static analyzer Provides characteristic information about software such as number of
lines of code, number of comments, control flow complexity, and
measures of coding style. A compiler may provide this information,
eliminating the need for this tool.

Dynamic analyzer Monitors and reports the execution behavior of code so performance can
be tuned.

Source-code cross
referencer

Gives a cross-referenced table specifying where symbols in the software
are declared and used, and how they are used. Some compilers provide
this information directly. A more advanced tool allows a user to "browse"
online, moving automatically from the place where a name is used to the
place where it is defined.

Syntax-directed editors Assists in creating source code by analyzing and checking for many
types of errors as the source code is entered. The advantage of these
advanced editors (also known as language-sensitive editors) is identify-
ing certain types of errors early, without having to process the code
through a compiler.

DoD-STD-2167A
documentation
generators

Supports the generation of documentation according to the formats of
DoD-STD-2167A data item descriptions (DIDs). Often employed in con-
junction with program design language (PDL) tools and/or graphical pro-
gramming tools.

Graphical programming
tools

Allows software engineers to visualize the design process and the result-
ing system design as it develops. These tools are relatively new, but
progress in this area has been encouraging.

PDL processor Supports the processing and documentation of software designs.

Test manager Helps organize and execute software tests, including comparing test
results from previous runs.

Module manager Accepts directions about how to build a system baseline; determines
which modules in a system have been changed and which modules are
potentially affected by the changes.

Table 6-1: Optional Tools

64 CMU/SEI-92-TR-29

CMU/SEI-92-TR-29 65

7. Ada Applicability

7.1. Scenarios for Ada Use

Ada can be used today for applications that range from information systems to embedded,
time-critical applications and that run on machines from microprocessors to much larger com-
puters. For severely time-critical (i.e., hard real-time) applications on resource-constrained
machines, special care is required in selecting appropriate compilers and tools.

Given the wide spectrum of DoD applications and the wide variety of processors in use, any evaluation of
Ada applicability must address:

• requirements of the application domain, such as:
• type of computers used as the target processors
• processing requirements (real-time, etc.)
• resource constraints (memory, peripheral equipment, etc.)
• physical environments (ground based, airborne, spaceborne, etc.)

• maturity of software technologies
• capabilities of candidate target processors
• maturity and capability of development organizations

The following paragraphs briefly survey the current situation and answer the question, "How and where
can Ada be used?"

Low Risk:

• Applications that are not time critical and run on machines with medium to large memory
capacity. Such applications include software tools, support software, simulations, and many
ground-based applications.

• Time-critical, ground-based applications running on machines with medium to large memory
capacity going into immediate development.

Medium Risk:

• Large command, control, communications, and intelligence (C3I) projects involving complex in-
terfaces and loosely coupled distributed processing or databases. (See Section 8.2 for more on
the topic of interfacing to commercial software packages.)

• Time-critical, embedded (i.e., airborne/spaceborne) applications going into engineering and
management development (EMD) in the next 2 to 4 years. This situation can be made some-
what less risky by selecting target processors that provide more Ada support.

• Current (e.g., developing code) embedded time-critical applications, such as
airborne/spaceborne applications using embedded avionics processors

In any of these medium-risk scenarios, program management must make judgments about Ada tech-
nology compared to the schedule of the actual program. Consideration might be given to including (and
funding) risk reduction and/or technology insertion phases in the program, especially for those projects
making first use of Ada.

High Risk: Massively parallel systems and certain distributed systems (See Section 7.5).

66 CMU/SEI-92-TR-29

Although there are risks in developing software-intensive systems, Ada has proven to be the best lan-
guage available in many cases (such as [151]), and many of the risks are not language specific, but are
driven by issues of complexity in interfaces or time criticality. Ada provides a way to enable good software
engineering and management principles to be applied in ameliorating these risks.

7.2. Ada and System Engineering

System engineering tradeoffs are increasingly reflecting the importance of software engineer-
ing issues in developing systems today. Managers should develop action plans to address
these tradeoffs as part of their risk management activities.

Successful adoption of Ada depends not only on the maturity of compilers and software tools, but also on
system engineering analysis of the program schedule, hardware choices, performance requirements, and
supportability issues; these should be mapped against Ada capabilities. The program manager must
insure that software tools are available for the processors selected; joint selection of the target computer
and support software is the optimal approach. In the following subsections, various system engineering
situations are examined, and possible action plans suggested.

7.2.1. Absence of Compiler: Action Plan

Several options are available if no Ada compiler exists for the selected hardware.

An action plan for evaluating and selecting a compiler was presented in Section 6.2.3. If no Ada compiler
exists for the selected target computer:

1. Select another target computer for which Ada compilers already exist, if possible. The official
AJPO list (October 1992) contains 270 validated base Ada compilers of the 501 total
validated Ada compilers. Because Ada compilers are available for a wide variety of com-
puters, some choice is possible in selecting compilers for various host-target combinations,
44 and it should not be necessary to build a completely new compiler.

2. If program cost and schedule allow, have a code generator developed for the target proces-
sor, building on an existing compiler. The current trend is to use commercially developed
products because of their diversity, lower cost, and quality, rather than developing a new
compiler.

This process of retargeting (extending a compiler to generate code for a new target com-
puter) is also known as building a new code generator or compiler back end.45 If the
manufacturer of the target processor provides a tool set (linker, loader, debugger, assembler,
etc.), determine what extensions or additional capabilities may be required.

44The current list of validated compilers, including host and target information, is available in printed and electronic form from the
Ada Information Clearinghouse and is also published in the Ada-JOVIAL Newsletter. See Appendices A and B for further
information.

45A compiler consists of at least two parts — the front end and the back end. The front end, which is also called the
machine-independent portion, contains the components that are independent of the target computer and can be used in common for
many target computers. The front end generally will not have to be modified during the retargeting process. The back end contains
the components that depend on the characteristics of the target computer and therefore must be designed specifically for each
target computer.

CMU/SEI-92-TR-29 67

These activities are likely to require the use of program funds; there is generally no DoD-wide
funding for these efforts. Retargeting development time should range from 9 to 15 months
and cost from $750,000 to $1,750,000. These estimates may vary depending on a number
of factors, including:

• the requirements and technical objectives of the effort

• the compiler technology used

• the difficulty of the code generation task

• the maturity of the compiler developer

• access to the developer for resolving problems

• economic factors such as the competitive position of the developers bidding for the
work and the potential market for the compiler. (For example, a compiler for a target
processor used extensively would most likely cost less to develop than a compiler
for an aged or proprietary processor that has limited demand in the marketplace.)

Additional time should be planned to mature the newly retargeted compiler. The time re-
quired for new or modified tools to reach an acceptable level of maturity should also be
considered, as discussed in Section 4.1.3.

3. If these alternatives are not possible, consider the risk and cost effectiveness of using Ada.
Consider filing a waiver requesting approval to use another approved language if an Ada
development is shown not to be cost effective.

7.2.2. Object-Code Efficiency: Action Plan

Concerns about object-code efficiency can be addressed by a number of alternative actions.

Where the code generated by an Ada compiler might be an issue, either due to its performance, quality,
or efficiency, there are several alternatives:

1. Re-analyze performance requirements and then plan and conduct an appropriate evaluation
effort. (See Section 6.2.2 and [226, 227, 93, 204].)

2. After sound engineering analysis, avoid the use of selected Ada language features that
cause or are likely to cause difficulty.

3. Obtain a compiler that produces better quality code, including optimizations, for the selected
processor.

4. Selectively use assembly language. Based on sound engineering analysis of system
throughput bottlenecks, code parts of the system in assembly language. Note that the com-
piler in use must support either machine code inserts or pragma46 INTERFACE for assembly
language. (For additional information about mixing languages, see Section 8.4.1.)

5. Alternatively, fund modifications to an existing compiler to meet program-specific perfor-
mance or resource constraints or the development of a new compiler that produces better
quality code for the selected processor. Such activities include improving the generated
object code, tailoring the runtime software, and adding additional debugging capabilities.
Work with the compiler vendor to provide a series of benchmarks specific to the application
that the compiler must handle with adequate performance as a basis for accepting the
modified compiler.

46Pragmas are used to convey information to the compiler, for example, as an instruction to the compiler to perform some special
action such as compiler optimization or to interface to software written in other languages. There are two kinds of language
pragmas: those that are predefined in the language and those that are defined by the compiler vendor.

68 CMU/SEI-92-TR-29

6. Add resources (such as additional memory) to the selected target processor. However,
adding memory may require modifications and enhancements to the existing support tool set,
and may have an impact on weight, cooling, power, and other requirements.

7. Upgrade to a more powerful processor. While this is in principle the best solution for making
a more evolvable system, there may be issues regarding processor qualification to military
standards and supportability after the system has been deployed. Also, upgrading to a new
processor may require modifications and enhancements to the existing support tool set, and
may have an impact on weight, cooling, power, and other requirements.

8. Add additional processor(s) and decompose the software onto the processors. Concerns
here are the additional overhead and complexity of the protocols (more software) that will be
needed for the processors to exchange information. This processing load is difficult to quan-
tify and is further affected by system requirements for fault tolerance, multi-level security, and
the buses used to connect the processors. Adding additional processors may also cause
weight, cooling, power, and reliability problems.

7.3. Ada and Embedded Processors

A wide variety of embedded processors exist. For many of these processors, Ada is an ap-
propriate language choice. However, it is generally not cost effective to build or use any high-
order language, including Ada, on processors with unusual architectures, highly restricted in-
struction sets, or very specialized purposes.

Using any high-order language (HOL), including Ada, may not be cost effective or even possible for
certain classes of processors since all processors have varied capabilities. Some processors are
designed and optimized for single purposes, while others are intended for general-purpose use. This
orientation directly affects which programming language(s) can be used on a particular processor. Some
recently developed processors (that possess large storage capabilities and instructions for conveniently
accessing this storage) provide a more attractive target for high-order languages (including Ada) than do
older, more resource-constrained processors.

Table 7-1 assesses the applicability of Ada on various processors based on the following factors:

• Tool development: Effort and cost required in developing and maintaining compilers and sup-
port tools.

• Quality of the resulting product: Specifically, what kind of code is generated? After the code is
generated, will additional application and project-specific optimization be needed?

• Effect on software developers: Does the underlying hardware help or hinder the application
software developer? Do attributes of the target processor add complexity, lower productivity, or
increase the possibility of error?

7.3.1. Non-Standard Architectures: Action Plan

When considering a non-standard architecture, several factors should be addressed in ad-
dition to the evaluation of available Ada compilers.

While innovative approaches to processor and memory configurations are always encouraged, prior to
adoption:

1. Consider potential difficulties in hardware evolution as the system goes through its opera-
tional life cycle.

CMU/SEI-92-TR-29 69

2. Evaluate the impact on required software support. The costs of supporting unique or special
versions of software development tools for non-standard memory configurations over the
system life cycle can be considerable. The program manager should determine what special
tools (if any) will be necessary and what modifications to existing tools will be required, and
balance this against the advantages of the proposed hardware configuration.

3. Consider the potential impact on future competition if the system design is locked into non-
standard or proprietary architectures.

Category Description/Explanation Examples

Applicable General-purpose 32-bit processors
characterized by large linear address
space and rich instruction set.

DEC Vax family, Intel 80486, 80386,
80960, Motorola 68040, 68030, and
68020, SPARC, MIPS processors

Applicable with
Minor
Reservations

General-purpose 16-bit processors and
resource constrained 32-bit processors.
Extended memory and distributed
machine applications might provide
minor problems.

Intel 80286, Intel 80186, Motorola 68010
and 68000, MIL-STD-1750A,
AN/UYK-43

Applicable with
Reservations

Older, general-purpose 16-bit proces-
sors, usually characterized by hardware
memory constraints. Expected problems
are extended memory and distributed
machine applications.

Intel 8086, MIL-STD-1750A,
AN/UYK-44, AN/AYK-14

Limited
Applicability

Special-purpose machines. Ada com-
pilers are available for some digital sig-
nal processors and special-purpose
processors.

Digital signal processors (such as TI
C30 DSP or Motorola 96002), array
processors

Not
Applicable

General-purpose 8-bit processors. Intel 8088, 8051, 8031, Motorola 6809

Table 7-1: Ada on Various Processors

7.4. Ada for Real-Time Systems

Ada has been shown to be effective for the implementation of real-time systems. New design
paradigms, such as rate monotonic analysis, have allowed Ada to address the complexity in
real-time systems design.

Concerns have been raised about Ada’s usefulness in programming real-time systems.47 These con-
cerns, which are somewhat anachronistic since some compilers have solved these problems, fall into two
areas:

1. Efficiency

• Some Ada implementations do not handle interrupts with acceptable efficiency.
However, some implementations can handle interrupts with an efficiency equal to
assembly code. (Usually this approach requires the use of pragmas.)

47Real-time refers to computer processing in which the timeliness of the functions is as important as the correctness of the
functions. Real-time systems control, direct, or influence the outcome of an activity or process in response to the data it receives
from the activity or process. Examples of real-time systems are process control, target acquisition and tracking, and computer-aided
navigation.

70 CMU/SEI-92-TR-29

• Some Ada implementations take too long to switch from running one task to
another.48 However, some implementations have been very efficient in context
switching performance or switching between tasks.

• Code generated by some Ada compilers is less efficient in time and space than that
generated by compilers for other languages. Code generated by Ada compilers can
be as efficient or more efficient than code generated by compilers for other lan-
guages. (See Section 6.2.2.2.)

2. Timing Control

• When a task needs to execute at a periodic rate, it appears to be difficult to control
the rate with sufficient accuracy. Hartstone benchmark results [92] have proven that
many Ada compilation systems can reliably meet hard deadlines.

• Ada tasks are scheduled for execution under control of runtime software (a
scheduler or executive) written by the compiler vendor. If this software does not
meet the needs of a particular real-time application, it may be difficult or costly to
modify. Most compiler vendors will tailor their runtime systems or make available
source code for their runtime systems for an appropriate licensing fee.

• It can be difficult to analyze the timing behavior of a system of Ada tasks, and the
behavior can depend significantly on runtime software that is not under the direct
control of application programmers. Appropriate analysis and benchmarking tech-
nologies, such as rate monotic analysis [204] and Hartstone [93], allow the timing
behavior of a system comprised of Ada tasks to be analyzed.

These concerns generally apply to some implementations of compilers and runtime systems, not to the
language, and do not mean that Ada cannot be used for real-time systems. Real-time systems have
been written in FORTRAN and JOVIAL, languages that do not support concurrent processing directly, as
well as in Ada.

7.4.1. Real-Time Systems: Action Plan

Ada has been used successfully in real-time systems. Several actions can be taken to aid in
using Ada for real-time systems.

To ensure the successful use of Ada for real-time systems:

1. Assess the performance and timing requirements of the proposed system. This may require
prototyping and benchmarking, as well as analysis. Rate monotonic analysis may be an
appropriate technique for use in designing many real-time systems [204].

2. Check that the proposed compiler efficiently supports real-time features needed, such as
interrupt handling and context switching. If interrupt handling is not efficient, consider using
assembly language for interrupt handling (which is a small portion of a system’s overall
code). If context switching is not efficient, consider selecting another compiler after a
thorough evaluation.

3. Design the system correctly. Analyze the required execution threads (or processing flows) for
each stimulus (or input) through to the response (or output) and minimize the task switches
on critical threads. A timing analysis can indicate when to combine Ada tasks, as an ap-
propriate number of Ada tasks leads to an efficient design. Rate monotonic analysis
[189] may be an appropriate technique for performing timing analyses and evaluating sys-
tem design.

48Tasks are Ada’s way of achieving concurrent processing.

CMU/SEI-92-TR-29 71

7.5. Ada for Distributed Systems

As with other uses of Ada, Ada should provide improved maintainability and reduced long-term
costs when used for developing distributed systems.

Although no currently approved DoD language was designed specifically for developing distributed sys-
tems, Ada can be used in this domain [33, 60, 88, 170, 31, 114, 67, 19, 63, 15]. One way of using Ada in
distributed systems is to write independent Ada programs that execute on each node of the system. The
software resident in the various nodes communicate by a message-handling protocol implemented out-
side the Ada language. This loosely coupled implementation is typical of many existing distributed sys-
tems, and Ada can be used in the same way. The advantages of using Ada instead of some other
language are improved maintainability and reduced long-term costs.

A second kind of distributed system is a tightly coupled system, where multiple processors share an
address space. The use of Ada for these systems is possible, but brings increased risk.

A third kind of distributed system is a massively parallel system for which Ada compilers are not yet
available, although some vendors are working toward those capabilities [166].

72 CMU/SEI-92-TR-29

CMU/SEI-92-TR-29 73

8. System Design and Implementation Issues

8.1. Designing for Portability and Reuse

Ada’s standardization and its language features mean that Ada is especially suitable for
promoting software reuse. However, Ada does not automatically make software reusable.
Rather, Ada enables development of portable and reusable software.

8.1.1. Portability

Portability of software across computing platforms can be enhanced through effective use of Ada.

Portability is the extent to which software can be moved without modification between different computing
platforms (hardware, operating system). Portability can be either at the level of source code (which must
be recompiled on the new platform) or executable code (which can be executed on the new platform).
Portability has traditionally been a significant problem due to programming language (and dialect)
proliferation; some modification seems to almost always be required when porting.

The source of the software, the development environment, execution environment, and application
domain have been the key components in assessing the portability of software. When porting software,
the reasonableness of the port must be considered. For example, porting a piece of code that imple-
ments a fairly generic function is often straightforward, but porting software that is tightly coupled with
particular hardware or operating system constraints is usually much more difficult.

As opposed to other languages, a major benefit of Ada is that Ada is standardized, and compiler valida-
tion has effectively limited the evolution of non-standard language dialects. Thus, Ada portability com-
pares very favorably to other languages because of language standardization, the modularity constructs
of Ada (packages), and its abstraction capabilities (e.g., types, attributes), which encourage isolation and
localization of machine dependencies. Ada’s language standardization and compiler validation are impor-
tant contributions.

But compiler validation (compliance with the ACVC) and language features do not guarantee portability.
Portability can be compromised by:

• tradeoffs made to maximize performance

• environment-specific features (operating systems services, user interfaces, database manage-
ment system (DBMS), etc.) used

• implementation-dependent features (data representations, capacity limitations)

• poor attention to portability during system design

Portability does not occur automatically through the use of Ada. It must be planned, designed, and coded
into the software. However, portability can provide substantial benefits. In one MIS application, the man-
machine interface software has been ported to six different targets with minimal impact [214].

74 CMU/SEI-92-TR-29

8.1.2. Reuse

Ada provides features that can enhance reuse of software architectures and components.

Ada has helped overcome some of the historical inhibitors to reuse. Ada’s language standardization and
unique facilities such as packages, generics, and separate compilation have provided a catalyst for reuse.
Ada allows interfaces to be precisely defined so functions performed by a software unit are obvious,
precise, and regulated. These capabilities, if properly used, will facilitate the reuse of software com-
ponents. However, Ada does not automatically make software reusable; rather, facilities are available to
design a component for reuse. Indeed, programming for reuse may require a higher level of effort than
normal programming [21].

There are numerous successful instances of reuse-based development that have resulted in significant
cost savings and quality improvement for the organizations involved. These range from commercial
process control applications to air traffic control systems and advanced real-time command and control
systems [184, 228]. The French firm Thomson CSF reports 50 percent to 70 percent and higher reuse
rates in developing numerous air traffic control systems, entirely in Ada, for their various international
clients [228]. Ada reuse is continuing to grow [166].

8.1.3. Designing for Portability and Reuse: Action Plan

Ada provides capabilities that can be used to support portability and reuse concepts.

To achieve portability or develop reusable software, projects must:

1. State portability or reuse as a design objective.

2. Plan appropriate time/budget (portable/reusable systems may cost more to develop initially).

3. Localize implementation dependencies (collect system-dependent objects/operations into as
few packages as possible).

4. Design for change. Group parts of the system that are expected to change together using
Ada packages.

5. Identify and enforce use of well-considered Ada features (e.g., attributes) and style
guidelines.49

Whenever possible, design every system as if it will have to be ported to a variety of configurations
through which the system may evolve over a 20- to 30-year life cycle, given fixed budget, schedule, and
resource constraints. This is not far-fetched, as systems developed today will be in operation 20 years
from now, and hardware advances are occurring almost every year. Following modern software en-
gineering practice, portable software localizes dependencies on the target machine and insulates the rest
of the software from those dependencies. These practices also improve the quality of the software.

Portability and reuse are design goals that management should plan for by allocating sufficient resources
(time and money) to development efforts to plan for and meet these goals. Portability and reusability are
not free, but should be given serious consideration in managing software efforts.

49See also Portability and Style in Ada [178], Ada Quality and Style Guide [138], and [96].

CMU/SEI-92-TR-29 75

8.2. Using Ada with Other Standards and Protocols

Ada interfaces to other systems and standards are available. New implementations of inter-
faces (or bindings) are continuing to emerge. This is a direction of the future; while early
concerns regarding Ada use dealt primarily with language implementations, attention is now
turning to successful integration of Ada software in overall systems environments.

As Ada use becomes more common in software-dependent systems, and as requirements grow, system
developers will be faced with both the benefits and problems of adopting more disciplined and integrated
approaches to software engineering. It is important that Ada applications be able to effectively use
whatever resources are needed to produce a complete system. These resources could include operating
systems or communications services, database management systems, graphics packages or user inter-
face management systems, or interfaces to COTS software or other existing systems. These resources
may be formal standards, de facto standards, or commercial products that have become widely available.

Using these resources from an Ada application will frequently require that an Ada binding to these stan-
dards and protocols be developed. Each of these bindings is a definition of a set of services that can be
provided to an application and an interface through which those services can be accessed. For an Ada
program to use these services, a definition of the interface (or binding) must be expressed in terms of the
Ada language. The application developer still needs to have available an implementation of that binding
to build Ada applications.

Sometimes a binding effort may take place as part of a formal standardization program — with public
input and representation from both the Ada community and the community most interested in the stan-
dard. At other times, a particular organization or company may implement a binding only for a particular
product, Ada compiler, application, etc.

Foremost among these issues is the reality that Ada is not often the first choice for defining and im-
plementing bindings. A troubling issue is that an Ada binding may be issued later than a C binding and
the implementation of the Ada binding may even be later.

Program managers need to be very careful that they do not over-constrain their contractors by requiring
"Ada for the sake of Ada" and ignoring sensible, thorough, complete life-cycle analyses that effectively
demonstrate when reuse, standards, COTS, or languages other than Ada would provide a more cost-
effective life-cycle solution.

Numerous Ada bindings exist (e.g., POSIX, SQL, X Window, GKS, Motif, PHIGS) and more are being
developed. The AJPO has completed a survey of available bindings [133]. Reasonable future expec-
tations on bindings and standards issues include continued and increased availability of bindings and
secondary standards for Ada.

The following sections address three commonly discussed bindings: POSIX, SQL, and the various
graphics and window system bindings.

76 CMU/SEI-92-TR-29

8.2.1. POSIX Ada Bindings

Ada bindings to POSIX have been standardized, and Ada bindings to POSIX real-time exten-
sions are being developed.

The Portable Operating System Interface for Computer Environments (POSIX) is an international stan-
dard for operating-system interfaces [149]. POSIX is defined as a full set of standards, including a base
standard (ISO/IEC 9945-1:1990/IEEE Std. 1003.1-1990) and several functional extension standards
covering such topics as real-time (IEEE Std 1003.4/4a), shell and utilities, and supercomputing. The base
POSIX interface standard is derived from a variety of UNIX specifications and implementations.

The Ada POSIX Standards Working Group (IEEE 1003.5)50 is developing two Ada interface standards:

1. Ada interface to base POSIX: The Ada binding to the POSIX system services has been
approved as an IEEE Standard (IEEE Std. P1003.5-1992).

2. Real-time interfaces: A follow-on project, IEEE P1003.20, is defining Ada language inter-
faces to the P1003.4/4a real-time POSIX extensions. Work commenced in October 1991.

The base POSIX Ada binding document defines the set of standard Ada 83 package specifications and
provides English text describing the semantics of those packages. This binding definition covers the set
of system services defined in POSIX 1003.1, including files, directories, processes, and signals. It also
includes an interpretation of some Ada features (e.g., TEXT_IO) in a POSIX context. It does not cover
facilities covered in other POSIX documents (e.g., real-time, security, system administration, and network-
ing). Several vendors are planning implementations of the Ada binding. In general, these implemen-
tations will be compiler specific, as some features of the binding require cooperation from the compiler
and its runtime.

8.2.2. SQL Bindings

Several approaches to using Ada with the SQL interface to database management systems
have resulted in emerging standards.

The Structured Query Language (SQL) is an interface to database management systems. There has
been much interest in Ada bindings to SQL, as only bindings for the COBOL, FORTRAN, Pascal, and
PL/1 languages were included in the SQL standard [14]. The Ada binding is in the current ISO SQL2
standard (ISO 9075:1992).

The SEI has investigated the problem of binding the Ada programming language with the SQL database
language [95]. The solution to this problem was the specification of the SQL Ada Module Extension
(SAME), an architecture for Ada SQL applications that emphasizes software engineering principles [115].
The SQL Ada Module Description Language (SAMeDL) [52] facilitates the construction of Ada SQL ap-
plications having the SAME architecture. The ISO Ada working group is preparing the SAMeDL for
standardization [213]. This process is due to be completed in 1993.

50See Appendix B.2 for contact information.

CMU/SEI-92-TR-29 77

8.2.3. Graphics and Window System Bindings

Ada bindings have been implemented for a number of graphics or windowing systems stan-
dards that are in widespread use.

In implementing graphical user interfaces (GUI), several graphics or windowing system standards are
often used. These include Graphical Kernel System (GKS), Programmer’s Hierarchical Interactive
Graphics System (PHIGS), and the X Window System. Various Ada bindings have been implemented for
these standards.

For example, the Ada binding to GKS, which is a standard library of subroutines for an application
programmer to incorporate within a program to produce and manipulate graphical images, is an ANSI/ISO
standard (ANSI document #X3.124.3/ISO 8651-3). The Ada binding to PHIGS, which is a graphics sys-
tem designed to support computer graphics applications that are highly dynamic and interactive, is also
an ANSI/ISO standard (ANSI/ISO 9593-3 - PHIGS/Ada binding). Work is underway to develop a binding
to the enhanced PHIGS — PHIGS PLUS. The PHIGS PLUS/Ada binding, when approved, will be
published as an amendment to the PHIGS/Ada binding.

The X Window System is a network-transparent window system. It supports one or more screens con-
taining overlapping windows or subwindows. X Window systems are typically used with either the OSF
Motif (Open Software Foundation/Motif) or the Open Look graphical user interfaces. Numerous Ada bind-
ings or Ada-based user interface toolkits interfacing to X Window or to its toolkit libraries have been
implemented.

8.3. Using Special-Purpose Languages

Ada is better for some applications than for others. In some cases, special-purpose languages
may still be appropriate for specific applications.

Special-purpose (or problem-oriented) programming languages have historically been developed to sup-
port highly specialized applications. As such, there is a large, mature base of software in these languages
and application areas that may take several years for Ada to replace. The languages (and application
areas) considered below are:

• ATLAS for automatic test equipment applications
• Simulation languages such as SIMSCRIPT and GPSS
• Artificial Intelligence languages such as LISP
• ‘‘Fourth-generation’’ languages for database and interactive applications

8.3.1. ATLAS

Although DoD policy had specified that Ada is preferred (but not required) as the language to
be used for hardware unit under test (UUT) equipment [78], current DoD policy [79] authorizes
the use of ATLAS in automatic test equipment.

ATLAS [131] is a programming language designed specifically for use in controlling test equipment. As
such it is an acceptable and often appropriate choice for use in automatic test equipment. ATLAS is a
DoD-approved language [77] for programming automatic test equipment (ATE). It contains special fea-
tures that allow the direct expression of wave forms, timing requirements, and stimulation patterns, all of
which are critical to the development of this type of software.

78 CMU/SEI-92-TR-29

Although the functionality of ATLAS could be supported in Ada (by writing Ada subprograms that have
functional capabilities similar to those provided by ATLAS commands), much code provided directly by
ATLAS would have to be specially written if Ada were used. While much of this software could be reused
in subsequent applications, the initial development cost would be significantly higher if the required
software were not already available in Ada. In addition, software written in ATLAS may be more readable
by test engineers than equivalent software written in Ada, simply because ATLAS has special language
constructs that are particularly suited to expressing ATE algorithms.

On the other hand, Ada’s superior capabilities for giving large software systems an understandable struc-
ture make it a preferable choice for large, complex ATE projects. There is ongoing work in the IEEE
Ada-Based Environment for Test (ABET) standards development arena that will take advantage of Ada
programming and implementation features while retaining the high-level, Unit Under Test (UUT) test
specification aspects of ATLAS [165, 169]. This standard (IEEE 1226) is planned for release in 1994.

8.3.2. Simulation Languages: SIMSCRIPT and GPSS

For simulation programming, it may be preferable to use one of the special-purpose simulation
languages; nevertheless, simulation software is being written effectively in Ada.

SIMSCRIPT and GPSS are examples of special-purpose languages for programming simulations. For
example, these languages allow a software developer to sample from various probability distributions,
specify when certain events of interest to the simulation are to occur, and indicate what data are to be
gathered when the events occur. They also have special features that help in reporting results.

Effective simulation software has been written in Ada. Ada has been used extensively in the flight
simulator domain.51 Since Ada has no language constructs or predefined subprograms specially
designed for simulation programming, simulation developers will initially have to write more code to
provide the same special-purpose simulation language facilities in Ada. Ada software can be written to
support simulation programming, and many of Ada’s initial applications have been in the simulation arena.
Once written, these routines can be used by future simulation efforts.

8.3.3. Artificial Intelligence Languages: LISP

Once an artificial intelligence (AI) technique is well understood and is to be engineered into an
application, it may be appropriate to use Ada as the language for implementing the operational
application. For AI research, LISP is more appropriate.

LISP is the language of choice for artificial intelligence (AI) research. Like Ada (and unlike ATLAS,
SIMSCRIPT, or GPSS), LISP is a general-purpose language. LISP programming is typically done in a
rich programming support environment; the programming support tools (which are written in LISP) are a
strong reason for continued interest in LISP.

LISP is used for AI research applications because LISP software is easy to change. Ease of change is
important in AI research, where the objective is usually to discover how to make a computer perform a
task that is not well understood. LISP offers a high degree of flexibility to small teams of skilled

51See [157] for one such example that has had wide impact in this community.

CMU/SEI-92-TR-29 79

developers working on prototypes, but that very flexibility may be inappropriate for a large team of
programmers facing a significant engineering activity.

Ada supports a different view of software development, which says that changes can be hard to imple-
ment correctly and should be done using a language that helps detect inconsistencies in a changed
system, and supports administrative control over the change process. This viewpoint is appropriate for
large, long-lived systems, which may have several versions to be managed and maintained.

These viewpoints are less clear when moving from research to operational applications. Although LISP
has been used extensively for AI research, if the result of some AI research is to be used in an opera-
tional system, LISP may no longer be the most appropriate language. For example, making software
easy to change has a price — LISP software is typically less efficient in the use of time and space than is
Ada. In addition, because LISP is easy to change, it is easy to change incorrectly; such errors are usually
easy to fix during the research phase but difficult to fix when a system is widely distributed and in opera-
tional use.

Depending on a sound engineering study of an application, LISP may be too inefficient for operational
use. If so, the information developed during the research phase can be used to design a more efficient
(albeit less easily changed) system that can be used operationally. In such cases, it will probably be
better to implement the operational system using Ada. On the other hand, LISP may continue to be an
appropriate choice for an operational system if:

• time and space efficiency are not critical or the target computer is specially designed to execute
LISP code efficiently;

• functional changes will be required frequently (e.g., at least monthly), but the nature of the re-
quired changes cannot be predicted easily; and

• sufficient safeguards are taken to ensure that changes are made correctly or to minimize the
effect of an incorrect change.

8.3.4. Fourth-Generation Languages

Fourth-generation programming languages are cost effective when used appropriately. Their
main drawbacks are limited domain of usability (they cannot satisfy the needs of some ap-
plications), slower performance, and possible dependence on a single vendor.

Fourth-generation languages (4GL), which include application-specific database languages, spread-
sheets, and non-procedural languages, are not direct descendants of, and not necessarily improvements
over, third-generation, general-purpose languages. They might better be called program generators or
application-specific tools and are designed for a limited domain of use.

If an application is well matched to a fourth-generation language, the cost of realizing the application can
be significantly less expensive than programming it in a general-purpose language such as Ada. For
example, spread sheets are routinely used to develop in hours applications that would require days in a
general-purpose language like Ada.

While fourth-generation languages offer significant advantages in productivity and rapid prototyping, there
are some significant disadvantages to consider:

80 CMU/SEI-92-TR-29

• Limited domain of applicability: Fourth-generation languages are quite effective when used for
appropriate application domains, but the area of appropriate use is bounded — if some part of an
application lies outside the domain of a fourth-generation language, serious performance
penalties may result, or the language may not be usable at all. A project might initially have
great success using a fourth-generation language, only to discover later that certain require-
ments cannot be met successfully and a completely new approach is required. In addition,
fourth-generation languages to date have been most effective when applied to small projects;
large projects have presented additional difficulties.

• Performance: An application using a fourth-generation language usually runs slower than an
equivalent solution written in a high-order language. This performance degradation may be an
acceptable tradeoff in some applications, given the increase in programming productivity, but
fourth-generation languages are usually not well suited to applications that stretch the perfor-
mance capabilities of a system.

• Vendor dependence or lack of control: Fourth-generation languages tend to be commercial
products and are thus highly susceptible to the pressures of the marketplace. If an application is
meant to have an extended life cycle, the product may change and become incompatible or even
disappear.

Chances of success with a fourth-generation language are good if the requirements fall within the domain
of the particular fourth-generation language. If this criterion is not met, there is considerable risk that the
effort will result in failure.

8.4. Mixing Ada with Other Languages

Mixing Ada with other languages is possible, provided consideration is given to technical and
management issues. On the other hand, ‘‘automatic’’ translation of code written in other lan-
guages should be approached cautiously.

The question of mixing languages is important to managers of both new developments and existing
operational systems (post-deployment software support). Among the questions of interest are:

• Should Ada be used in the next upgrade?

• Is it appropriate to develop and maintain a system partly in Ada and partly in some other lan-
guage, thereby creating a hybrid system?

The following criteria can be used to answer these questions:

• Can the Ada code interface with code written in another language?

• Is the replaced portion relatively independent of the rest of the system?

• Is much of the system being replaced?

• If a hybrid system seems inappropriate, should the system be rewritten entirely in Ada, even
though large portions of code would not otherwise have to be changed?

8.4.1. Interfacing Ada Code with Other Languages

When mixing Ada with other languages, several technical issues should be addressed.

Among the issues to be considered in attempting to interface Ada with other languages are:

• Can the Ada code call subroutines written in other languages? Alternatively, does the new Ada
code have to be called from the rest of the system? For example, can a COBOL or JOVIAL
compiler generate code to call Ada subprograms?

CMU/SEI-92-TR-29 81

• What kind of data have to be processed by both the Ada code and the rest of the system? Can
the data be represented in a way that is acceptable to both languages?

• How much redundant or unused runtime support software will be present in the completed sys-
tem? Can the runtimes for the languages co-exist efficiently?

The following subsections present further details.

8.4.1.1. Subroutines Not Written in Ada

Efficiently interfacing Ada with another language requires the ability to call subroutines written
in other languages.

Subroutines written in COBOL, JOVIAL, assembly, or some other language can be called from the Ada
software if an Ada compiler supports the pragma INTERFACE for those languages. If this pragma is not
supported for the language and compiler52 of interest, the cost and schedule implications of obtaining
support should be determined. Similarly, if the existing code must call Ada subprograms, modifications to
the compiler for the other language may also be necessary.

However, some vendors have implemented multi-language integrated environments whereby any of their
supported languages (Ada, JOVIAL, FORTRAN, etc.) can call subprograms in any language.

Another strategy is providing explicit implementation-dependent import/export capabilities. From any
vendor-supported language, one can access subprograms and (in some cases) data objects from
programs in other languages. There is a growing request for a more standard interface to achieve this.

8.4.1.2. Compatible Data Representation

Compatibility of data representation is a critical although often overlooked factor in interfacing
with another language. Incompatibility can lead to inefficient code or difficulties in implement-
ing an interface.

Another requirement for implementing a hybrid system is assuring the compatibility of data representation
between Ada and the other language.53 The data interface between the languages must be specified
and controlled, just as it is between processors and buses. Key questions program managers must
answer include:

• What data will be interchanged between the Ada and non-Ada portions of the system?

• Will the storage layout for these data be the same for both languages? If not, can it be made the
same?54

• If the storage layout cannot be made identical, how will efficiency be affected?

52The interface is created to a specific compiler — for example, a specific FORTRAN compiler, not to just any FORTRAN
compiler.

53For example, arrays in FORTRAN are typically stored differently from arrays in Ada. So, although a FORTRAN matrix inversion
routine may be called from Ada, the FORTRAN language will view the matrix as though its data are arranged differently from the
Ada view and will produce incorrect results. (This kind of incompatibility is not uncommon between languages.) On the other hand,
if the Ada implementation is designed to support interaction with FORTRAN software, it may store arrays in the manner required by
FORTRAN, or it may give a means to specify how data are represented so no problem will arise.

54While the Ada language provides special features (representation clauses and implementation-dependent pragmas) that allow
software developers to specify data storage layouts in detail, at present not all Ada compilers adequately support these facilities.

82 CMU/SEI-92-TR-29

8.4.1.3. Redundant Runtime Support

Using two languages may require examining how the functionally redundant runtime software
environments will co-exist.

Runtime support for a language is the code needed to implement its complex features. If a system
contains code written in two or more languages, the runtime support code for both languages will
generally be needed. For example, suppose a system is written in COBOL, which has extensive I/O
support facilities. Suppose the unmodified portion of the original system continues to use COBOL’s I/O
facilities, and the replaced portion uses Ada’s I/O facilities. Runtime support code will be needed for both
the Ada and COBOL portions of the system, which can be unnecessarily expensive in space. If, instead,
the modifications were designed so that all I/O processing were done by the COBOL code, then Ada’s I/O
runtime support code need not be loaded. The savings in space could be significant in a resource-limited
system.

Although it may not be necessary to load Ada’s runtime support for I/O, some less mature compilers may
load it anyway. The extent to which a compiler loads only the needed runtime support software is an
important factor in deciding whether it is feasible or cost effective to write just a portion of a system in
Ada. Only a detailed analysis will provide answers to these important factors.

Key questions regarding runtime support include:

• Can the runtime environments co-exist? Various languages assume different system memory
models or have different paradigms regarding the scheduling of tasks. This type of incompatibility
may cause unpredictable system behavior.

• How much runtime support code is associated with the use of particular Ada language features?

• Is runtime support software loaded whether or not it is actually needed?

• Is some of the runtime support essentially the same for both Ada and the other language? If an
overlap is significant, is it necessary to use the associated Ada features?

8.4.2. Isolating Subsystems

To minimize language incompatibility, the portion of the system that is written in one language
should be relatively independent of the portion written in another language.

It may be appropriate to write a new portion of a system in Ada if the new portion is relatively isolated
from the unmodified portion. Two examples where Ada might be successfully introduced are:

• DBMS/file system interfaces: Suppose the unmodified portion of a system is a database
management system (DBMS) written in COBOL or purchased from a vendor (so its source code
is not available). If the remainder of the system consists of software that accesses the DBMS
and processes the results of DBMS queries, then calls to the DBMS can probably be written as
easily in Ada as in any other language.

• Distributed systems: On a distributed system, it should be possible to replace the code that
exists on the individual processor node(s) as long as the system-wide interfaces are maintained.

CMU/SEI-92-TR-29 83

8.4.3. Replacing the Whole System

Possible indicators that a system should be totally reimplemented in Ada include continual
trouble reports, significant software change, or new target hardware.

If a system is operating smoothly, replacing that system just for the sake of having it in Ada is generally
not recommended. However, there are several rules of thumb that may indicate the need for a system
replacement. Assuming the availability of tools for the target processor, Ada should be the replacement
language if any of the following situations exist:

• Poor overall system reliability: The existence of unresolvable trouble reports, significant dif-
ficulties in making corrections or enhancements, or an increase in new bug reports after
correction/enhancement activity may indicate fundamental system structure and reliability
problems.

• Significant software change: Software change can be manifested both individually and
cumulatively. For example, a significant individual change would require changing more than
one-third of the system at any one time, with the changes spread throughout the system.55

Cumulative sets of changes amounting to two-thirds from significant baseline also must be
managed carefully. While difficulties may not yet be apparent, such a degree of change most
likely indicates a structure that is becoming increasingly frail.

• Hardware replacement: Hardware upgrade or replacement provides an opportunity to also
upgrade the software design to take advantage of new hardware capabilities. In general, old
software running on new hardware may not take advantage of improved hardware capabilities
such as additional memory and graphical display capabilities. As such, maximum performance
improvement will not be achieved.

8.4.4. Translating Languages

Automatic translation from one programming language to another, while an intriguing idea,
should be approached cautiously.

Automatic translation (through the use of computer-based language translation tools) of existing code into
Ada is sometimes proposed when an existing system is upgraded. While a number of translation systems
exist, and translation offers the possibility of getting something running quickly, which may be very ap-
pealing in today’s fiscal climate, there are significant problems and issues to be considered before taking
this approach:

• Degree of translation: There are always some inherent incompatibilities between any two lan-
guages.56 Not all constructs in other languages can be translated automatically to Ada with
complete accuracy. A good translation system will flag possible mistranslations so they can be
manually inspected. If the existing software contains many problematic constructs, much manual
effort will be required to detect and fix possible mistranslations.

• Loss of software engineering benefits: The translated code will most likely be more difficult to
maintain than the original software and certainly more difficult to maintain than a system
designed and written in Ada from the start. Two example problem areas are:

55DoD policy [79] requires that Ada be used for major software upgrades of existing systems. A major software upgrade is the
redesign or addition of more than one-third of the software.

56Some languages, notably FORTRAN, have many different dialects, which makes translating even between dialects of the same
language difficult.

84 CMU/SEI-92-TR-29

• Readability: Automatic translators may generate strange, non-descriptive variable
names that decrease understandability of the code.

• System structure: Ada allows subprograms and data to be logically organized into
packages, which improve software understandability and modifiability and allow a
software developer to express intent more fully than in other languages. If such a
grouping is not present in the original system, an automatic translation system cannot
provide it.

• Special routines: Depending on the language being translated, there may be special functions
and capabilities such as those provided by the runtime system that are not directly translatable.
These special functions and capabilities may require that significant new code be written to
mimic them in the new language, at unknown consequences in program schedule and perfor-
mance of the resulting software.

• Testing: Translation does not guarantee that the resulting code will function in a manner com-
parable to the original code. For example, comparable language constructs may not be im-
plemented with comparable efficiency. In addition, the translated code may stress the compiler in
unusual ways, revealing new compiler bugs. In short, rigorous functional and performance test-
ing are required on the translated code. If acceptance tests exist for the original system, they
should be used.

In summary, language translation must be viewed as a risky, short-term proposition that will yield results
of unknown quality. Reengineering, redesigning, and recoding the system in Ada or interfacing newly
written Ada code with the current implementation are much preferred approaches.

If a translation strategy is being considered, an in-depth investigation of commercial and public domain
translators is strongly suggested as part of the feasibility study. This investigation should use a robust set
of test cases and benchmarks that are typical of the particular application. These benchmarks should
also be used to identify the amount of rework remaining after translation to fix problems and successfully
complete regression testing.

8.5. For More Information . . .

The following resource recommendations are intended as an initial starting point for those seeking more
information about the topics in this chapter.

Reuse

• Reuse: Where to Begin and Why [122]
• An Organized, Devoted, Project-Wide Reuse Effort [37]
• Software Reuse: Managerial and Technical Guidelines [123]
• STARS Reuse Concepts [210]

Portability

• Ada Quality and Style Guide [138]
• Portability and Style in Ada [178]
• The Myth of Portability in Ada [96]

Ada Bindings

• Available Ada Bindings [133]

CMU/SEI-92-TR-29 85

9. From Ada 83 to Ada 9X

Ada 83 is in use today, and a language revision process leading to a revised language stan-
dard (Ada 9X) is ongoing. Among the changes to be incorporated in the Ada 9X revisions of
the Ada language standard are improvements in object-oriented programming, programming
in the large, and real-time capabilities. Ada 9X is planned to be standardization in late 1994
with validated compilers becoming available following standardization.

9.1. Ada Language Revision Process

All standards must be periodically reaffirmed, revised, or allowed to lapse. The Ada 9X effort is
making such a set of revisions to the Ada language.

Part of the development and maturation embodied in an international standard is the process by which
standards organizations (such as ISO or ANSI) require that each standard be periodically reaffirmed,
revised, or allowed to lapse. This is not unique to Ada; all standards (including standardized languages)
must undergo this process periodically.

The Ada language standard [13] was published in 1983. In 1988, it was recommended that the Ada
standard be revised. Subsequently, the Ada 9X Project Office57 was established and, in early 1989, an
Ada 9X Project Plan [11] was put into place.

DoD, NIST (because Ada is also a government standard — FIPS PUB 119), and ANSI approval of the
Ada 9X standard is expected in 1994, as shown in Figure 9-1. Current plans call for DoD and NIST
adoption of the approved ANSI standard for Ada 9X. Although ANSI approval of the Ada 9X standard is
planned for late 1994, initial implementations may be available sooner, perhaps even before Ada 9X
compiler validation is available. ISO approval of the ANSI standard may take at least two years after ANSI
approval, due to voting procedures.

9.2. The Ada 9X Project

The Ada 9X Project is the effort to revise the standard for the Ada programming language,
obtain adoption of the revised standard, and effect a smooth transition from Ada 83 to Ada 9X.

The goal of the Ada 9X Project has been to revise ANSI/MIL-STD-1815A to reflect current essential
requirements while minimizing negative impacts and maximizing positive impacts on the Ada community.
On the other hand, as the design of the Ada language is based on late 1970s programming language
technologies, it is important to make enhancements to meet user needs in the many diverse applications
that Ada successfully supports today.

The Ada 9X Project has tried to balance the necessary changes for Ada’s continued growth in the 1990s
with the need for stability in terms of preserving the integrity of existing Ada software and tools. The
project has tried in a number of ways to balance these concerns, as demonstrated in the Ada 9X Project
Plan [11] and the Ada 9X Transition Plan [12].

57See Appendix B.3 for contact information.

86 CMU/SEI-92-TR-29

PRESENT 0 3 12 27

Months After ANSI Approval of Ada 9X Standard

ACVC 2.0 USAGE

ACVC 2.1 USAGE

DEC
1994

MAR
1995

DEC
1995

MAR
1997

39

ACVC 2.0 CERTIFICATE LIFE

ACVC 2.1
CERTIFICATE LIFE

MAR
1998

63 75

MAR
2000

MAR
2001

OCT
1992

ACVC 2.1 CERTIFICATE LIFE

Figure 9-1: Projected Ada 9X Schedule

The Ada 9X Project Office has had wide participation, both within and outside DoD, including the:

• Requirements Team (collated more than 750 revision requests from the public and more than
800 language issues and questions since Ada 83; performed tradeoff studies of proposed
changes; developed requirements for Ada 9X [71])

• Mapping/Revision Team (mapped requirements into proposed language solutions)

• Distinguished Reviewers (from industry, government, academia, tool vendors, system producers)

• ACVC Team

• ACVC Reviewers

• User/Implementer Teams (prototyped usage of proposed language changes in compilers and
multiple applications areas)

• Language Precision Team (ensured that no ambiguities were being introduced by changes to the
language)

The Ada 9X Transition Plan [12] describes activities that the Ada 9X Project will be undertaking to assist
in the transition from Ada 83 to Ada 9X. Three goals have driven this transition planning:

1. Meet user needs as soon as possible.

2. Promote the development of high quality Ada 9X products.

3. Recognize that there are diverse customer bases within the Ada community and that dif-
ferent vendors may support one or more of these customer bases.

The effect on managers, programmers, vendors, educators, authors, and various application domains will
be considered in this transition planning.

CMU/SEI-92-TR-29 87

9.3. Transitioning to Ada 9X

Ada 9X will not introduce radical changes to Ada 83. Rather, enhancements are being
planned to minimize incompatibilities, as Ada 9X is planned to maximize upward compatibility
with Ada 83.

The revisions leading to Ada 9X are intended to include only those changes that improve the usability of
the language while minimizing the disruptive effects of changing the standard. This is critical, as a
significant infrastructure and investment exist in Ada 83: its programs, programmers, training material,
tools, and experience base. Ada 9X is planned to be upwardly compatible with Ada 83 (i.e., most Ada 83
programs will compile and run under Ada 9X compilers).

Three major enhancements are planned in Ada 9X [215]:

1. improvements in object-oriented programming
2. programming in the large
3. real-time and parallel programming capabilities

It took several years after the release of Ada 83 to achieve production-quality compilers for numerous
applications. The Ada 9X Project is taking several steps to hasten the availability of usable Ada 9X tools.
Among these steps is a change in the concept of the Ada language standard in terms of a core language
and several annexes, which provide extended features for specific application areas. Thus, Ada 9X
compilers are anticipated to be available in several phases:

• Early-release compilers probably sometime during 1994 (before the Ada 9X standard is ap-
proved).

• Application-oriented, production-quality compilers, which implement the core language and
selected annexes, within two years after the standard is approved (approximately 1996).

• Full, production-quality Ada 9X compilers, implementing the full Ada 9X standard (core and an-
nexes), within three years after the standard is approved (approximately 1997).

However, great care is being taken to avoid sudden mandates to use Ada 9X prior to having the neces-
sary Ada 9X infrastructure well established (e.g., tools, training). More importantly to the program
manager, some Ada 9X issues must be addressed (e.g., which Ada standard to apply, when to upgrade
the system to Ada 9X or to continue doing system upgrades using Ada 83 tools and language).

A subgoal of the Ada 9X efforts was to maximize upward compatibility from Ada 83 in the addition of new
features and capabilities to the Ada 9X language. Complete upward compatibility is not feasible, given
the scope of changes being made. However, the number of incompatibilities is small.58 The Ada 9X
Project Office will produce a document describing what incompatibilities exist and how to write Ada 83
software to minimize changes in transitioning to Ada 9X. The Ada 9X Project is also developing tools that
will examine Ada 83 software to identify potential incompatibilities and recommend appropriate Ada 9X
alternatives. For example, software that is written in Ada 83 can be later compiled with an Ada 9X
compiler after the Ada 9X tool has been used to identify any incompatibilities. Vendors can expect a
gradual phase-in and a more stable test suite concentrating on language usage. Users can also expect a
gradual phase-in, with the norm being program managers making the decision on when to shift to Ada 9X.

58The proposed Ada 9X revision is upwardly compatible for most existing Ada 83 applications. Most incompatibilities are
restricted to combinations of features that are rarely used in practice. (A thorough analysis of the upward incompatibilities is
provided in [5].)

88 CMU/SEI-92-TR-29

The Ada 9X Project is also taking several steps to hasten the availability of usable Ada 9X tools. For
example, one such effort is the GNU Ada 9X compiler, which will be available from the Free Software
Foundation (meaning that free source code for an Ada 9X compiler will be widely available).59

Under the proposed policies, new projects will have the choice of using Ada 83 or Ada 9X until the final
Ada 9X validation suite (ACVC 2.1) is officially released (approximately 24 months after ANSI approval)
[12]. The new projects, which are scheduled for completion before ACVC 2.1 is released and that have
software end-products with a life expectancy of three years or more, must use Ada 83 (i.e., ACVC 2.0 will
not be used for project registration60 of compilers for long-lived projects). Issues regarding compiler
performance and quality will have to be evaluated as part of the compiler evaluation and selection
process.

As with today’s policies, existing non-Ada projects will transition to Ada if a major project upgrade is
planned. Existing Ada 83 projects can transition to Ada 9X if it is determined that Ada 9X brings neces-
sary or desirable functionality to the project. For Ada 83 projects using a project compiler, the "major
project upgrade" rule does not apply (i.e., Ada 83 projects using a validated Ada 83 project compiler do
not have to upgrade to Ada 9X).

However, if it can be determined that a program will make future use of Ada 9X enhancements, the
program may choose to design/code in Ada 83 to be as compatible as possible with Ada 9X (i.e., consider
life-cycle upgrades ahead of time).61 This might be a wise investment by the program office now, even
though the resulting impact will not be felt until the future. This is very similar to dealing with any other
preplanned product improvement (P3I) opportunities — planning ahead for a technology upgrade during
development.

The transition to Ada 9X will not be totally transparent; it will require attention to some of the transition
lessons learned from Ada 83 — improving people, tools and tasks to deal with Ada 9X and its improved
capabilities — and a wise program manager will anticipate this.

59The Ada 9X Project Office, in coordination with the AJPO, DARPA, and the DoD’s Corporate Information Management (CIM)
initiative, is sponsoring the development of GNU Ada 9X. New York University is working closely with the Free Software Foundation
(FSF) to develop a GNU Ada 9X compiler written in Ada. Release is planned prior to Ada 9X approval to allow users the opportunity
to have early hands-on experience with some of the Ada 9X enhancements. However, this compiler may not implement all of the
proposed Ada 9X standard, including the core language and annexes. Compilers will be targeted to personal computers, the Sun
SPARC workstation, and the Sun multiprocessor. Additionally, implementations of bindings to the X Window System, POSIX, and
Mach are also planned.

60A project compiler is a validated Ada compiler that is selected by a specific project and baselined in accordance with applicable
configuration management practices. A project compiler may be used for the life of the project. Project registration of the compiler is
recommended by [3, Appendix F]. Project registration is accomplished by having the project manager inform the AJPO that the
project will be using a particular compiler beyond its certificate life.

61A set of twelve coding guidelines for Ada 83 programmers has been developed which ensures that Ada 83 code will not
encounter the few presently existing incompatibilities, once this code gets transitioned into Ada 9X environments. These guidelines
are planned to be published in a paper by Dr. Erhard Ploedereder, Chairman of the Ada 9X Distinguished Reviewers, in Ada Letters.
These guidelines are also available on the Ada 9X electronic bulletin board.

CMU/SEI-92-TR-29 89

9.4. Ada 9X Validation

Ada validation policies are intended to support the transition to Ada 9X.

The Ada Compiler Validation Capability (ACVC) is the suite for testing conformance to the language
standard. The two versions of the ACVC planned for Ada 9X are shown in Figure 9-1. The first version,
ACVC 2.0, is planned to be officially released approximately three months after ANSI approval of Ada 9X.

All Ada validation certificates issued for validations completed with ACVC Version 1.10 expired on
December 1, 1990. ACVC Version 1.11 is currently the official validation test suite for Ada 83 and will
remain in effect until after ANSI adoption of Ada 9X. ACVC Version 1.11 may have test programs
withdrawn but there will be no additions, modifications, or re-issuance of an ACVC version that measures
conformity with the standard until Ada 9X. The certificates associated with validations completed with
ACVC Version 1.11 will remain current until release of the full Ada 9X ACVC. This extended life for
ACVC 1.11 means that there will be an overlap period between ACVC 1.11 (for ANSI/MIL-STD 1815A
validations) and ACVC 2.0 (for Ada 9X validations) allowing users the choice of Ada 83 or Ada 9X until
ACVC 2.1 (full Ada 9X testing) is required.

The first release of the ACVC for Ada 9X (ACVC 2.0) will consist of most of the Ada 9X tests and will be
modularly constructed62 so that vendors may choose the set of tests that best satisfies their customer
base. The number of modules will be kept small, and vendors must pass complete modules to get credit
for passing a particular validation module. All vendors must pass a core set of ACVC modules to obtain
compiler validation.

The next ACVC release (ACVC 2.1) will be similar to ACVC 2.0 but will be more complete, providing
coverage of the core Ada 9X languages and the annexes. This approach will aid in avoiding some of the
delays that had been encountered waiting for complete, validated Ada 83 compilers and will allow quality
products to reach users with the enhanced features that they need for their application domains. Thus,
early vendor implementations can be tailored to user needs. For example, if a real-time oriented compiler
is available and validated under ACVC 2.0, real-time users will not initially be penalized waiting for a full
ACVC 2.1 compliant compiler that implements all Ada 9X features. Some compiler vendors may decide
to skip ACVC 2.0 and put all their resources into validating Ada 9X compilers with the more complete
ACVC 2.1.

62This reflects the modularity of the Ada 9X language. As with Ada 83, there is a core language, which must be implemented in its
entirety. In Ada 9X, several annexes are defined, which provide extended features for specific application areas. These annexes
provide standard definitions for application-specific requirements for: systems programming, real-time systems, distributed systems,
information systems, safety and security, and numerics. The Ada 9X language will be defined in terms of the core language, which
is mandatory for compiler validation, and the annexes, which are, for the most part, optional.

90 CMU/SEI-92-TR-29

9.5. For More Information . . .

Recommended readings for those seeking more information about the topics addressed in this chapter
include:

Ada 9X

• Ada 9X Project Plan [11]
• Ada 9X Requirements [71]
• Ada 9X Transition Plan [12]
• Ada 9X Mapping:

• Volume 1 — Mapping Rationale [5]
• Volume 2 — Mapping Specification [6, 7]

CMU/SEI-92-TR-29 91

Appendix A: Ada Information

A.1. Readings

Recommended readings for those seeking fundamental Ada information include:

• Ada Adoption Handbook: A Program Manager’s Guide [this volume].
• Ada Adoption Handbook: Compiler Evaluation and Selection [226].
• Proceedings of TRI-Ada conferences [108, 97, 38, 99].
• Ada Language Reference Manual [13].
• Beginning programming texts using Ada, such as [102, 199], or other texts that introduce Ada to

readers with prior programming experience, such as [59], [36], [206], or [43, 171].

Collections of information about Ada include the ACM’s Resources in Ada [111]; Ada: Sources and
Resources [180]; and various bibliographies available through the Ada Information Clearinghouse (see
below).

Ada 9X publications include:

• Ada 9X Requirements [71].
• Ada 9X Transition Plan [12].
• Ada 9X Mapping:

• Volume 1 — Mapping Rationale [5]
• Volume 2 — Mapping Specification [6, 7]

A.2. Resources

A primary source for Ada-related information is the Ada Information Clearinghouse (AdaIC). The AdaIC
supports both the AJPO and the Ada 9X Project Office by distributing Ada-related information (see Sec-
tion B.3 for more information).

Ada information is also available through various electronic sources. This information is often more up to
date and more readily available than traditional printed materials. Various Ada-related electronic bulletin
board services (BBS) are available:

• Ada Information Clearinghouse — (800) 232-9925
• Ada 9X Electronic Bulletin Board — (800) ADA-9X25

A source of much Ada information, including information from the Ada Information Clearinghouse and the
Ada 9X Project Office, is an Internet-accessible computer (ajpo.sei.cmu.edu, 128.237.2.253). This
machine is sponsored by the Ada Joint Program Office (AJPO) and is accessible to anyone who has ftp
(file transfer protocol) access to the AJPO machine. On the AJPO machine, the directories contain Ada
9X documents and the contents of the Ada Information Clearinghouse electronic bulletin board service
(BBS). For example, an up-to-date list of validated Ada compilers is available from the AdaIC through its
electronic bulletin board services (BBS) or from this Internet-accessible computer.

92 CMU/SEI-92-TR-29

The following sample session illustrates an Internet user accessing the AJPO machine. Those on other
networks will need to consult their system managers to determine whether they have ftp access to these
Internet databases.63

In this script, which retrieves the latest listing of validated compilers, lines on which the user enters
information are preceded with asterisks. The commands and information that the user types are shown in
italics. It should be noted that "cd" is the UNIX "change directory" command. At any directory, the user
may type "ls" for a listing of the files or directory entries that are contained in the current directory.

To retrieve the latest validated compiler list:

1. Connect to the AJPO machine.

* ftp ajpo.sei.cmu.edu
Connected to ajpo.sei.cmu.edu.
220 ajpo.sei.cmu.edu FTP server (SEI Version 4.3 Fri Jun 19 13:27:55 EST 1992) ready.

2. Login to the AJPO machine.

* Name (ajpo.sei.cmu.edu:): anonymous
* Password (ajpo.sei.cmu.edu:anonymous): your name here

331 Guest login ok, send ident as password.
230 Guest login ok, access restrictions apply.

3. Move to the public directory containing Ada information. NOTE: ftp> is the prompt from the AJPO
machine.

* ftp> cd public/ada-info
250 CWD command successful.

* ftp> ls
200 PORT command successful.
150 Opening data connection for /bin/ls (128.237.1.26,3917) (0 bytes).

At this point, the listing of all the files in the ada-info directory will appear. This listing is quite long, and
may scroll off your screen. This example shows only the last few lines of the listing:

val-comp.hlp.01Oct92
val-doc.hlp.19May92
val-nov.hlp.01Dec90
val-proc.hlp.01Aug90
valfacil.hlp.05Dec91
vsr-docu.hlp.29Jul92
withdrwn.hlp.08Aug91
x-survey.hlp.01Nov91
226 Transfer complete.
1881 bytes received in 2.73 seconds (0.67 Kbytes/s)

4. Determine the correct filename to retrieve the current list of validated compilers. The filename begins
with val-comp.hlp. and ends with the as-of date of the file. In this example, we are retrieving the file
val-comp.hlp.01Oct92.

63The best resource on the various networks and how to navigate among them is given in The Ada Software Repository and the
Defense Data Network [61].

CMU/SEI-92-TR-29 93

5. Retrieve the current list of validated compilers, using the correct filename (including the as-of date at
the end of the filename).

* ftp> mget val-comp.hlp.01Oct92
* mget val-comp.hlp.01Oct92? y

200 PORT command okay.
150 Opening data connection for val-comp.hlp.01Oct92 (128.237.1.26,3919)(154176 bytes).
226 Transfer complete.
local: val-comp.hlp.01Oct92 remote: val-comp.hlp.01Oct92
161570 bytes received in 0.85 seconds (1.9e+02 Kbytes/s)

6. Logoff the AJPO machine.

* ftp> quit
quit
221 Goodbye.

7. The file containing the list of validated compilers will appear in your current directory. This file is
currently named valcomp.hlp.01Oct92; the date at the end of the file name will change as the file is
updated by the AdaIC.

There are other sources of useful Ada information. For example, Grebyn Corporation64 has available an
annotated Ada reference manual that intersperses all the approved language commentaries in their
proper place in the language reference manual.

Asset Source for Software Engineering Technology (ASSET) is a focal point for software reuse and
provides reusable software components, based in the ASSET library, as well as descriptions and loca-
tions of components available from other software reuse libraries. See Section B.3 for additional infor-
mation on ASSET.

64Contact Grebyn Corporation, P.O. Box 497, Vienna, VA 22183-0497, (703) 281-2194, E-mail: products@grebyn.com, for further
information.

94 CMU/SEI-92-TR-29

CMU/SEI-92-TR-29 95

Appendix B: Ada Working Groups and Resources

Many groups are involved in Ada technology activities. In the following sections, details of various groups
are discussed, including:

• professional organizations
• standards organizations
• U.S. government-sponsored/endorsed organizations
• DoD Software Executive Officials

Contact information is provided; where known, Defense Switched Network (DSN, formerly AUTOVON
numbers) and/or electronic mail (E-mail) addresses are also included.

B.1. Professional Organizations

B.1.1. Ada Joint Users Group (AdaJUG)
Ada Joint (Services) Users Group (AdaJUG) (formerly Ada-JOVIAL Users Group) is a non-profit organiza-
tion whose purpose is to encourage a dialogue between Government and industry concerning Ada
issues. The AdaJUG makes recommendations to appropriate military services and DoD agencies regard-
ing language policies and practices. The current AdaJUG chair is:

Mike Ryer
Intermetrics
733 Concord Ave.
Cambridge, MA 02138
(617) 661-1840

B.1.2. SIGAda
The Association for Computing Machinery Special Interest Group on Ada is a scientific association
focused on the Ada language. Ada Letters is the SIGAda bimonthly publication. The current SIGAda
chair is:

Mark Gerhardt
ESL Inc., MS M507
495 Java Drive
Sunnyvale, CA 94088-3510
(408) 752-2459 or (408) 738-2888 (Switchboard)
Email: gerhardt@ajpo.sei.cmu.edu

SIGAda sponsors a number of working groups. These and current points of contact are normally listed in
Ada Letters.65 The following are the current SIGAda working groups:

• AIWG: Artificial Intelligence Working Group
• ARTEWG: Ada Runtime Environment Working Group
• CAISWG: CAIS Working Group
• CAUWG: Commercial Ada Users Working Group

65To obtain information about membership or Ada Letters, contact ACM, 1515 Broadway, New York, NY 10036-9998,
(212) 869-7440, or e-mail acmhelp@acmvm.bitnet. Single copies of Ada Letters may be purchased from the ACM Order Dept. at
(800) 342-6626 or (410) 528-4261.

96 CMU/SEI-92-TR-29

• EDWG: Educational Products Working Group
• NUMWG: Numerics Working Group
• OBJWG: Object-Oriented Working Group
• PIWG: Performance Issues Working Group
• REUSEWG: Reuse Working Group
• SDSAWG: Software Development Standards and Ada Working Group
• SSTDWG: Secondary Standards Working Group

B.1.3. Other Professional Organizations (World-Wide)
While SIGAda and AdaJUG are the predominant U.S. professional Ada organizations, similar organiza-
tions exist in Europe and around the world. In addition to Ada-Europe, there are also Ada groups as-
sociated with the Commission of the European Communities and the European Space Agency. Ada
organizations also exist in Australia, Canada, Denmark, France, Germany, Greece, Ireland, the Nether-
lands, Norway, Scotland, Spain, Sweden, Switzerland, and the United Kingdom. Contact information for
these organizations can be found in Ada Letters.

B.2. Standards Organizations

ISO/IEC JTC1/SC22 WG9 Ada

• Purpose: Standardization of the Ada programming language is the responsibility of a working
group under the International Organization for Standardization and the International Electro-
Technical Commission known as ISO/IEC JTC1/SC22 WG9. Ada was initially developed as a
military standard (MIL-STD-1815A) and became an American National Standards Institute
(ANSI) standard (ANSI/MIL-STD-1815A, 1983) through the canvass process. It is also a Federal
Information Processing Standard (FIPS 119, 1985) of the National Institute of Standards and
Technology (NIST) as an endorsement of the Ada standard as created by others. All the ver-
sions of the standard are identical to ISO 8652:1987.

Membership in WG9 is held by national standards organizations rather than individuals. About
twenty countries are actively participating in the work. In the case of the United States, the
national body is ANSI, which delegates the work to a group called the U.S. TAG (Technical
Advisory Group) for WG9. The TAG is responsible for developing national positions and naming
members of the delegations to attend WG9 meetings. The TAG is co-chaired by Christine Ander-
son (program manager for Ada9X) and John Solomond (director of the Ada Joint Program Of-
fice).

WG9 meets at least twice yearly and is led by its convener, Robert Mathis (USA), a former
director of the Ada Joint Program Office. Most of the work of WG9 in drafting standards is
performed in smaller bodies called "rapporteur groups." In principle, every proposal for a stan-
dard is formulated as a "work item." New work items are approved at the JTC1 level and even-
tually assigned to a rapporteur group. The standards drafted by the rapporteur groups work their
way up through the ISO hierarchical balloting process with successive designations as Com-
mittee Draft (CD), Draft International Standard (DIS) and, finally, International Standard (IS).

Currently there are eight rapporteur groups within WG9. Although the work of these groups is
generally focused on the current Ada standard, all of them are also actively participating in the
development of the proposal for Ada 9X:

1. Ada Rapporteur Group (ARG)
2. Character Rapporteur Group (CRG)
3. Information Systems Rapporteur Group (IRG)

CMU/SEI-92-TR-29 97

4. Numerics Rapporteur Group (NRG)
5. Real-time Rapporteur Group (RRG)
6. SQL Rapporteur Group (SRG)
7. Uniformity Rapporteur Group (URG)
8. Ada 9X Rapporteur Group (XRG)

Not all standardization related to Ada occurs in WG9. Sometimes bindings from standards to
particular languages are performed by the language committee, and sometimes they are per-
formed by the committee that created the standard. For example, the Ada binding to POSIX is
under ISO/IEC JTC1/SC22 WG15 and IEEE P1003.5.

For further information, contact:

Dr. Robert Mathis, Convener
ISO/IEC JTC1/SC22 WG9 Ada
Suite 1815
4719 Reed Road
Columbus, Ohio 43220
(614) 538-9232
Email: mathis@ajpo.cmu.sei.edu

POSIX /Ada working group:

• Purpose: Develop an Ada binding66 to the application programming interfaces (API) defined in
the POSIX operating system specification ISO/IEC 9945-1: 1990 (IEEE Std 1003.1-1990).

IEEE P1003.5 is a single committee that has been working on two projects:

1. Ada binding to POSIX: The P1003.5 project objective has been to provide Ada
Language interfaces to the P1003.1 POSIX operating system specification. This
work has resulted in the adoption of IEEE Std 1003.5-1992, which defines a binding
to IEEE Std 1003.1.

2. Ada binding to the IEEE Std 1003.4 POSIX real-time extensions: The P1003.20
project objective is to define an Ada language binding to the P1003.4/4a real-time
POSIX extensions.

For further information, contact:

James P. Longers
Paramax Systems Corporation
70 E. Swedesford Rd.
P.O. Box 517
Paoli, PA 19301 U.S.A.
email: longers@prc.unisys.com
(215) 648-2670

In addition, an electronic mailing list has been established for those interested in POSIX-Ada
binding. For more information, or to subscribe to the list, send computer mail to posix-ada-
request@verdix.com.

66The POSIX Ada Language Interface standard is contained in IEEE Std P1003.5.

98 CMU/SEI-92-TR-29

B.3. U.S. Government Sponsored/Endorsed Organizations

AJPO: Ada Joint Program Office

• Purpose: Oversees the total direction of the Ada program. The AJPO reports to the Deputy
Undersecretary of Defense for Research and Advanced Technology (DUSDR&AT). For further
information, contact:

Dr. John Solomond, Director
Ada Joint Program Office
The Pentagon, Room 3E118
Washington, D.C. 20301-3081
(703) 614-0208
Fax: (703) 685-7019
Email: solomond@ajpo.sei.cmu.edu

Ada 9X Project Office:

• Purpose: Responsible for revising the Ada 83 standard. (See Chapter 9 for more information on
the Ada 9X Project.) For further information, contact:

Christine Anderson
Ada 9X Project Office
PL/VTET
Kirtland AFB NM 87117-6008
(505) 846-0817
Fax: (505) 846-2290 - Attn: Chris Anderson
Email: andersonc@plk.af.mil

Ada Federal Advisory Board:

• Purpose: A federal advisory committee, composed of compiler developers, language designers,
embedded system users, educators, and government personnel that provides the Director of the
AJPO "with a balanced source of advice and information regarding the technical and policy
aspects of the Ada Program [4]." For further information, contact:

Dr. John Solomond, Director
Ada Joint Program Office
The Pentagon, Room 3E118
Washington, D.C. 20301-3081
(703) 614-0208
Fax: (703) 685-7019
Email: solomond@ajpo.sei.cmu.edu

AdaIC: Ada Information Clearinghouse

• Purpose: Supports the AJPO by distributing Ada-related information, including:

• policy statements
• lists of validated compilers
• classes
• conferences
• text books and serials relating to Ada
• projects using Ada

Also supports the Ada 9X Project Office by serving as the distribution point for information re-
lated to the Ada 9X Project.67

67The Ada 9X documents are also available electronically on the Ada 9X BBS at (800) Ada-9X25 or (301) 459-8939.

CMU/SEI-92-TR-29 99

In addition to publishing a free quarterly newsletter, an electronic bulletin board system (300
through 9600 baud, no parity, 8 bits, 1 stop bit) is available at (703) 614-0215. This bulletin
board also provides access to the AdaIC’s Ada products and tools, Ada article abstracts, and
Ada bibliography databases.

The Ada Information Clearinghouse (AdaIC) also maintains files on the AJPO host, which are
available via anonymous FTP from the public directories on the AJPO host computer
(ajpo.sei.cmu.edu).

For further information, contact:

Ada Information Clearinghouse
c/o IIT Research Institute (IITRI)
4600 Forbes Blvd.
Lanham MD 20706-4312
(800) Ada-IC11 or (703) 685-1477
Fax: (703) 685-7019
Email: adainfo@ajpo.sei.cmu.edu; CompuServe 70312,3303

IIT Research Institute operates the AdaIC for the Ada Joint Program Office.

AVO: Ada Validation Organization

• Purpose: The AVO is directly responsible to the AJPO. The AVO coordinates and administers
compiler validation policy and procedures. For further information, contact:

Ada Validation Organization
Institute for Defense Analyses
ATTN: Audrey Hook
1801 Beauregard Street
Alexandria, Virginia 22311
(703) 845-6639
FAX: (703) 845-6848
Email: hook@ida.org

ACVC Review Team: Ada Compiler Validation Capability Review Team

• Purpose: The ACVC Review Team provides expert technical review for the Ada Compiler
Validation Capability. For further information, contact:

Dr. Nelson Weiderman
127 Schooner Drive
Wakefield, RI 02879
(401) 783-6863
Email: nhw@sei.cmu.edu

100 CMU/SEI-92-TR-29

AMO: ACVC Maintenance Organization

• Purpose: Responsible for the development, maintenance, and support of the Ada Validation
Suite (AVS), which includes the ACVC and the ACEC. Additionally, the AMO supports Ada
language maintenance activities. For further information, contact:

Steve Wilson
ASC/SCEL
Wright-Patterson AFB, Ohio 45433-6503
(513) 255-4472
Fax: (513) 255-4585
Email: wilsons@adawc.wpafb.af.mil

Ada-JOVIAL Newsletter: The Standard Languages and Environments Division, which operates
the AMO and the Department of Defense Ada Validation Facility at Wright Patterson AFB, Ohio,
also publishes the High Order Language Control Facility Ada-JOVIAL Newsletter. For further
information on the Ada-JOVIAL Newsletter, contact:

Dale Lange
Standard Languages and Environments Division
ASC/SCEL
Wright-Patterson AFB, OH 45433-6503
Tel: (513) 255-4472
E-mail: langed@adawc.wpafb.af.mil

ASEET: Ada Software Engineering Education and Training Team

• Purpose: The Ada Software Engineering Education and Training (ASEET) Team is composed
of representatives from the Army, Air Force, Navy, Marine Corps, other DoD agencies, and
academia. The team conducts workshops and symposia for Ada educators within DoD and
academia and coordinates the activities of DoD organizations engaged in meeting the Ada
education and training needs.

An ASEET resource library of educational materials, the ASEET Material Library (AML), is lo-
cated at the Ada Joint Program Office. This material is not copyrighted and can be obtained by
DoD personnel and copied at cost by non-DoD personnel.

For further information, contact:

Capt. David A. Cook
Dept. of Computer Science, DFCS
US Air Force Academy, CO 80840
(719) 472-3590
DSN 259-3131
E-mail: dcook@ajpo.sei.cmu.edu

Ada Software Engineering Education and Training Team
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria, VA 22311
Attn: Resource Staff Member
(703) 845-6626

CMU/SEI-92-TR-29 101

AVF: Ada Validation Facility

• Purpose: Responsible for validation of Ada compilers (giving priority to DoD targeted compilers)
and registration of derived compilers.68 Ada Validation Facilities currently exist in the US (2), the
UK, France, and West Germany. For further information, contact one of the Ada Validation
Facility Managers:

Captain Russ Hilmandolar
Ada Validation Facility
Language Control Facility ASC/SCEL
Bldg. 676 / Rm. 135
Wright-Patterson AFB, OH 45433-6503
Tel: (513) 255-4472
Fax: (513) 255-4585
E-mail: hilmanrk@adawc.wpafb.af.mil

Fabrice Garnier de Labareyre or Alphonse Philippe
AFNOR
Tour Europe, Cedex 7
F-92049 Paris La Defence
FRANCE
Tel: +33-1-42-91-5960
Telefax: +33-1-42-91-5911

Jon Leigh or Dave Bamber
National Computing Centre Limited
Oxford Road
Manchester M1 7ED
ENGLAND
Tel: +44 (61) 228 6333
FAX: +44 (61) 228-2579

Dr. William Dashiell
National Institute for Standards and Technology
National Computer Systems Laboratory
Bldg. 255/Room A266
Gaithersburg, MD 20899
Tel: (301) 975-2490
Fax: (301) 590-0932

Michael Tonndorf
IABG, Dept ITE
Einsteinstrasse 20
W-8021 Ottobrunn
GERMANY
Tel: +49-89-6088-2477

68Derived compilers are defined on page 54.

102 CMU/SEI-92-TR-29

For further information on the AVFs or validation policies and procedures, contact:

Ada Validation Organization
Institute for Defense Analyses
Attn: Audrey Hook
1801 North Beauregard Street
Alexandria, VA 22311
Tel: (703) 845-6639
FAX: (703) 845-6848
Email: hook@ida.org

Software Technology for Adaptable, Reliable Systems (STARS)

• Purpose: STARS is a technology development, integration, and transition program to
demonstrate a process-driven, domain-specific, reuse-based approach to software engineering
(also known as megaprogramming) that is supported by appropriate tools and software engineer-
ing environment (SEE) technology.
The goal of the STARS Program is to increase software productivity, reliability, and quality by
synergistically integrating support for modern software development processes and modern
reuse concepts into state-of-the-art software engineering environment (SEE) technology. To
meet that goal, STARS has set a number of objectives for the 1992-94 time frame:

• Software Reuse: Establish the basis for a paradigm shift to reuse-based software
development.

• Software Process: Establish capabilities for process definition and management, and
for tailoring processes to the needs of the application.

• Environments: Establish adaptable, commercially viable SEE solutions that are built
upon open architecture industry standards, leverage commercial products, and include
automated support for process management and software reuse.

• Transition/Demonstration/Validation: Demonstrate that the STARS integrated reuse,
process, and SEE solutions can be used in actual practice to increase the quality and
life-cycle supportability of DoD software products.

STARS maintains a multi-level technology transition affiliates program to provide an opportunity
for the DOD software community (including tool vendors) to participate in STARS technical ac-
tivities.
For further information, contact:

John Foreman
Software Technology for Adaptable, Reliable Systems
801 N. Randolph Street
Suite 400
Arlington, VA 22203
(703) 243-8655
E-mail: affiliates-desk@stars.rosslyn.unisys.com

Asset Source for Software Engineering Technology (ASSET)

• Purpose: ASSET was established by the Defense Advanced Research Projects Agency
(DARPA) under its Software Technology for Adaptable, Reliable Systems (STARS) Program.69

ASSET, located in Morgantown, West Virginia, is chartered by DARPA to serve as a focal point

69See page 102.

CMU/SEI-92-TR-29 103

for software reuse and to facilitate a national software reuse infrastructure and industry. ASSET
provides its client base with reusable software components based in the ASSET library as well
as descriptions and location of components available from other software reuse libraries.

The ASSET library consists of a repository containing cataloged assets, and a bibliography con-
taining abstracts and other information needed to locate the assets contained in the repository.
The repository currently contains three collections:

1. the STARS Foundation collection;

2. the STARS Catalog Products collection, which is a set of reusable software assets
produced by the STARS prime contractors; and

3. newly developed STARS key assets.

In addition to cataloged items in the library, ASSET also has available other information specific
to Ada, e.g., Ada Language Reference Manual, Ada Software Repository assets, and ANNA, a
Language Extension of Ada, as well as other reusable software assets.

In addition to the library, ASSET provides other services, including the STARS bulletin board and
newsgroups with STARS-specific and USENET postings. The bulletin board may be accessed
by telnet(ing) to source.asset.com and entering STARSBBS at the login prompt. No account is
needed.

ASSET is currently developing a National Software Reuse Directory where producers, vendors,
and other reuse libraries can list selected reusable components, and where users looking for
sources of reusable components will be able to view what is available, and where. This service
should be available by the end of 1992.

ASSET is available to all software developers. This includes commercial, educational, and
private, as well as government and government contractors. ASSET is available via internet and
9600 baud dial up modems.

For more information about ASSET and its services, or to obtain a user account, contact:

ASSET
2611 Cranberry Square
Morgantown, WV 26505
(304) 594-3954
Email: info@source.asset.com

Software Technology Support Center (STSC)

• Purpose: The STSC was established by Headquarters, USAF, to serve as the focal point for the
proactive management of computer systems support tools, methods, environments, and Ada
issues for Joint Services software activities. It is an office of the Ogden Air Logistics Center (Air
Force Materiel Command), and is located at Hill Air Force Base, Utah. In addition to publishing a
free newsletter, CrossTalk, an electronic bulletin board system is available at (801) 777-7553
(DSN 458-7553). For further information, contact:

Software Technology Support Center
Ogden ALC/TISE
Building 100, Bay G
Hill AFB, UT 84056
(801) 777-8045/7703 (DSN 458-8045/7703)
Fax: (801) 777-8069

104 CMU/SEI-92-TR-29

B.4. DoD Software Executive Officials

DoD Instruction 5000.2, "Defense Acquisition Management Policies and Procedures," Part 6, Section D
[79] gives the following guidance:

Software Executive Official. The DoD Component Acquisition Executive will designate a
senior level Software Executive official who will monitor, support, and be a focal point for Ada
usage and sound software engineering, development, and life-cycle support policy and prac-
tice.

This instruction replaced DoD Directive 3405.2, "Use of Ada in Weapon Systems" [78], which had es-
tablished the Ada Executive Officials (AEOs). In most cases, the individuals who served as AEOs are
now serving as Software Executive Officials (SEOs).

A listing of current DoD Software Executive Officials (SEOs) (as of June 30, 1992) is shown below. A
current listing is available through the AdaIC.

Service/Agency Contact

OSD Deputy Director, Defense Research and Engineering (S & T)

OSD Director, Ada Joint Program Office

U.S. Army Vice Director for Information Management, Office of the Director of Infor-
mation Systems for Command, Control, Communications and Computers
(DISC4/SAIS-2C)

U.S. Navy Commander, Naval Information Systems Management Center

U.S. Air Force Deputy Assistant Secretary of the Air Force (Communication, Computers &
Logistics)

Joint Chiefs of Staff Director, C4S

Defense Information
Systems Agency
(DISA)

Director, Center for Standards

Defense Security
Assistance Agency

Deputy Chief, Weapons Systems Division (Plans)

Strategic Defense
Initiative Organiza-
tion (SDIO)

SDIO/SD

Defense Advanced
Research Projects
Agency (DARPA)

Director, Software and Intelligent Systems Technology Office

Defense Intelligence
Agency (DIA)

Chief, DS Systems Integration (DS-SIM)

Defense Logistics
Agency (DLA)

Chief, System Integration Division (Attn: DLAZI)

National Security
Agency (NSA)

Deputy Director for Telecommunications and Computer Services (Technol-
ogy)

C3I Deputy Director of Information Technology

CMU/SEI-92-TR-29 105

References
1. A’Hearn, F. W., Bergmen, C. E., & Hirsch, E. Evolutionary Acquisition: An Alternative Strategy for Acquiring Command and
Control (C2) Systems (AD-A190509). Defense Systems Management College, Fort Belvoir, VA, 1987.

2. Abbott, R. J. Recommended Tailorings of DOD-STD-2167A and DI-MCCR-80012A for Object-Oriented Software Development.
Aerospace Corp., Los Angeles, CA, December 1991.

3. Ada Joint Program Office. Ada Compiler Validation Procedures, Version 3.1. Ada Joint Program Office, Office of the Secretary
of Defense, Washington, D.C., 1992.

4. Ada Joint Program Office. Charter - Ada Board. Attachment to letter to Senator Barry M. Goldwater, October 2, 1986.

5. Ada 9X Mapping/Revision Team. Ada 9X Mapping, Volume I: Mapping Rationale, Version 4.1. Tech. Rpt. IR-MA-1249-2,
Intermetrics, Inc., Cambridge, MA, March 1992.

6. Ada 9X Mapping/Revision Team. Ada 9X Mapping, Volume II: Mapping Specification, Version 4.0. Tech. Rpt. IR-MA-1250-2,
Intermetrics, Inc., Cambridge, MA, December 1991.

7. Ada 9X Mapping/Revision Team. Ada 9X Mapping, Volume II: Mapping Specification and Rationale (Annexes), Abridged,
Version 4.1. Tech. Rpt. IR-MA-1250-3, Intermetrics, Inc., Cambridge, MA, March 1992.

8. Ada and Software Management Assessment Working Group. Ada and Software Management in NASA: Assessment and
Recommendations. NASA Goddard Space Flight Center, Greenbelt, MD, 1989.

9. Albrecht, A. J. and Gaffney, J. E., Jr. "Software Function, Source Lines of Code, and Development Effort Prediction: A Software
Science Validation". IEEE Transactions on Software Engineering SE-9, 6 (Nov 1983), 639-648.

10. Alvarez, A., et al. "Proceedings of the Second International Workshop on Real-Time Ada Issues". ACM SIGAda Ada Letters
(Special Edition) VIII, 7 (1988).

11. Anderson, C. M. Ada 9X Project Plan. Ada 9X Project Office, Air Force Armament Laboratory, Eglin Air Force Base, Florida,
1990.

12. Anderson, C. M. Ada 9X Transition Plan. Ada 9X Project Office, Air Force Armament Laboratory, Eglin Air Force Base, Florida,
May 1992.

13. ANSI. ANSI/MIL-STD-1815A, Reference Manual for the Ada Programming Language. American National Standards Institute,
January 1983.

14. ANSI. American National Standard for Information Systems - Database Language - SQL X3.125-1986. American National
Standards Institute, 1986.

15. Armitage, J.W. and Chelini, J.V. "Ada Software on Distributed Targets: A Survey of Approaches". Ada Letters 4, 4 (Jan/Feb
1985), 32-37.

16. Ada Runtime Environment Working Group. Catalogue of Runtime Implementation Dependencies. ACM, New York.

17. Ada Runtime Environment Working Group. A Framework for Describing Ada Runtime Environments (formerly A Canonical
Model and Taxonomy of Ada Runtime Environments). ACM, New York.

18. Ada Runtime Environment Working Group. "Catalogue of Interface Features and Options for the Ada Runtime Environment
(CIFO 3.0)". Ada Letters 11, 8 (Fall 1991).

19. Atkinson, C., Moreton, T. & Natali, A. Ada for Distributed Systems. Cambridge University Press, Cambridge, UK, 1987.

20. Atkinson, C. Object-Oriented Reuse, Concurrency, and Distribution: An Ada-Based Approach. ACM Press, New York, 1991.

21. Ausnit, C.N., Braun, C., Eanes, S., Goodenough, J. & Simpson, R. Ada Reusability Guidelines. Tech. Rept. ESD-TR-85-142,
Softech, Waltham, MA, April 1985. Prepared for Electronic Systems Division (AFSC) under contract #F33600-84-D-0280.

22. Ausnit, C.N., Ansarov, E.R., Cohen, N.H., & Ziemba, M.V. Program Office Guide to Ada, Edition 2. Tech. Rept. ESD
TR-86-282 (II), Softech, Waltham, MA, October 1986. Prepared for Electronic Systems Division under contract #F33600-84-D-0280.

23. Ausnit, C.N., Guerrieri, E., Ingwersen, N., & Ruegsegger, S. Program Office Guide to Ada, Edition 3. Tech. Rept.
ESD-TR-88-102, Softech, Waltham, MA, December 1987. Prepared for Electronic Systems Division under contract #F33600-87-
D-0337.

24. Ausnit, C.N., Guerrieri, E., Hood, P. & Ingwersen, N. Program Office Guide to Ada, Edition 4. Tech. Rept. ESD-TR-88-264,
Softech, Waltham, MA, March 1988. Prepared for Electronic Systems Division under contract #F33600-87-D-0337.

25. Baker, T., et al. "Proceedings of the Third International Workshop on Real-Time Ada Issues". ACM SIGAda Ada Letters
(Special Edition) X, 4 (1990).

106 CMU/SEI-92-TR-29

26. Baker, T., et al. "Proceedings of the Fourth International Workshop on Real-Time Ada Issues". ACM SIGAda Ada Letters
(Special Edition) X, 9 (1990).

27. Bamberger, J. "What Every Good Manager Should Know About Ada". IEEE Aerospace and Electronics Systems Magazine 3,
5 (May 1988), 2-8.

28. Barnes, J., et al. "International Workshop on Real-Time Ada Issues". ACM SIGAda Ada Letters (Special Edition) VII, 6 (1987).

29. Baskette, J. "Life Cycle Analysis of an Ada Project". IEEE Software (January 1987), 40-47.

30. Baumert, J. H. and McWhinney, M. S. Software Measures and the Capability Maturity Model. Technical Report CMU/SEI-92-
TR-25, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, September 1992.

31. Baumgarten, U. Distributed Systems and Ada-Current Projects and Approaches Comparative Study’s Results. In Chris-
todoulakis, D., Ed., Ada: The Choice for ’92 (Ada-Europe International Conference Proceedings; Athens, Greece; 13-17 May 1991),
Springer-Verlag, Berlin, Germany, 1991, pp. 260-278.

32. Bayer, J. & Melone, N. Adoption of Software Engineering Innovations in Organizations. Technical Report CMU/SEI-89-TR-17,
ADA211573, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, April 1989.

33. Bishop, J. Distributed Ada: Developments and Experiences (Proceedings of the Distributed Ada ’89 Symposium). Cambridge
University Press, Cambridge, UK, 1990.

34. Boehm, B.W. Ada COCOMO: TRW IOC Version. In Proceedings of the Third COCOMO User’s Group Meeting, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, 1987.

35. Boehm, B. W. "A Spiral Model of Software Development and Enhancement". IEEE Computer (May 1988), 61-72.

36. Booch, G. Software Engineering with Ada. (2nd edition). Benjamin-Cummings, 1987.

37. Bowen, G. M. "An Organized, Devoted, Project-Wide Reuse Effort". Ada Letters 12, 1 (Jan/Feb 1992), 43-52.

38. Brandon, C. S., & Eustice, A. S. (Ed.) Proceedings TRI-Ada’91. ACM, New York, 1991.

39. Brenner, N. J. Software Development Effort: Ada vs. Other Higher Order Languages. Technical Report TR-0017/1, Tecolote
Research, Inc., Santa Barbara, CA, September 1991.

40. Brotherton, T. W. "Capability Evaluation Adapted to Procurement". IEEE Software 9, 3 (May 1992), 109-110.

41. Brownsword, L. Practical Methods for Introducing Software Engineering and Ada into an Actual Project. In Heilbrunner, S.,
Ed., Ada in Industry: Proceedings of the Ada-Europe International Conference, Munich, 7-9 June 1998, Cambridge University Press,
Cambridge, 1988, pp. 132-140.

42. Brownsword, L. and McUmber, R. Applying the Iterative Development Process to Large 2167A Ada Projects. In Brandon, Carl
S., & Eustice, Ann S., Ed., Proceedings TRI-Ada’91, ACM, New York, 1991, pp. 378-386.

43. Bryan, D.L., & Mendal, G.O. Exploring Ada, Volume 1. Prentice-Hall, Englewood Cliffs, NJ, 1990.

44. Buckley, F. J. Implementing Software Engineering Practices. Wiley-Interscience, New York, NY, 1989.

45. Buxton, J. N., & Malcolm, R. "Software Technology Transfer". Software Engineering Journal 6, 1 (January 1991), 17-23.

46. Byrne, E. J. "Software Reverse Engineering: A Case Study". Software - Practice and Experience 21, 12 (December 1991),
1349-1364.

47. Byrnes, P. Software Capability Evaluation (SCE) Tutorial. Presented at SEI Software Engineering Symposium ’92, Pittsburgh,
PA, September 1992.

48. Carleton, A. D., Park, R. E., Goethert, W. B., Florac, W. A., Bailey, E. K., and Pfleeger, S. L. Software Measurement for DoD
Systems: Recommendations for Initial Core Measures. Technical Report CMU/SEI-92-TR-19, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA, September 1992.

49. Carlson, M. & Smith, G.N. Understanding the Adoption of Ada: Results of an Industry Field Survey. Technical Report
CMU/SEI-90-SR-10, ADA226725, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, May 1990.

50. Carstensen, H. B. Experiences in Delivering a Large Ada Project. In Proceedings of MCC’87 - Military Computing Conference,
EW Communications, Palo Alto, 1987, pp. 115-126.

51. Castor, V.L. Issues to Be Considered in the Evaluation of Technical Proposals from the Ada Language Perspective. Technical
Report AFWAL-TR-85-1100, Avionics Laboratory (AFWAL/AAAF), Air Force Wright Aeronautical Laboratories, Wright-Patterson
AFB, OH, June 1985.

52. Chastek, G.J., Graham, M.H., Zelesnik, G. The SQL Ada Module Description Language - SAMeDL. Tech. Rept. CMU/SEI-90-
TR-26, ADA235781, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, November 1990.

CMU/SEI-92-TR-29 107

53. Cherry, G.W. The Pamela Designer’s Handbook. The Analytic Science Corporation, Reading, MA, 1986.

54. Cherry, G.W. . Introduction to PAL and PAMELA II (Process Abstraction Language and Process Abstraction Method for
Embedded Large Applications). ThoughtTools, Reston, VA, 1987.

55. Cherry, G.W. Software Construction with Object-Oriented Pictures : Specifying Reactive and Interactive Systems. Thought
Tools, Canandaigua, NY, 1990.

56. Clark, P. G. & Crawford, B. S. Evaluation and Validation Guidebook: Version 3.0, AD-A236 494. Avionics Directorate, Wright
Laboratory, Wright-Patterson AFB, OH, 1991.

57. Clark, P. G. & Crawford, B. S. Evaluation and Validation Reference Manual: Version 3.0, AD-A236 697. Avionics Directorate,
Wright Laboratory, Wright-Patterson AFB, OH, 1991.

58. Cochran, M. and Gomaa, H. Validating the ADARTS Software Design Method for Real-Time Systems. In Brandon, Carl S., &
Eustice, Ann S., Ed., Proceedings TRI-Ada’91, ACM, New York, 1991, pp. 33-44.

59. Cohen, N. H. Ada as a Second Langauge. McGraw-Hill, New York, 1986.

60. Collingbourne, L., Cholerton, A., & Bolderston, T. Ada for Tightly Coupled Systems. In Bishop, J., Ed., Distributed Ada:
Developments and Experiences (Proceedings of the Distributed Ada ’89 Symposium; Southampton, UK; 11-12 Dec. 1989),
Cambridge University Press, Cambridge, UK, 1990, pp. 177-199.

61. Conn, R. L. The Ada Software Repository and the Defense Data Network: A Resource Handbook. Zoetrope, New York, 1987.

62. Connors, D. Selecting An Ada Contractor - One Way That Worked. In Engle, Charles B., Jr., Ed., Proceedings TRI-Ada’90,
ACM, New York, 1990, pp. 530-542.

63. Cornhill, D.T. Four Approaches to Partitioning Ada Programs for Execution on Distributed Targets. In Proceedings 1984 IEEE
Conference on Ada Applications and Environments, IEEE, 1984, pp. 153-162.

64. Crafts, R. E. MIS in Ada: A Ten-Year Track Record of Success. In Ada’s Success in MIS: A Formula for Progress, George
Mason University Center of Excellence in C3I, Fairfax, VA, 1992.

65. Crawford, B.S.; Jazwinski, A.H. The AdaGRAPH Tool for Enhanced Ada Productivity. In Proceedings of the IEEE 1986
National Aerospace and Electronics Conference, NAECON’86, IEEE, New York, NY, 1986, pp. 664-70, Vol. 3.

66. Crosier, T. A Guide For Implementing Total Quality Management. Tech. Rept. SOAR-7, Reliability Analysis Center, Rome, NY,
1990.

67. Cross, J.K., Kamrad, M.J., & Fernandez, S.J. Communications Among Distributed Ada Programs. In Proceedings of the IEEE
1991 National Aerospace and Electronics Conference (NAECON 1991), IEEE, New York, 1991, pp. 627-632, Vol. 2.

68. Defense Science Board Task Force on Military Software. Report of the Defense Science Board Task Force on Military
Software. Office of the Under Secretary of Defense for Acquisition, Washington, D.C., 1987.

69. de Gyurky, S. M. The Global Decision Support System (GDSS) Software Methodology: The Comparison of A Non-Standard
Software Approach To DOD-STD-2167A. Report JPL D-3216, Jet Propulsion Laboratory, Pasadena, CA, March 1989.

70. Department of the Air Force, Office of the Deputy Assistant Secretary (Communications, Computers, & Logistics). Inter-
pretation of FY 1991 DoD Appropriations Act. Memorandum, April, 1991.

71. Department of Defense. Ada 9X Requirements. Office of the Under Secretary of Defense for Acquisition, Washington, D.C.
20301, December 1990.

72. Department of Defense. DOD-STD-1703(NS): Software Product Standards. Department of Defense, Washington, D.C., April
1987.

73. Department of Defense. MIL-STD-1750A Airborne Computer Instruction Set Architecture (includes Notice 1). Department of
Defense, Washington, D.C., May 1982.

74. Department of Defense. DOD-STD-2167: Defense System Software Development. Department of Defense, Washington, D.C.,
June 1985.

75. Department of Defense. DOD-STD-2167A: Defense System Software Development. Department of Defense, Washington,
D.C., February 1988.

76. Department of Defense. MIL-HDBK-287 (Military Handbook): A Tailoring Guide for DOD-STD-2167A, Defense System Software
Development. Department of Defense, Washington, D.C., August 1989.

77. Department of Defense. DoD Directive 3405.1, Computer Programming Language Policy. Department of Defense,
Washington, D.C., April 1987.

78. Department of Defense. DoD Directive 3405.2, Use of Ada in Weapon Systems. Department of Defense, Washington, D.C.,
March 1987. Cancelled by DoD Directive 5000.1, Defense Acquisition, 23 February 1991.

108 CMU/SEI-92-TR-29

79. Department of Defense. DoD Instruction 5000.2, Defense Acquisition Management Policies and Procedures. Department of
Defense, Washington, D.C., February 23, 1991.

80. Department of the Air Force, Headquarters, Air Force Systems Command. Software Development Capability Assessment
(SDCA). AFSC Pamphlet 800-51.

81. Department of the Air Force, Deputy Assistant Secretary of the Air Force (Communications, Computers, and Logistics). Ada
and C++: A Business Case Analysis. Department of the Air Force, Washington, D.C., 1991.

82. Department of the Air Force, Headquarters, Aeronautical Systems Division (AFSC). Software Development Capability/Capacity
Review. ASD Pamphlet 800-5, September, 1987.

83. Department of the Army (SAIS-ADO). HQDA LTR 25-90-1, Subject: Implementation of the Ada Programming Language.
Letter, July 1990.

84. Department of the Navy, Office of the Assistant Secretary (Research, Development and Acquisition). Interim Department of the
Navy Policy on Ada. Letter, June 1991.

85. Department of the Navy, Headquarters, U.S. Marine Corps (CCP-50). Marine Corps Ada Implementation Plan. Letter, March
1988.

86. U.S. Department of Transportation, Federal Aviation Adminstration, Associate Administrator for NAS Development, AND-1 and
Associate Administrator for Airway Facilities, AAF-1. ACTION NOTICE - National Airspace System (NAS) Software Procedures.
October 1989.

87. Director of Defense Information (OASD). Ada’s Success in MIS: A Formula for Progress. George Mason University Center of
Excellence in C3I, Fairfax, VA, 1992.

88. Dobbing, B.J. & Caldwell, I.C. A Pragmatic Approach to Distributing Ada for Transputers. In Bishop, J., Ed., Distributed Ada:
Developments and Experiences (Proceedings of the Distributed Ada ’89 Symposium; Southampton, UK; 11-12 Dec. 1989),
Cambridge University Press, Cambridge, UK, 1990, pp. 200-221.

89. Donohoe, P. A Survey of Real-Time Performance Benchmarks for the Ada Programming Language. Tech. Rept. SEI-87-
TR-28, ADA200608, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, 1987.

90. Donohoe, P. Ada Performance Benchmarks on the Motorola 68020. Tech. Rept. CMU/SEI-87-TR-40, ADA200610, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, 1987.

91. Donohoe, P. Ada Performance Benchmarks on the MicroVAX II: Summary and Results. Tech. Rept. CMU/SEI-87-TR-27,
ADA200607, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, 1987.

92. Donohoe, P. Hartstone Benchmark Results and Analysis. Tech. Rept. SEI-90-TR-7, ADA226817, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA, 1990.

93. Donohoe, P. Hartstone Benchmark User’s Guide, Version 1.0. Tech. Rept. SEI-90-UG-1, ADA235740, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA, 1990.

94. Doscher, H. An Ada Case Study in Cellular Telephony Testing Tools. In Lynch, B., Ed., Ada: Experience and Prospects,
Proceedings of the Ada-Europe International Conference (Dublin, 12-14 June 1990), Cambridge University Press, Cambridge, 1990,
pp. 24-35.

95. Engle, C., Firth, R., Graham, M.H., Wood, W.G. Interfacing Ada and SQL. Tech. Rept. CMU/SEI-87-TR-48, ADA199634,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, December 1987.

96. Engle, C.B., Jr. The Myth of Portability in Ada. Proceedings of the Third Annual Ada Software Engineering Education and
Training (ASEET) Symposium, June, 1988, pp. 219-227.

97. Engle, C. B., Jr. (Ed.) Proceedings TRI-Ada’90. ACM, New York, 1990.

98. Engle, C. B., Jr. Automated and Semi-Automated Adaptive Protocols for Real-Time Rate Monotonic Scheduling. Ph.D. Th.,
Polytechnic University, Brooklyn, NY, January 1992.

99. Engle, C. B., Jr. (Ed.) Proceedings TRI-Ada’92. ACM, New York, 1992.

100. Evaluation and Validation Team. Ada Programming Support Environment (APSE) Evaluation and Validation (E&V) Team.
Ada Joint Program Office, Washington, D.C., 1991.

101. Federal Aviation Administration. Advanced Automation Systems Experiences with Ada. Tech. Rept. AAP-1, Federal Aviation
Administration, U.S. Dept. of Transportation, Washington, D.C., May 1991.

102. Feldman, M.B. & Koffman, E.R. Ada: Problem Solving and Program Design. Addison-Wesley, Reading, MA, 1992.

103. Firesmith, D.G. Should the DoD Mandate a Standard Software Development Process? Proceedings of Joint Ada Conference
1987, March, 1987, pp. 159-167. Also published in Defense Science and Electronics, Vol 6 Number 4, April 1987, pp. 60-64.

CMU/SEI-92-TR-29 109

104. Firesmith, D.G. "Mixing Apples and Oranges or What is an Ada Line of Code Anyway?". Ada Letters (September/October
1988), 110-112.

105. Firth, R., Mosley, V., Pethia, R., Roberts, L. & Wood, W. A Guide to the Classification and Assessment of Software
Engineering Tools. Tech. Rept. CMU/SEI-87-TR-10, ADA213968, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA, August 1987.

106. Firth, R., Wood, W., Pethia, R., Roberts, L., Mosley, V. & Dolce, T. A Classification Scheme for Software Development
Methods. Tech. Rept. CMU/SEI-87-TR-41, ADA200606, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA,
November 1987.

107. Foreman, J. Building Software Tools in Ada - Design, Reuse, Productivity, Portability. Presented at AdaJUG, Baltimore, July
1985.

108. Foreman, J. T., & Engle, C. B., Jr. (Ed.) Proceedings TRI-Ada’89. ACM, New York, 1989.

109. Foreman, J. & Goodenough, J. Ada Adoption Handbook: A Program Manager’s Guide. Technical Report CMU/SEI-87-TR-9,
ADA182023, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, May 1987.

110. Fowler, P., and Rifkin, S. Software Engineering Process Group Guide. Technical Report CMU/SEI-90-TR-24, ADA235784,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, September 1990.

111. Fox, E. A. Resources in Ada. ACM Press, New York, 1990.

112. General Accounting Office. Information Resources: Summary of Federal Agencies’ Information Resources Management
Problems. Fact Sheet GAO/IMTEC-92-13FS, General Accounting Office, Washington, D.C., February 1992.

113. Godfrey, S. & Brophy, C. Implementation of a Production Ada Project: The GRODY Study. Tech. Rept. NASA-TM-103305
(Software Engineering Laboratory Series SEL-89-002), NASA Goddard Space Flight Center, Greenbelt, MD, September 1989. NTIS
N90-21544.

114. Gothe, M.C., Wengelin, D., & Asplund, L. "The Distributed Ada Run-Time System DARTS". Software - Practice and
Experience 21, 11 (November 1991), 1249-1263.

115. Graham, M.H. Guidelines for the Use of SAME. Tech. Rept. CMU/SEI-89-TR-16, ADA228027, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA, May 1989.

116. Grau, J. K. & Gilroy, K. A. "Compliant Mappings of Ada Programs to the DoD-STD-2167 Static Structure". Ada Letters
(March/April 1987), 73-84.

117. Gross, R. R., & Umphress, D. A. Software Engineering as a Radical Novelty: The Air Force Ada Experience. In Engle, C. B.,
Jr., Ed., Proceedings TRI-Ada’90, ACM, New York, 1990, pp. 501-507.

118. Hammons, C. "What Is a Million Lines of Code?". Ada Rendezvous (Spring/Summer 1986), 23-24. Published by Texas
Instruments, Military Computer Systems Department, Plano, Texas.

119. Hefley, W. E., & Martin, C. E. Software Engineering Using Ada as an Enabling Technology. In Drew, B., Powell, D., & Kinney,
L., Ed., Computers and Communications ... Shaping the Future (Proceedings of the First Annual AFCEA Midwest Regional
Conference), AFCEA Dayton-Wright Chapter, Dayton, OH, 1990, pp. 97-102.

120. Hill, F., Mellor, S., de Nevers, K., & Shlaer, S. Documentation Guidelines for Ada Object-Oriented Development Using
DoD-STD-2167A. Technical Report TR-L801-066 (CECOM Contract DAAB07-88-D-L801, D.O. 0008), Project Technology, Inc.,
Berkeley, CA, September 1989.

121. Hogan, M.O., Hauser, E.P. & Menichiello, S.P. The Definition of a Production Quality Ada Compiler. Tech. Rept.
SD-TR-87-29, The Aerospace Corporation, 20 March, 1987. Prepared for Space Division, Air Force Systems Command under
contract #F04701-85-C-0086.

122. Holibaugh, R., Cohen, S., Kang, K. & Peterson, S. Reuse: Where to Begin and Why. In Foreman, John T., & Engle, Charles
B., Jr., Ed., Proceedings TRI-Ada’89, ACM, New York, 1989, pp. 266-277.

123. Hooper, J. W. & Chester, R. O. Software Reuse: Managerial and Technical Guidelines. In Proceedings of the 8th Annual
National Conference on Ada Technology, ANCOST, Inc., March 1990, pp. 424-435.

124. Humphrey, W. S. CASE Planning and the Software Process. Technical Report CMU/SEI-89-TR-26, AD A219 066, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, May 1989.

125. Humphrey, W. S. Managing the Software Process. Addison-Wesley, Reading, MA, 1989.

126. Humphrey, W. S., Kitson, D. H., and Kasse, T. C. The State of Software Engineering Practice: A Preliminary Report.
Technical Report CMU/SEI-89-TR-1, ADA206573, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA,
February 1989.

127. Humphrey, W.S.; Snyder, T.R.; Willis, R.R. "Software Process Improvement at Hughes Aircraft". IEEE Software 8, 4 (July
1991), 12-23.

110 CMU/SEI-92-TR-29

128. IBM System Integration Division. Software-First Life Cycle Final Definition. STARS CDRL Document 1240-001, IBM System
Integration Division, Gaithersburg, MD, January 1990.

129. IEEE. IEEE Std 1016: Guide to Software Design Descriptions. IEEE, New York, 1992. Technical Committee on Software
Engineering of the IEEE Computer Society.

130. IEEE. IEEE Std 1074-1991: Standard for Software Life Cycle Processes. IEEE, New York, 1991.

131. IEEE. IEEE Std 716-1989: C/ATLAS Test Language. IEEE, New York, 1989.

132. IEEE. IEEE Std 990-1987: Recommended Practice for Ada as a Program Design Language. IEEE, New York, 1987.
Technical Committee on Software Engineering of the IEEE Computer Society.

133. IIT Research Institute. Available Ada Bindings. IIT Research Institute, Lanham, MD, 1992. Prepared for Ada Joint Program
Office, under Contract DOD-MDA-903-87-D-0056, Delivery Order 007. Available online from the Ada Information Clearinghouse as
bindings.hlp.DDMMMYY, where DDMMMYY is the date of the most recent update to this file.

134. IIT Research Institute. Catalog of Resources for Education in Ada and Software Engineering (CREASE), Version 6.0. Ada
Joint Program Office, Washington, D.C., 1992.

135. IIT Research Institute. Test Case Study: Estimating the Cost of Ada Software Development. IIT Research Institute, Lanham,
MD, April 1989.

136. International Resource Development Inc. "European Influence Broadening in U.S. Ada Market". Ada Data 9, 1 (January
1991), 4-6.

137. Jablonski, J. R. Implementing Total Quality Management: An Overview. Pfeiffer & Company, San Diego, 1991.

138. Johnson, K., Simmons, E. & Stluka, F. Ada Quality and Style: Guidelines for Professional Programmers, Version 2.0. Tech.
Rept. SPC-91061-N, Software Productivity Consortium, Herndon, VA, 1991. This report (SPC-91061-N), defining AJPO’s suggested
style guide, is available for downloading from the AdaIC electronic bulletin board and the AJPO host computer. It is available in
hard copy from the Defense Technical Information Center (DTIC) and National Technical Information Service (NTIS) as document
number is AD-A242-525..

139. Jones, C. Applied Software Measurement: Assuring Productivity and Quality. McGraw-Hill, New York, 1991.

140. Jordano, A.J. Managing New Software Technology. Presented at Ada Expo, Charleston, West Virginia, November 1986.

141. Judge, J. F. "Ada Progress Satisfies DoD". Defense Electronics 17, 6 (June 1985), 77-87.

142. Kane, P.T., Leuci, N.D., Reifer, D.J. A Cost Model for Estimating the Costs of Developing Software in the Ada Programming
Language. In Shriver, B.D., Ed., Proceedings of the 21st Annual Hawaii International Conference on Systems Sciences, IEEE
Computer Society, Washington, D.C., 1988, pp. Vol. II, pp. 782-790.

143. Kaplan, H. T. "The Ada COCOMO Cost Estimating Model and VASTT Development Estimates vs. Actuals". Vitro Technical
Journal 9, 1 (Winter 1991), 48-60.

144. Keller, J. "GAO Attacks DoD Software Cost Tracking". Military & Aerospace Electronics 3, 7 (September 14 1992), 1, 14, 28.

145. Kemerer, C. F. "How the Learning Curve Affects CASE Tool Adoption". IEEE Software 9, 3 (May 1992), 23-28.

146. Kitson, D. H. & Humphrey, W. S. The Role of Assessment in Software Process Improvement. Technical Report CMU/SEI-89-
TR-3, AD A227 426, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, December 1989.

147. Kitson, D. H., & Masters, S. An Analysis of SEI Software Process Assessment Results: 1987-1991. Technical Report
CMU/SEI-92-TR-24, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, July 1992.

148. Knapper, R. J., Linn, C. J., & Salasin, J. Guidelines for Tailoring DOD-STD-2167A for SDS Software Development. IDA
Paper P-2018, Institute for Defense Analyses, Alexandria, VA, February 1988.

149. Kuhn, D. R. "IEEE’s POSIX: Making Progress". IEEE Spectrum 28, 12 (December 1991), 36-39.

150. Ladden, R. M. "A Survey of Issues to Be Considered in the Development of an Object-Oriented Development Methodology for
Ada". Ada Letters IX, 2 (March/April 1989), 78-89.

151. Lawlis, P. & Elam, T. W. "Ada Takes on Assembly — and Wins". CrossTalk (Software Technology Support Center, Hill AFB,
Ogden UT 32 (March 1992).

152. Lawson, R., Springer, M. & Howard, R. The Second Ada Project: Reaping the Benefits. Proceedings of the Fifth Washington
Ada Symposium (1988), June 1988, pp. 69-76.

153. Leavitt, T. & Terrell, K. Ada Compiler Evaluation Capability. Release 2.0. Tech. Rpt. WL-TR-91-1069, Technical Operating
Report (TOR) D500-12482-1, AD-A238 259, Weapons Lab, Kirtland AFB, NM, July 1991.

154. Leavitt, T. & Terrell, K. Ada Compiler Evaluation Capability User’s Guide, Release 2.0. Tech. Rpt. WL-TR-91-1040, AD-A236
321, Weapons Lab., Kirtland AFB, NM, May 1991.

CMU/SEI-92-TR-29 111

155. Leavitt, T. & Terrell, K. Ada Compiler Evaluation Capability: Version Description Document, Release 2.0. Tech. Rpt.
WL-TR-91-1039, AD-A236 684, Weapons Lab., Kirtland AFB, NM., May 1991.

156. Lee, J.A.N. & Nyberg, K.A. Strategies for Introducing Formal Methods into the Ada Life Cycle. Technical Report SPC-
TR-88-002, Software Productivity Consortium, Reston, VA, January 1988.

157. Lee, K., Rissman, M., D’Ippolito, R., Plinta, C. & Van Scoy, R. An OOD Paradigm for Flight Simulators, 2nd Edition. Technical
Report CMU/SEI-88-TR-30, ADA204849, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, 1988.

158. Maher, J. H. Managing Technical Innovation. In Software Technology Transition (Tutorial, 13th International Conference on
Software Engineering, Austin, TX, May 12, 1991), Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, 1991,
Chap. II, pp. 37-60.

159. Mansir, B. E. & Schacht, N. R. An Introduction to the Continuous Improvement Process: Principles and Practices. Tech.
Rept. LMI-IR806R1, Logistics Management Institute, Bethesda, MD, August 1989. Also. avail. NTIS AD-A211 911.

160. Marciniak, J. J. & Reifer, D. J. Software Acquisition Management. John Wiley & Sons, New York, 1990.

161. Marmor-Squires, A., et al. A Risk Driven Process Model for the Development of Trusted Systems. In Proceedings Fifth
Annual Computer Security Applications Conference, IEEE Computer Society Press, Washington, D.C., 1989, pp. 184-192.

162. Marshall, I. User Introduction to the Ada Evaluation System, Release 1, Version 1, Issue 2. September 1988.

163. Martin, R., et al. Proceedings of the Workshop on Executive Software Issues. Technical Report CMU/SEI-89-TR-6,
ADA206779, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, January 1989.

164. Martin, C. E., Hefley, W. E., Bristow, D. J., & Steele, D. J. "Team-Based Incremental Acquisition of Large-Scale Un-
precedented Systems". Policy Sciences 25 (1992), 57-75.

165. Mayer, J. H. "Aiding and ABETing a Coherent Testing Environment". Military & Aerospace Electronics 3, 3 (May 1992),
23-26.

166. Mayer, J. H. "Is Ada Ready for the 90s?". Military & Aerospace Electronics 3, 6 (August 1992), 21-24.

167. McGarry, F. E. The Economics of Software Engineering: 15 Years in the Software Engineering Laboratory. Presented at
Executive Session at the ACM TRI-Ada ’91 Conference.

168. McGarry, F. E., & Agresti, W. W. "Measuring Ada for Software Development in the Software Engineering Laboratory". Journal
of Systems and Software 9, 2 (February 1989), 149-159.

169. McGarvey, R. L. ABET - A Standard for Ada in a Test Environment. In Engle, Charles B., Jr., Ed., Proceedings TRI-Ada’90,
ACM, New York, 1990, pp. 463-470.

170. McQuown, K.L. Object-Oriented Design in a Real-Time Multiprocessor Environment. In Foreman, John T., & Engle, Charles
B., Jr., Ed., Proceedings TRI-Ada’89, ACM, New York, 1989, pp. 570-588.

171. Mendal, G.O. & Bryan, D.L. Exploring Ada, Volume 2. Prentice-Hall, Englewood Cliffs, NJ, 1990.

172. Mogilensky, J. Process Maturity as a Guide to Phased Ada Adoption. In Proceedings Eighth Annual Washington Ada
Symposium/Summer SIGAda Meeting, ACM, New York, 1991, pp. 16-23.

173. Mohanty, S.N. Ada in Mission Critical System Acquisition: A Guidebook. Technical Report MTR-84W00189, MITRE
Corporation, McLean, VA, September, 1984.

174. Moran, M.L. & Engle, C.B. The Pedagogy and Pragmatics of Teaching Ada as a Software Engineering Tool. In Proceedings
of the Fourth Annual Ada Software Engineering Education and Training Symposium, Ada Software Engineering Education Team,
Ada Joint Program Office, Washington, D.C., 1989, pp. 147-159.

175. Murphy, S. Software Engineering and Ada: Experiences on Advanced Automation System (AAS). Presented at Executive
Session at the ACM TRI-Ada ’91 Conference.

176. Naval Information Systems Management Center. Department of the Navy Ada Implementation Guide, Volumes I and II
(AD-A250 790 and AD-A250 791). Naval Information Systems Management Center, Washington, D.C., 1992.

177. Nielsen, K. Object-Oriented Design with Ada. Bantam Books, New York, 1992.

178. Nissen, J.C.D. and Wallis, P.J.L. Portability and Style in Ada. Cambridge University Press, Cambridge, UK, 1984.

179. Nissen, J.C.D. & Wichmann, B.A. "Ada-Europe Guidelines for Ada Compiler Specification and Selection". Ada Letters
(March/April 1984), 50-62. Originally published in October 1982 as a National Physical Laboratory (United Kingdom) Report.

180. Nyberg, K. A. Ada: Sources and Resources (1991 Edition). Grebyn Corporation, Vienna, VA, 1991.

181. Page, R.D. Holistic Case Study Approach to Ada-Based Software Engineering Training. In Foreman, John T., & Engle,
Charles B., Jr., Ed., Proceedings TRI-Ada’89, ACM, New York, 1989, pp. 332-341.

112 CMU/SEI-92-TR-29

182. Park, R. E., et al. Software Size Measurement: A Framework for Counting Source Statements. Technical Report
CMU/SEI-92-TR-20, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, September 1992.

183. Paulk, M.C., Curtis, B., Chrissis, M.B., et al. Capability Maturity Model for Software. Technical Report CMU/SEI-91-TR-24,
ADA240603, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, August 1991.

184. Payton, T. F. Domain-Specific Reuse: Vision, Strategies and Achievements. In Proceedings STARS ’91, STARS Program,
Arlington, VA, 1991, pp. 2-3 - 2-17.

185. Pennell, J. P. Ada Program Manager Issues. IDA Memorandum Report M-409, Institute for Defense Analyses, Alexandria,
VA, December 1987.

186. Perry, D. E. "First Symposium on Environments and Tools for Ada". Ada Letters XI, 3 (Spring 1991).

187. Performance Issues Working Group. "Ada Performance Issues". Ada Letters X, 3 (Winter 1990).

188. Place, P.R.H., Wood, W.G., Luckham, D.C., Mann, W., & Sankar, S. Formal Development of Ada Programs Using Z and
Anna: A Case Study. Technical Report CMU/SEI-91-TR-1, ADA235698, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA, February 1991.

189. Rate Monotonic Analysis for Real-Time Systems Project. The Handbook of Real-Time Systems Analysis: Based on the
Principles of Rate Monotonic Analysis. Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, forthcoming.

190. Redwine, S., et al. DoD Related Software Technology Requirements, Practices, and Prospects for the Future. IDA Paper
P-1788, Institute for Defense Analyses, 1984.

191. Reifer, D.J. Ada’s Impact: A Quantitative Assessment. Tech. Rept. RCI-TN-294, Reifer Consultants, Inc. Torrance, Calif.,
September 10, 1987. This report updates RCI-TN-255, March 1987.

192. Reifer, D. J. Ada Education and Training Recommendations. Tech. Rept. RCI-TN-405, Reifer Consultants, Inc., Torrance,
CA, 28 July, 1989. Prepared for AIL Systems.

193. Reifer, D. J. SOFTCOST-Ada: User Experiences and Lessons Learned at the Age of Three. In Engle, C. B., Jr., Ed.,
Proceedings TRI-Ada’90, ACM, New York, 1990, pp. 472-482.

194. Royce, W. Pragmatic Quality Metrics For Evolutionary Software Development Models. In Engle, Charles B., Jr., Ed.,
Proceedings TRI-Ada’90, ACM, New York, 1990, pp. 551-565.

195. Royce, W. TRW’s Ada Process Model for Incremental Development of Large Software Systems. In Proceedings 12th
International Conference on Software Engineering (ICSE-12), IEEE Computer Society Press, Washington, D.C., 1990, pp. 2-11.

196. Royce, W. W. Managing the Development of Large Software Systems: Concepts and Techniques. In WESCON Technical
Papers, Volume 14, WESCON, Los Angeles, CA, 1970.

197. Rozum, J. A. Software Management Concepts for Acquisition Program Managers. Technical Report CMU/SEI-92-TR-11,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, June 1992.

198. Sage, A. P. & Palmer, J. D. Software Systems Engineering. John Wiley, New York, 1990.

199. Savitch, W.J. and Petersen, C.G. Ada: an Introduction to the Art and Science of Programming. Benjamin/Cummings,
Redwood City, CA, 1992.

200. Schlender, B. R. "How to Break the Software Logjam". FORTUNE 120 (September 25, 1989), 100-112.

201. Seidewitz, E. Object-Oriented Programming in Smalltalk and Ada. In Meyrowitz, N., Ed., OOPSLA ’87 (Object-oriented
Programming Systems, Languages, and Applications) Conference Proceedings, ACM, New York, 1987, pp. 202-213.

202. Seidewitz, E. Thinking In Ada. Tutorial presented at Seventh (1990) and Eighth (1991) Annual Washington Ada Symposium.

203. Seidewitz, E. and Stark, M. An Object-Oriented Approach to Parameterized Software in Ada. In Proceedings Eighth Annual
Washington Ada Symposium/Summer SIGAda Meeting, ACM, New York, 1991, pp. 62-76.

204. Sha, L., Klein, M. H., & Goodenough, J. B. Rate Monotonic Analysis for Real-Time Systems. Technical Report CMU/SEI-91-
TR-6, ADA235641, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, March, 1991.

205. Shkapsky, J. M. Analysis of Training-Related Issues in the Transition to Ada in the DON (ADA246781). Master Th., Naval
Postgraduate School,September 1991.

206. Shumate, K.C. Understanding Ada (2nd edition). Wiley, New York, 1989.

207. Siegel, J.A.L., Stewman, S., Konda, S., Larkey, P.D., & Wagner, W.G. National Software Capacity: Near-Term Study.
Technical Report CMU/SEI-90-TR-12, ADA226694, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, May
1990.

208. Smith, G. N., Cohen, W. M., Hefley, W. E., & Levinthal, D. A. Understanding the Adoption of Ada: A Field Study Report.
Technical Report CMU/SEI-89-TR-28, ADA219188, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, May
1989.

CMU/SEI-92-TR-29 113

209. Sodhi, J. Managing Ada Projects Using Software Engineering. Tab Books, Blue Ridge Summit, PA, 1990.

210. Software Technology for Adaptable, Reliable Systems (STARS). STARS Reuse Concepts, Volume I - Conceptual Framework
for Reuse Processes, Version 1.0. Informal Technical Report (CDRL 04040, Contract F19628-88-D-0031) STARS-
TC-04040/001/00, Electronic Systems Division, Air Force Systems Command, Hanscom AFB, MA, February 1992.

211. Software Productivity Consortium. ADARTS - An Ada-Based Design Approach for Real-Time Systems, Version 1.0.
Technical Report SPC-TR-88-021, Software Productivity Consortium, Reston, VA, August 1988.

212. Software Productivity Solutions, Inc. Ada Risk Handbook. Naval Air Development Center, Warminster, PA, 1988.

213. SQL Ada Module Description Language. ISO/JTC1/SC22/WG9, May 1991.

214. Statistica, Inc. SIDPERS-3. Rockville, MD, 1991.

215. Taft, S. T. "An Overview of Ada 9X". Communications of the ACM (in press).

216. Softech. The Testing of Ada Programs and Distributed Systems. Prepared by Softech Houston office for NASA Avionics
Systems Division, Research and Engineering, Johnson Space Center, January, 1986.

217. Tomayko, J. E. "Lessons Learned Teaching Ada in the Context of Software Engineering". Journal of Systems and Software
10, 4 (1989), 281-283.

218. Trimble, J. and King, K.C. "STARS ’91". STARS Newsletter II, 3 (May 1992), 14-15.

219. U.S. Congress, Office of Technology Assessment. Holding the Edge: Maintaining the Defense Technology Base. U.S.
Government Printing Office, Washington, D.C., 1989.

220. Umphress, D. A. Ada: Helping Executives Understand the Issues. In Proceedings of the Fourth Annual Ada Software
Engineering Education and Training Symposium, Ada Software Engineering Education Team, Ada Joint Program Office,
Washington, D.C., 1989, pp. 135-145.

221. Ville, C., & Bratel, A. A Real-Time Ada Design Method Based on DOD-STD-2167A. In Engle, Charles B., Jr., Ed.,
Proceedings TRI-Ada’90, ACM, New York, 1990, pp. 130-140.

222. Weber, C. V., Paulk, M. C., Wise, C. J., & Withey, J. V. Key Practices of the Capability Maturity Model. Technical Report
CMU/SEI-91-TR-25, ADA240604, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, August 1991.

223. Wegner, P. Dimensions of Object-Based Language Design. In Meyrowitz, N., Ed., OOPSLA ’87 (Object-Oriented Program-
ming Systems, Languages, and Applications) Conference Proceedings, ACM, New York, 1987, pp. 168-182.

224. Weiderman, N.H., Borger, M.W., Cappellini, A.L., Dart, S.A., Klein, M.H., & Landherr, S.F. Ada for Embedded Systems:
Issues and Questions. Tech. Rept. CMU/SEI-87-TR-26, ADA191096, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA, 1987.

225. Weiderman, N.H., Habermann, A.N., Borger, M.W. & Klein, M.H. A Methodology for Evaluating Environments. Proceedings
of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Development Environments, January 1987, pp.
5-14.

226. Weiderman, N. H. Ada Adoption Handbook: Compiler Evaluation and Selection. Tech. Rept. CMU/SEI-89-TR-13,
ADA207717, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, April 1989.

227. Weiderman, N., Donohoe, P., & Shapiro, R. Benchmarking for Deadline-Driven Computing. In Engle, C. B., Jr., Ed.,
Proceedings TRI-Ada’90, ACM, New York, 1990, pp. 254-264.

228. Wets, J. F. Thomson-CSF and Ada for ATC: An Experience of Eight Years. In Brandon, C. S., & Eustice, A. S., Ed.,
Proceedings TRI-Ada ’91, ACM, New York, 1991, pp. 516-529.

229. Willis, R.R. Case History and Lessons Learned in Software Process Improvement. Presented at National Security Industrial
Association 6th Annual Joint Conference and Tutorial on Software Quality and Productivity, Williamsburg, Virginia, April 17- 19,
1990.

230. Winkler, J. F. H. "A Definition of Lines of Code for Ada". Ada Letters X, 2 (March/April 1990), 89-94.

231. Wood, W., Pethia, R., Roberts, L. & Firth, R. A Guide to the Assessment of Software Development Methods. Tech. Rept.
CMU/SEI-88-TR-8, ADA197416, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, May 1988.

232. Worley, J. J., Jr. Education Necessary for Air Force Software Managers To Use the Ada Programming Language and
Software Engineering Effectively (AFIT/GSS/ENG/91D-12, ADA246744). Master Th., Air Force Institute of Technology,December
1991.

233. Zarella, P. F., Smith, D. B., & Morris, E. W. Issues in Tool Acquisition. Tech. Rept. CMU/SEI-91-TR-8, ADA 244 292,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, September 1991.

114 CMU/SEI-92-TR-29

CMU/SEI-92-TR-29 115

Acronyms

4GL fourth-generation language

ABET Ada-Based Environment for Test

ACEC Ada Compiler Evaluation Capability

ACM Association for Computing Machinery

ACVC Ada Compiler Validation Capability

Ada The language (named for Ada Lovelace, b. 1815)

ADA Americans with Disabilities Act

AdaIC Ada Information Clearinghouse

AdaJUG Ada Joint Users Group (formerly Ada-JOVIAL Users Group)

ADARTS Ada-based Design Approach for Real-Time Systems (ADARTS)

AEO Ada Executive Official (see Software Executive Official)

AES Ada Evaluation System

AFMC Air Force Materiel Command

AI artificial intelligence

AIWG Artificial Intelligence Working Group

AJPO Ada Joint Program Office

AML ASEET Material Library

AMO ACVC Maintenance Organization

ANSI American National Standards Institute

API application program interface

APSE Ada Programming Support Environment

ARG Ada Rapporteur Group

ARTEWG Ada Runtime Environment Working Group

ASEET Ada Software Engineering Education and Training

ASIS Ada Semantic Interface Specification

ASSET Asset Source for Software Engineering Technology

ATCCS Army Tactical Command and Control System

ATLAS abbreviated test language for all systems

AVF Ada Validation Facility

AVO Ada Validation Organization

AVS Ada Validation Suite

BBS bulletin board system

BIT built-in test

C3I command, control, communications, and intelligence

CAI computer-assisted instruction

CAIS Common APSE Interface Set

CAISWG CAIS Working Group

116 CMU/SEI-92-TR-29

CASE computer-aided software engineering

CAUWG Commercial Ada Users Working Group

CDR critical design review

CIFO Catalogue of Interface Features and Options

CIM Corporate Information Management (a DoD Initiative)

CM configuration management

CMM Capability Maturity Model for Software

CMS Code Management System

COCOMO Constructive Cost Model

COTS commercial off-the-shelf [software]

CRAD Contract Research and Development

CREASE Catalog of Resources for Education in Ada and Software Engineering

CRG Character Rapporteur Group

DARPA Defense Advanced Research Projects Agency

DBMS database management system

DEC Digital Equipment Corporation

DIA Defense Intelligence Agency

DISA Defense Information Systems Agency

DLA Defense Logistics Agency

DoD Department of Defense

DSN Defense Switched Network (formerly AUTOVON)

DSP digital signal processing

DSSA Domain-Specific Software Architectures

DTIC Defense Technical Information Center

EDWG Educational Products Working Group

Email electronic mail

EMD Engineering and Management Development

E&V Evaluation and Validation

ExTRA Extensions des services Temps Reels Ada

FAA Federal Aviation Administration

FIPS Federal Information Processing Standard

FSF Free Software Foundation

FTP File Transfer Protocol

FY fiscal year

GKS Graphics Kernel System

GPSS general purpose system simulation

GUI graphical user interface

HOL high-order language, high-order programming language

HOOD hierarchical object-oriented design

CMU/SEI-92-TR-29 117

IEC International Electro-Technical Commission

IEEE Institute of Electrical and Electronic Engineers

IMSL International Mathematical and Statistical Library

IR&D independent research and development

IRG Information Systems Rapporteur Group

ISO International Standards Organization

MIL-STD military standard

MIPS millions of instructions per second

MIS management information systems

MMS Module Management System

NASA National Aeronautics and Space Administration

NATO North Atlantic Treaty Organization

NIST National Institute of Standards and Technology

NRG Numerics Rapporteur Group

NSA National Security Agency

NTIS National Technical Information Service

NUMWG Numerics Working Group

OBJWG Object-Oriented Working Group

OOD object-oriented design, object-oriented development

OOP object-oriented programming

OORA object-oriented requirements analysis

OS operating system

OSD Office of the Secretary of Defense

OSF Open Software Foundation

OSI open systems interconnection

P3I preplanned product improvement

PAMELA process abstraction method

PC personal computer

PDL program design language

PDSS post-deployment software support

PHIGS Programmer’s Hierarchical Interactive Graphics Standard

PIWG Performance Issues Working Group

POSIX Portable Operating System Interface

RAASP Reusable Ada Avionics Software Packages

RAPID Reusable Ada Products for Information Systems Development

REUSEWG Reuse Working Group

RISC reduced instruction set computer

RMA rate monotonic analysis

ROM read-only memory

118 CMU/SEI-92-TR-29

RRG Real-time Rapporteur Group

SAME SQL Ada Module Extensions

SAMeDL SQL Ada Module Description Language

SCCS Source Code Control System

SDIO Strategic Defense Initiative Organization

SDP software development plan

SDS strategic defense system

SDSAWG Software Development Standards and Ada Working Group

SEE software engineering environment

SEI Software Engineering Institute

SEO Software Executive Official

SEPG Software Engineering Process Group

SIGAda Association for Computing Machinery Special Interest Group on Ada

SLOC source lines of code

SQL Structured Query Language

SRG SQL Rapporteur Group

SSTDWG Secondary Standards Working Group

STARS Software Technology for Adaptable, Reliable Systems

STSC Software Technology Support Center

TQL total quality leadership

TQM total quality management

UIMS user interface management system(s)

URG Uniformity Rapporteur Group

USAF United States Air Force

USN United States Navy

UUT Unit Under Test

VSR Validation Summary Report

XRG Ada9X Rapporteur Group

CMU/SEI-92-TR-29 119

Index
4GL 14, 17, 79, 115

ABET 115
ACEC 11, 57, 100, 115
ACVC 11, 55, 99, 100, 115

Maintenance Organization 55, 100, 115
Review Team 99

Ada
as enabling technology 27
inhibitors to use 7
standards efforts 85
training 45

Ada 83 2, 8, 85
Ada 9X 2, 8, 40, 85, 97, 98

ACVC 89
coding guidelines 88
compiler availability 87
compiler validation 89
enhancements 87
GNU Ada 9X compiler 88
project efforts 85
Project Office 8, 85, 98
projected schedule 85

Ada Board 98
Ada Compiler Evaluation Capability (ACEC) 11,

57, 115
Ada Compiler Validation Capability (ACVC) 11,

55, 99, 115
Ada Evaluation System (AES) 11, 57, 115
Ada Executive Officials 104
Ada Federal Advisory Board 98
Ada implementation

definition of 51
Ada Information Clearinghouse (AdaIC) 4, 19, 50,

66, 91, 98, 100, 115
bulletin board 91, 98

Ada Joint Program Office (AJPO) 8, 11, 19, 54,
55, 66, 91, 98, 115

Ada Joint Users Group (AdaJUG) 95, 115
Ada Letters 88, 95, 96
Ada policy

Air Force 23
Army 23
Congressional 22
Dept. of Defense (DoD) 22
FAA 24
Marine Corps 23
NASA 24
NATO 24
Navy 23

Ada programming support environment 61, 115
Ada Runtime Environment Working Group 95,

115
Ada Semantic Interface Specification (ASIS) 40
Ada Software Engineering Education and Training

Team (ASEET) 15, 50, 100, 115
Ada Validation Facility 55, 101, 115
Ada Validation Organization 55, 99, 115

Ada Validation Suite 100
Ada-based Design Approach for Real-Time Sys-

tems (ADARTS) 3, 115
Ada-Based Environment for Test 115
Ada-Europe 96
Ada-JOVIAL Newsletter 4, 15, 50, 66, 100
Ada-JOVIAL Users Group 95, 115
AdaIC 4, 19, 50, 66, 91, 98, 100, 104, 115

bulletin board 91, 98
AdaJUG 95, 115
ADARTS 3, 115
AEO 104, 115
AES 11, 57, 115
AI 68, 77, 78, 95, 115
AI Working Group 95, 115
Air Force 104
Airborne applications 65
AIWG 95
AJPO 8, 11, 19, 54, 55, 66, 91, 98, 115
AML 50, 100, 115
AMO 55, 100, 115
AN/AYK-14 69
AN/UYK-43 69
AN/UYK-44 69
ANSI 2, 8, 85, 96
APSE 61, 115
ARG 96
Army 104
Array processors 69
ARTEWG 95, 115
Artificial intelligence 68, 77, 78, 95, 115
Artificial Intelligence Working Group 95, 115
ASEET 15, 50, 100, 115
ASEET Material Library (AML) 50, 100, 115
ASIS 40
Assembly language 17
ASSET 93, 102
Asset Source for Software Engineering Technology

(ASSET) 93, 102
ATLAS 23, 77, 115
Automatic test equipment 23, 77
AVF 8, 55, 101, 115
Avionics 65
AVO 55, 99, 115
AVS 100

Barriers to Ada adoption 37
Base compiler 54, 66
Benchmarking 11, 56, 57, 96
Beta testing 34
Bindings 75

GKS 77, 116
issues 75
PHIGS 77, 117
POSIX/Ada 76, 97
SQL 76
X Window System 77

BIT 60, 115

120 CMU/SEI-92-TR-29

Built-in test (BIT) 60, 115

C 15, 17, 81
C++ 15
C3I 65, 104
CAI 49
CAIS Working Group 95, 115
CAISWG 95, 115
CASE 8, 40, 51
Catalog of Resources for Education in Ada and

Software Engineering 15, 50, 116
CAUWG 95, 116
COBOL 17, 81, 82
COCOMO 18
Code efficiency 69
Code generator 66
Code inspections 16, 31
Command/control applications 65
Commercial Ada Users Working Group 95, 116
Commercial software packages 65
Compile-time efficiency 11, 55, 56, 57
Compiler 51

acquisition 60
back end 66
benchmarking 57
compilation order 59
efficiency 57, 67
error messages 59
evaluation 10, 40, 56, 57, 60, 62
front end 66
optimization 58
output listings 59
recompilation 59, 60
requirements 60
retargeting 66
revalidation 60
set/use listing 59
validated 66
validation 11, 40, 54, 62

Computer resources 9, 19, 31, 51, 60
Computer-aided software engineering 51
Computer-assisted instruction 49
Conferences 98
Configuration management 18, 47, 55
Configuration manager 61
Contractor evaluation 16
Cost estimating 18, 32
COTS 13, 14, 23
CREASE 15, 50, 116
CRG 96
Cross compiler 53
CrossTalk 103

DARPA 104
Database management 14
Database management system 82, 116
DBMS 82, 116
Debugger/debugging 51, 53, 61
DEC 116
DEC Vax 69
Defense Data Network 91

Derived compiler 54, 66, 101
Design methodologies 47
Design walkthroughs 16, 31
Development computer 51
DIA 104
DISA 104, 116
Distributed systems 12, 69, 71
DLA 104
DoD Ada Executive Officials 104, 115
DoD Directive 3405.1 6, 22, 77
DoD Directive 3405.2 77, 104
DoD Instruction 5000.2 6, 11, 22, 77, 104
DoD Software Executive Officials 6, 104
DoD-STD-1703 18, 30
DoD-STD-2167 30
DoD-STD-2167A 18, 30, 62, 96
Downloader 61
Downloading 51
Dynamic-code analyzer 62

Editor 51, 61
Educational Products Working Group 95, 116
EDWG 95, 116
Embedded computer 51
Embedded system applications 65
Executable module 53
Executive 12, 69

Fast Fourier Transform 12
FIPS 8, 85, 96
FORTRAN 12, 13, 17, 70, 81, 83
Fourth-generation languages 14, 17, 77, 79, 115
FTP 91

Generics 24, 74
GPSS 77, 78, 116
Graphical programming tools 62
Ground-based applications 65

Hartstone 11, 57
Hierarchical Object-Oriented Design 3, 116
High-order languages 51
HOL 51
HOOD 3, 116
Host computer 9, 51, 57

IEEE Std. 1003.5 76, 97
IMSL 13, 117
Inhibitors to Ada adoption 7
Integration 16, 31
Intel 80186 69
Intel 80286 69
Intel 8031 69
Intel 80386 69
Intel 80486 69
Intel 8051 69
Intel 8086 69
Intel 8088 69
International Mathematical and Statistical Library

13, 117
Internet 91

CMU/SEI-92-TR-29 121

Interrupts 69
IRG 96
ISO 2, 8, 22, 85, 96, 117

Joint Chiefs of Staff 104
JOVIAL 12, 70, 81
JTC1 96

Language Control Facility 100
Language revisions 8, 85
Language sensitive editor 62
Language translation 83
Learning curve 27
Lines of code 17, 18, 21
Linker/linking 51, 53, 61
LISP 77, 78

Machine independence 66
Maintainability 6, 24
Management 25, 27

experiences 44
Management training 45, 47
Managing Ada adoption 40, 44
Managing complexity 25
Megaprogramming 102
Message handling protocol 71
MIL-HDBK-287 18, 30
MIL-STD-1750A 12, 51, 69
MIL-STD-1815A 5, 11, 85
Modularity 25
Module manager 62
Motorola 68000 12, 51, 69
Motorola 68010 69
Motorola 68020 69
Motorola 68030 69
Motorola 68040 69
Motorola 6809 69
Multiprocessors 69

NASA 44
Navy 104
Network access 91
NIST 85, 96
NRG 96
NSA 104
Numerics Working Group 96, 117
NUMWG 96, 117

Object code 51
Object-code analyzer 62
Object-code efficiency 11, 55, 56, 57, 58
Object-oriented design 3, 14
Object-oriented programming 14
Object-oriented requirements analysis 14, 117
Object-Oriented Working Group 96, 117
OBJWG 96, 117
OOD 3, 14, 40, 117
OOP 14, 117
OORA 14, 117
Optimization 9, 58
OSD 104

Packages 13, 19, 47, 74, 83
PAMELA 3
Parallel systems 65
Pascal 17
PDL 11, 47, 62, 117
PDL processor 62
PDSS 5, 24, 80, 117
Performance Issues Working Group 96, 117
PIWG 11, 57, 96, 117
Portability 6, 13, 24
Portable Operating System Interface (POSIX) 76,

97, 117
POSIX 76, 97, 117
Post-deployment software support 5, 24, 80, 117
Pragma 67, 69, 81
Pretty printer 59, 62
Productivity 6, 18, 25, 79
Professional organizations 95, 96
Program design language 11, 47, 62, 117
Program libraries 47
Program library 19, 51, 53, 58
Project compiler 55, 88
Project registration 88
Proposal evaluation 16

Rapid prototyping 79
Rate monotonic analysis 3, 40
Real-time systems 69
Recompilation 19, 59
Recompilation requirements 58
Reengineering 13
Reliability 6, 24
Representation clauses 81
Retargeting 66
Reuse 14, 17, 24
Reuse Working Group 96, 117
REUSEWG 96, 117
Revalidation 56
RISC processors 12, 69, 117
Risk 65
Risk management 31, 44
RMA 3, 40
ROM 60
RRG 97
Runtime

configuration 13
library 53
system 13, 58, 67, 70, 82, 84

SAME 76, 118
SAMeDL 76, 118
SC22 96
SCE 16, 39, 44
Scheduler 69
SDIO 104
SDP 43, 118
SDSAWG 18, 30, 96, 118
Secondary Standards Working Group 96, 118
SEI 21
SEO 6, 95, 104, 118
Separate compilation 47, 74

122 CMU/SEI-92-TR-29

SEPG 30, 44, 118
SIGAda 95, 118
Signal processors 12, 68, 69
SIMSCRIPT 77, 78
Simulation 65, 78
Simulator/debugger 53
SLOC 17
SOFTCOST 18
Software capability evaluation 16, 39, 44
Software development capability assessment 16,

39
Software development capability/capacity review

16, 39
Software development plan 43, 118
Software Development Standards and Ada Work-

ing Group 18, 30, 96, 118
Software engineering 21, 24, 28, 57
Software Engineering Institute 21
Software engineering process group 30, 44, 118
Software engineering training 45
Software Executive Officials 95, 104, 118
Software life-cycle models 31
Software management 27, 28
Software problems 27, 31
Software process 28, 44
Software process improvement 44
Software process maturity 29, 44
Software Technology for Adaptable, Reliable Sys-

tems (STARS) 21, 84, 102, 118
Software Technology Support Center (STSC) 103

bulletin board 103
CrossTalk 103

Source code 51
Source-code cross referencer 62
Source-code formatter 62
Space applications 65
SQL 76, 97, 118
SQL Ada Module Description Language 76, 118
SQL Ada Module Extensions 76, 118
SRG 97
SSTDWG 96, 118
Standards 8, 85
Standards organizations 96
STARS 21, 84, 102, 118
Static analyzer 62
Structured analysis 3
Structured Query Language 76, 118
STSC 103
Support software 65
Syntax directed editor 62
System engineering trade-offs 66

Target computer 9, 51, 53
Target processors

AN/AYK-14 69
AN/UYK-43 69
AN/UYK-44 69
DEC Vax 69
Intel 80186 69
Intel 80286 69
Intel 8031 69

Intel 80386 69
Intel 80486 69
Intel 8051 69
Intel 8086 69
Intel 8088 69
Intel 80x86 51
MIL-STD-1750A 12, 51, 69
Motorola 68000 12, 69
Motorola 68010 69
Motorola 68020 69
Motorola 68030 69
Motorola 68040 69
Motorola 6809 69
Motorola 680x0 51
RISC 12
RISC processors 51

Target simulator 53, 61
Tasking 69
Tasks 47
Technology transition 36, 44
Test manager 62
Testing 16, 31, 47, 84
Text books 98
Tools 65

CASE 51
compiler 51
configuration manager 61
cross compiler 53
debugger 61, 66, 67
documentation generators 62
downloader 61
dynamic-code analyzer 62
editor 61
evaluation 62
graphical programming 62
language sensitive editor 62
linker 61, 66
module manager 62
object-code analyzer 62
PDL processor 62
pretty printer 59, 62
recompilation analyzer 59
source-code cross referencer 62
source-code formatter 62
static analyzer 62
syntax directed editor 62
target simulator 61
test manager 62

TQM 44, 47
Training 15, 33, 43, 98

Ada language 47
audiences 46
CAI 49
compiler selection 47
compilers 47
configuration management 47
design reviews 47
evaluation guidelines 48
feedback 49
FORTRAN 46
government 45

CMU/SEI-92-TR-29 123

industry 45
initial Ada 46
make or buy 48
management 45, 47
PASCAL 46
PDL 47
previous 46
runtime system 47
selection 45
selection planning 49
software architecture 47
software design 47
software engineering 45, 46
software tools 47
strategies 43
student backgrounds 46
subcontractors 47
system engineers 47
tailoring 48
testing 47
video tapes 49

Translation 13, 83

Unix 76
URG 97

Validated compilers 23, 66
number of 54

Validation 8, 11, 13, 54
Ada 9X 89
limitations of 55
periodic revalidation 55

Vector processors 69
Vendor dependence 80

Waivers 7, 14, 15, 23, 38, 67
WG9 96

XRG 97

124 CMU/SEI-92-TR-29

CMU/SEI-92-TR-29 i

Table of Contents

1. Introduction 1
1.1. Purpose and Scope 1
1.2. Handbook Overview 2
1.3. Tips for Readers 3
1.4. Changes in Version 2 3

2. Program Manager Considerations 5
2.1. General 5
2.2. Costs 9
2.3. Technical Issues 10
2.4. Program Management 15
2.5. For More Information . . . 19

3. The Need for Ada 21
3.1. The Software Problem and Ada’s Role 21
3.2. Policies on the Use of Ada 22

3.2.1. Federal Legislation 22
3.2.2. Department of Defense Policy 22
3.2.3. Service Policies 23
3.2.4. Other Policies on Ada Use 24

3.3. Ada Benefits 24

4. Management 27
4.1. Management Issues 27

4.1.1. Software Tasks and Activities 28
4.1.2. People 33
4.1.3. Tools and Technology 34

4.2. Adopting New Technology 35
4.2.1. A Model of Technology Development and Insertion 35
4.2.2. Inhibitors to the Widespread Use of Ada 37
4.2.3. Adopting Ada 40

4.3. Managing Ada Adoption Efforts 42
4.4. For More Information . . . 44

5. Learning Ada: Training Implications 45
5.1. Rationale for Ada Training 45
5.2. Audiences and Course Content 46
5.3. Evaluating Training Programs 48
5.4. Selecting Training Programs 49
5.5. For More Information . . . 50

ii CMU/SEI-92-TR-29

6. Software Production Technology 51
6.1. Software Development Terms and Concepts 51
6.2. Ada Compilers 54

6.2.1. Compiler Validation 54
6.2.2. Compiler Evaluation 56
6.2.3. Compilers: Action Plan 60

6.3. Programming Support Environments 61
6.3.1. Overall Status 61
6.3.2. Required Tools: Action Plan 61
6.3.3. Optional Tools: Action Plan 62

6.4. For More Information . . . 62

7. Ada Applicability 65
7.1. Scenarios for Ada Use 65
7.2. Ada and System Engineering 66

7.2.1. Absence of Compiler: Action Plan 66
7.2.2. Object-Code Efficiency: Action Plan 67

7.3. Ada and Embedded Processors 68
7.3.1. Non-Standard Architectures: Action Plan 68

7.4. Ada for Real-Time Systems 69
7.4.1. Real-Time Systems: Action Plan 70

7.5. Ada for Distributed Systems 71

8. System Design and Implementation Issues 73
8.1. Designing for Portability and Reuse 73

8.1.1. Portability 73
8.1.2. Reuse 74
8.1.3. Designing for Portability and Reuse: Action Plan 74

8.2. Using Ada with Other Standards and Protocols 75
8.2.1. POSIX Ada Bindings 76
8.2.2. SQL Bindings 76
8.2.3. Graphics and Window System Bindings 77

8.3. Using Special-Purpose Languages 77
8.3.1. ATLAS 77
8.3.2. Simulation Languages: SIMSCRIPT and GPSS 78
8.3.3. Artificial Intelligence Languages: LISP 78
8.3.4. Fourth-Generation Languages 79

8.4. Mixing Ada with Other Languages 80
8.4.1. Interfacing Ada Code with Other Languages 80
8.4.2. Isolating Subsystems 82
8.4.3. Replacing the Whole System 83
8.4.4. Translating Languages 83

8.5. For More Information . . . 84

CMU/SEI-92-TR-29 iii

9. From Ada 83 to Ada 9X 85
9.1. Ada Language Revision Process 85
9.2. The Ada 9X Project 85
9.3. Transitioning to Ada 9X 87
9.4. Ada 9X Validation 89
9.5. For More Information . . . 90

Appendix A. Ada Information 91
A.1. Readings 91
A.2. Resources 91

Appendix B. Ada Working Groups and Resources 95
B.1. Professional Organizations 95

B.1.1. Ada Joint Users Group (AdaJUG) 95
B.1.2. SIGAda 95
B.1.3. Other Professional Organizations (World-Wide) 96

B.2. Standards Organizations 96
B.3. U.S. Government Sponsored/Endorsed Organizations 98
B.4. DoD Software Executive Officials 104

References 105

Acronyms 115

Index 119

iv CMU/SEI-92-TR-29

CMU/SEI-92-TR-29 v

List of Figures

Figure 4-1: Potential Influences of Ada Adoption 29
Figure 4-2: Stages of Adoption of New Technology 37
Figure 6-1: Tools Used in the Software Development Process 52
Figure 9-1: Projected Ada 9X Schedule 86

vi CMU/SEI-92-TR-29

CMU/SEI-92-TR-29 vii

List of Tables

Table 2-1: General Comparison of Ada and Other Languages 17
Table 6-1: Optional Tools 63
Table 7-1: Ada on Various Processors 69

	Ada Adoption Handbook: A Program Manager’s Guide
	Table of Contents
	List of Figures
	List of Tables
	Preface to the Second Edition
	Acknowledgements
	1. Introduction
	2. Program Manager Considerations
	3. The Need for Ada
	4. Management
	5. Learning Ada: Training Implications
	6. Software Production Technology
	7. Ada Applicability
	8. System Design and Implementation Issues
	9. From Ada 83 to Ada 9X
	Appendix A: Ada Information
	Appendix B: Ada Working Groups and Resources
	References
	Acronyms
	Index

