
Technical Report
CMU/SEI-92-TR-021
ESC-TR-92-021

Software Effort & Schedule Measurement:

A Framework for Counting Staff-hours

and Reporting Schedule Information

Wolfhart B. Goethert

Elizabeth K. Bailey

Mary B. Busby

(Draft) /Helvetica /B -52 /UL .8
/gray exch def
/start exch def
/rotval exch def
/mode exch def
findfont /infont exch def
/printme exch def

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Unlimited distribution subject to the copyright.

Technical Report
CMU/SEI-92-TR-021

ESC-TR-92-021
September 1992

Software Effort & Schedule Measurement:

A Framework for Counting Staff-hours

and Reporting Schedule Information

Wolfhart B. Goethert

Elizabeth K. Bailey

Mary B. Busby

with the Effort and Schedule Subgroup of the Software Metrics Definition Working Group
and the Software Process Measurement Project Team

(Draft) /Helvetica /B -52 /UL .8
/gray exch def
/start exch def
/rotval exch def
/mode exch def
findfont /infont exch def
/printme exch def

This report was prepared for the

SEI Joint Program Office
HQ ESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

FOR THE COMMANDER

(signature on file)

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1996 by Carnegie Mellon University.

Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative
works.

Requests for permission to reproduce this document or to prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRAN-
TIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTIBILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 52.227-7013.

This document is available through Research Access, Inc., 800 Vinial Street, Pittsburgh, PA 15212.
Phone: 1-800-685-6510. FAX: (412) 321-2994. RAI also maintains a World Wide Web home page. The URL is
http://www.rai.com

Copies of this document are available through the National Technical Information Service (NTIS). For informa-
tion on ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of
Commerce, Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides access
to and transfer of scientific and technical information for DoD personnel, DoD contractors and potential contrac-
tors, and other U.S. Government agency personnel and their contractors. To obtain a copy, please contact DTIC
directly: Defense Technical Information Center / 8725 John J. Kingman Road / Suite 0944 / Ft. Belvoir, VA
22060-6218. Phone: (703) 767-8222 or 1-800 225-3842.]

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents

List of Figuresiii

Preface v

Acknowledgments vii

1. Introduction 1
1.1. Scope 1
1.2. Objective and Audience 2
1.3. The Software Measurement Environment 2

2. Defining a Framework for Software Effort Measurement 3
2.1. Staff-Hour Definition Checklist 4
2.2. Supplemental Information Forms 9
2.3. Reporting Forms 9

3. Understanding Staff-Hour Checklist Attributes and Values 11
3.1. Type of Labor 12
3.2. Hour Information 13
3.3. Employment Class 14
3.4. Labor Class 16

3.4.1. Software management 17
3.4.2. Technical analysts and designers 17
3.4.3. Programmer 18
3.4.4. Test personnel 18
3.4.5. Software quality assurance 18
3.4.6. Software configuration management 19
3.4.7. Program librarian 19
3.4.8. Database administrator 19
3.4.9. Documentation/publications 20
3.4.10. Training personnel 20
3.4.11. Support staff 20

3.5. Activity 21
3.6. Product-Level Functions 21

3.6.1. CSCI-level functions (major functional element) 22
3.6.2. Build-level functions (customer release) 25
3.6.3. System-level functions 26

4. Using Supplemental Staff-Hour Information Form 29
4.1. Hour Information 29
4.2. Labor Class 29
4.3. Product-Level Functions 30

5. Using Forms for Collecting and Reporting Staff-Hour
Measurement Results 33

6. Defining a Framework for Schedule Definition Measurement 37

CMU/SEI-92-TR-21 i

6.1. Why Include Schedule in the Core Set? 37
6.2. Dates of Milestones and Deliverables 38
6.3. Progress Measures 49

7. Meeting the Needs of Different Users 55
7.1. To Prescribe 56

7.1.1. To specify 56
7.1.2. To request data elements to be reported 56

7.2. To Describe 56
7.2.1. Ongoing projects 57
7.2.2. After the fact 57

8. Recommendations 59
8.1. Ongoing Projects 59
8.2. New Projects 59
8.3. At the End of All Projects 60
8.4. Recommended Staff-Hour Definition 60
8.5. Schedule Recommendations for the Acquisition Program

Manager 65
8.5.1. Dates of reviews/audits/deliverables 65
8.5.2. Progress measures 65

8.6. Schedule Recommendations for the Cost Analyst or the
Administrator of a Central Measurement Database 66

8.7. Schedule Recommendations for Process Improvement Personnel 67

References 69

Appendix A: Acronyms and Terms 71
A.1. Acronyms 71
A.2. Terms Used 72

Appendix B: Background 73
B.1. Origins of the Report 73
B.2. Why Staff-Hours? 73
B.3. Source of Staff-Hours 74

Appendix C: Using Measurement Results—llustrations and Examples 77
C.1. Noncumulative Effort Distribution Example 77

C.1.1. Effort profile for total staff-hours only 77
C.1.2. Effort profile for each build and CSCI 82

C.2. Productivity Trend Example 85

Appendix D: Tailoring Schedule Checklist for Progress or Status
Information 89
D.1. MIL-STD-2167A 89
D.2. ARMY STEP Set of Measures 91
D.3. Air Force Pamphlet 800-48 92
D.4. MITRE 93

Appendix E: Checklists and Forms for Reproduction 95

ii CMU/SEI-92-TR-21

List of Figures

Figure 2-1 Example of Multiple Report Specifications 5

Figure 2-2 Interrelationship of Staff-Hour Definition and Report
Specification 6

Figure 2-3 Example of Completed Staff-Hour Definition Checklist 8

Figure 3-1 The Type of Labor Attribute 12

Figure 3-2 The Hour Information Attribute 13

Figure 3-3 The Employment Class Attribute 14

Figure 3-4 The Labor Class Attribute 16

Figure 3-5 The Activity Attribute 21

Figure 3-6 The CSCI-Level Functions Attribute 22

Figure 3-7 The Build-Level Functions Attribute 25

Figure 3-8 The System-Level Functions Attribute 26

Figure 4-1 Supplemental Information Form 31

Figure 5-1 Reporting Concept 34

Figure 5-2 Example Reporting Form for CSCI Development 35

Figure 6-1 Schedule Definition Checklist, Page 1 39

Figure 6-2 Schedule Definition Checklist, Page 2 40

Figure 6-3 Example of Completed Schedule Definition Checklist,

Page 1 42

Figure 6-4 Example of Completed Schedule Definition Checklist,

Page 2 44

Figure 6-5 Example of a Report Form for System-Level Milestone
Dates 45

Figure 6-6 Example of Report Form for CSCI-Level Milestone Dates 46

Figure 6-7 Example of Report Form for System-Level Deliverables 47

Figure 6-8 Report Form for CSCI-Level Deliverables 48

Figure 6-9 Idealized Rate of Unit Completion 50

Figure 6-10 Schedule Definition Checklist, Progress/Status Information 51

Figure 6-11 Report Form for Progress Information 53

Figure 7-1 Use of Forms 55

Figure 8-1 Recommended Staff-Hour Definition 62

Figure B-1 Cost-Account-to-Contract-WBS Relationship 76

Figure C-1 Example of a Completed Staff-Hour Definition Checklist 78

CMU/SEI-92-TR-21 iii

Figure C-2 Example of an Effort Profile for Total System Expenditure
by Month 81

Figure C-3 Example of a Cumulative Effort Profile 82

Figure C-4 Example of a Staff-Hour Definition Checklist for System,
Builds, and CSCIs 83

Figure C-5 Example of a Planned Effort Profile by CSCI 83

Figure C-6 Example of a Planned Cumulative Effort Profile 84

Figure C-7 Example of a Planned vs. Actual Cumulative Effort Profile 84

Figure C-8 Example of a Planned vs. Actual Expenditure for Each
CSCI 85

Figure C-9 Example of a Productivity Staff-Hour Definition Checklist 86

Figure C-10 Example of a Productivity Trend 87

Figure D-1 Schedule Definition Checklist, Progress/Status Information
(MIL-STD-2167A) 90

Figure D-2 Schedule Definition Checklist, Progress/Status Information
(STEP) 91

Figure D-3 Schedule Definition Checklist, Progress/Status Information
(AF Pamphlet 800-48) 92

Figure D-4 Schedule Definition Checklist, Progress/Status Information
(MITRE) 93

iv CMU/SEI-92-TR-21

Preface

In 1989, the Software Engineering Institute (SEI) began an effort to promote the use of
measurement in the engineering, management, and acquisition of software systems.
We believed that this was something that required participation from many members of
the software community to be successful. As part of the effort, a steering committee was
formed to provide technical guidance and to increase public awareness of the benefits of
process and product measurements. Based on advice from the steering committee, two
working groups were formed: one for software acquisition metrics and the other for
software metrics definition. The first of these working groups was asked to identify a
basic set of measures for use by government agencies that acquire software through
contracted development efforts. The second was asked to construct measurement
definitions and guidelines for organizations that produce or support software systems,
and to give specific attention to measures of size, quality, effort, and schedule.

Since 1989, more than sixty representatives from industry, academia, and government
have participated in SEI working group activities, and three resident affiliates have joined
the Measurement Project staff. The Defense Advanced Research Projects Agency
(DARPA) has also supported this work by making it a principal task under the Department
of Defense Software Action Plan (SWAP). The results of these various efforts are
presented here and in the following SEI reports:

• Software Size Measurement: A Framework for Counting Source Statements
(CMU/SEI-92-TR-20)

• Software Quality Measurement: A Framework for Counting Problems and Defects
(CMU/SEI-92-TR-22)

• Software Measures and the Capability Maturity Model (CMU/SEI-92-TR-25)

• Software Measurement Concepts for Acquisition Program Managers
(CMU/SEI-92-TR-11)

• A Concept Study for a National Software Engineering Database

(CMU/SEI-92-TR-23)

• Software Measurement for DoD Systems: Recommendations for Initial Core
Measures (CMU/SEI-92-TR-19)

This report and the methods in it are outgrowths of work initiated by the Effort and
Schedule Subgroup of the Software Metrics Definition Working Group. Like the reports
listed above, this one contains guidelines and advice from software professionals. It is
not a standard, and it should not be viewed as such. Nevertheless, the frameworks and
recommendations it presents give a solid basis for constructing and communicating clear
definitions for some important measures that can help all of us plan, manage, and
improve our software projects and processes.

CMU/SEI-92-TR-21 v

We hope that the materials we have assembled will give you a solid foundation for
making your effort and schedule measures repeatable, internally consistent, and clearly
understood by others. We also hope that some of you will take the ideas illustrated in
this report and apply them to other measures, for no single set of measures can ever
encompass all that we need to know about software products and processes.

Our plans at the SEI are to continue our work in software process measurement. If, as
you use this report, you discover ways to improve its contents, please let us know. We
are especially interested in lessons learned from operational use that will help us improve
the advice we offer to others. With sufficient feedback, we may be able to refine our
work or publish additional useful materials on effort and schedule measurement.

Our point of contact for comments is

Kathy Cauley
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890

vi CMU/SEI-92-TR-21

Acknowledgments

The SEI measurement efforts have depended on the participation of many people. We
would like to thank the members of the Effort and Schedule Subgroup of the Software
Metrics Definition Working Group who contributed to the content and structure of this
document. The SEI is indebted to them and to the organizations that sponsored their
participation in the efforts to improve the measurement of effort and schedule. Without
the contribution of these professionals, we could not have completed this task:

Capt. Ken Anthonis Marion (Ernie) Dooley
US Air Force Hughes Aircraft

Michael Bailey Rich Maness
Planning Research Corporation Martin Marietta

Neal Brenner Gregory Mudd
Tecolote Research Emerson Electric

Lionel Briand Larry Putnam
University of Maryland Quantitative Software Management,

Inc.
Bernie Buchenau

Jim RozumUS Air Force

David Card
Software Engineering Institute

Jim StrootComputer Sciences Corporation

Jack Chapman
Jet Propulsion Laboratory

Steve WilkinsonUnisys Corporation

Charles Cox
Acucobol

Naval Weapons Center

CMU/SEI-92-TR-21 vii

This report builds on the Software Project Effort and Schedule Measurement report that
was presented and distributed for review at the SEI Affiliates Symposium in August
1991. A first draft of the current document was distributed to a large number of reviewer
in June 1992. More than 140 comments and suggestions for improvement were
returned. All have received careful consideration, and most have been either
incorporated or addressed through the development of new materials. We are indebted
to those who took the time and care to provide so many constructive recommendations:

William Agresti Liz Flanagan
The MITRE Corporation AT&T Bell Laboratories

John Alexiou Robert Grady
IBM Corporation Hewlett-Packard

Jim Bartlett Chris Kemerer
Allstate Insurance Company Massachusetts Institute of

Tech
nolo
gy

John Bollard
ITT Avionics

Lyle Cocking Gary Kennedy
General Dynamics IBM Corporation

Don Deveny Harry T. Larson
Boeing Computer Services Larbridge Enterprises

Dean Dubofsky Frank McGarry
The MITRE Corporation NASA (Goddard Space Flight

Cent
er)Harvey Hallman

Software Engineering Institute
Everald Mills

Jack Harding Seattle University
Bull HN Information Systems, Inc.

Kerux-David lee Neal
Derek Hatley Northrop Corporation
Smiths Industries

Joseph Polizzano
Whit Himel ITT Avionics Division
McDermott

Watts Humphrey Sam Redwine
Software Productivity ConsortiumSoftware Engineering Institute

Don ReiferGeorge Huyler
Reifer Consultants, Inc.Productivity Management Group,

Inc. Paul Rook

Betty Falato S.E.P.M.

Federal Aviation Administration

viii CMU/SEI-92-TR-21

John Salasin S. Jack Sterling
Software Engineering Institute Logicon Eagle Technology, Inc.

Norman Schneidewind Irene Stone
Naval Postgraduate School AIL Systems Inc.

Marie Silverthorn Bob Sulgrove
Texas Instruments NCR Corp.

Al Snow Susan Voigt
AT&T Bell Laboratories NASA (Langley Research Center)

ix CMU/SEI-92-TR-21

We also thank the members of the Measurement Steering Committee for their many
thoughtful contributions. The insight and advice they have provided have been
invaluable. This committee consists of the following senior representatives from industry,
government, and academia who have earned solid national and international reputations
for their contributions to measurement and software management:

William Agresti John McGarry
The MITRE Corporation Naval Underwater Systems Center

Henry Block Watts Humphrey
University of Pittsburgh Software Engineering Institute

David Card Richard Mitchell
Computer Sciences Corporation Naval Air Development Center

Andrew Chruscicki John Musa
USAF Rome Laboratory AT&T Bell Laboratories

Samuel Conte Alfred Peschel
Purdue University TRW

Bill Curtis Marshall Potter
Software Engineering Institute Department of the Navy

Joseph Dean Samuel Redwine
Tecolote Research Software Productivity Consortium

Stewart Fenick Kyle Rone
US Army Communications- IBM Corporation
Electronics Command

Norman Schneidewind
Charles Fuller Naval Postgraduate School
Air Force Materiel Command

Herman Schultz
Robert Grady The MITRE Corporation
Hewlett-Packard

Seward (Ed) Smith
John Harding IBM Corporation
Bull HN Information Systems, Inc.

Robert Sulgrove
Frank McGarry NCR Corporation
NASA (Goddard Space Flight

Cent
er)

Ray Wolverton
Hughes Aircraft

x CMU/SEI-92-TR-21

As we prepared this report, we were aided in our activities by the able and professional
support staff of the SEI. Special thanks are owed to Mary Beth Chrissis and Suzanne
Couturiaux, who were instrumental in getting our early drafts ready for external review; to
Linda Pesante and Mary Zoys, whose editorial assistance helped guide us to a final,
publishable form; to Marcia Theoret and Lori Race, who coordinated our meeting
activities and provided outstanding secretarial services; and to Helen Joyce and her
assistants, who so competently assured that meeting rooms, lodgings, and refreshments
were there when we needed them.

And finally, we could not have assembled this report without the active participation and
contributions from the other members of the SEI Software Process Measurement Project
and the SWAP team who helped us shape these materials into forms that could be used
by both industry and government practitioners:

Anita Carleton Donald McAndrews
Software Engineering Institute Software Engineering Institute

John Baumert Robert Park
Computer Sciences Corporation Software Engineering Institute

Mary Busby Shari Lawrence Pfleeger
The IBM Corporation The MITRE Corporation

Elizabeth Bailey Lori Race
Institute for Defense Analyses Software Engineering Institute

Andrew Chruscicki James Rozum
USAF Rome Laboratory Software Engineering Institute

Judith Clapp Timothy Shimeall
The MITRE Corporation Naval Postgraduate School

William Florac Patricia Van Verth
Software Engineering Institute Canisius College

CMU/SEI-92-TR-21 xi

Software Effort & Schedule Measurement:
A Framework for Counting Staff-Hours and

Reporting Schedule Information

Abstract. This report contains guidelines for defining, recording, and reporting
staff-hours. In it we develop a framework for describing staff-hour definitions,
and use that framework to construct operational methods for reducing
misunderstandings in measurement results. We show how to employ the
framework to resolve conflicting user needs, and we apply the methods to
construct specifications for measuring staff-hours. We also address two
different but related aspects of schedule measurement. One aspect concerns
the dates of project milestones and deliverables, and the second concerns
measures of progress. Examples of forms for defining and reporting staff-hour
and schedule measurements are illustrated.

1 . Introduction

1.1. Scope

This report presents an approach to obtain operational methods for defining and
recording staff-hours and related schedule information. It provides the following:

• A checklist-based framework for increasing clarity and consistency and reducing
misunderstanding in derived measures by making the staff-hour and schedule
measures exact and unambiguous.

• A checklist form that enables project managers to identify the issues and choices
they must address to avoid ambiguity and to communicate precisely what is
included and excluded in the staff-hour and schedule measurements.

• Examples of how to use the checklist to construct specifications that will meet
differing objectives.

• Examples of forms for recording and reporting measurement results.

Refer to Appendix B for our rationale for using staff-hours to measure software project
effort.

CMU/SEI-92-TR-21 1

1.2. Objective and Audience

Our goal is to reduce ambiguities and misunderstandings in measures that use staff-hour
and schedule by giving organizations a foundation for specifying and communicating
clear definitions of the staff-hour and schedule measurements. There are three primary
reasons for collecting staff-hours:

• To pay individuals (payable hours)

• To charge for hourly services (billable hours)

• To use in productivity and quality studies (actual hours)

We provide operational methods to help organizations implement clear and consistent
recording, reporting, and use of staff-hours and schedule information. In many cases
the hours that should be reported vary with the purpose for which they will be used. Staff-
hour measurement and schedule information are key elements in software project
estimating, planning, and tracking.

This report is appropriate for managers, developers, maintainers, estimators, and
process improvement teams who want to use measurement to help plan, control, and
improve their processes for acquiring, building, and supporting software systems.

1.3. The Software Measurement Environment

The framework presented in this report is based on the notion that a software
organization has or will create a software measurement environment structured along the
following points:

1. Goals and objectives are set relative to the software product and software
management process.

2. Measurements are selected to ascertain the degree to which the goals and
objectives are being met.

3. Data collection processes and recording mechanisms are defined and used.

4. A data analysis and corrective action process is defined and used.

5. Measurements and reports are part of a closed-loop system that provides
current (operational) and historical information to technical staff and
management.

6. Post-software product life measurement data is retained for analysis leading to
improvements for future product and process management.

These points are prerequisites for all measurement environments, and are stated here to
emphasize that their implementation is essential for the successful use of the framework
described in this report [IEEE Std 982.1988].

2 CMU/SEI-92-TR-21

CMU/SEI-92-TR-21 3

2 . Defining a Framework for Software Effort
Measurement

The framework proposed in this report uses checklists extensively. These checklists
provide the following:

• An operational mechanism for creating and communicating explicit definitions.

• A means for extending an organization’s understanding of its products and
processes as process maturity increases, without having to change underlying
definitions.

• A means for structuring definitions to meet the different information needs of
various organizations.

We used two principal criteria in preparing the framework and checklists:

• Communication: They must precisely communicate what is being measured and
what has been included and excluded in the numbers presented.

• Repeatability: They must enable others to repeat the measurements and get the
same results.

The framework we use to satisfy these criteria consists of the following steps:

1. Identify the principal attributes that characterize the object we want to
measure.

2. Identify the principal classes of values within each attribute that users may
want to include in their measurements and ensure that these classes are
mutually exclusive.

3. Identify the principal classes of values within each attribute that users may
want to exclude from their measurements.

4. Prepare a checklist of principal attributes and their values, so that values
included in and excluded from measures can be explicitly identified.

5. Select the values to be included in the measure and exclude all others.
Record the selections and exclusions on the checklist.

6. Specify project-specific information to provide the context for the data and to
allow its comparison across projects.

7. Make and record measurements according to the definition and data
specifications.

8. Attach the measurement definition and data specifications to each set of
measurement reports.

These criteria and tactics have led us to the Staff-Hour Definition Checklist, the Schedule
Definition Checklist, the Supplemental Information Forms, and the recording forms for
both staff-hours and schedule. Appendix E contains blank forms that can be used as

4 CMU/SEI-92-TR-21

reproduction master. In the following sections, we will describe the forms and explain
how they are related and how they work together.

2.1. Staff-Hour Definition Checklist

The process we propose for constructing a staff-hour definition starts with a checklist.
The checklist identifies the principal attributes of staff-hours the software engineering
community wishes to measure and also identifies the values that each attribute can take
on. Values listed for an attribute should be both exhaustive (complete), to provide a
means of recording each possible value of the attribute, and mutually exclusive (non-
overlapping), to avoid ambiguity as to which recorded value is to be used. After we list
principal attributes and their values and arrange them into a checklist, the process for
constructing a definition becomes relatively straightforward. We use the checklist in
constructing a definition by simply checking all attribute values we want to include in and
exclude from our definition. We construct a supporting form to record any special
situations that are not amenable to checklist treatment. Forms help to ensure robust
and repeatable measurement.

Initially the Staff-Hour Definition Checklist may be used not to require a specific definition
for staff-hours, but rather be used in conjunction with staff-hour reports to communicate
what attributes and values were included in a specific staff-hour measurement. In this
case, the checklist provides a structured approach for dealing with the details that must
be resolved to reduce misunderstandings when using the data from staff-hour
measurement reports.

Since staff-hour definitions help to make staff-hour reports more meaningful, we have
included in the Staff-Hour Definition Checklist a means to construct report specifications
that contain the attribute values for which individual subtotals are desired. Our Staff-Hour
Definition Checklist makes it possible to construct numerous report specifications based
upon the same definition of staff-hours. Figure 2-1 illustrates three report specifications
based upon the same staff-hour definition. For each report specification, the reporting
details may be different, but the staff-hour definition will be the same.

CMU/SEI-92-TR-21 5

Staff-Hour Definition

✔

✔
✔
✔

Include ExcludeAttributes

✔

Report Specification

Attributes Rpt Totals

Report Specification

Attributes Rpt Totals

Report Specification

Attributes Rpt Totals

✔

✔
✔

✔

Attr. 1
 •
 •
 •
Attr. n

Attr. 1
 •
 •
 •
Attr. n

Attr. 1
 •
 •
 •
Attr. n

Attr. 1
 •
 •
 •
Attr. n

Figure 2-1 Example of Multiple Report Specifications

For ease of use we have combined the staff-hour definition and the report specification
into a single Staff-Hour Definition Checklist as illustrated in Figure 2-2.

6 CMU/SEI-92-TR-21

Staff-Hour Definition

✔

✔
✔
✔

Include ExcludeAttributes

✔
Attr. 1
 •
 •
 •
Attr. n

Report Specification

Attributes Rpt Totals

✔

✔

Attr. 1
 •
 •
 •
Attr. n

Rpt Totals

✔

✔

Staff-Hour Definition
 Checklist

✔

✔
✔
✔

Include ExcludeAttributes

✔
Attr. 1
 •
 •
 •
Attr. n

Figure 2-2 Interrelationship of Staff-Hour Definition and Report Specification

We have designed the checklist so that when a particular staff-hour is counted, it will
have one and only one value per attribute. Values within an attribute must be both
mutually exclusive and collectively exhaustive. We show the attributes as bold-faced
attribute headings, each followed by a list of the classes of values that the attributes may
take on. Chapter 3 discusses in detail the full set of attributes and values for the
definition.

The checklist uses seven attributes to describe and bound the kinds of effort included in
a measure of staff-hours. These attributes are: Type of Labor, Hour Information,
Employment Class, Type of Pay, Labor Class, Activity, Product-Level Function (CSCI-
Level Functions, Build-Level Functions, System-Level Functions). Values within an
attribute do not overlap. When creating a definition, users have only to check the
attribute values that they will include and those they will exclude when measuring and
recording staff-hours. We have also included blank lines that may be used to expand
partitioning of values if required to meet local needs.

The user of the checklist constructs a definition of staff-hours by checking off all attribute
values included in and excluded from the definition. The Report Total column is used to
construct report specifications that contain the attribute values for which individual
subtotals are desired.

CMU/SEI-92-TR-21 7

The checklist we have designed helps to provide a structured approach for:

• Dealing with details that must be resolved to reduce misunderstanding.

• Communicating unambiguously just what is included and what is excluded from
the measurement.

• Specifying attribute values for which individual reports are wanted.

Figure 2-3 is an example of how the first page of a completed checklist might look; it
shows requests for a number of reports for one particular definition of staff-hours. A
blank Staff-Hour Definition Checklist is located in Appendix E.

8 CMU/SEI-92-TR-21

 Staff-Hour Definition Checklist

Definition Name: Total System Staff-Hours Date: 6/27/92
 For Development Originator: SEI

 Page: 1 of 3

 Totals Totals Report
Type of Labor include exclude totals

Direct ✔
Indirect ✔

Hour Information
Regular time ✔

Salaried ✔
Hourly ✔

 Overtime ✔
Salaried

Compensated (paid) ✔
Uncompensated (unpaid) ✔

Hourly
 Compensated (paid) ✔

Uncompensated (unpaid) ✔

Employment Class

Reporting organization
 Full time ✔
 Part time ✔
 Contract

 Temporary employees ✔
Subcontractor working on task with reporting organization ✔
Subcontractor working on subcontracted task ✔
Consultants ✔

Labor Class

 Software management
Level 1 ✔
Level 2 ✔

Level 3 ✔
Higher ✔

Technical analysts & designers
 System engineer ✔

 Software engineer/analyst ✔

 Programmer ✔

 Test personnel
CSCI-to-CSCI integration ✔

IV&V ✔

Test & evaluation group (HW-SW) ✔
 Software quality assurance ✔

 Software configuration management ✔

Program librarian ✔

Database administrator ✔

 Documentation/publications ✔

 Training personnel ✔

 Support staff ✔

Figure 2-3 Example of Completed Staff-Hour Definition Checklist

CMU/SEI-92-TR-21 9

In practice, checklists turn out to be very flexible tools. An organization may include a
particular attribute in its definition and report a subtotal for each of several particular
values for the attribute. For example, an organization may report the subtotal for design
as a sum of preliminary design and detailed design. A checklist can easily address this
option.

One word of caution: There are cost implications that users must keep in mind when
constructing report specifications (Report totals column). The level of detail depends on
the needs, goals, and objectives of an organization and project. Each organization and
project will be different. If the information requested is part of a contractor’s normal time
reporting system, the cost associated with providing the requested subtotals may be
minimal. However, if the information required depends on manual collection and
collation, the cost may be very high. For small or exploratory projects, the cost of
collection may exceed the value of the data, making detailed measurement collection
undesirable for such projects.

2.2. Supplemental Information Forms

Sometimes definition checklists cannot adequately describe all the information that must
be addressed to avoid ambiguities and misunderstandings in measurement data. When
this occurs, we recommend construction of supplemental information forms to record and
communicate the additional information. The combination of a completed checklist and
its supporting forms becomes a vehicle for communicating the meaning of measurement
results to others, both within and beyond the originating organization.

Our Supplemental Information Form for staff-hour measurement includes the following:

• Work period length: The number of staff-hours in a work day, work week, and
labor month varies between organizations. This information needs to be
recorded so that derived measures in terms of these work periods can be
compared.

• Labor class clarifications: Not all organizations use the same labor class terms or
include the same responsibilities in various labor classes. These differences need
to be described so that valid data comparisons can be made.

• Product-level function clarifications: Different organizations count the staff-hours
for some functions at different product-levels (major functional element, customer
release, or system level). This information needs to be recorded so that valid
data comparisons can be made.

Chapter 4 discusses in detail the form we have constructed for communicating
supplemental information about staff-hours.

10 CMU/SEI-92-TR-21

2.3. Reporting Forms

The checklist must be supported by reporting forms that record and communicate
measurement results, providing a vehicle that can be used by those who enter the
results into a database. These forms must be consistent with the attributes and values
designated for measurement, and should capture all information needed to track the
data back to both the definition and the entity measured. In many cases the data that
should be reported vary with the purpose for which they will be used. The reporting
forms should be designed to allow the user to communicate precisely what was included
in the measurement, as well as what was excluded. Each organization should determine
its primary objective before completing any of the reporting forms.

Chapter 5 discusses in detail the form we have constructed for reporting staff-hours and
schedule information.

CMU/SEI-92-TR-21 11

3 . Understanding Staf f -Hour Checklist
Attr ibutes and Values

In this chapter, we define and illustrate the attributes and attribute values used in the
definition checklist and reporting forms. This chapter also addresses why the issues that
the checklist seeks to resolve are important. The sequence of discussion follows the
order of items on the checklist so that information on specific elements can be readily
located. We have used boldface type to highlight the attributes and their values. The
sequence of attributes is as follows:

• Type of Labor

• Hour Information

• Employment Class

• Labor Class

• Activity

• Product-Level Functions

• CSCI-Level Functions (major functional element)

• Build-Level Functions (customer release)

• System-Level Functions

The list of attributes and attribute value documents what constitutes staff-hour
measurement data for a given software development project. This helps to ensure that
those who receive the data know exactly what it contains. It also helps to avoid
oversights when collecting the data for later analysis.

Not all software development projects use the terms that we present in the checklist.
However, we have attempted to describe the terms in sufficient detail below so that their
meaning is clear. Also, not all of the attribute values may be included in the staff-hour
measurement definition for a given project. The detailed list is meant to be used initially
as a “memory jogger” for employees who are asked to develop the staff-hour definition
for specific projects. This ensures that significant elements of staff-hours in a given
definition were excluded consciously and not merely overlooked. Because some
software development projects may have additional staff-hour attributes or values, we
have included blank lines where you may add project-unique elements.

Reminder: The format of the checklist is not meant to imply that you should collect
separate subtotals for every individual value of every attribute. The costs associated with
software measurement data collection cannot be ignored. The benefits gained from
collecting more detailed data must be weighed against the costs of that data collection.

12 CMU/SEI-92-TR-21

3.1. Type of Labor

 Totals Totals Report
 include exclude totals

Type of Labor
Direct
Indirect

Figure 3-1 The Type of Labor Attribute

Labor on software development projects consists of two types—direct and indirect hours.
Direct hours are those that are charged directly to the project or contract, and indirect
hours are those that are not. Even though indirect hours are not charged directly to the
contract, the costs associated with these hours are frequently covered, at least in part, in
the burden or overhead rates that are often applied as multipliers to the direct contract or
project charges.

You may include all of the attributes described in the following sections in direct staff-
hours, if such a definition is legitimate for the individual project or contract. The staff-
hours associated with development of a software product for an internal or external
customer are usually direct project charges. However, organizations and contracts vary
on how software process development staff-hours are charged. Software process
activities directly related to development of a specific software product (such as defining
the procedures, standards, and conventions to be used in developing that product) are
usually directly charged to the project. Other software process activities, such as
software quality assurance, may be charged directly to the projects being covered or may
be included in indirect charges. Still others, such as organization software engineering
process improvement team activities, are usually not specific to a given project, but are
applicable to numerous projects. Therefore, the costs associated with staff-hours for
these activities are frequently included in indirect charges. The same can be said for
secretarial support, internal training, and computer operations functions. Overhead rates
applied to the direct charges cover these indirect charges.

An organization can use direct and indirect staff-hour counts for various planning and
tracking purposes. Counts of direct staff-hours are useful in tracking actual hours
expended versus planned hours. These counts are also frequently used in conjunction
with source line counts to determine productivity rates. These rates in turn are useful in
estimating staffing needs on future software development projects. You may use counts
of indirect staff-hours in calculating burden rates to be applied to direct charges so that
overhead costs are covered. However, since indirect charges are usually made for
activities that are not specific to a given software product, we recommend that you
include only direct staff-hours in a project’s staff-hours measurement definition.

CMU/SEI-92-TR-21 13

3.2. Hour Information

 Totals Totals Report
 include exclude totals

Hour Information
Regular time

Salaried
Hourly

 Overtime

Salaried
Compensated (paid)
Uncompensated (unpaid)

Hourly
 Compensated (paid)

Uncompensated (unpaid)

Figure 3-2 The Hour Information Attribute

Staff-hours, whether direct or indirect, may be regular time or overtime hours. Regular
time consists of the hours in the usual work day for a given software development
organization. The 8-hour work day remains the norm for most organizations; however,
some have work days of 9, 7.5, or 7 hours. The work shift—first, second, or third—is not
a factor in measuring work effort. For true shift work, each shift has a regular work day.
Staff-hours beyond an employee’s regular shift are considered overtime. For some
organizations, overtime hours do not accrue until an employee has worked the number
of hours in the regular work week. Any number of hours may be worked in a given day,
but none are considered overtime until the 40 (or 45 or 37.5 or 35) hours in the regular
work week have been accumulated. Depending on company or organization policy, the
contract, and the employee’s job position, overtime hours may or may not be
compensated; and if uncompensated, the overtime hours may not even be recorded.

This attribute describes the wage or pay type for the employees working on a given
software development project. It is further subdivided into the salaried and hourly types
of pay. Whether an employee is considered salaried or hourly depends on individual
company policy regarding the type of pay for a given job position. Usually, salaried
employees are in more professional job positions, such as the fields of engineering, law,
and medicine, which require more education than do hourly positions. These
employees are generally paid an annual salary, although they are not paid on an annual
basis. That is, they receive a paycheck on some periodic basis: monthly, semi-monthly,
weekly. On the other hand, hourly employees are paid at an hourly rate. However, they
may receive their paychecks on the same schedule as do the salaried employees in the
same company or they may receive them more frequently.

Salaried positions are frequently considered exempt under federal government labor law.
That is, employees in higher level salaried positions are usually not compensated for

14 CMU/SEI-92-TR-21

overtime. Employees in entry and low-level salaried positions may or may not be
compensated for overtime. Hourly positions are usually considered non-exempt. Hourly
employees are generally paid for overtime and at a higher hourly rate than for their
regular time.

Even though salaried employees are not paid at an hourly rate, it is necessary to record
the hours in some fashion, probably using the same timekeeping system as for the
hourly employees. It should not matter whether the hours have been worked by salaried
or hourly employees as long as those hours are applicable, i.e., they fall under the Type
of Labor definition.

For clear insight into the effort expended on a software development project, all staff-
hours must be counted, both regular time and overtime. This is true regardless of
whether the overtime hours have been compensated and regardless of the type of pay.
(Obviously, the staff-hours associated with unrecorded overtime cannot be included.)
The many unknowns involved can make it extremely difficult to estimate in advance the
number of staff-hours that will be required to complete a project. As a result, cost
overruns and schedule slips can occur. However, if historical data from previous, similar
projects are available, including both regular and recorded overtime hours, planners can
more accurately estimate the resources required to complete a new project.

3.3. Employment Class

 Totals Totals Report
 include exclude totals
Employment Class

Reporting organization
 Full time
 Part time

 Contract
 Temporary employees

Subcontractor working on task with reporting organization

Subcontractor working on subcontracted task
Consultants

Figure 3-3 The Employment Class Attribute

The employment class attribute includes the reporting organization and contractor
categories. The reporting organization is the prime developer of a software product.
This may be an in-house software development organization or it may be the prime
contractor if a contract has been established to develop a given software product. In
turn, the prime developer may have subcontractors with responsibility for providing
support functions or for developing portions of the software product.

The full-time staff consists of those employees who are hired to work at least a full work
week, whatever number of hours the work week is defined to be. Part-time staff

CMU/SEI-92-TR-21 15

members are hired to work some number of hours less than a full work week. Full-time
and part-time employees may be hired on a permanent or temporary basis. Temporary
employees may be supplementals such as college co-ops and interns, retirees who
return to work temporarily to give the benefit of their expertise, or term employees hired
for a prescribed period of time. It should not matter whether the staff-hours counted are
from full-time or part-time employees if those hours are included under the Type of
Labor definition described above.

Contracted employees may be temporaries hired for short periods of time to cover for
absent permanent employees of the prime developer or to work on short-term tasks so
the prime developer need not hire additional staff members. Contractors may also be
hired to work on long-term tasks, either participating directly on tasks being worked on by
teams of employees of the prime developer or working semi-independently on a
subcontracted task. Consultants are contracted employees who may provide assistance
on either a short-term or long-term basis. As with the full-time and part-time staff-hours, it
should not matter whether the hours counted are from the prime developers organization
or from a subcontractor, as long as they fall under the Type of Labor definition. All of
these hours need to be counted for clear insight into the effort expended on a software
development project.

It is useful to count the full-time/part-time and prime developer/subcontractor hours
separately to be able to determine the amount of work being done by each employment
class. Turnover is frequently higher among part-time and subcontracted employees. If a
high percentage of the work on a software development project is being performed by
part-time and/or subcontractor employees, the schedule risk may be greater.

16 CMU/SEI-92-TR-21

3.4. Labor Class

 Totals Totals Report
 include exclude totals
Labor Class

 Software management
Level 1
Level 2

Level 3

Higher

Technical analysts & designers
 System engineer

 Software engineer/analyst

 Programmer

 Test personnel
CSCI-to-CSCI integration
IV&V
Test & evaluation group (HW-SW)

 Software quality assurance
 Software configuration management

Program librarian

Database administrator

 Documentation/publications

 Training personnel
 Support staff

Figure 3-4 The Labor Class Attribute

The Labor Class attribute consists of the various classes of functional job positions on a
software development project. The list of labor classes in the Staff-Hour Definition
Checklist covers the functional job positions associated with most software projects.
However, not all organizations use the same terms for labor classes as are in the
checklist, nor do all companies organize software project efforts into exactly these
classes of job positions. Some classes may be combined, and others may be broken
out differently. Therefore, valid comparisons of individual labor class subtotals may not
be possible between different organizations. However, where the labor class definitions
are consistent within an organization or between organizations, you will be able to
compare multiple projects. The classes listed below cover a broad range of categories;
however, you may need additional classes for a specific project. If so, blank lines are
available at the end of the labor class section of the definition checklist to allow for
additional classes.

As stated before, all hours should be counted if they fall under the Type of Labor
definition for a given software development project. It should not matter what classes of
labor are involved. However, it is useful to accumulate separate subtotals for some of

CMU/SEI-92-TR-21 17

the specific classes of labor. For example, the totals hours accrued by the software
designers and programmers are frequently used with software size counts to calculate
productivity rates. These rates are useful in planning schedules for later builds (releases)
for a software development project or for future projects. Similar productivity rates may
be calculated for other labor classes as well. Labor classes included are described in the
following sections.

3.4.1. Software management

This class covers employees in supervisory and managerial positions. These employees
are responsible for the business and administrative planning, organizing, direction,
coordination, control, and approval of the activities necessary to accomplish the
objectives of a given software development project. Level 1 managers are the first line
of supervision. In addition to their business and administrative tasks, they may be
responsible for numerous personnel functions for the employees reporting to them, such
as hiring, performance evaluations, and determining pay rates. They may have technical
responsibilities as well. However, this class does not include lead designers and
programmers and other functional leads that do not have personnel responsibilities;
these employees should be included with their functional labor class. Level 2 managers
have one or more departments or groups headed by Level 1 managers reporting to
them. Level 3 managers have one or more departments or groups headed by Level 2
managers reporting to them. This reporting hierarchy is similar for higher level managers.
The checklist allows for the inclusion of any of these levels of management in the staff-
hour measurement definition if desired for a given software development project.
However, the list of management levels in the checklist is meant more as a reminder to
the developer of a projects staff-hour definition to consider all levels of management and
not just Level 1. Because higher levels of management may charge directly to the
project as well, they should not be overlooked.

3.4.2. Technical analysts and designers

This class included the individuals responsible for developing the detailed requirements
and designing a given software product. They are the system engineers or requirements
analysts, performance analysts, software architects, and software engineers or software
designers. The system engineers or requirements analysts develop the detailed
requirements and generate the Software Requirements Specification and Interface
Requirements Specification documents [DOD-STD-2167A]. They are also responsible for
reliability engineering, maintainability, engineering, and human factors engineering
functions. They may also develop the detailed performance requirements for the system
and analyze the actual performance of the system as it is developed, if these tasks are
not done by independent performance analysts. The software architects develop the
high-level software system architecture based on the system architecture and the
detailed requirements provided by the system engineers. Software engineers or
software designers develop the high-level and detailed software design, including design

18 CMU/SEI-92-TR-21

documentation. Depending on the size of the software development project, these roles
may overlap, with one individual performing multiple functions in this class.

3.4.3. Programmer

The individuals in the programmer class are responsible for the implementation of an
element or group of elements of a software product. That is, based on the design
provided by the software engineers or software designers, the programmers write the
code and usually perform the initial testing of the code. This class may overlap with the
previous one: programmers may also develop the detailed and even the high-level
design of the software elements they are responsible for implementing. Overlap with
the Technical Analyst/Designer class may also occur, especially when a requirement is
implemented in a fourth-generation language (4GL). Unless a separate group performs
all testing, the programmers are also responsible for generating and developing test
procedures for the unit, intermediate functional element (computer software component,
or CSC [DOD-STD-2167A]) and sometimes even for the major functional element
(computer software configuration item, or CSCI) and may also run the tests. Software
maintenance activities such as problem analysis and the design, coding, and testing of
fixes are also performed by programmers. In addition, programmers may be
responsible for software reuse activities such as locating candidate objects and adapting
them for reuse.

3.4.4. Test personnel

The individuals in this class perform various levels of independent testing of the software
and hardware/software systems. They include high-level test engineers responsible for
generating test documentation such as test plans and test procedures, as well as line
testers who run the tests. In some organizations, the same personnel perform these
roles The programmers are almost always responsible for the initial, detailed functional
testing, and the staff-hours associated with this testing are usually combined with the rest
reported for the Programmer labor class. However, on some projects, even this testing is
performed by a separate test team, and the associated staff-hours could be reported in
the Test Personnel labor class. This distinction needs to be documented on the
Supplemental Information Form. Large software development projects may have major
functional element-to-major functional element (CSCI-to-CSCI) integration test
departments within the organization responsible for implementing the software. If so, the
personnel performing this testing would be included in this class. The individuals who
perform independent testing after release of a software product from the implementing
organization are definitely included. This testing includes software independent
verification and validation (IV&V), software system integration testing, hardware/software
system test and evaluation, and any other testing performed prior to delivery to the
customer.

CMU/SEI-92-TR-21 19

3.4.5. Software quality assurance

Some software development projects include SQA functions within the software
development organization. However, this class covers those individuals who perform
SQA functions and who report to management outside of the software development
organization. The functions of these independent SQA personnel vary depending on
the project. They frequently include analyzing software measurement data and auditing
the software development organization’s adherence to its documented procedures. The
staff-hours associated with SQA functions performed within a software development
organization, such as design and code inspections or peer reviews, are frequently not
available separately from the time reporting system but are collected with the specific
labor class of the personnel performing them (for example, Programmer and Test
personnel).

3.4.6. Software configuration management

The personnel in this class are responsible for linking together the various software
elements to create the software system for testing and, ultimately, the system delivered
to the customer. Involved in this is the creation and management of the software
libraries that contain the software, and possibly electronic copies of the associated
software documentation. On some large software development projects, the
organization responsible for implementing the software may include an internal team that
performs CM functions prior to release to independent test. This function is sometimes
called informal CM, and is followed by formal CM, which is performed by a group external
to the implementing organization after release to independent test. On other software
projects, only one group—either the implementing organization or an external group—
performs all CM functions. In either case, all staff-hours should be counted. However, if
the staff-hours associated with software CM are mixed with those of other labor classes
in the time reporting system, such as Programmer or Test Personnel, it may not be
possible to obtain a separate subtotal for this labor class.

3.4.7. Program librarian

This class includes individuals responsible for maintaining the library of all documentation
for a given software development project. This documentation may include hard copies
of code listings and associated software documents, manuals, reports, and
correspondence. On federal government software development contracts, this labor
class is responsible for maintaining and possibly distributing the data requirements
deliverables (DRDs) specified in the Contract Data Requirements List (CDRL). In some
software development organizations, this function may be called Data Management.

20 CMU/SEI-92-TR-21

3.4.8. Database administrator

The DBA is responsible for creating and maintaining the electronic databases associated
with a software development project. These databases may be used for internal, non-
deliverable functions, such as inspection action item and problem tracking systems, or
may be created as part of the actual deliverable products of a software development
project.

3.4.9. Documentation/publications

This class covers individuals who support the generation of the documentation
associated with a software development project. It usually includes at least copy support
functions. Depending on the level of support defined for a given project, this may or may
not include technical writers and editors. However, as workstation documentation tools
become more widely used, much of the work previously performed by individuals in this
class is now being done by the members of other labor classes described in this section.
This is often the case with tools that generate software documentation automatically
from commentary in the code.

3.4.10. Training personnel

This class includes the individuals involved in the development and/or delivery of training.
However, this does not include the hours worked by outside vendors who supply
commercial training courses. This class includes the personnel who develop or deliver
internal training courses, i.e., training for the employees involved in a software
development project, as well as the individuals who develop or deliver training courses to
customer personnel, if the courses are required for a specific software development
contract and if the hours are charged directly to the contract. Frequently, the staff-hours
associated with internal training course delivery or development are considered indirect
charges. Also, many contracts specify whether or not training may be included in the
development charges. Therefore, it depends on the contract as well as the Type of
Labor definition whether or not these staff-hours are included in the measurement data.

3.4.11. Support staff

This class covers individuals performing support functions not covered in the above
classes. These functions include secretarial and clerical support and software
development environment support personnel, such as computer operators, internal and
customer help desk personnel, and technicians responsible for installing workstations
and associated software development tools. Also included are employees responsible
for creating, installing, and checking out the operational software product packages for
each customer or user set.

CMU/SEI-92-TR-21 21

3.5. Activity

 Totals Totals Report
include exclude totals

Activity
Development

Primary development activity

Development support activities
Concept demo/prototypes

Tools development, acquisition, installation, & support

Non-delivered software & test drivers

Maintenance

Repair

Enhancements/major updates

Figure 3-5 The Activity Attribute

A software development organization may have one or more types of activities occurring
over time. Development generally means new software development projects and
frequently covers most, if not all, of the software development life cycle—requirements
analysis, design, code, development test, independent verification, and system test.
Maintenance includes activities that occur after a new software product has been
released—problem repair and functional enhancement. However, maintenance may
include the same activities that are performed for new software products. Sometimes,
an organization or company that did not develop the initial product may perform the
maintenance of a software product. A further decomposition of the maintenance
activities—such as reverse engineering and examining side effects of the code fixes—
have not been included at this time. We have left blank lines on the checklist so you
may include them if appropriate for your organization.

Individual totals for development staff-hours and maintenance staff-hours are useful as
historical data for the planning of future new software development projects and software
maintenance projects. In fact, individual totals within the maintenance activity for repair
staff-hours and enhancement staff-hours give further insight into the resources needed
for future similar activities.

3.6. Product-Level Functions

This attribute addresses the various functional levels of a software development or
maintenance project by CSCI-Level Function (Major Functional Element), by Build-
Level Functions (Customer Release), and by System-Level Functions. Different
organizations collect the staff-hours for management, software quality assurance,
configuration management, and documentation at different levels. Some may collect

22 CMU/SEI-92-TR-21

these staff-hours at the system level, while others may collect them at more detailed
levels, that is, per customer release or even for each major functional element. Where a
project collects these staff-hours—or the staff-hours for any other functions collected
differently than indicated in the definition checklist form—should be indicated on the
associated Supplemental Information Form.

3.6.1. CSCI-level functions (major functional element)

 Totals Totals Report
include exclude totals

Product-Level Functions

CSCI-Level Functions (Major Functional Element)

Software requirements analysis

Design
Preliminary design

Detailed design

Code & development testing

 Code & unit testing

Function (CSC) integration and testing

CSCI integration & testing

IV&V

Management

Software quality assurance

Configuration management

Documentation

Rework
Software requirements

Software implementation

Re-design

Re-coding

Re-testing

Documentation

Figure 3-6 The CSCI-Level Functions Attribute

The functions of a software development project occur at different levels–the system
level, the customer release level, and the major functional element level. On federal
government software development projects using the methodology outlined in DOD-STD-
2167A, a major functional element corresponds to a computer software configuration
item (CSCI). This level is where the bulk of the actual software development and
maintenance efforts occur. These efforts include the activities described below.

• Software requirements analysis. This function includes analysis of the system
requirements and their decomposition into major functional elements, as well as
documentation of the detailed software and interface requirements for each major

CMU/SEI-92-TR-21 23

functional element. In addition, internal inspections (walkthroughs) of the
requirements documentation may be included. This function usually concludes with
a formal review of the detailed requirements with the customer.

 • Design. Included here are analysis of the detailed requirements and their
decomposition into intermediate and low-level functional elements, as well as
generation of the high-level (preliminary) and low-level (detailed) design and
associated test documentation. Generation of program design language (PDL)
descriptions of the design, internal inspections of the design, and test
documentation may also be included. This function usually concludes with formal
reviews of all levels of design with the customer. Representative sample activities
are as follows:

• Create and maintain the software development files/folders.

• Analyze the preliminary software design.

• Derive and map out software design specifications.

• Define and describe interface design specifications.

• Generate input to software test planning.

• Prepare and conduct design reviews.

• Coding. This function includes analysis of the design and generation of the coding
language instructions that implement the design. Also included are compilation and
debugging (if necessary) of the code and generation of detailed test procedures. In
addition, internal inspections or peer reviews of the code and test procedures may
be included. Representative sample activities are as follows:

• Code and compile.

• Conduct code walk-throughs.

• Generate test and integration procedures.

• Development testing. Included in this function are execution of the detailed test
procedures to test the low-level functional elements (units) and integration of the low-
level functional elements into intermediate functional elements (CSCs). This is
followed by the execution of test procedures to exercise the intermediate elements
to verify that algorithms and data employed in interfacing each CSC or object are
correctly specified and implemented (sometimes called computer software
component integration and testing). Representative sample activities are as follows:

• Perform unit testing.

• Perform CSC integration and analysis.

• Perform CSC build and lower level thread testing.

24 CMU/SEI-92-TR-21

• Major functional element integration and testing. This function includes integration
of the intermediate level functional elements into major functional elements (CSCIs)
and execution of test procedures to exercise the major functional elements
(sometimes called CSCI integration and testing). This is usually followed by a formal
project review to determine if the major functional elements are ready for release to
the independent test organization and release after approval.

• Independent testing. Included here are generation of independent (from the
software development organization) test plans, specifications, and procedures and
execution of these test procedures to ensure the code implements the requirements
(sometimes called independent verification and validation or IV&V).

• Management. Different organizations collect their management staff-hours at the
specific major functional element level or aggregate all of their management hours
at the system level. If the management staff-hours are collected at the specific
major functional element level, they are included in this activity. The Supplemental
Information Form should indicate were the staff-hours are collected.

• Software quality assurance. This function includes the SQA activities associated
with a specific major functional element. For DoD software projects, this consists of
those tasks that ensure compliance with the government requirements for
development and implementation of the contractor’s software quality program [MIL-
STD-881B, (Draft)]. Depending on the project, staff-hours for SQA may be collected
at a higher level. Again, the Supplemental Information Form should indicate the
level that the SQA hours are collected.

• Configuration management. Included in this function are software CM
activities associated with a specific major functional element. Depending on the
project, staff-hours may be collected at a higher level which should be indicated on
the Supplemental Information Form.

• Documentation. This function includes generation and update of documentation
associated with a specific major functional element. It may be desirable to
decompose this category into sub-categories for each of the major formal
documents at some future time. We decided for the initial version of the checklist
not to do this at this time. Depending on the project, staff-hours may be collected at
the CSCI-level or may be collected with the corresponding functional activity (for
example, design). This should be indicated on the Supplemental Information Form.

• Software rework. Included here are analysis and rework of all appropriate software
development products, including documentation, to (1) fix problems when errors are
discovered during any software development activity or (2) make the necessary
software changes whenever the customer changes existing requirements or adds
new ones. Rework may require changes only to the code, in which case only re-
coding and re-testing will be necessary. However, changes to the design or to the
detailed software requirements may be required, in which case re-design and rework
of the associated design and requirements documentation will also be necessary.

CMU/SEI-92-TR-21 25

3.6.2. Build-level functions (customer release)

 Totals Totals Report
include exclude totals

Build-Level Functions (Customer Release)

(Software effort only)

CSCI-to-CSCI integration & checkout
Hardware/software integration and test

Management

Software quality assurance

Configuration management

Documentation

IV&V

Figure 3-7 The Build-Level Functions Attribute

For DoD contractors, a software build is an aggregate of one or more computer software
configuration items that results in the satisfaction of a specific set or subset of
requirements based on development of software as defined in DOD-STD-2167A [MIL-
HDBK-171, (Draft)]. A build is a separately tested and delivered product. Build-level
functions are those that are performed for each release of a software product to the
customer. On federal government contracts using DOD-STD-2167A, a customer release
corresponds to a build. One or more major functional elements are included in a
customer release. In addition to the major functional element-level functions described
above, customer release-level functions include the following activities:

• CSCI-to-CSCI integration and checkout. This function includes integration of the
major functional elements, if more than one, into the software system and execution
of test procedures to exercise the system. This activity is sometimes called CSCI-to-
CSCI integration and checkout.

• Hardware/software integration and test. This function includes integration of
software system with the operational hardware platform and execution of the test
procedures to exercise the entire HW/SW system.

• Independent testing. Included here are the generation of independent (from the
software development organization) test plans, specifications, and procedures and
execution of the test procedures to ensure the code implements the requirements
(sometimes called independent verification and validation or IV&V). Also included is
the generation of problem reports when errors in the code are discovered. This
function usually ends with a formal review with the customer of the readiness of the
software system for release to system testing and release after approval.
Depending on the project, staff-hours may not be collected at this level.

• Management. This function includes software management activities associated
with a specific customer release. Depending on the project, staff-hours may not be

26 CMU/SEI-92-TR-21

collected at this level. The level where these staff-hours are collected should be
indicated on the Supplemental Information Form.

• Software quality assurance. Included in this function are SQA activities associated
with a specific customer release. Depending on the project, staff-hours may not be
collected at this level. The level where these staff-hours are collected should be
indicated on the Supplemental Information Form.

• Configuration management. This function includes software CM activities
associated with a specific customer release. Depending on the project, staff-hours
may not be collected at this level. The level where the staff hours are collected
should be indicated on the Supplemental Information Form.

• Documentation. Included here are generation and update of documentation
associated with a specific customer release. Depending on the project, staff-hours
may not be collected at this level or may be collected with the corresponding
functional activity (for example, independent testing). The level where these staff-
hours are collected should be indicated on the Supplemental Information Form.

3.6.3. System-level functions

Totals Totals Report
 include exclude totals

System-Level Functions

(Software effort only)
System requirements & design

System requirements analysis

System design

Software requirements analysis

Integration, test, & evaluation
System integration & testing

Testing & evaluation

Production and deployment

Management

Software quality assurance

Configuration management

Data

Training
Training of development employees

 Customer training

Support

Figure 3-8 The System-Level Functions Attribute

The development of a system consists of one or more customer releases (builds), which
in turn consist of one or more major functional elements (CSCIs). In addition to the

CMU/SEI-92-TR-21 27

major functional element-level functions and the customer release-level functions, the
system-level functions include the following activities:

• System requirements and design. This function includes analysis of the customer’s
requirements and generation of the system requirements documentation as well as
analysis of the system requirements and generation of the system design
documentation. These usually conclude with formal reviews of the system
requirements and system design with the customer.

• Software requirements analysis. Included here are analysis of the system
requirements and their decomposition into major functional elements, which are
inputs to software requirements analysis at the major functional element-level.

• Integration, test and evaluation. This function includes integration of the software
system with other software systems and execution of test procedures to test the
combined software system environment (sometimes called system integration and
testing). Also included are integration of the overall (multi-system) software system
with the hardware system and execution of test procedures to test the overall
environment (sometimes called test and evaluation). This usually ends with a formal
review with the customer of the readiness of the entire operational system for
customer acceptance testing.

• Production and deployment. Included in this function is packaging of the
operational system for distribution to customer sites. This may also include
installation at customer sites and user help desk (customer support) activities.

• Management. This function includes software management activities associated
with a specific software system, a combined (multi-system) software system, or an
overall hardware/software system. Depending on the project, staff-hours may not be
collected at this level. The level where these staff hours are collected should be
indicated on the Supplemental Information Form.

• Software quality assurance. Included here are SQA activities associated with a
specific software system, a combined (multi-system) software system, or an overall
hardware/software system. Depending on the project, staff-hours may not be
collected at this level. The level where these staff-hours are collected should be
indicated on the Supplemental Information Form.

• Configuration management. This function includes software CM activities
associated with a specific software system, a combined (multi-system) software
system, or an overall hardware/software system. Depending on the project, staff-
hours may not be collected at this level. The level where these staff hours are
collected should be indicated on the Supplemental Information Form.

• Data. Included in this function are copying, distribution, and library management of
all required software-related documentation. This includes project documents,
reports, manuals, and correspondence, as well as the generation and update of
documentation associated with a specific software system, a combined (multi-

28 CMU/SEI-92-TR-21

system) software system, or an overall hardware/software system. Depending on
the project, documentation staff-hours may be collected at this level or may be
collected with the corresponding functional activity (for example, system
requirements and design). The level where documentation staff-hours are collected
should be indicated on the Supplemental Information Form. The staff-hour data
collected here is associated only with the preparation and review of documentation
and does not include the effort required in the development of the software, such as
design, requirements analysis, and coding.

• Training. This function includes development and/or delivery of training courses for
software development or maintenance project employees or for the customer.

• Support. Included here are additional support activities associated with a software
development or maintenance project such as secretarial support, computer facilities
and operations support, internal help desk, and staff support to higher level
management and program office (for example: software process definition,
measurement, and improvement; contract change and budget coordination;
customer action item coordination).

CMU/SEI-92-TR-21 29

4 . Using Supplemental Staff-Hour Information
Form

The Supplemental Information Form used in conjunction with the Staff-Hour Definition
Checklist provides a means to document project-specific information. This supplemental
information helps us to avoid ambiguities and misunderstandings when comparing staff-
hours measurement data for different projects. We capture the following information on
these forms:

• Hour information

• A description of the labor class

• A description of the product-level functions

4.1. Hour Information

As discussed in Section 3.2, different organizations have different lengths of work day,
work week, and labor month. The standard length for each of these should be listed on
a Supplemental Information Form as shown in Figure 4-1.

If measurements are reported in terms of work days, work weeks, or labor months, it’s
necessary to know how many staff-hours are included in the units of measure. It is then
possible to make accurate comparisons among different projects. These comparisons
are useful for applying the historical data against future estimates so you can map “hours
needed” to “staff required.”

4.2. Labor Class

Not all organizations use the same terms for the various labor classes as we listed in the
Staff-Hour Definition Checklist form. Even those that do use the same terms may
include different responsibilities in a given labor class. (The usual responsibilities for each
labor class are described in the Section 3.4.) When your classes differ in any way from
ours, record it on the Supplemental Information Form.

• Software management. One area especially requiring clarification is the
management level. Primarily, the first level is where differences occur among
software development organizations. For some companies or organizations, the
first-level manager is responsible for technical management tasks but does not have
personnel management tasks other than possibly supplying employee performance
evaluation inputs to another level of management. In other companies or
organizations, the first-level manager is responsible for all the personnel
management activities as well, tasks such as interviewing, making hiring/firing

30 CMU/SEI-92-TR-21

decisions, planning employee development activities, evaluating employee
performance, and determining pay rates. The Supplemental Information Form
includes a section where you can list the position titles and job descriptions for each
level of management included in the staff-hours measurement for a given project.

• Technical analysts and designers vs. programmer. These two labor classes
occasionally overlap. That is, on some projects the design and the code are
developed by two different teams of employees; on others, the detailed design—
and even the high-level design—may be developed by the programmers, and there
may not be a separate design team. On the Supplemental Information Form, you
can explain which labor class develops each level of the software design.

• Programmer vs. test personnel. These two labor classes overlap because the
programmers usually perform the initial testing on the software they’ve developed.
However, in some cases, once the programmers achieve an error-free compilation,
they hand the software over to another team to perform the unit testing and the
intermediate functional element and major functional element integration testing.
You can include an explanation of which labor class performs these tests in the
Supplemental Information Form.

4.3. Product-Level Functions

Different software development and maintenance projects count staff-hours for
management, software quality assurance, configuration management, and
documentation at different product-levels. That is, depending on the project, the staff-
hours associated with these functions may be counted at the major functional element
(CSCI), customer release (build), or system level–or a combination of these levels. On
the Supplemental Information Form, you can explain where the staff-hours are counted
for these or any other functions that differ from the delineation in the Staff-Hour Definition
Checklist form.

CMU/SEI-92-TR-21 31

 Supplemental Information Form

 Staff-Hours Measurement

Definition Name:

Project Name:

Hour Information
Indicate the length of the following:

Hours
Standard work day
Standard work week
Standard labor month

Labor Class Information
Describe the typical responsibilities and duties for the labor categories indicated.

Labor Class Description
Software Management

Level 1

Level 2

Level 3

Level 4

Technical analysts and designers

Programmer

Test personnel

Others

Product-Level Functions
Describe at what level(s) (major functional element, customer release,
and/or system) staff hours are counted for the functions indicated.

Function Level
Management

Software quality assurance

Configuration management

Documentation

Other

Figure 4-1 Supplemental Information Form

32 CMU/SEI-92-TR-21

CMU/SEI-92-TR-21 33

5 . Using Forms for Collecting and Reporting
Staf f -Hour Measurement Resul ts

We have prepared examples of forms that can be used for reporting and transmitting
staff-hour information. They are consistent with the definitions and data specifications in
Chapter 3. They include information that tracks the data back to the definitions and to
the entities measured. Our purpose in presenting these example forms is not to say,
“This is the way.” Rather, it is to suggest ideas as to the kinds of forms that can be
helpful in ensuring that the details requested by measurement users are reported and
communicated precisely.

In principle, you should use one reporting form for each functional element measured.
Thus, you may use several (or even many) reporting forms for a given project or product.
For example, if the reporting specification requests staff-hours for the system as well as
for each build and CSCI within each build, generate one form for the system, one form
for each build, and another form for each CSCI within each build. Figure 5-1 shows this
overall scheme. This figure illustrates that all reporting forms are based upon the same
staff-hour definition, and separate copies of the reporting forms are used to report the
staff-hours at the CSCI, build, and system-level.

The primary purpose of the reporting form is to ensure correctly labeled data is entered
into the database and to communicate what was included and excluded in the staff-hour
measurement.

Figure 5-2 illustrates an example form that can be used to report staff-hours during the
development of a CSCI. Appendix E contains forms that may reproduced for use for the
entire system as well as for each build.

34 CMU/SEI-92-TR-21

System-Level
Staff-Hours
Reporting Form

 Build 1
 Staff-Hours
Reporting Form

 Build 2
 Staff-Hours
Reporting Form

 Build 3
 Staff-Hours
Reporting Form

 CSCI 1
 Staff Hours
Reporting Form

 CSCI 3
 Staff Hours
Reporting Form CSCI 2

 Staff Hours
Reporting Form

 CSCI 1
 Staff-Hours
Reporting Form

 CSCI 1
 Staff Hours
Reporting Form

 CSCI 3
 Staff Hours
Reporting Form CSCI 2

 Staff Hours
Reporting Form

 CSCI 1
 Staff-Hours
Reporting Form

 CSCI 1
 Staff Hours
Reporting Form

 CSCI 3
 Staff Hours
Reporting Form CSCI 2

 Staff Hours
Reporting Form

 CSCI 1
 Staff-Hours
Reporting Form

 Report
Specification

Indv. TotalsRpt Totals

✔

✔

✔

✔

✔

Include Exclude Rpt Totals

✔

✔

✔

✔

✔

✔

✔

✔

✔
✔
✔

Include Exclude

✔

Staff-Hour
Definition

System-Level Report

Build-Level
 Reports

CSCI-Level
 Reports

Staff-Hour Definition
 Checklist

Figure 5-1 Reporting Concept

CMU/SEI-92-TR-21 35

Direct Staff-Hours Report
 CSCI (Major Functional Element) Development

System Name: Build ID:
CSCI Identification: Version :

 Direct Staff-Hours

Total Compensated Uncompensated
Regular Time =

Overtime =

Total =

Work Performed Time Frame

Beginning Date: Ending Date:

CSCI (Major Functional Elements) Level Functions

 Excluded Staff-Hours
Included Don’t Know (If requested)

Software requirements analysis

Design

Preliminary design

Detailed design

Code & development testing

Code & unit testing
Function (CSC) int. & testing

CSCI integration & testing
IV&V

Management
Software quality assurance
Configuration management

 Documentation
Rework

Software requirements
Software implementation

Re-design
Re-coding
Re-testing
Documentation

Figure 5-2 Example Reporting Form for CSCI Development

36 CMU/SEI-92-TR-21

CMU/SEI-92-TR-21 37

6 . Defining a Framework for Schedule
Def in i t ion Measurement

The framework presented here addresses two different but related aspects of schedule
measurement. One aspect concerns the dates of project milestones and deliverables.
The second concerns measures of progress, specifically the rate at which work is
accomplished in order to meet any given milestone or complete a deliverable. We
include checklists that enable us to specify and communicate both aspects. The
checklists allow us to specify the following:

• The reviews and deliverables associated with a project.

• The work units tracked to measure progress.

• Exit/completion criteria for both of the above.

• Frequency of reporting.

• Whether the dates represent planned values, actuals, or both.

We intend the checklists to be tailored by individual organizations and projects. For DoD
contractors, we present checklists for dates and for progress measures that are
compatible with DOD-STD-2167A. An additional set of checklists for specifying progress
measures reflect those included in the Army Software Test and Evaluation Panel set
(STEP) [Betz 92], in Air Force Pamphlet 800-48 (“Acquisition Management Software
Management Indicators”) [AFSC 90], and in the MITRE metrics (“Software Management
Metrics” by Schultz) [Schultz 88]. The purpose of including these as examples is to show
how the checklists can help people who are implementing any of these sets of measures
to better specify the data to be collected, especially the completion criteria.

We also provide report forms that are derived from the checklists and a set of
recommendations for acquisition program managers, for cost analysts, and for personnel
involved in gathering measures to facilitate process improvement.

6.1. Why Include Schedule in the Core Set?

More often than not, schedule is the primary concern of project management. A timely
delivery may be as important as functionality or quality in determining the ultimate value
of a software product. The situation is complicated by the fact that the delivery date may
have been determined by external constraints rather than by the inherent size and
complexity of the software product. The result can be an extremely ambitious schedule.

Given that schedule is such a key concern, it is critical for project management to monitor
adherence to intermediate milestone dates; early schedule slips are often a precursor to
future problems. It is also critical to have objective and timely measures of progress that

38 CMU/SEI-92-TR-21

provide an accurate indication of current status and that can be used for projecting the
dates of future milestones.

In addition to acquisition and project managers, there are other users of schedule
information. Cost estimators and cost model developers are one such group. Project
duration is one of the key parameters used to construct new cost models or calibrate
existing ones. The model developer must understand what the duration includes and
excludes. If we are told that a project took three and half years, a reasonable response
is to ask exactly what was included in that time period. Does it include system
requirements analysis and design or just the software activities? Does it include
hardware-software integration and testing or just the software integration?

Another group of users of schedule information are personnel involved in process
improvement. They need to understand the basic time dependencies of the project and
to identify bottlenecks in the process.

There are two different but related aspects of schedule measurement. One aspect
concerns the dates (both planned and actual) of project milestones and deliverables.
The second concerns the rate at which work is accomplished (again planned and
actual) in order to meet any given milestone or complete a deliverable. Section 6.2
contains a checklist for project dates. Section 6.3 presents a checklist for measuring the
rate of work accomplished. The checklists are vehicles for describing or specifying the
schedule information to be reported. We provide a set of report forms as well.

6.2. Dates of Milestones and Deliverables

A checklist for specifying the dates to be reported for a given project is shown in Figure 6-
1 and Figure 6-2. The checklist has two major parts. The first part covers the major
milestones (reviews and audits) associated with the project; the second part covers the
project deliverables. When the checklist has been filled out, it will convey precisely which
reviews and deliverables are included and which are excluded. For projects with
incremental builds, the checklist will convey which reviews and deliverables are part of
each build.

CMU/SEI-92-TR-21 39

Schedule Checklist Date:
Part A: Date Information Originator:

Page 1 of 3

Project will record planned dates: Yes No
If Yes, reporting frequency: Weekly Monthly Other: ____________

Project will record actual dates: Yes No
If Yes, reporting frequency: Weekly Monthly Other: ____________

Number of builds

Repeat Relevant dates

Milestones, Reviews, and Audits Include Exclude each build reported*

 System-Level
System requirements review
System design review

 CSCI-Level
Software specification review
Preliminary design review
Critical design review
Code complete
Unit test complete
CSC integration and test complete
Test readiness review
CSCI functional & physical configuration audits

 System-Level
Preliminary qualification test
Formal qualification test
Delivery & installation
Other system-level: Delivery to prime contractor

*Key to indicate “relevant dates reported” for reviews and audits
 1 - Internal review complete
 2 - Formal review with customer complete
 3 - Sign-off by customer
 4 - All high-priority action items closed
 5 - All action items closed
 6 - Product of activity/phase placed under configuration management
 7 - Inspection of product signed off by QA
 8 - QA sign-off
 9 - Management sign-off
10 - ______________________
11 - ______________________

Figure 6-1 Schedule Definition Checklist, Page 1

40 CMU/SEI-92-TR-21

Page 2 of 3
Part A: Date Information (cont.)

Repeat Relevant dates
Deliverable Products Include Exclude each build reported*
 System-Level

Preliminary system specification
System/segment specification
System/segment design document
Preliminary interface requirements spec.
Interface requirements specification
Preliminary interface design document
Interface design document
Software development plan
Software test plan
Software product specification(s)
Software user’s manual
Software programmer’s manual
Firmware support manual
Computer resources integrated support doc.
Computer system operator’s manual

 CSCI-Level
Preliminary software requirements spec(s)
Software requirements specification(s)
Software preliminary design document(s)
Software (detailed) design document(s)
Software test description(s) (cases)
Software test description(s) (procedures)
Software test report(s)
Source code
Software development files
Version description document(s)

*Key to indicate “relevant dates reported” for deliverable products
1 - Product under configuration control
2 - Internal delivery
3 - Delivery to customer
4 - Customer comments received
5 - Changes incorporated
6 - Sign-off by customer
7 -
8 -

Figure 6-2 Schedule Definition Checklist, Page 2

Note that some of the dates apply to an entire system. The system design review (SDR)
and the system design document (SDD) are examples in that there is a single SDR and
SDD encompassing the system. Other dates apply to individual CSCIs. The software
specification review (SSR) and the software requirements specification (SRS) are
examples. There are separate reviews held and SSRs written for each CSCI. It is highly
recommended that, when applicable, dates be reported to at least the CSCI level. Thus,
for planned dates and actuals, there will be one set of dates for the system-level reviews

CMU/SEI-92-TR-21 41

and deliverables but as many dates as there are CSCIs for reviews and deliverables at
that level.

Note also that milestones have been added between the critical design review (CDR) and
the test readiness review (TRR). These include code complete, unit test complete, and
CSC Integration & test complete. DOD-STD-2167A leaves a large gap between the
formal review of the detailed design and TRR. If code complete and unit test complete
are tracked for each CSCI, the date recorded should represent the day that the last CSU
from a given CSCI has been coded or unit tested.

The first item on the checklist asks whether planned dates, actuals, or both are to be
provided. The second item asks about the frequency of reporting. An acquisition
manager is most likely to want planned and actual values provided at monthly intervals.
A cost analyst, on the other hand, may want only actual values provided on a one-time
basis at the conclusion of the project.

The first major section is used to indicate the scope of the project in terms of formal
reviews and audits. Note that there is a column to characterize each build. Formal
reviews typically encompass a series of steps or exit criteria rather than being a simple
one-time event. Organizations differ in the step that marks the successful completion of
the review. An example set of criteria for major project milestones might include the
following:

• Hold internal review.

• Hold formal review with customer.

• Close high-priority action items.

• Close all action items.

• Obtain customer sign-off.

The right-most column contains space for filling in one or more numbers that correspond
to the exit criteria listed below this section of the checklist. Fill in the numbers
corresponding to all criteria which are tracked (i.e., their planned and actual dates are
reported). These criteria are intended to be tailorable to individual projects and
organizations. List those that apply to your project. In this way, anyone looking at the
checklist definition for your project will know what dates are reported and exactly what the
dates refer to.

Figure 6-3 shows an example of how one might fill out this section of the checklist for a
project that begins with software requirements analysis and runs through the CSCI
functional and physical configuration audit (FCA & PCA). The example project has a
total of four different builds. Each build includes a cycle of detailed design through FCA
& PCA.

42 CMU/SEI-92-TR-21

Schedule Checklist Date:
Part A: Date Information Originator:

Page 1 of 3

Project will record planned dates: Yes ✔ No
If Yes, reporting frequency: Weekly Monthly ✔ Other: ____________

Project will record actual dates: Yes ✔ No
If Yes, reporting frequency: Weekly Monthly ✔ Other: ____________

Number of builds

Repeat Relevant dates
Milestones, Reviews, and Audits Include Exclude each build reported*
 System-Level

System requirements review ✔
System design review ✔

 CSCI-Level
Software specification review ✔ 2,3,6
Preliminary design review ✔ 2,3,6
Critical design review ✔ ✔ 2,3,6
Code complete ✔ ✔ 1
Unit test complete ✔ ✔ 6
CSC integration and test complete ✔ ✔ 5
Test readiness review ✔ ✔ 3
CSCI functional & physical configuration audits ✔ ✔ 3

 System-Level
Preliminary qualification test ✔ 3
Formal qualification test ✔ 3
Delivery & installation ✔

Other system-level: Delivery to prime contractor ✔ 3

*Key to indicate “relevant dates reported” for reviews and audits
 1 - Internal review complete
 2 - Formal review with customer complete
 3 - Sign-off by customer
 4 - All high-priority action items closed
 5 - All action items closed
 6 - Product of activity/phase placed under configuration management
 7 - Inspection of product signed off by QA
 8 - QA sign-off
 9 - Management sign-off
10 - ______________________
11 - ______________________

Figure 6-3 Example of Completed Schedule Definition Checklist, Page 1

We can see from Figure 6-3 that the reviews from the software specification review (SSR)
through FCA & PCA are checked in the Include column. For the sake of completeness,
the earlier reviews are checked in the Exclude column because they are not part of the
project. The critical design review (CDR) and all subsequent reviews are repeated with
each build. Completion criteria 2, 3, and 6 are to be reported for SSR, PDR, and CDR;
only a single criterion is to be reported for the remaining ones.

The second major section is used to indicate the deliverable products associated with the
project. As with the section on reviews and audits, there is a column to characterize

CMU/SEI-92-TR-21 43

each build. As with reviews, deliverables typically encompass a series of completion
criteria, the planned and actual dates of which may or may not be formally tracked. An
example set of exit criteria for project deliverables might include the following:

• Document entered under configuration management.

• Internal delivery and review.

• Delivery to customer.

• Customer comments received.

• Changes incorporated.

• Obtain customer sign-off.

The right-most column contains space for entering the number or numbers that
correspond to these criteria. The criteria are listed below this part of the checklist. Figure
6-4 shows a filled out example.

Note that there is no section in the checklist for specifying project activities or “phases.”
The reason for this omission is two-fold:

1. There is a great deal of ambiguity associated with the beginning and end of
most activities, making it difficult to define them in a precise, unambiguous
way. Most activities (e.g., requirements analysis, design, code) occur to some
extent throughout the project. Whereas one project may consider
requirements analysis complete with the software specification review, another
may consider it to be ongoing throughout development.

2. A second source of ambiguity stems from the fact that some activities start and
stop and start again, making it very difficult to pin down any meaningful dates.

In contrast, project reviews and deliverables are associated with specific dates. For these
reasons, the checklist on dates is limited to reviews and deliverables. Activities are
reflected in the progress measures discussed in Section 6.3.

44 CMU/SEI-92-TR-21

Page 2 of 3
Part A: Date Information (cont.)

Repeat Relevant dates
Deliverable Products Include Exclude each build reported*

 System-Level
Preliminary system specification ✔

System/segment specification ✔

System/segment design document ✔

Preliminary interface requirements spec. ✔

Interface requirements specification ✔

Preliminary interface design document ✔ 3
Interface design document ✔ 1,3,5,6
Software development plan ✔ 3,5,6
Software test plan ✔ 3,5,6
Software product specification(s) ✔

Software user’s manual ✔

Software programmer’s manual ✔

Firmware support manual ✔

Computer resources integrated support doc. ✔
Computer system operator’s manual ✔ 1,6

 CSCI-Level
Preliminary software requirements spec(s) ✔ 3
Software requirements specification(s) ✔ 1,3,5,6
Software preliminary design document(s) ✔ 1,3,5,6
Software (detailed) design document(s) ✔ ✔ 1,3,5,6
Software test description(s) (cases) ✔ ✔ 1,3,5,6
Software test description(s) (procedures) ✔ ✔ 1,3,5,6
Software test report(s) ✔ ✔ 3,7
Source code ✔ ✔ 1,2,3,6,7
Software development files ✔

Version description document(s) ✔

*Key to indicate “relevant dates reported” for deliverable products
1 - Product under configuration control
2 - Internal delivery
3 - Delivery to customer
4 - Customer comments received
5 - Changes incorporated
6 - Sign-off by customer
7 - IV&V sign-off
8 -

Figure 6-4 Example of Completed Schedule Definition Checklist, Page 2

It is worth repeating that the purpose of the checklist is to indicate which milestones and
which deliverables are associated with the project and the exit criteria that are tracked.
The actual dates are given on the report form.

CMU/SEI-92-TR-21 45

Figure 6-5 shows a report form for system-level milestones, reviews, and audits. The
report form has been tailored to reflect the milestones and completion criteria checked in
Figure 6-3. Note the column labeled Changed. A checkmark in this column indicates
that the value shown is different from the previous report (either changed or newly
added). This is intended to make it easy for the receiver of the report form to update
only those values which have changed.

Schedule Reporting Form Date:

Date Information Originator:

System-Level Information Project: Example from Figure 6-3

Period ending:

Milestones, Reviews, and Audits* Planned Changed Actual
Contract award/project start
Preliminary qualification test

3 - Sign-off by customer
Formal qualification test

3 - Sign-off by customer
Delivery to prime contractor

3 - Sign-off by customer

*Only those completion criteria specified on the checklist appear below each deliverable.
 Enter a check mark in the “Changed” column if Planned date has changed since last reporting.

Figure 6-5 Example of a Report Form for System-Level Milestone Dates

46 CMU/SEI-92-TR-21

Figure 6-6 shows a report form for CSCI-level milestones which has been tailored to the
example shown in Figure 6-3. Note that there will be a separate report form for each
CSCI.

Schedule Reporting Form Date:

Date Information Originator:

CSCI-Level Information Project: Example from Figure 6-3

Period ending:

CSCI:

Build:

Milestones, Reviews, and Audits* Planned Changed Actual
Software specification review

2 - Formal review with customer complete
3 - Sign-off by customer
6 - Products under configuration management

Preliminary design review
2 - Formal review with customer complete
3 - Sign-off by customer
6 - Products under configuration management

Critical design review
2 - Formal review with customer complete
3 - Sign-off by customer
6 - Products under configuration management

Code complete
1 - Internal review complete

Unit test complete
6 - Products under configuration management

CSC integration and test complete
5 - All action items closed

Test readiness review
3 - Sign-off by customer

CSCI functional & physical config. audits
3 - Sign-off by customer

*Only those completion criteria specified on the checklist appear below each deliverable.
 Enter a check mark in the “Changed” column if Planned date has changed since last reporting.

Figure 6-6 Example of Report Form for CSCI-Level Milestone Dates

CMU/SEI-92-TR-21 47

Figure 6-7 shows a report form for system-level project deliverables that is consistent with
the example checklist from Figure 6-4.

Schedule Reporting Form Date:

Date Information Originator:

System-Level Information Project: Example from Figure 6-4

Period ending:

Deliverable Products* Planned Changed Actual
Preliminary interface design document

3 - Delivery to customer
Interface design document

1 - Product under configuration control
3 - Delivery to customer
5 - Changes incorporated
6 - Sign-off by customer

Software development plan
3 - Delivery to customer
5 - Changes incorporated
6 - Sign-off by customer

Software test plan
3 - Delivery to customer
5 - Changes incorporated
6 - Sign-off by customer

Computer system operator's manual
1 - Product under configuration control
6 - Sign-off by customer

*Only those completion criteria specified on the checklist appear below each deliverable.
 Enter a check mark in the “Changed” column if Planned date has changed since last reporting.

Figure 6-7 Example of Report Form for System-Level Deliverables

48 CMU/SEI-92-TR-21

Figure 6-8 shows a report form for CSCI-level deliverables. Note that there will be a
separate report form for each CSCI.

Schedule Reporting Form Date:

Date Information Originator:

CSCI-Level Information Project: Example from Figure 6-4

Period ending:

CSCI:

Build:

Deliverable Products* Planned Changed Actual
Preliminary software requirements specification

3 - Delivery to customer
Software requirements specification

1 - Product under configuration control
3 - Delivery to customer
5 - Changes incorporated
6 - Sign-off by customer

Software preliminary design document
1 - Product under configuration control
3 - Delivery to customer
5 - Changes incorporated
6 - Sign-off by customer

Software (detailed) design document
1 - Product under configuration control
3 - Delivery to customer
5 - Changes incorporated
6 - Sign-off by customer

Software test description (cases)
1 - Product under configuration control
3 - Delivery to customer
5 - Changes incorporated
6 - Sign-off by customer

Software test description (procedures)
1 - Product under configuration control
3 - Delivery to customer
5 - Changes incorporated
6 - Sign-off by customer

Software test report
3 - Delivery to customer
7 - IV&V sign-off

Source code
1 - Product under configuration control
2 - Internal delivery
3 - Delivery to customer
6 - Sign-off by customer
7 - IV&V sign-off

*Only those completion criteria specified on the checklist appear below each deliverable.
 Enter a check mark in the “Changed” column if Planned date has changed since last reporting.

Figure 6-8 Report Form for CSCI-Level Deliverables

CMU/SEI-92-TR-21 49

It is worth emphasizing that the forms are intended to be tailored. The checklists and
report forms presented here are compatible with 2167A. List those milestones and
deliverables that are relevant to your project. For each milestone and deliverable, list
your project’s exit criteria.

Tracking milestone dates and deliverables provides a macro-level view of project
schedule. As noted earlier, slips in the early reviews and deliverables are often
precursors of future problems. Much greater visibility can be gained by tracking the
progress of activities which culminate in reviews and deliverables. By tracking the rate at
which the underlying units of work are completed, we have an objective basis for knowing
where the project is at any given point in time and a basis for projecting where it will be in
the future. Section 6.3 covers these types of measures.

6.3. Progress Measures

This section contains a checklist for the other aspect of schedule management, that of
progress measurement. The checklist provides a means of describing or specifying or
communicating the units to be tracked during each of the following activities:

• Software requirements analysis

• Software preliminary design

• Software detailed design

• Code and unit test

• Software integration and test

• Formal qualification test

In order to effectively measure progress, we must have an estimate of the total number
of units to be developed and a planned rate of completion. The latter typically takes the
form of an S-curve. Figure 6-9 shows an idealized picture of such.

50 CMU/SEI-92-TR-21

Idealized Progress by Phase

As Revealed Through Rate of Completion of Constituent Work Units

SSR PDR CDR TRR

0%

20%

40%

60%

80%

100%

U
ni

ts
 P

as
se

d
C

om
pl

et
io

n
C

rit
er

io
n

CSUs Tested

S/W
Implementation

FQT Test Cases
Completed

Successfully

CSCI Integration &
Test

Units:

Activity/
Phase:

Eng. Req’s.
Specified

S/W Requirements
Analysis

CSCs
Designed

 High Level
S/W Design

CSUs
Designed

Detailed
S/W Design

* Duration of phases not shown to scale

Figure 6-9 Idealized Rate of Unit Completion

In order for the progress measures to have any real meaning, there must be objective
criteria for counting a unit as complete. The precise set of criteria for completion are
addressed by the checklist. The checklist does not go into any detail about how the
units are to be defined. That is beyond the scope of the current effort. As long as a
consistent definition is used within a project for estimates and actuals, there is no
problem. Units cannot be compared across projects unless they use a common
definition of units. It does not make sense, for example, to compare the number of
CSUs designed per labor-month for projects using different definitions for CSUs.

In terms of the users of schedule information, the progress measures will be of most
interest to the software acquisition manager as well as to management on the
contractor’s side because it is these measures which provide the most objective view of
project status and an objective basis for schedule projections. Progress measures can
also point to potential bottlenecks (e.g., one CSCI lagging behind the others).

CMU/SEI-92-TR-21 51

Figure 6-10 shows a checklist for specifying progress measures. As with the checklist for
dates, there is space at the top to indicate whether planned and/or actual values are to
be provided and the frequency of reporting. The work units listed are organized by
activity. Note the list of completion criteria at the bottom. Fill in any and all that apply to
the units to be tracked and/or add those that apply to your project.

Schedule Checklist, cont. Page 3 of 3
Part B: Progress/Status Information

Project will record planned progress: Yes No
If Yes, reporting frequency: Weekly Monthly Other:

Project will record actual progress: Yes No
If Yes, reporting frequency: Weekly Monthly Other:

Completion
Activities Work Units Tracked Criterion*

CSCI requirements analysis Requirements documented or specified
CSCI preliminary design Requirements allocated to CSCs

CSCs designed
CSCI detailed design CSUs designed
CSU coding and unit testing Lines coded

Lines unit tested
Number CSUs coded
Number CSUs unit tested
Number lines unit tested

CSCI integration Number of CSUs integrated
Number of lines integrated

CSCI testing Number of tests passed

*Key to indicate “Work Unit Completion Criterion”
 1 - None specified
 2 - Peer review held
 3 - Engineering review held
 4 - QA sign-off
 5 - Manager or supervisor sign-off
 6 - Inspected
 7 - Configuration controlled
 8 - Entry in employee status report
 9 - No known deficiencies
10 - Reviewed by customer
11 - All relevant action items closed
12 - ______________________
13 - ______________________

Figure 6-10 Schedule Definition Checklist, Progress/Status Information

Appendix D contains an instantiation of the progress checklist shown in Figure 6-10 that
is tailored to DOD-STD-2167A. Appendix D also contains instantiations that are specific
to the descriptions provided in some well-known documents describing sets of software
measures. These include the progress and completion criteria that are called for in the

52 CMU/SEI-92-TR-21

Army’s STEP set of measures [Betz 92], Air Force Pamphlet 800-48 [AFSC 90], and also
for the MITRE set [Schultz 88].

It is worth noting that all three sets have at least one vague completion criterion (e.g.,
design packages closed, being actually and logically connected with all required
modules, no known deficiencies). If you are implementing any of these sets, tailor your
own version of the checklist to better define the completion criteria.

Figure 6-11 shows a generic report form for planned and actual work units completed.

CMU/SEI-92-TR-21 53

Progress Report Form Date:

Periodic Summary by Work Unit Originator:

Project:

CSCI:

Frequency of reporting: Build:

Work unit kind:

Estimated total number of units:

Period Ending date* Planned completed units Actual completed

1

2

3

4

5

6

7

8

9

10

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

•
•
•

*Ending dates could be preprinted.

Figure 6-11 Report Form for Progress Information

54 CMU/SEI-92-TR-21

CMU/SEI-92-TR-21 55

7 . Meet ing the Needs of D i f ferent Users

The effort and schedule measurement framework developed in this document can be
used by a software development or maintenance project at any point in the software
lifecycle. At inception, it can be used to prescribe exactly what the staff-hour and
schedule measurement data will consist of, what data will be recorded, and how the data
will be reported for a given project. The Staff-Hour Definition Checklist and the Schedule
Definition Checklist define and communicate unambiguously what is included in and
what is excluded from the definitions of staff-hours and schedule for the project.

After a project is underway, and even after it is completed, the framework forms can be
used to describe the content of the data that has been collected and reported so it can
be compared with data from other ongoing or completed projects or used to assist in the
estimation and planning for new projects.

Figure 7-1 illustrates the inter-relationship of the different forms we have discussed in this
report and how they may be used.

Beginning of
 Project

End of Project

✔

✔

✔

✔

✔

✔

✔

Staff-Hour
 Checklist

✔

✔

✔

✔

✔

✔

✔

Define Report Monthly Store for Future Use

During the Life
of the Project

Staff-Hour
Report Form

Total Hours
Expended

 Schedule
Reporting Form

 Schedule
Reporting Form

 Schedule
Reporting Form

 Schedule
Reporting Form

Staff-Hour
Report Form

Total Hours
Expended

Staff-Hour
Report Form

Total Hours
Expended

Staff-Hour
Report Form

Total Hours
Expended

Schedule
Checklist

Schedule
Checklist

Staff-Hour
 Checklist

Dates
Progress Meas.
Completion Criteria

Dates
Progress Meas.
Completion Criteria

In Ex Totals In Ex Totals

Figure 7-1 Use of Forms

56 CMU/SEI-92-TR-21

7.1. To Prescribe

At the beginning of a software project, we need to determine and document what the
measurement goals are and what data needs to be collected and reported; this work
enables us to track the project’s status in achieving those goals. To accurately assess
the status from one report to the next or even between different software projects, the
measurement data must be collected and reported consistently, and what the data
consists of must be well-understood.

7.1.1. To specify

Whenever a software measurement program is begun, we can use the Staff-Hour
Definition Checklist and the Schedule Definition Checklist to clearly and unambiguously
define what the staff-hour and schedule measurement data will cover. The “Totals
include” and “Totals exclude” columns in the Staff-Hour Definition Checklist are used to
specify what will be included in the staff-hour measurement data and what will be
excluded from it. Any additional information that you must communicate to avoid
ambiguities and misunderstandings in the definitions, as well as project-specific
information, should be recorded on the Supplemental Information Forms.

The schedule checklist can be used to specify the precise set of completion criteria to be
tracked for milestones and deliverables and to specify the criteria that must be passed
before we can count a given work unit as complete.

7.1.2. To request data elements to be reported

The Staff-Hours Definition Checklist and the Schedule Definition Checklist can also be
used to specify what data elements are to be reported. The “Report totals” column in the
Staff-Hour Definition Checklist is used to specify what subtotals of staff-hours are to be
reported. Report requests can be made for different levels of granularity. In the case of
staff-hour measurement data, you can request reports at the system level or broken
down further by each build for a system. The reports may be divided even further by
each major functional element (CSCI) for each build for a system.

For the schedule checklist, the “Completion Criteria Reported” can be used to request the
report of a specific date related to milestones and deliverables or to request a count of
work units completing a specified criteria.

7.2. To Describe

We expect that the Staff-Hour Definition Checklist and Schedule Definition Checklist will
be used initially in conjunction with existing contractually required reports for documenting
the total staff-hours expended and the status of the activities and milestones on a

CMU/SEI-92-TR-21 57

project. The Staff-Hour Definition Checklist and the Schedule Definition Checklist
communicate what attributes and values were included in specific staff-hour and
schedule measurements. The checklists provide a structured approach for dealing with
the details that must be resolved to reduce misunderstandings when reporting staff-hour
and schedule data.

7.2.1. Ongoing projects

During the life of a project, an organization’s time reporting/accounting and schedule
tracking systems normally capture staff-hour and schedule data. For organizations and
contractors dealing with federal government contracts, staff-hours and schedules are part
of normal government monthly fiscal reports. The Staff-Hours Report Form and the
Schedule Reporting Form can be used to supplement the formally established
procedures for documenting the staff-hours expended and the activities and milestones
achieved thus far on the project.

By attaching the associated Staff-Hours Definition Checklist and Schedule Definition
Checklist to the reports, we can communicate precisely what is included in or excluded
from the reported data.

7.2.2. After the fact

At the conclusion of a project, it is extremely important to collect and retain the total
resources expended on the project, schedule information both planned and actuals, as
well as a number of other data items. For this data to aid in estimating and planning
future software projects, it must be well understood. The Staff-Hour Definition Checklist
and Schedule Definition Checklist describe and define what attributes were included in
and excluded from the staff-hour and schedule measurement data. We suggest
retaining the following information to aid in estimating and planning future software
projects at the conclusion of the project:

• Staff-Hour Definition Checklist.

• Schedule Definition Checklist.

• Any Supplemental Information Forms for both staff-hours and schedule.

• The final Staff-Hour Report Form and Schedule Reporting Form that capture
the total staff-hours expended on the project, how the total staff-hours were expended,
and when the milestones and deliverables were planned and actually completed for this
project.

58 CMU/SEI-92-TR-21

CMU/SEI-92-TR-21 59

8 . Recommendations

This chapter presents our recommendations for using the Staff-Hour Definition Checklist
developed in this document for both ongoing projects and for new projects in the future.
It also presents our recommendation for the definition of staff-hours as well as specific
recommendations for use of the schedule checklist by the acquisition program manager,
the cost analyst, or the administrator of a central measurement database.

8.1. Ongoing Projects

For ongoing projects, we recommend that you use the checklist in conjunction with the
current contractually required status reports to communicate what attributes and values
are included in a specific staff-hour measurement. Use the Supplemental Information
Form to communicate the additional project-specific information that does not lend itself
to being handled via a checklist.

8.2. New Projects

For new projects, our recommendations have been broken down into a number of sub-
elements to enhance communication of the concepts.

At the beginning of all new projects, we recommend the following:

1. Use the Staff-Hour Definition Checklist to create the definition of staff-hours for
the project. Figure 8-1 shows our recommended definition.

2. Construct report specifications for the project via the Staff-Hour Definition
Checklist. The level of detail depends on the needs, goals, and objectives of the
organization and project. Care must be taken that the reports requested do not
overburden the management system.

3. Request status reports on a monthly basis if not otherwise specified by the
contract.

4. Specify on the Supplemental Information Form the following:

• Length (in staff-hours) of the standard project work day, work week, and labor
month.

• Levels of management to be included and their description.

• Labor class (Technical analysts and designers or Programmer) responsible
for software design.

• Labor class (Programmer or Test personnel) responsible for initial testing (unit
testing and intermediate functional element and major functional element
integration testing).

60 CMU/SEI-92-TR-21

• Product level (major functional element, customer release, or system) where
various staff-hours are counted.

• Any other information required to avoid ambiguities and misunderstandings.

5. Attach the Supplemental Information Form to the Staff-Hour Definition Checklist.

 During the development process, we have two recommendations:

1. Use the Staff-Hour Definition Checklist in conjunction with the current
contractually required status reports to communicate the resources expended
on the project on a periodic basis. If not specified in the contract, we
recommend that these reports be submitted on a monthly basis. The reporting
forms described in Chapter 5 may be used to supplement the status reports.

 2. Attach completed copies of the project Staff-Hour Definition Checklist and
associated Supplemental Information Forms to all status reports as a reminder
to remain consistent with the staff-hour definition.

8.3. At the End of All Projects

We recommend the following:

1. Use the Staff-Hour Definition Checklist in conjunction with the current
contractually required status reports to communicate the resources expended
on the entire project.

2. Attach completed copies of the project Staff-Hour Definition Checklist and the
final version of the associated Supplemental Information Forms to the final
status reports.

8.4. Recommended Staff-Hour Definition

Figure 8-1 presents our recommendation for the definition of staff-hours. From this
definition, you can construct a number of report specifications depending on your needs.

Our rationale for our recommended staff-hour definition is as follows:

• Type of Labor. Only direct staff-hours should be collected. Not all organizations are
able to collect the indirect staff-hours associated with a specific software project
without significant manual effort. The customer is most interested in the staff-hours
directly charged to the project or contract.

• Hour Information. All regular time should be collected as well as all recorded
overtime, regardless of whether the overtime is compensated or not. Obviously,
organizations that do not record overtime cannot include overtime staff-hours in
software project staff-hour definitions. However, for projects that require significant

CMU/SEI-92-TR-21 61

amounts of overtime to meet schedules, measurement results can lead to
misleading conclusions if the overtime staff-hours are not included.

• Employment Class. Our definition includes all employment classes in our
recommended definition since any of these types of employees can be responsible
for significant parts of major functional elements, parts of customer releases, or even
parts of entire systems.

• Type of Pay. Both salaried and hourly employees can be responsible for significant
parts of a project. Therefore, we have included both types of pay in our
recommended definition.

• Labor Class. Our definition of staff-hours includes all labor classes except Level 3
and higher software management. Level 3 and higher level managers frequently
charge overhead funds and oversee several projects simultaneously and thus spend
only small amounts of time on a given project. However, if they charge directly to a
contract, their staff-hours should be included. All other labor classes contribute
directly to the development of a software product; however, those which do not
charge directly will not be included since they do not fall under the Type of Labor
definition above (that is, direct staff-hours only). So some labor classes may still not
be included or may be only partially included (for example, only those support staff
members that charge directly).

• Activity. Our recommended definition includes all activities so that all staff-hours
that contribute to both the development and maintenance of a software product
may be tracked. Obviously, if a given project does not have all of these activities,
the staff-hour definition for that project should exclude them. An example of this is a
project where one contractor has the development responsibility and a different
contractor has the maintenance responsibility.

• Function. Our definition includes all functions at all levels, except for production and
deployment functions and the customer training function at the system level. We
excluded these because they do not contribute to the actual development of a
software product, but to follow-on activities or to other products such as non-
developer training classes.

62 CMU/SEI-92-TR-21

 Staff-Hour Definition Checklist

Definition Name: Total System Staff-Hours Date: 7/28/92
 For Development Originator:

 Page: 1 of 3

 Totals Totals Report
Type of Labor include exclude totals

Direct ✔
Indirect ✔

Hour Information
Regular time ✔

Salaried ✔

Hourly ✔

 Overtime ✔
Salaried

Compensated (paid) ✔
Uncompensated (unpaid) ✔

Hourly
 Compensated (paid) ✔

Uncompensated (unpaid) ✔

Employment Class

Reporting organization
 Full time ✔
 Part time ✔
 Contract
 Temporary employees ✔

Subcontractor working on task with reporting organization ✔
Subcontractor working on subcontracted task ✔
Consultants ✔

Labor Class
 Software management

Level 1 ✔
Level 2 ✔

Level 3 ✔

Higher ✔

Technical analysts & designers
 System engineer ✔

 Software engineer/analyst ✔

 Programmer ✔

 Test personnel
CSCI-to-CSCI integration ✔

IV&V ✔

Test & evaluation group (HW-SW) ✔

 Software quality assurance ✔

 Software configuration management ✔

Program librarian ✔

Database administrator ✔

 Documentation/publications ✔

 Training personnel ✔

 Support staff ✔

Figure 8-1 Recommended Staff-Hour Definition

CMU/SEI-92-TR-21 63

Definition Name: Total System Staff-Hours Page: 2 of 3

 For Development

 Totals Totals Report
include exclude totals

Activity
Development

Primary development activity ✔
Development support activities

Concept demo/prototypes ✔

Tools development, acquisition, installation, & support ✔

Non-delivered software & test drivers ✔

Maintenance
Repair ✔

Enhancements/major updates ✔

Product-Level Functions

CSCI-Level Functions (Major Functional Element) ✔

Software requirements analysis ✔

Design
Preliminary design ✔

Detailed design ✔

Code & development testing

 Code & unit testing ✔

Function (CSC) integration and testing ✔

CSCI integration & testing ✔

IV&V ✔

Management ✔

Software quality assurance ✔

Configuration management ✔

Documentation ✔

Rework

Software requirements ✔

Software implementation

Re-design ✔

Re-coding ✔

Re-testing ✔

Documentation ✔

Build-Level Functions (Customer Release) ✔

(Software effort only)

CSCI-to-CSCI integration & checkout ✔

Hardware/software integration and test ✔

Management ✔

Software quality assurance ✔

Configuration management ✔

Documentation ✔

IV&V

Figure 8-1 Recommended Staff-Hour Definition, Page 2

64 CMU/SEI-92-TR-21

Definition Name: Total System Staff-Hours Page: 3 of 3

 For Development

 Totals Totals Report
Product-Level Functions continued include exclude totals

System-Level Functions ✔

(Software effort only)
System requirements & design

System requirements analysis ✔

System design ✔
Software requirements analysis ✔

Integration, test, & evaluation
System integration & testing ✔
Testing & evaluation ✔

Production and deployment ✔

Management ✔
Software quality assurance ✔

Configuration management ✔

Data ✔

Training
Training of development employees ✔

 Customer training ✔

Support ✔

Figure 8-1 Recommend Staff-Hour Definition, Page 3

CMU/SEI-92-TR-21 65

8.5. Schedule Recommendations for the Acquisition Program
Manager

8.5.1. Dates of reviews/audits/deliverables

We recommend the following:

• Require planned and actual dates for milestones and deliverables.

• Use the checklist to specify the exact dates to be reported. A good starter set
includes the date of baselining any and all products developed as part of a given
activity, the date of formal review, the date of delivery of interim products to your
office, and the date of formal sign-off.

• Some dates will apply to the entire project. In some cases, there will be dates for
each CSCI. Track schedule information to at least the CSCI level. For critical
CSCIs, you may want to track dates for individual CSCs and CSUs.

• Require that all planned and actual dates be updated monthly. Keep all plans.
A great deal can be learned by looking at the volatility of plans over time and the
extent to which they are based on supporting data (like the progress measures).

8.5.2. Progress measures

• Use the checklist on progress measures to specify the measures to be tracked.

• Require a plan from the contractor showing the rate at which work will be
accomplished. There should be a plan for each CSCI. Require that the plan and
actuals be reported monthly.

• The progress measures are meaningless without objective completion criteria.
Make sure that these criteria can be audited. It is your way of being assured that
progress is real.

• At a minimum, require that the following be planned for and tracked:

• the number of CSUs completing unit test

• the number of lines of code completing unit test

• the number of CSUs integrated

• the number of lines of code integrated

DOD-STD-2167A leaves a huge gap between the critical design review which precedes
coding and the test readiness review which precedes testing for a complete CSCI. If
there are to be problems in meeting integration and test schedules, the earlier you know
about it the better. These simple measures have been found to be extremely useful.

66 CMU/SEI-92-TR-21

Schultz presents an example in which counts of the number of CSUs completing unit test
were plotted weekly [Shultz 88]. A simple linear extrapolation of the plot provided a
remarkably accurate projection of when unit testing would be complete for all CSUs .

• Require that lines of code estimates be updated monthly. A significant increase
(>10%) or a significant change in the composition of code (e.g., decreasing COTS or
reuse) is likely to affect the schedule and should be accompanied by replanning.

• Keep track of problem reports by CSCI during all activities/phases. Those that are
error-prone early are likely to be so throughout development. Closely monitor
integration and testing progress for those CSCIs.

8.6. Schedule Recommendations for the Cost Analyst or the
Administrator of a Central Measurement Database

 We recommend the following:

• If possible, use the checklist before any data is reported to specify what dates you’d
like to see (e.g., “For all reviews, report the date the review began and the date that
the last document to be included in that review was signed off”).

• Require a filled-out date checklist from anyone submitting schedule data (so that
you’ll at least understand and can document what the dates represent).

• For project begin and end dates, make sure that it is clear what activities are
included and whether the dates are planned or actual.

• Be sure to collect all the core measures at the same level. We recommend the
CSCI level. You will need to distinguish between system-level activities (e.g., system
engineering at the beginning and integration and test activities at the end) and
CSCI-level activities. Thus you will have one set of dates for system-level reviews
and deliverables but as many dates as there are CSCIs for CSCI-level reviews and
deliverables. If someone reports a single set of dates for the latter, you need to
understand what this date represents (the day that review began for the first CSCI,
the day review began for the last CSCI, or something else.)

CMU/SEI-92-TR-21 67

8.7. Schedule Recommendations for Process Improvement
Personnel

We recommend the following:

• You’ll want to know as much about the process as possible but you’re probably
limited to whatever data is already being collected. If possible, gather information on
the dates of all exit criteria associated with reviews and deliverables. This will allow
you to track the detailed sequence of events associated with completing reviews and
deliverables. This can be extremely useful for identifying bottlenecks.

• Gather progress measures as well.

68 CMU/SEI-92-TR-21

CMU/SEI-92-TR-21 69

References

[AFSC 90] Software Management Indicators (AFSC Pamphlet 800-48).
Andrews Air Force Base, D.C.: Headquarters Air Force Systems
Command, 1990.

[Baumert 92] Baumert, John H. Software Measures and the Capability Maturity
Model (CMU/SEI-92-TR-25). Pittsburgh, Pa.: Software Engineering
Institute, Carnegie Mellon University, 1992.

[Betz 92] Betz, Henry P.; & O’Neill, Patrick J. Army Software Test and
Evaluation Panel (STEP) Software Metrics Initiatives Report.
Aberdeen, Md.: U.S. AMSAA, 1992.

[Boehm 81] Boehm, Barry W. Software Engineering Economics. Englewood
Cliffs, N.J.: Prentice-Hall, 1981.

[DOD-STD-2167A] Military Standard, Defense System Software Development (DOD-
STD-2167A). Washington, D.C.: United States Department of
Defense, 1988.

[Grady 87] Grady, Robert B.; & Caswell, Deborah L. Software Metrics:
Establishing a Company-Wide Program. Englewood Cliffs, N.J.:
Prentice-Hall, 1987.

[Humphrey 89] Humphrey, Watts S. Managing the Software Process. Reading,
Mass.: Addison-Wesley, 1989.

[IEEE 90] IEEE Standard Glossary of Software Engineering Terminology (IEEE
Std 610.12-1990). New York, N.Y.: The Institute of Electrical and
Electronics Engineers, 1990.

[IEEE 92] Standard for Software Productivity Metrics [draft] (P1045/D5.0).
Washington, D.C.: The Institute of Electrical and Electronics
Engineers, 1992.

[Jones 86] Jones, C. Programming Productivity. New York, N.Y.: McGraw-Hill,
1986.

[MIL-STD-881B] Work Breakdown Structures for Defense Material Items (MIL-STD-
881B, draft). Air Force System Command, 18 February 1992.

[MIL-STD-171] Military Handbook Work Breakdown Structure for Software Elements
(MIL-STD-171, draft). US Army CECOM Software Engineering
Directorate, 29 May 1992.

[Rozum 92] Rozum, James A. Software Measurement Concepts for Acquisition
Program Managers (CMU/SEI-92-TR-11). Pittsburgh, Pa.: Software
Engineering Institute, Carnegie Mellon University, 1992.

70 CMU/SEI-92-TR-21

[Schultz 88] Schultz, Herman P. Software Management Metrics (ESD-TR-88-
001). Bedford, Mass.: The MITRE Corporation, 1988.

CMU/SEI-92-TR-21 71

Appendix A: Acronyms and Terms

A.1. Acronyms

C/SCSC cost/schedule control systems criteria

C/SSR cost/schedule status report

CDR critical design review

CCDR contractor cost data reporting

CDRL contract data requirements list

CFSR contract funds status report

CMU Carnegie Mellon University

CPR contract progress report

CSC computer software component

CSCI computer software configuration item

CSU computer software unit

DID data item description

DoD Department of Defense

FCA functional configuration audit

FQT formal qualification test

HW hardware

IEEE Institute of Electrical and Electronics Engineers, Inc.

IV&V independent verification and validation

OT&E operational test and evaluation

PCA physical configuration audit

PDR preliminary design review

PM project manager

QA quality assurance

SDD system design document

SDR system design review

SEI Software Engineering Institute

SRS software requirements specification

SSR software specification review

SWAP Software Action Plan

S/W software

72 CMU/SEI-92-TR-21

TRR test readiness review

WBS work breakdown structure

WBS.SW work breakdown structure for software

4GL fourth-generation language

A.2. Terms Used

Attribute - A quality or characteristic of a person or thing. Attributes describe the nature
of objects measured.

Computer software component (CSC) - A distinct part of a computer software
configuration item (CSCI). CSCs may be further decomposed into other CSCs and
computer software units (CSUs) [DOD-STD-2167A].

Computer software configuration item (CSCI) - A configuration item for software [DOD-
STD-2167A].

Computer software unit (CSU) - An element specified in the design of a computer
software component (CSC) that is separately testable [DOD-STD-2167A].

Contract work breakdown structure (WBS) - The DoD-approved work breakdown
structure for reporting purposes and its discretionary extension to the lower levels by the
contractor, in accordance with MIL-STD-881B and the contract work statement [MIL-STD-
881B].

Direct staff-hour - The amount of effort directly expended in creating a specific output
product [P1045/D4.0].

Granularity - The depth or level of detail at which data is collected [P1045/D4.0].

Measure - n. A standard or unit of measurement; the extent, dimensions, capacity, etc.
of anything, especially as determined by a standard; an act or process of measuring; a
result of measurement. v. To ascertain the quantity, mass, extent, or degree of
something in terms of a standard unit or fixed amount, usually by means of an
instrument or process; to compute the size of something from dimensional
measurements; to estimate the extent, strength, worth, or character of something; to
take measurements.

Measurement - The act or process of measuring something. A result, such as a figure
expressing the extent or value that is obtained by measuring.

Staff-hour - An hour of time expended by a member of the staff [P1045/D4.0].

CMU/SEI-92-TR-21 73

Appendix B: Background

B.1. Origins of the Report

In 1989, the Software Engineering Institute (SEI) began an effort to promote the
increased use of objective measurement in software engineering, project management,
and software acquisitions. As part of this effort, the SEI Measurement Steering
Committee was formed to provide technical guidance and increase public awareness of
process measurements. Based on the advice of the steering committee, two working
groups were created: Software Acquisition Metrics and Software Metrics Definition. This
report and the methods in it are outgrowths of work initiated by the Effort and Schedule
Subgroup of the Software Metrics Definition Working Group. At the SEI Affiliates
Symposium in August 1991, a preliminary draft was released for review and field testing .
More than eight hundred copies of the draft were subsequently distributed. All
comments received were addressed. A revised draft was completed in May 1992, and
reviewed by senior industry and government executives and the SEI Measurement
Steering Committee. Suggestions from these reviewers were evaluated, and the
document was modified as required.

B.2. Why Staff-Hours?

Effort is frequently the largest element of cost. Some candidate units for accumulating
effort data are labor-months, staff-weeks, and staff-hours.

The concept of labor-month is well understood. However using labor-months to record
and report effort data presents a number of problems:

• A labor-month does not provide enough granularity when attempting to report
in fractions of a month.

• The number of hours per labor-month varies widely among contractors and
within the government. Each definition may have a different value. It is even
possible for a contractor to have varying definitions for a labor-month across
internal projects because of government requirements or because the
contractor is working as a subcontractor to another prime contractor. Still,
labor-months can easily be calculated from staff-hours, if preferred.

Another candidate unit for accumulating effort data is staff-weeks. The basic
assumption is that a calendar week is five working days. However, the issue of holidays
falling within a week or employees working weekends must be addressed when staff-
week units are used.

74 CMU/SEI-92-TR-21

Using staff-hours as the basic unit for recording and reporting effort data overcomes all of
the above problems.

In this document, we will use the term “staff-hour” to mean an hour of time expended by
a member of the staff [P1045/D4.0].

One must recognize that no single level of measurement may be applicable to all
projects. For extremely small projects, or those of an exceedingly exploratory nature,
staff-hours may not be meaningful enough to deserve collection. For extremely large
projects, the sheer bulk of staff-hours may conceal vital trends, so other measures of
effort may need to be used. Even these projects may use staff-hours as a basis for the
aggregated measurement used to actually track the project. Thus, we feel that staff-
hours will be meaningful for the vast majority of software projects.

B.3. Source of Staff-Hours

The basic source for obtaining and collecting staff-hour data is an organization’s time
reporting system. Organizations and contractors that deal with federal government
contracts normally collect staff-hours as a part of the contractor’s way of doing business.
They are part of normal government monthly fiscal reports such as the Contract Funds
Status Report (CFSR), Cost/Schedule Status Report (C/SSR), and the Contract Progress
Report (CPR). Since these reports are subject to government audit, contractors have
formally established procedures for collecting the data.

Personnel record their time according to established charge accounts and procedures.
Unless an organization captures the information in an organization’s time reporting
system, the information may not be available.

The granularity of the charge accounts determines the levels or amounts of information
that may be collected about a project. This will vary from project to project, within
organizations, and among organizations.

The basic information that time cards typically contain for each staff-hour is the following:

• Personnel identification: This information may be in the form of the employee’s
name and/or a unique identification number.

• Type of hour information: Regular time or overtime.

• Type of employee: Salaried (exempt) or hourly (non-exempt).

• Date: The day that the work was performed.

• Charge account: Project-specific charge code. Organizations use a number of
coding schemes such as codes that correspond to a specific function performed,
objective worked on, phase of the project, organizational element performing the
work, or some other company or site-specific coding scheme.

CMU/SEI-92-TR-21 75

For federal government contracts, one way to code charge account numbers is to key
them to elements of work breakdown structures (WBS). One may organize work
breakdown structures by either products or activities. MIL-STD-881B provides guidance
on establishing a Work Breakdown Structure that strongly favors a product-oriented
approach. Within its general guidance, a contractor can extend the contract WBS (the
DoD-approved work breakdown structure for reporting purposes and its discretionary
extension to lower levels by the contractor) to an appropriate level that satisfies critical
visibility requirements and does not overburden the projects’s management system.

Government contractors may organize their personnel along program, function, natural
work team, or matrix lines to facilitate effective management. When assigning specific
work tasks to the project team, the organizational structure must be linked with the work
breakdown structure. A contractor establishes a system of charge accounts to reflect
specific work tasks and uses the time reporting system to collect work against this
established system of charge accounts.

Figure B-1, extracted from the February 1992 draft of MIL-STD-881B (Figure II-14 in MIL-
STD-881B), illustrates how a cost management system with job coding and the work
breakdown structure can provide needed detail and visibility without extending the WBS
to extremely low levels.

76 CMU/SEI-92-TR-21

-Figure B-1 Cost-Account-to-Contract-WBS Relationship
(from MIL-STD-881B, draft of Feb. 1992)

CMU/SEI-92-TR-21 77

Append ix C : Using Measurement Resul ts—
Illustrations and Examples

In this appendix, we illustrate a few of the ways in which we have seen that effort data
has been used to help plan, manage, and improve software projects and processes.
Our purpose is not to be exhaustive, but rather to highlight some interesting uses that
you may find worth trying in your own organization. We also want to encourage
organizations to seek other new and productive ways to put effort measures to work, and
we would very much like to hear from those who succeed.

Information pertaining to staff-hour expenditure enables you to obtain insight into the
development process as well as how resource usage compares to the planned values.
You can use effort measures to display expended resources over time with the intent of
providing current status and forecasting actual effort expended at completion.

Because effort measures can display the staff-hour expenditures per time period,
managers can track trends in the effort expended. You can use effort measures to
reflect actual versus planned staff-hours expended for the current and past time period.
Effort measures help you address the following questions:

• Is the rate at which effort is being expended going to overrun the planned
budget?

• Is enough effort being planned and applied to the project to achieve the desired
schedule?

The following sections contain some simple examples using staff-hour information.

C.1. Noncumulative Effort Distribution Example

Some organizations use effort distribution graphs to track the resources expended (staff-
hours) per time period. When you collect actual expended staff-hours monthly, or some
other periodic time period, and compare them to the previously estimated staff-hours for
that period, you can gain some insight into the development process.

The following sections will discuss effort distribution graphs per month and cumulative
graphs.

C.1.1. Effort profile for total staff-hours only

Figure C-1 illustrates the use of the checklist to specify a definition of staff-hours and the
collection of staff-hours for an entire project at the project or system level only. It
communicates unambiguously what has been included in and excluded from the
measurement of staff-hours.

78 CMU/SEI-92-TR-21

 Staff-Hour Definition Checklist

Definition Name: Example: Total staff-hours Date: 6/27/92
 for development, report at System Originator: SEI

level only. Page: 1 of 3

 Totals Totals Report
Type of Labor include exclude totals

Direct ✔
Indirect ✔

Hour Information
Regular time

Salaried ✔
Hourly ✔

 Overtime
Salaried

Compensated (paid) ✔
Uncompensated (unpaid) ✔

Hourly
 Compensated (paid) ✔

Uncompensated (unpaid) ✔

Employment Class

Reporting organization
 Full time ✔
 Part time ✔
 Contract

 Temporary employees ✔
Subcontractor working on task with reporting organization ✔
Subcontractor working on subcontracted task ✔
Consultants ✔

Labor Class
 Software management

Level 1 ✔
Level 2 ✔

Level 3 ✔
Higher ✔

Technical analysts & designers
 System engineer ✔

 Software engineer/analyst ✔

 Programmer ✔

 Test personnel
CSCI-to-CSCI integration ✔

IV&V ✔

Test & evaluation group (HW-SW) ✔
 Software quality assurance ✔

 Software configuration management ✔

Program librarian ✔

Database administrator ✔

 Documentation/publications ✔

 Training personnel ✔

 Support staff ✔

Figure C-1 Example of a Completed Staff-Hour Definition Checklist

CMU/SEI-92-TR-21 79

Definition Name: Example: Total staff-hours Page: 2 of 3

 for development, report at System
level only.

 Totals Totals Report
include exclude totals

Activity
Development

Primary development activity ✔
Development support activities

Concept demo/prototypes ✔

Tools development, acquisition, installation, & support ✔

Non-delivered software & test drivers ✔

Maintenance
Repair ✔

Enhancements/major updates ✔

Product-Level Functions

CSCI-Level Functions (Major Functional Element)

Software requirements analysis ✔

Design
Preliminary design ✔

Detailed design ✔

Code & development testing

 Code & unit testing ✔

Function (CSC) integration and testing ✔

CSCI integration & testing ✔

IV&V ✔

Management ✔

Software quality assurance ✔

Configuration management ✔

Documentation ✔

Rework

Software requirements ✔

Software implementation

Re-design ✔

Re-coding ✔

Re-testing ✔

Documentation ✔

Build-Level Functions (Customer Release)

(Software effort only)

CSCI-to-CSCI integration & checkout ✔

Hardware/software integration and test ✔

Management ✔

Software quality assurance ✔

Configuration management ✔

Documentation ✔

IV&V

Figure C-1 Example of a Completed Staff-Hour Definition Checklist, Page 2

80 CMU/SEI-92-TR-21

Definition Name: Example: Total staff-hours Page: 3 of 3

 for development, report at System
level only.

Totals Totals Report
Product-Level Functions continued include exclude totals

System-Level Functions ✔

(Software effort only)
System requirements & design

System requirements analysis ✔

System design ✔
Software requirements analysis ✔

Integration, test, & evaluation
System integration & testing ✔

Testing & evaluation ✔
Production and deployment ✔
Management ✔
Software quality assurance ✔

Configuration management ✔

Data ✔

Training
Training of development employees ✔

 Customer training ✔

Support ✔

Figure C-1 Example of a Completed Staff-Hour Definition Checklist, Page 3

CMU/SEI-92-TR-21 81

You can display the staff-hours expended per time period as an x-y line graph with both
actual and planned curves on the same graph. The x-axis shows the calendar time
period increments and the y-axis shows staff-hours expended. Showing the actual staff-
hours expended per time period illustrates the spikes and drops in the effort expended
on the contract. Any significant deviations between planned and actual expenditures
can be used as an indicator for further investigation of possible causes.

Even if only total staff-hours expended by the project for the current time period are
available, you can gain some insight by plotting the actual and planned total staff-hours
on the same graph as Figure C-2 illustrates.

The plan curve typically builds up slowly through the early portion of the development
effort, which is devoted to requirements definition and analysis and design, peaks
around integration and test, and shows an orderly decrease through the latter part of the
development, which is devoted to system testing. For maintenance projects, on the
other hand, the curve tends to more flat (level-loaded).

In Figure C-2 you can see that in the early months, more effort was expended than
planned. This could be an indicator that staff was allocated to this project before they
could be effectively utilized or that more analysis effort was required than estimated. To
obtain a clear view of the progress implications, staff-hours must be correlated with
measures of size and schedule.

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12

Staff-
Hours in

Thousands

Reporting Periods

Planned

Actual

Figure C-2 Example of an Effort Profile for Total System Expenditure by Month

If you add the monthly staff-hour expenditures, you can obtain a cumulative effort profile.
The cumulative effort profile can be displayed as an x-y line graph with both actual and
plan curves on the same graph, as described previously, to determine if the number of
actual staff-hours expended corresponds with the number of staff-hours planned for a

82 CMU/SEI-92-TR-21

particular point in time. The x-axis shows calendar time period increments and the y-axis
show total staff-hours expended. For development efforts, the graph usually resembles
a flattened S-curve as in Figure C-3. The flattened S-curve reflects a smaller staff early in
the project (a smaller slope in the curve), a larger staff during the heart of the project (a
steeper slope in the curve), and a reduction in staff toward the end of the project
(another smaller slope in the curve).

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12

Cumulative
Staff-Hours

in
Thousands

Reporting Periods

Planned

Actual

Figure C-3 Example of a Cumulative Effort Profile

The project manager can compare the total number of staff-hours planned to be
expended to the total number of staff-hours actually expended for a particular point in
time. In the example shown, one can readily see that more effort is being expended
than planned. Analyzing the relationship of actual staff-hours being expended to the
planned staff-hours can do the following:

• Provide some early indicators of potential problems. For example, if the actual
expenditure is starting to deviate above or below the planned expenditure, this
should be an indicator for management to ask some pointed questions as to the
cause of the deviation.

• Assist the project manager in judging whether the planned amount of effort will
be sufficient to complete the project.

C.1.2. Effort profile for each build and CSCI

You can obtain additional insight into the development process by requesting staff-hour
utilization, not just for the entire project, but also for each build, or customer release and
each CSCI (major functional element) within each build or release. In Figure C-4 we
show only the specific entries of the checklist required to specify the collection of staff-
hours for the entire project, for each build, and for each CSCI. The remainder of the

CMU/SEI-92-TR-21 83

checklist is exactly as Figure C-1 shows. Again, use the checklist to communicate
unambiguously what has been included in and excluded from the measurement of staff-
hours.

 Totals Totals Report
Product-Level Functions include exclude totals

CSCI-Level Functions (Major Functional Element) ✔

Build-Level Functions (Customer Release) ✔

System-Level Functions ✔

Figure C-4 Example of a Staff-Hour Definition Checklist for System, Builds, and CSCIs

For illustrative purposes, we will use a system development effort consisting of one build
with two CSCIs. Just as discussed in the previous section, the staff-hours expended per
time period can be displayed in an x-y line graph with both actual and plan curves on the
same graph. We show the calendar time period increments on the x-axis and staff-hours
expended on the y-axis.

Figures C-5 and C-6 illustrate the planned effort profile for each CSCI for each reporting
period and the planned cumulative effort profile for the total system respectively.

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 101112131415

Staff-
Hours in

Thousands

Reporting Periods

Planned
CSCI B

Planned
CSCI A

Figure C-5 Example of a Planned Effort Profile by CSCI

84 CMU/SEI-92-TR-21

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Cumulative
Staff-Hours
in Thousands

Reporting Periods

Planned

Total Effort

Figure C-6 Example of a Planned Cumulative Effort Profile

From the monthly status reports, you can extract and plot the total effort expended on
this project as well as the effort expended on each CSCI on the same graph as the
planned expenditures. Figure C-7 plots the actual cumulative effort on the same graph
as the planned cumulative effort for our example system development effort.

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Cumulative
Staff-Hours
in Thousands

Reporting Periods

Planned

Actual

Figure C-7 Example of a Planned vs. Actual Cumulative Effort Profile

CMU/SEI-92-TR-21 85

By just examining Figure C-7 you could conclude that the over-expenditure in the early
months of this effort has been corrected.

Since additional information is available, you can construct actual effort profile plots for
each CSCI, comparing the planned expenditure of effort with the actual expenditure.

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Staff-Hours
in Thousands

Reporting Periods

PlannedActual

Figure C-8 Example of a Planned vs. Actual Expenditure for Each CSCI

Figure C-8 provides more details indicating that the development for both CSCIs may be
in trouble–one CSCI by expending resources above the planned amount and the other
CSCI by significantly underexpending. Any significant deviations between planned and
actual expenditure can be used as an indicator for further investigation for possible
causes.

C.2. Productivity Trend Example

A software development manager might desire a specific subset of the CSCI-level staff-
hour information to be able to derive metrics for the development portion of the software
life cycle. In Figure C-9 we show the additional entries to the checklist in Figure C-4 to
specify the collection of staff-hours for detailed design, code, and development testing.
Figure C-9 shows only the new entries. Again the checklist is used to communicate
unambiguously what has been included in and what has been excluded from the
measurement of staff-hours.

86 CMU/SEI-92-TR-21

 Totals Totals Report
include exclude totals

Product-Level Functions

CSCI-Level Functions (Major Functional Element)

Software requirements analysis ✔

Design
Preliminary design ✔ ✔
Detailed design ✔ ✔

Code & development testing

Figure C-9 Example of a Productivity Staff-Hour Definition Checklist

You can calculate productivity rate by dividing the source line count (size measurement)
for a given CSCI and build by the sum of these individual staff-hour subtotals for the
same CSCI and build. Such a productivity rate can be used in estimating development
costs and schedules for subsequent builds.

You can calculate a productivity rate for an entire system of multiple CSCIs as well. Here
the sum of the source line counts for all CSCIs for a given build is divided by the sum of
the individual staff-hour subtotals listed above for all CSCIs for the same build. When
you calculate this metric for each of the builds of a system, trends can be determined
and used in the planning of future software development projects. An x-y line graph,
such as Figure C-10 shows, can be drawn from this data. A negative trend in a
productivity rate can alert the software development team to determine the cause of the
lowered productivity and, if necessary, revise their software development process to
counter the trend.

CMU/SEI-92-TR-21 87

Build 1 Build 2 Build 3 Build 4 Build 5

Builds

R
a
te

Perform Causal
Analysis

Figure C-10 Example of a Productivity Trend

88 CMU/SEI-92-TR-21

CMU/SEI-92-TR-21 89

Append ix D : Tai lor ing Schedule Checkl is t for
Progress or Status Information

D.1. MIL-STD-2167A

Figure D-1 shows a tailoring of the generic progress checklist shown in Figure 6-10,
geared specifically to the terminology and work units described in MIL-STD-2167A. The
notations in the parentheses refer to the paragraph numbers of the relevant Data Item
Description (DID).

90 CMU/SEI-92-TR-21

Page 3 of 3
Schedule Definition Checklist (cont.)

Part B: Progress/Status Information

Project will record planned progress: Yes No
If Yes, reporting frequency: Weekly Monthly Other:

Project will record actual progress: Yes No
If Yes, reporting frequency: Weekly Monthly Other:

Work Unit
Deliverable Product Milestones Work Units to Be Tracked Completion Criterion*

System/Segment Specification System capabilities specified (3.2.1.X.Y.Z)
System/Segment Design Document System requirements allocated (4.2.X)

System internal interfaces specified (4.4.X)
Interface Requirements Specification Interface requirements specified (3.X.Y)
Interface Design Document Interface requirements designed (3.X.Y)
Software Requirements Specification(s) Engineering requirements specified (3.X[.Y])
Software Preliminary Design Document(s) CSCs designed (3.2.X[.Y])
Software (Detailed) Design Document(s) CSUs designed (4.X.Y.2)

CSCI data elements/files defined (5, 6)
Software Test Description(s) (cases) FQTs described (4.X.Y.1-5)
Software Test Description(s) (procedures) FQT procedures defined (4.X.Y.6)
Source Code CSUs code-inspected

CSUs unit-tested
Software Test Report FQT test case results described (4.X.Y.Z)

*Key to indicate “Work Unit Completion Criterion”:
 1 - None specified
 2 - Peer reviewed
 3 - Engineering review held
 4 - QA sign-off
 5 - Manager or supervisor sign-off
 6 - Inspected
 7 - Configuration controlled
 8 - Entry in employee status report
 9 - No known deficiencies
10 - Reviewed by customer
11 - All relevant action items closed

Figure D-1 Schedule Definition Checklist, Progress/Status Information (MIL-STD-2167A)

CMU/SEI-92-TR-21 91

D.2. ARMY STEP Set of Measures

Figure D-2 shows a tailoring of the generic progress checklist shown in Figure 6-10,
geared specifically to the progress measures and completion criteria called for in the
Army’s STEP set of measures [Betz 91].

Page 3 of 3
Schedule Definition Checklist (cont.)

Part B: Progress/Status Information

Project will record planned progress: Yes ✔ No
If Yes, reporting frequency: Weekly Monthly ✔ Other:

Project will record actual progress: Yes ✔ No
If Yes, reporting frequency: Weekly Monthly ✔ Other:

Work Unit
Activities Work Units Tracked Completion Criterion*

CSCI requirements analysis Requirements documented or specified
CSCI preliminary design Requirements allocated to CSCs

CSCs designed
CSCI detailed design CSUs designed 10
CSU coding and unit testing Lines coded

Lines unit tested
Number CSUs coded
Number CSUs unit tested 12
Number lines unit tested

CSCI integration Number of CSUs integrated 13
Number of lines integrated

CSCI testing Number of tests passed

*Key to indicate “Work Unit Completion Criterion”:
 1 - None specified
 2 - Peer reviewed
 3 - Engineering review held
 4 - QA sign-off
 5 - Manager or supervisor sign-off
 6 - Inspected
 7 - Configuration controlled
 8 - Entry in employee status report
 9 - No known deficiencies
10 - Reviewed by customer
11 - All relevant action items closed
12 - All test cases completed with no defects
13 - CSUs actually and logically connected with all required modules

Figure D-2 Schedule Definition Checklist, Progress/Status Information (STEP)

92 CMU/SEI-92-TR-21

D.3. Air Force Pamphlet 800-48

Figure D-3 shows a tailoring of the generic progress checklist shown in Figure 6-10,
geared specifically to the progress measures and completion criteria called for in the
progress measures described in Air Force Pamphlet 800-48 [AFSC 90].

Page 3 of 3
Schedule Definition Checklist (cont.)

Part B: Progress/Status Information

Project will record planned progress: Yes ✔ No
If Yes, reporting frequency: Weekly Monthly ✔ Other:

Project will record actual progress: Yes ✔ No
If Yes, reporting frequency: Weekly Monthly ✔ Other:

Work Unit
Activities Work Units Tracked Completion Criterion*

CSCI requirements analysis Requirements documented or specified
CSCI preliminary design Requirements allocated to CSCs

CSCs designed
CSCI detailed design CSUs designed 9
CSU coding and unit testing Lines coded

Lines unit tested
Number CSUs coded
Number CSUs unit tested 9
Number lines unit tested

CSCI integration Number of CSUs integrated 11
Number of lines integrated

CSCI testing Number of tests passed 11

*Key to indicate "Work Unit Completion Criterion":
1 - None specified
2 - Peer reviewed
3 - Engineering review held
4 - QA sign-off
5 - Manager or supervisor sign-off
6 - Inspected
7 - Configuration controlled
8 - Entry in employee status report
9 - No known deficiencies
10 - Reviewed by customer
11 - All relevant action items closed

Figure D-3 Schedule Definition Checklist, Progress/Status Information
(AF Pamphlet 800-48)

CMU/SEI-92-TR-21 93

D.4. MITRE

Figure D-4 shows a tailoring of the generic progress checklist shown in Figure 6-10,
geared specifically to the progress measures and completion criteria called for in the MITRE
set [Schultz 1988].

Page 3 of 3
Schedule Definition Checklist (cont.)

Part B: Progress/Status Information

Project will record planned progress: Yes ✔ No
If Yes, reporting frequency: Weekly Monthly ✔ Other:

Project will record actual progress: Yes ✔ No
If Yes, reporting frequency: Weekly Monthly ✔ Other:

Work Unit
Activities Work Units Tracked Completion Criterion*

CSCI requirements analysis Requirements documented or specified 1
CSCI preliminary design Requirements allocated to CSCs 1

CSCs designed 1
CSCI detailed design CSUs designed 3, 13
CSU coding and unit testing Lines coded

Lines unit tested
Number CSUs coded
Number CSUs unit tested 12, 7
Number lines unit tested

CSCI integration Number of CSUs integrated 1
Number of lines integrated

CSCI testing Number of tests passed 1

*Key to indicate “Work Unit Completion Criterion”:
 1 - None specified
 2 - Peer reviewed
 3 - Engineering review held
 4 - QA sign-off
 5 - Manager or supervisor sign-off
 6 - Inspected
 7 - Configuration controlled
 8 - Entry in employee status report
 9 - No known deficiencies
10 - Reviewed by customer
11 - All relevant action items closed
12 - Passed CSU test
13 - Design packages closed

Figure D-4 Schedule Definition Checklist, Progress/Status Information (MITRE)

94 CMU/SEI-92-TR-21

CMU/SEI-92-TR-21 95

Appendix E: Checklists and Forms for
Reproduct ion

The following figures are repeated in this appendix in reproducible form. We have
removed figure numbers, page numbers, and document footers so that you can copy
and use the pages for your own purposes.

Original Page Number

Effort Information

Figure 2-3 Staff-Hour Definition Checklist 8

Figure 4-1 Supplemental Information Form 31

Figure 5-2 Reporting Form for CSCI Development 35

 Reporting Form for each Build

 System Development Reporting Form

Schedule Information

Figure 6-1 Schedule Definition Checklist, Page 1 39

Figure 6-2 Schedule Definition Checklist, Page 2 40

Figure 6-10 Schedule Definition Checklist, Progress/Status Information 51

Report forms on pages 43-45 are tailored to a specific example. These are included as
an example of tailoring.

Figure 6-5 Report Form for System-Level Milestone Dates 45

Figure 6-6 Report Form for CSCI-Level Milestone Dates 46

Figure 6-7 Report Form for System-Level Deliverables 47

Figure 6-8 Report Form for CSCI-Level Deliverables 48

Figure 6-11 Report Form for Progress Information 53

96 CMU/SEI-92-TR-21

 Staff-Hour Definition Checklist

Definition Name: Date:
 Originator:

 Page: 1 of 3

 Totals Totals Report
Type of Labor include exclude totals

Direct
Indirect

Hour Information
Regular time

Salaried
Hourly

 Overtime
Salaried

Compensated (paid)
Uncompensated (unpaid)

Hourly
 Compensated (paid)

Uncompensated (unpaid)

Employment Class

Reporting organization
 Full time
 Part time

 Contract
 Temporary employees

Subcontractor working on task with reporting organization

Subcontractor working on subcontracted task
Consultants

Labor Class
 Software management

Level 1
Level 2

Level 3

Higher

Technical analysts & designers
 System engineer

 Software engineer/analyst

 Programmer

 Test personnel
CSCI-to-CSCI integration
IV&V
Test & evaluation group (HW-SW)

 Software quality assurance

 Software configuration management

Program librarian

Database administrator

 Documentation/publications

 Training personnel
 Support staff

Definition Name: Page: 2 of 3

 Totals Totals Report
include exclude totals

Activity
Development

Primary development activity
Development support activities

Concept demo/prototypes

Tools development, acquisition, installation, & support

Non-delivered software & test drivers

Maintenance

Repair

Enhancements/major updates

Product-Level Functions

CSCI-Level Functions (Major Functional Element)

Software requirements analysis

Design
Preliminary design

Detailed design

Code & development testing

 Code & unit testing

Function (CSC) integration and testing

CSCI integration & testing

IV&V

Management

Software quality assurance

Configuration management

Documentation

Rework

Software requirements

Software implementation

Re-design

Re-coding

Re-testing

Documentation

Build-Level Functions (Customer Release)

(Software effort only)

CSCI-to-CSCI integration & checkout
Hardware/software integration and test

Management

Software quality assurance

Configuration management

Documentation

IV&V

Definition Name: Page: 3 of 3

Product-Level Functions continued Totals Totals Report
 include exclude totals

System-Level Functions

(Software effort only)
System requirements & design

System requirements analysis

System design

Software requirements analysis

Integration, test, & evaluation
System integration & testing
Testing & evaluation

Production and deployment

Management

Software quality assurance

Configuration management

Data

Training
Training of development employees

 Customer training

Support

 Supplemental Information Form

 Staff-Hours Measurement

Definition Name:

Project Name:

Hour Information
Indicate the length of the following:

Hours
Standard work day
Standard work week
Standard labor month

Labor Class Information
Describe the typical responsibilities and duties for the labor categories indicated.

Labor Class Description
Software Management

Level 1

Level 2

Level 3

Level 4

Technical analysts and designers

Programmer

Test personnel

Others

Product-Level Functions
Describe at what level(s) (major functional element, customer release,
and/or system) staff hours are counted for the functions indicated.

Function Level
Management

Software quality assurance

Configuration management

Documentation

Other

Direct Staff-Hours Report
 CSCI (Major Functional Element) Development

System Name: Build ID:
CSCI Identification: Version :

 Direct Staff-Hours

Total Compensated Uncompensated
Regular Time =

Overtime =

Total =

Work Performed Time Frame

Beginning Date: Ending Date:

CSCI (Major Functional Elements) Level Functions

 Excluded Staff-Hours
Included Don’t Know (If requested)

Software requirements analysis

Design

Preliminary design

Detailed design
Code & development testing

Code & unit testing
Function (CSC) int. & testing

CSCI integration & testing
IV&V

Management
Software quality assurance
Configuration management

 Documentation
Rework

Software requirements
Software implementation

Re-design
Re-coding
Re-testing
Documentation

Direct Staff-Hours Report
Build (Customer Release) Development

System Name: Build ID:

 Direct Staff-Hours

Total Compensated Uncompensated
Regular Time =

Overtime =

Total =

Work Performed Time Frame
Beginning Date: Ending Date:

CSCIs Associated with This Build:

 CSCI ID Version

Build (Customer Release) Level Functions

 Excluded Staff Hours
Included Don’t Know (If requested)

CSCI-to-CSCI integration & checkout

Hardware/software int. and test

Management
Software quality assurance

Configuration management

Documentation

IV&V

Page 1-2

Direct Staff-Hours Report
 System Development

System Name: Build ID:

 Direct Staff-Hours

Total Compensated Uncompensated
Regular Time =

Overtime =

Total =

Work Performed Time Frame

Builds Associated with this System:

Builds

Beginning Date: Ending Date:

 Direct Staff Hours Report
 System Development

System Identification: Version:

 Excluded Staff Hours
Included Don’t Know (If requested)

System Level-Functions

System requirements and design

System requirement analysis

System design

Software requirements analysis

Integration, test, and evaluation

System integration & testing

Testing and evaluation

Production and deployment

Management

Software quality assurance
Data
Training

 Training of development employees
Customer training

Support

Schedule Checklist Date:
Part A: Date Information Originator:

Page 1 of 3

Project will record planned dates: Yes No
If Yes, reporting frequency: Weekly Monthly Other: ____________

Project will record actual dates: Yes No
If Yes, reporting frequency: Weekly Monthly Other: ____________

Number of builds

Repeat Relevant dates
Include Exclude each build reported*

System requirements review
System design review

Software specification review
Preliminary design review
Critical design review
Code complete
Unit test complete
CSC integration and test complete
Test readiness review
CSCI functional & physical configuration audits

Preliminary qualification test
Formal qualification test
Delivery & installation
Other system-level: Delivery to prime contractor

*Key to indicate “relevant dates reported” for reviews and audits
 1 - Internal review complete
 2 - Formal review with customer complete
 3 - Sign-off by customer
 4 - All high-priority action items closed
 5 - All action items closed
 6 - Product of activity/phase placed under configuration management
 7 - Inspection of product signed off by QA
 8 - QA sign-off
 9 - Management sign-off
10 - ______________________
11 - ______________________

Page 2 of 3
Part A: Date Information (cont.)

Repeat Relevant dates
Deliverable Products Include Exclude each build reported*

 System-Level
Preliminary system specification
System/segment specification
System/segment design document
Preliminary interface requirements spec.
Interface requirements specification
Preliminary interface design document
Interface design document
Software development plan
Software test plan
Software product specification(s)
Software user’s manual
Software programmer’s manual
Firmware support manual
Computer resources integrated support doc.
Computer system operator’s manual

 CSCI-Level
Preliminary software requirements spec(s)
Software requirements specification(s)
Software preliminary design document(s)
Software (detailed) design document(s)
Software test description(s) (cases)
Software test description(s) (procedures)
Software test report(s)
Source code
Software development files
Version description document(s)

*Key to indicate “relevant dates reported” for deliverable products
1 - Product under configuration control
2 - Internal delivery
3 - Delivery to customer
4 - Customer comments received
5 - Changes incorporated
6 - Sign-off by customer
7 -
8 -

Schedule Checklist, cont. Page 3 of 3
Part B: Progress/Status Information

Project will record planned progress: Yes No
If Yes, reporting frequency: Weekly Monthly Other:

Project will record actual progress: Yes No
If Yes, reporting frequency: Weekly Monthly Other:

Completion
Activities Work Units Tracked Criterion*

CSCI requirements analysis Requirements documented or specified
CSCI preliminary design Requirements allocated to CSCs

CSCs designed
CSCI detailed design CSUs designed
CSU coding and unit testing Lines coded

Lines unit tested
Number CSUs coded
Number CSUs unit tested
Number lines unit tested

CSCI integration Number of CSUs integrated
Number of lines integrated

CSCI testing Number of tests passed

*Key to indicate “Work Unit Completion Criterion”
 1 - None specified
 2 - Peer review held
 3 - Engineering review held
 4 - QA sign-off
 5 - Manager or supervisor sign-off
 6 - Inspected
 7 - Configuration controlled
 8 - Entry in employee status report
 9 - No known deficiencies
10 - Reviewed by customer
11 - All relevant action items closed
12 - ______________________
13 - ______________________

Schedule Reporting Form Date:

Date Information Originator:

System-Level Information Project:

Period ending:

Milestones, Reviews, and Audits* Planned Changed Actual
Contract award/project start
Preliminary qualification test

3 - Sign-off by customer
Formal qualification test

3 - Sign-off by customer
Delivery to prime contractor

3 - Sign-off by customer

*Only those completion criteria specified on the checklist appear below each deliverable.
 Enter a check mark in the “Changed” column if Planned date has changed since last reporting.

Schedule Reporting Form Date:

Date Information Originator:

System-Level Information Project:

Period ending:

Milestones, Reviews, and Audits* Planned Changed Actual
Contract award/project start
Preliminary qualification test

3 - Sign-off by customer
Formal qualification test

3 - Sign-off by customer
Delivery to prime contractor

3 - Sign-off by customer

*Only those completion criteria specified on the checklist appear below each deliverable.
 Enter a check mark in the “Changed” column if Planned date has changed since last reporting.

Schedule Reporting Form Date:

Date Information Originator:

System-Level Information Project:

Period ending:

Deliverable Products* Planned Changed Actual
Preliminary interface design document

3 - Delivery to customer
Interface design document

1 - Product under configuration control
3 - Delivery to customer
5 - Changes incorporated
6 - Sign-off by customer

Software development plan
3 - Delivery to customer
5 - Changes incorporated
6 - Sign-off by customer

Software test plan
3 - Delivery to customer
5 - Changes incorporated
6 - Sign-off by customer

Computer system operator's manual
1 - Product under configuration control
6 - Sign-off by customer

*Only those completion criteria specified on the checklist appear below each deliverable.
 Enter a check mark in the “Changed” column if Planned date has changed since last reporting.

Schedule Reporting Form Date:

Date Information Originator:

System-Level Information Project:

Period ending:

Deliverable Products* Planned Changed Actual
Preliminary interface design document

3 - Delivery to customer
Interface design document

1 - Product under configuration control
3 - Delivery to customer
5 - Changes incorporated
6 - Sign-off by customer

Software development plan
3 - Delivery to customer
5 - Changes incorporated
6 - Sign-off by customer

Software test plan
3 - Delivery to customer
5 - Changes incorporated
6 - Sign-off by customer

Computer system operator's manual
1 - Product under configuration control
6 - Sign-off by customer

*Only those completion criteria specified on the checklist appear below each deliverable.
 Enter a check mark in the “Changed” column if Planned date has changed since last reporting.

Schedule Reporting Form Date:

Date Information Originator:

CSCI-Level Information Project:

Period ending:

CSCI:

Build:

Deliverable Products* Planned Changed Actual
Preliminary software requirements specification

3 - Delivery to customer
Software requirements specification

1 - Product under configuration control
3 - Delivery to customer
5 - Changes incorporated
6 - Sign-off by customer

Software preliminary design document
1 - Product under configuration control
3 - Delivery to customer
5 - Changes incorporated
6 - Sign-off by customer

Software (detailed) design document
1 - Product under configuration control
3 - Delivery to customer
5 - Changes incorporated
6 - Sign-off by customer

Software test description (cases)
1 - Product under configuration control
3 - Delivery to customer
5 - Changes incorporated
6 - Sign-off by customer

Software test description (procedures)
1 - Product under configuration control
3 - Delivery to customer
5 - Changes incorporated
6 - Sign-off by customer

Software test report
3 - Delivery to customer
7 - IV&V sign-off

Source code
1 - Product under configuration control
2 - Internal delivery
3 - Delivery to customer
6 - Sign-off by customer
7 - IV&V sign-off

*Only those completion criteria specified on the checklist appear below each deliverable.
 Enter a check mark in the “Changed” column if Planned date has changed since last reporting.

Progress Report Form Date:

Periodic Summary by Work Unit Originator:

Project:

CSCI:

Frequency of reporting: Build:

Work unit kind:

Estimated total number of units:

Period Ending date* Planned completed units Actual completed

1

2

3

4

5

6

7

8

9

10

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

•
•
•

*Ending dates could be preprinted.

	Table of Contents
	List of Figures
	Preface
	Acknowledgments
	1 . Introduction
	1.1. Scope
	1.2. Objective and Audience
	1.3. The Software Measurement Environment

	2 . Defining a Framework for Software Effort Measurement
	2.1. Staff-Hour Definition Checklist
	2.2. Supplemental Information Forms
	2.3. Reporting Forms

	3 . Understanding Staff-Hour Checklist Attributes and Values
	3.1. Type of Labor
	3.2. Hour Information
	3.3. Employment Class
	3.4. Labor Class
	3.5. Activity
	3.6. Product-Level Functions

	4 . Using Supplemental Staff-Hour Information Form
	4.1. Hour Information
	4.2. Labor Class
	4.3. Product-Level Functions

	5 . Using Forms for Collecting and Reporting Staff-Hour Measurement Results
	6 . Defining a Framework for Schedule Definition Measurement
	6.1. Why Include Schedule in the Core Set?
	6.2. Dates of Milestones and Deliverables
	6.3. Progress Measures

	7 . Meeting the Needs of Different Users
	7.1. To Prescribe
	7.2. To Describe

	8 . Recommendations
	8.1. Ongoing Projects
	8.2. New Projects
	8.3. At the End of All Projects
	8.4. Recommended Staff-Hour Definition
	8.5. Schedule Recommendations for the Acquisition Program Manager
	8.6. Schedule Recommendations for the Cost Analyst or the Administrator of a Central Measurement Database
	8.7. Schedule Recommendations for Process Improvement Personnel
	References
	Appendix A: Acronyms and Terms
	Appendix B: Background
	Appendix C: Using Measurement Results— Illustrations and Examples
	Appendix D: Tailoring Schedule Checklist for Progress or Status Information
	Appendix E: Checklists and Forms for Reproduction

