
Technical Report
CMU/SEI-92-TR-019
ESC-TR-92-019

Software Measurement for DoD Systems:
Recommendations for Initial Core Measures

Anita D. Carleton

Robert E. Park

Wolfhart B. Goethert

William A. Florac

Elizabeth K. Bailey

Shari Lawrence Pfleeger

(Draft) /Helvetica /B -52 /UL .8
/gray exch def
/start exch def
/rotval exch def
/mode exch def
findfont /infont exch def
/printme exch def

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Unlimited distribution subject to the copyright.

Technical Report
CMU/SEI-92-TR-019

ESC-TR-92-019
September 1992

Software Measurement for DoD Systems:
Recommendations for Initial Core Measures

Anita D. Carleton

Robert E. Park

Wolfhart B. Goethert

William A. Florac

Software Process Measurement Project

Elizabeth K. Bailey

Institute for Defense Analyses

Shari Lawrence Pfleeger

The MITRE Corporation

(Draft) /Helvetica /B -52 /UL .8
/gray exch def
/start exch def
/rotval exch def
/mode exch def
findfont /infont exch def
/printme exch def

This report was prepared for the

SEI Joint Program Office
HQ ESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

FOR THE COMMANDER

(signature on file)

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1996 by Carnegie Mellon University.

Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative
works.

Requests for permission to reproduce this document or to prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRAN-
TIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTIBILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 52.227-7013.

This document is available through Research Access, Inc., 800 Vinial Street, Pittsburgh, PA 15212.
Phone: 1-800-685-6510. FAX: (412) 321-2994. RAI also maintains a World Wide Web home page. The URL is
http://www.rai.com

Copies of this document are available through the National Technical Information Service (NTIS). For informa-
tion on ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of
Commerce, Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides access
to and transfer of scientific and technical information for DoD personnel, DoD contractors and potential contrac-
tors, and other U.S. Government agency personnel and their contractors. To obtain a copy, please contact DTIC
directly: Defense Technical Information Center / 8725 John J. Kingman Road / Suite 0944 / Ft. Belvoir, VA
22060-6218. Phone: (703) 767-8222 or 1-800 225-3842.]

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

CMU/SEI-92-TR-19 i

Table of Contents

List of Figures iii

Acknowledgments v

1. Introduction 1

2. Integrating Measurement with Software Processes 5
2.1. Defining the Measurement Process 5
2.2. Measurement and the Capability Maturity Model 7

3. Recommendations for Specific Measures 9
3.1. The Basic Measures 9
3.2. Size 11

3.2.1. Reasons for using physical source line measures 13
3.2.2. Specific recommendations for counting physical source lines 15

3.3. Effort 15
3.3.1. Reasons for using staff-hour measures 17
3.3.2. Specific recommendations for counting staff-hours 18

3.4. Schedule 19
3.4.1. Reasons for using calendar dates 22
3.4.2. Specific recommendations for using calendar dates 23

3.5. Quality 24
3.5.1. Reasons for counting problems and defects 27
3.5.2. Specific recommendations for counting problems and defects 28

4. Implementing the Basic Measures 29
4.1. Initial Steps 29
4.2. Related Actions for DoD Consideration 30
4.3. From Definition to Action—A Concluding Note 31

References 33

Appendix A: Acronyms and Terms 37
A.1. Acronyms 37
A.2. Terms Used 38

Appendix B: Illustrations of Use 41
B.1. Establishing Project Feasibility 41
B.2. Evaluating Plans 43
B.3. Tracking Progress 49
B.4. Improving the Process 50
B.5. Calibrating Cost and Reliability Models 52

Appendix C: A Proposed DoD Software Measurement Strategy 53

ii CMU/SEI-92-TR-19

CMU/SEI-92-TR-19 iii

List of Figures

Figure 1-1 Convergence Between DoD and SEI Objectives 2

Figure 1-2 Proposed SWAP Software Measurement Strategy—Principal
Ingredients 2

Figure 1-3 Relationships Between This Report and Its Supporting
Documents 3

Figure 2-1 Steps for Establishing a Software Measurement Process
Within an Organization 5

Figure 2-2 Stages of a Measurement Process 6

Figure 2-3 Relationship of Software Measures to Process Maturity 8

Figure 3-1 Measures Recommended for Initial DoD Implementation 9

Figure 3-2 A Part of the Recommended Definition for Physical Source
Lines of Code 11

Figure 3-3 Specifying Data for Project Tracking (A Partial Example) 12

Figure 3-4 The Case of Disappearing Reuse 13

Figure 3-5 Sections of the Recommended Definition for Staff-Hour
Reports 16

Figure 3-6 Sections of the Schedule Checklist for Milestones, Reviews,
and Audits 19

Figure 3-7 Sections of the Schedule Checklist for CSCI-Level Products 20

Figure 3-8 Example of a Report Form for System-Level Milestone Dates 21

Figure 3-9 A Portion of the Definition Checklist for Counting Problems
and Defects 25

Figure 3-10 A Portion of the Checklist for Defining Status Criteria 26

Figure 3-11 A Portion of the Checklist for Requesting Counts of Problems
and Defects 27

Figure B-1 Illustration of Effects of Schedule Acceleration 42

Figure B-2 Indications of Premature Staffing 43

Figure B-3 A More Typical Staffing Profile 44

Figure B-4 Exposing Potential Cost Growth—The Disappearance of
Reused Code 44

Figure B-5 Project Tracking—The Deviations May Seem Manageable 45

Figure B-6 Project Tracking—Deviations from Original Plan Indicate
Serious Problems 46

Figure B-7 Project Tracking—Comparisons of Developer’s Plans Can
Give Early Warnings of Problems 46

Figure B-8 Comparison of Compressed and Normal Schedules 47

iv CMU/SEI-92-TR-19

Figure B-9 Continually Slipping Milestones 48

Figure B-10 Effects of Slipping Intermediate Milestones 48

Figure B-11 Extrapolating Measurements to Forecast a Completion Date 49

Figure B-12 Effects of Normal Schedules 50

Figure B-13 Effects of Detecting Defects Early 51

Figure C-1 Context for Initial Core Measures 53

CMU/SEI-92-TR-19 v

Acknowledgments

Since 1989, the SEI has been assisted in its software measurement initiative by a
Measurement Steering Committee that consists of senior representatives from industry,
government, and academia. The people on this committee have earned solid national and
international reputations for contributions to measurement and software management. They
have helped us guide the efforts of our working groups so that we could integrate their work
with not only this report, but also our other software measurement activities. We thank the
members of the committee for their many thoughtful contributions. The insight and advice
these professionals have provided have been invaluable:

William Agresti
The MITRE Corporation

Henry Block
University of Pittsburgh

David Card
Computer Sciences Corporation

Andrew Chruscicki
US Air Force Rome Laboratory

Samuel Conte
Purdue University

Bill Curtis
Software Engineering Institute

Joseph Dean
Tecolote Research

Stewart Fenick
US Army Communications-Electronics
Command

Charles Fuller
Air Force Materiel Command

Robert Grady
Hewlett-Packard

John Harding
Bull HN Information Systems, Inc.

Frank McGarry
NASA (Goddard Space Flight Center)

John McGarry
Naval Underwater Systems Center

Watts Humphrey
Software Engineering Institute

Richard Mitchell
Naval Air Development Center

John Musa
AT&T Bell Laboratories

Alfred Peschel
TRW

Marshall Potter
Department of the Navy

Samuel Redwine
Software Productivity Consortium

Kyle Rone
IBM Corporation

Norman Schneidewind
Naval Postgraduate School

Herman Schultz
The MITRE Corporation

Seward (Ed) Smith
IBM Corporation

Robert Sulgrove
NCR Corporation

Ray Wolverton
Hughes Aircraft

vi CMU/SEI-92-TR-19

As we prepared this report, we were aided in our activities by the able and professional
support staff of the SEI. Special thanks are owed to Linda Pesante and Mary Zoys, whose
editorial assistance helped guide us to a final, publishable form; to Lori Race, who
coordinated our meeting activities and provided outstanding secretarial services; and to
Helen Joyce and her assistants, who so competently assured that meeting rooms, lodgings,
and refreshments were there when we needed them.

And finally, this report could not have been assembled without the active participation and
many contributions from the other members of the SEI Software Process Measurement
Project and the SWAP measurement team who helped us shape these materials into forms
that could be used to support the DoD Software Action Plan:

John Baumert
Computer Sciences Corporation

Mary Busby
IBM Corporation

Andrew Chruscicki
US Air Force Rome Laboratory

Judith Clapp
The MITRE Corporation

Donald McAndrews
Software Engineering Institute

James Rozum
Software Engineering Institute

Timothy Shimeall
Naval Postgraduate School

Patricia Van Verth
Canisius College

Software Measurement for DoD Systems:
Recommendations for Initial Core Measures

Abstract. This report presents our recommendations for a basic set of software
measures that Department of Defense (DoD) organizations can use to help plan and
manage the acquisition, development, and support of software systems. These
recommendations are based on work that was initiated by the Software Metrics
Definition Working Group and subsequently extended by the SEI to support the DoD
Software Action Plan. The central theme is the use of checklists to create and record
structured measurement descriptions and reporting specifications. These checklists
provide a mechanism for obtaining consistent measures from project to project and for
communicating unambiguous measurement results.

1. Introduction

In its 1991 Software Technology Strategy [DoD 91], the Department of Defense (DoD) set
three objectives to be achieved by the software community by the year 2000:

• Reduce equivalent software life-cycle costs by a factor of two.

• Reduce software problem rates by a factor of ten.

• Achieve new levels of DoD mission capability and interoperability via software.

To achieve these objectives, the DoD needs a clear picture of software development
capabilities and a quantitative basis from which to measure overall improvement. With
quantitative information, national goals can be set to help keep the entire community
competitive and focused on continuous improvement of products and processes. This is not
possible today. Few organizations have a comprehensive, clearly defined software
measurement program, and measurement is frequently done in different ways. Because
there are no standard methods for measuring and reporting software products and
processes, comparisons across domains or across the nation are impossible. A US
company cannot know if its software quality is better or worse than the national average
because no such national information is available. The meters, liters, and grams available as
standards in other disciplines are missing, and there is seldom a clear understanding of how
a measure on one software project can be compared or converted to a similar measure on
another.

The Software Technology Strategy has now been made part of a larger DoD initiative called
the Software Action Plan (SWAP). This plan establishes 17 initiatives related to developing
and managing software systems. One of its initiatives is to define a core set of measures for
use within DoD software projects. The Software Engineering Institute (SEI) was asked to
lead this initiative because there was a natural convergence between DoD objectives and
work that the SEI already had underway (Figure 1-1).

DoD SEI

DoD
Software

Technology
Strategy

Software
Action Plan

(SWAP)

Software
Measurement

Initiative

Measurement
Working
Groups

Draft
Measurement
Documents

SWAP
Measurement

Definitions

Figure 1-1 Convergence Between DoD and SEI Objectives

Principal Components of the Software Measurement Strategy
Discussed by the SWAP Working Group

Short Title Subject

SEI Core Set Recommendations for Initial Core Measures

STEP Army Software Test and Evaluation Panel—
Software Metrics Initiatives

AFP 800-48 Acquisition Management—Software
Management Indicators

MIL-STD-881B Work Breakdown Structures for Defense
Materiel Items

I-CASE Integrated Computer-Aided Software
Engineering

STARS Software Technology for Adaptable, Reliable
Systems

CMM Capability Maturity Model for Software

Figure 1-2 Proposed SWAP Software Measurement Strategy—Principal Ingredients

The tasks assigned to the SEI were to prepare materials and guidelines for a set of basic
measures that would help the DoD plan, monitor, and manage its internal and contracted
software development projects. These materials and guidelines would provide a basis for
collecting well-understood and consistent data throughout the DoD. They would also support
other measurement activities the DoD is pursuing. Figure 1-2 on the facing page lists some
of the principal components of the measurement strategy the SWAP Working Group has
been discussing. The timelines associated with this strategy are presented in Appendix C.

The memorandum of understanding that initiated the SWAP measurement work called for
the SEI to build upon existing draft reports for size, effort, schedule, and quality
measurement that had been prepared by the Software Metrics Definition Working Group.
These drafts were distributed for industry and government review in the fall of 1991. We
have now extended that work, guided by the comments we have received; and our results
are presented in three “framework” documents that are being published concurrently with this
report [Park 92], [Goethert 92], [Florac 92]. These documents provide methods for clearly
communicating measurement results. They include measurement definitions; checklists for
constructing alternative definitions and data specifications; instructions for using the
checklists to collect, record, and report measurement data; and examples of how the results
can be used to improve the planning and management of software projects. It is from the
framework documents that the recommendations in this report are drawn. The framework
documents should be viewed as companion reports by anyone seeking to implement the
recommendations presented herein. Figure 1-3 shows the interrelationships among these

SEI
Software Metrics

Definition
Working Group

Draft Documents

Software Size
Measurement:

A Framework for
Counting
Source

Statements

Software Effort &
Schedule

Measurement:
A Framework for

Counting
Staff Hours and

Reporting Schedule
Information

Software Quality
Measurement:

A Framework for
Counting Problems

and Defects

Software
Measurement for
DoD Systems:

Recommendations
for Initial Core

Measures

SEI
Software Metrics

Definition
Working Group

Draft Documents

SEI
Software Metrics

Definition
Working Group

Draft Documents

Figure 1-3 Relationships Between This Report and Its Supporting Documents

reports.

The starting point for our measurement definition work has been management’s need for
answers to several key questions that are present in any software project:

• How large is the job?

• Do we have sufficient staff to meet our commitments?

• Will we deliver on schedule?

• How good is our product?

• How are we doing with respect to our plans?

To address these questions, we have concentrated on developing methods for obtaining
unambiguous measures for size, effort, schedule, and quality. Reliable assessments of
these characteristics are crucial to managing project commitments. Measures of these
characteristics also serve as foundations for achieving improved levels of process maturity,
as defined in the SEI Capability Maturity Model for Software [Humphrey 89], [Paulk 91],
[Weber 91].

The objective of our measurement work is to assist program managers, project managers,
and government sponsors who want to improve their software products and processes. The
purpose of the recommendations in this report and its supporting framework documents is to
provide operational mechanisms for getting information for three important management
functions:

• Project planning—estimating costs, schedules, and defect rates.

• Project management—tracking and controlling costs, schedules, and quality.

• Process improvement—providing baseline data, tracing root causes of problems and
defects, identifying changes from baseline data, and measuring trends.

The measures we recommend in this report form a basis from which to build a
comprehensive measurement and process improvement program. We support these
measures with structured methods that can help organizations implement clear and
consistent recording and reporting. The methods include provisions for capturing the
additional details that individual organizations need for addressing issues important to local
projects and processes.

A Note on Implementation Policy

Our understanding is that the DoD plans to implement the recommendations in this report.
Although we expect to be assisting the DoD in this endeavor, responsibility for
implementation rests with the Department of Defense. Questions with respect to
implementation policy and directives should be referred to the appropriate DoD agencies.

2. Integrating Measurement with Software Processes

Collecting and using even the most basic measures in ways that are meaningful will prove to
be a challenge for many organizations. Although some projects already collect forms of the
measures we recommend and a number of others as well, it is also true that many measure-
ment efforts have failed because they attempted to collect too much too soon [Rifkin 91].
This chapter describes an implementation strategy that addresses both the challenge and
planning of software measurement. The strategy stresses foundations that must be laid if
measurement is to be successful.

2.1. Defining the Measurement Process

Measurement definitions like those in our framework documents address but one part of a
measurement program. A broader process and process infrastructure is needed to establish
successful software measurement within an organization. Figure 2-1 shows the sequence of
tasks that should be performed [McAndrews 92]. Organizations often tend to overlook the
first two steps and jump immediately to prototyping or collecting data. When this happens,
measurement is apt to become viewed as just another cost rather than as an integral part of
management and process improvement.

Develop strategy

Establish process

Prototype process

Establish policy

Establish office

Expand program

Figure 2-1 Steps for Establishing a Software Measurement Process Within an Organization

In the context of Figure 2-1, the Establish process step entails identifying and integrating a
consistent, goal-related, measurement process into an organization’s overall software

methodology. Figure 2-2 provides a top-level view of the stages that comprise successful
measurement processes [McAndrews 92]. Organizations begin the process with specific
management needs. During the first stage, they identify the measurements they must
collect. They do this by identifying the current organizational situation, primary goals, and
corresponding primitive measures that will be used to determine progress toward the goals.
Basili's Goal/Question/Metric (GQM) paradigm [Basili 88] provides guidelines that can be
used at this stage to help identify the primitive measures. Without careful analysis of
management needs before measurement begins, organizations frequently collect data that is
not meaningful for making decisions within their overall process.

Management Identify
• Current situation
• Primary goals
• Primitive measures

Define
• Measurement specs
• Measurement report
• Analysis techniques

Obtain feedback
• Presentation
• Evaluation

Analyze
• Measurement
 report

Collect
• Primitive data

need

Figure 2-2 Stages of a Measurement Process

Once primitive measures are identified, they must be defined. While the Identify stage
identifies measures such as staff-hours or source lines of code, the Define stage states how
these measures are to be collected and used. During this stage, organizations create
specifications for each of their primitive measures. They also define reporting formats and
procedures for analyzing the data that will be collected. The procedures show how the data
will be analyzed to establish baselines and determine progress toward management goals.
Without this stage, data tends to be inconsistently reported and untrustworthy, and managers
seldom know if they can compare their data with that of other projects.

Completion of the first two stages results in a documented baseline measurement plan.
Organizations can now follow this plan to execute the next stages: Collect data and Analyze
the data as defined. The Obtain feedback stage includes presenting and distributing
measurement results and incorporating reviewers’ comments into the reports. In addition,
the Obtain feedback stage evaluates the effectiveness of the efforts at each stage in

addressing the original project goals. The situation and goals are then re-evaluated and the
cycle is repeated, much as in the Plan/Do/Check/Act cycle upon which the quality methods of
Shewhart and Deming are built [Deming 86].

2.2. Measurement and the Capability Maturity Model

Measurement is one of the enablers of process maturity. Recent publications such as
[Grady 87] and [ami 92] explain why a measurement program is an important part of any
successful development or maintenance activity. Measures are essential for establishing
repeatable processes—without them, organizations will never know whether they have
succeeded in establishing repeatability. Software engineering literature describes dozens of
measures that can be applied to a wide variety of project, process, and product attributes
[Conte 86], [Pfleeger 91]. Measurement is also essential in the larger context of process
assessment and improvement. Choosing measures, collecting data, analyzing the results,
and taking action require time and resources. These activities make sense only when they
are directed toward specific improvement goals. This section describes how software
measurement and process maturity go hand in hand.

Some software development processes are more mature than others, and evidence of this
has been documented [Kitson 92]. A key discriminator among process maturity levels is the
ability of developers and managers to see and understand what is happening in the overall
development process. At the lowest levels of maturity, the process is not well understood at
all. As maturity increases, the process becomes better understood and better defined.

Measurement and the ability to see and understand are closely related—a developer can
measure only what is visible in a process, and measurement helps to increase visibility. The
Capability Maturity Model (CMM) can serve as a guide for determining what to measure first
and how to plan an increasingly comprehensive measurement program [Humphrey 89],
[Paulk 91], [Weber 91]. Baumert’s recent report, Software Measures and the Capability
Maturity Model, describes the use of software measures in this context [Baumert 92].

Figure 2-3 [adapted from Pfleeger 89 and Pfleeger 90] outlines the classes of measures
suggested by the different levels of the Capability Maturity Model. Selection of specific
measures depends on the concerns at each level and on the information that is attainable.
Measures at level 1 provide baselines for comparison as an organization seeks repeatability.
Measures at level 2 focus on project planning and tracking, while measures at level 3
become increasingly directed toward measuring the intermediate and final products
produced during development. The measures at level 4 capture characteristics of the
development process itself to allow control of the individual activities of the process. At level
5, processes are mature enough and managed carefully enough to allow measurement to
provide feedback for dynamically changing processes across multiple projects.

Every measurement program should begin with an examination of the software process
model currently in use and a determination of what is visible (i.e., identify the current
situation). Measures should never be selected simply because the overall maturity is at a

particular level. If one part of a process is more mature than others, tailored measures can
enhance the visibility of that part and help meet overall project goals while basic measures
are bringing the rest of the process up to a higher level of capability. For example, in a
repeatable process with a well-defined configuration management activity, it may be
appropriate and desirable to track reused elements from their origins to their uses in final
products, even though the measures associated with this level of detail are not generally
characteristic of level 2 organizations.

Evidence suggests that successful measurement programs start small and grow according to
the goals and needs of the organization [Rifkin 91]. A measurement program should begin
by addressing the critical problems or goals of each project, viewed in terms of what is
meaningful or realistic at that organization’s process maturity level. The process maturity
framework then acts as a guide for expanding and building a measurement program that not
only takes advantage of visibility and maturity, but also enhances process improvement
activities.

Maturity Level Characteristics Focus of Measurements

1.Initial Ad hoc, chaotic Establishing baselines for planning
and estimating

2.Repeatable Processes depend on
individuals

Project tracking and control

3.Defined Processes are defined
and institutionalized

Definition and quantification of inter-
mediate products and processes

4.Managed Processes are measured Definition, quantification, and control
of subprocesses and elements

5.Optimizing Improvements are fed
back to processes

Dynamic optimization and
improvement across projects

Figure 2-3 Relationship of Software Measures to Process Maturity

3. Recommendations for Specific Measures

This chapter presents our recommendations for a basic set of software measures for use
with DoD software systems. These recommendations are based on checklists, forms, and
operational practices that are presented and discussed more completely in three framework
reports:

• Software Size Measurement: A Framework for Counting Source Statements [Park 92]

• Software Effort & Schedule Measurement: A Framework for Counting Staff-Hours
and Reporting Schedule Information [Goethert 92]

• Software Quality Measurement: A Framework for Counting Problems and Defects
[Florac 92]

The framework reports should be used as references when implementing the
recommendations in this report.

In the discussion that follow, we first introduce the basic measures and explain the criteria we
used in developing the definitions and practices we recommend. Then, for each measure,
we illustrate portions of the checklists we have constructed for defining and reporting
measurement results. We support these illustrations with reasons for using the measures,
and we provide advice and recommendations for making the measures effective.

3.1. The Basic Measures

We recommend that four basic measures be among the management tools used within DoD
organizations for acquiring, developing, and maintaining software systems. These measures
address important product and process characteristics that are central to planning, tracking,
and process improvement. Figure 3-1 lists the measures and relates them to the
characteristics they address.

Figure 3-1 Measures Recommended for Initial DoD Implementation

Unit of measure Characteristics addressed

Counts of physical source lines of code Size, progress, reuse

Counts of staff-hours expended Effort, cost, resource allocations

Calendar dates Schedule

Counts of software problems and defects Quality, readiness for delivery,
improvement trends

The measures in Figure 3-1 are not the only ones that can be used to describe software
products and processes. But they are practical measures that do produce useful information.
And, importantly, they are measures that we can define in ways that promote consistent use.

The exact definitions we recommend are presented in the three framework reports cited
above. These definitions follow structured rules that state explicitly what is included in each
measure and what is excluded. They are accompanied by checklists that individual
organizations can use to specify and obtain the supporting data that they need for
addressing the management issues that are important to them. The checklists can be used
also to describe the measurement data that is reported now, so that receivers of the
information will not be misled by unstated assumptions or local variations in measurement
practices.

In preparing the framework reports, we were guided by two criteria:

• Communication: If someone uses one of our checklists or definitions to record and
report measurement results, will others know precisely what is included, what is
excluded, and how the measurement unit is defined?

• Repeatability: Would others be able to repeat the measurements and get the same
results?

These properties are essential if misunderstandings and misinterpretations are to be
avoided. They are essential also if consistency is to be achieved across projects or from
organization to organization.

As we show in the framework reports, each basic measure provides for collecting data on
multiple attributes. Rarely, if ever, will experienced managers be satisfied with just a single
number. For example, problems and defects will usually be classified according to attributes
such as status, type, severity, and priority; effort will be classified by labor class and type of
work performed; schedules will be defined in terms of dates and completion criteria; and size
measures will be aggregated according to programming language, statement type,
development status, origin, and production method. Moreover, to be of value, both estimates
and measured values must be collected at regular intervals (e.g., weekly or monthly). Thus,
what may at first glance appear to be just a few measures is, in reality, much more.
Implementing the collection and use of these measures uniformly across the DoD using
clearly specified, consistent definitions, will be a major accomplishment. Neither the difficulty
nor the value of this task should be underestimated.

The four sections that follow present our recommendations for addressing each of the basic
measurement categories. They illustrate the checklist-based methods we recommend, give
reasons for using each measure, and present specific recommendations for implementation
and use.

3.2. Size

We recommend that DoD organizations adopt physical source lines of code (SLOC) as one
of their first measures of software size. The coverage we recommend is defined in the
framework report on software size [Park 92, Figure 5-1]. Figure 3-2 shows a portion the
definition so that you can see how we have used checklists to make measurement rules
explicit.

 Definition Checklist for Source Statement Counts

Definition name: Physical Source Lines of Code Date: 8/7/92
(basic definition) Originator: SEI

Measurement unit: Physical source lines ✔

Logical source statements

Statement type Definition ✔ Data array Includes Excludes
When a line or statement contains more than one type,
classify it as the type with the highest precedence.

1 Executable Order of precedence -> 1 ✔

2 Nonexecutable
3 Declarations 2 ✔

4 Compiler directives 3 ✔

5 Comments
6 On their own lines 4 ✔

7 On lines with source code 5 ✔

8 Banners and nonblank spacers 6 ✔

9 Blank (empty) comments 7 ✔

10 Blank lines 8 ✔
11
12
How produced Definition ✔ Data array Includes Excludes

1 Programmed ✔

2 Generated with source code generators ✔

3 Converted with automated translators ✔

4 Copied or reused without change ✔

5 Modified ✔

6 Removed ✔

7
8

Figure 3-2 A Part of the Recommended Definition for Physical Source Lines of Code

As Figure 3-2 shows, the measure we recommend for physical source lines is a version of
one often called noncomment, nonblank source statements. However, it is considerably
more explicit. Not only does it spell out the rules to be used when comments are on the
same lines as other source statements, it also addresses all origins, stages of development,
and forms of code production and distinguishes between delivered and nondelivered
statements, code that is integral to the product and external to the product, operative and
inoperative (dead) code, master source code and various kinds of copies, and different
source languages.

The full definition in the framework report on software size produces a single measure of size
for each source language used. We recommend the DoD and its supporting organizations
use this measure to describe the overall size of the products they build and support.

Because the picture we get with a single measure is seldom sufficient to competently plan
and manage software activities, we also recommend that individual organizations use the
checklist to specify the supporting measurements they make for tracking and analyzing the
activities most important to them. Figure 3-3 is an example of how two sections of the
checklist can be used to designate individual data elements for project tracking. Here the
Data array boxes for the How produced and Development status attributes are checked to
show that these sections of the checklist are requests for individual data elements, not
modifications to the basic definition. The other sections of the checklist then define the rules
that apply when measuring these elements.

How produced Definition Data array ✔ Includes Excludes
1 Programmed ✔

2 Generated with source code generators ✔

3 Converted with automated translators ✔

4 Copied or reused without change ✔
5 Modified ✔

6 Removed ✔

7
8

Development status Definition Data array ✔ Includes Excludes
Each statement has one and only one status,
usually that of its parent unit.

1 Estimated or planned ✔

2 Designed ✔

3 Coded ✔

4 Unit tests completed ✔
5 Integrated into components ✔

6 Test readiness review completed ✔

7 Software (CSCI) tests completed ✔

8 System tests completed ✔

9
10
11

Figure 3-3 Specifying Data for Project Tracking (A Partial Example)

Measurement specifications like the one in Figure 3-3 produce arrays of data elements that
can be used to track the status of the code produced by each production process. This
information can be used to prepare graphs like Figure 3-4.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0

100

200

Copied
Modified
Programmed

Contract Month

Source Lines Coded
(thousands) Planned

Figure 3-4 The Case of Disappearing Reuse

In this instance, it is apparent that a single measure of size would give a misleading picture
of progress and cost. Similar graphs that plot the amount of code by development status can
also be useful in relating progress to schedules.

3.2.1. Reasons for using physical source line measures

Some of the more popular and effective measures of software size are physical source lines
of code (SLOC), logical source statement (instructions), function points (or feature points),
and counts of logical functions or computer software units (CSUs). The following paragraphs
list several of the pros and cons associated with these measures.

Physical source lines of code (SLOC)

• These are among the easiest measurements to make. Just count end-of-line
markers.

• Counting methods are not strongly dependent on the programming language used.
You need to specify only how you will recognize the statement types you will not
count (e.g., comments, blank lines). It is relatively easy to build automated counters
for physical source line measures.

• Measurement results can be more subject to variations in programming style than
with other measures.

• Most of the historical data that has been used to construct the cost models used for
project estimating is based on physical measures of source code size.

Logical source statements (instructions)

• Users must specify exact and complete rules for identifying the beginnings and
endings for all possible statement types.

• Every language is different.
• Users must specify complete rules for each.
• Different rules for different languages can cause lack of comparability across

languages.

• Users must specify the rules to be used for recognizing and counting embedded
statements for each source language.

• Reference manuals for several important languages reserve the term “statement” to
mean executable statement. This can introduce confusion with respect to elements
like declarations, comments, compiler directives, and blank lines—any of which we
may want to count.

• Methods for designating comments vary widely among languages. Without a
consistent concept for what constitutes a “logical comment,” most organizations have
to resort to physical line counts to achieve any form of comparability if the extent of
commenting is to be measured.

• Users must state clear and consistent rules for distinguishing between expressions
and statements. This can present problems in expression-based languages such as
C and C++.

Function Points and Feature Points

• Function point and feature point counts do not depend on the source languages
used.

• Estimates for function points and feature points can be obtained early in the
development cycle.

• Function point and feature point counts are oriented toward the customer’s view
(what the software does) rather than the producer’s view (how he does it). This puts
the focus on value received, rather than on the particular design that is employed.

• Because function point and feature point counts are system-level (distributed)
measures, we cannot use them to determine status. For example, they cannot help
us say that a project is 80% of the way through coding and 35% of the way through
component integration. This makes them unsuitable for project tracking.

• Function point and feature point counts are not equally applicable to all kinds of
software. Although effective in business environments, they have not enjoyed
widespread success in embedded systems or heavily computational applications.

• Automated function point or feature point counters do not yet exist.

Counts of units or functions

• These are clearly useful measures. We suggest you use them to supplement other
basic size measures. But as of now there is no work that we know to help in
constructing and communicating formal definitions for these measures.

Although we recommend starting with physical source lines as one of the first measures of
software size, we do not suggest that anyone abandon any measure that is now being used
to good effect. Nor do we suggest that counts of physical source lines are the best measure
for software size. It is unlikely that they are. But until we get firm, well-defined evidence that
other measures are better, we opt for simplicity—and in particular, for the simplest set of
explicit rules that can be applied across many languages.

3.2.2. Specific recommendations for counting physical source lines

• Use the size checklist and supplemental rules forms to record the rules you currently
use in your size reports [Park 92, Figures 3-2, 7-1, 7-2, 7-3].

• Adopt physical source lines of code (SLOC) as one of your first measures of software
size. This measure should supplement rather than replace size measures you
currently use.

• When counting physical source lines of code, use the definition for basic SLOC in
Figure 5-1 of the Software Size Measurement framework report [Park 92].

• When adopting (or modifying) the recommended definition for physical source lines,
complete a copy of the supplemental rules form for each language you plan to
measure [Park 92, Figure 7-1]).

• If you presently count logical source statements, consider adopting the definition in
Figure 5-2 of the Software Size Measurement framework report [Park 92]. Complete
this definition by filling out the supplemental rules form for each source language you
use [Park 92, Figure 7-2].

• Use Data Spec A or a subset thereof to collect data for project tracking [Park 92,
Figure 5-4].

• Use Data Spec B or a similar specification at the completion of projects to collect
postmortem data for future planning and estimating [Park 92, Figure 5-9].

• Use the size checklist and supplemental rules forms to record and report the rules
you use when preparing estimates of software size.

3.3. Effort

We recommend that DoD organizations adopt staff-hours as their principal measure for
effort. The staff-hour unit we recommend is the one used by the IEEE in its draft Standard
for Software Productivity Metrics: “A staff-hour is an hour of time expended by a member of
the staff” [IEEE P1045/D5.0].

The coverage we recommend for total staff-hour measures is defined in the framework report
on effort and schedule measurement [Goethert 92, Figure 8-1]. Figure 3-5 shows two parts
of the checklist to illustrate some of the coverage rules we recommend.

 Staff-Hour Definition Checklist

Definition Name: Total System Staff-Hours Date: 7/28/92
 For Development Originator:

 Page: 1 of 3

 Totals Totals Report
Type of Labor include exclude totals

Direct ✔

Indirect ✔

Hour Information
Regular time ✔

Salaried ✔

Hourly ✔

 Overtime ✔

Salaried
Compensated (paid) ✔

Uncompensated (unpaid) ✔

Hourly
 Compensated (paid) ✔

Uncompensated (unpaid) ✔

Employment Class
Reporting organization

 Full time ✔

 Part time ✔

 Contract
 Temporary employees ✔

Subcontractor working on task with reporting organization ✔

Subcontractor working on subcontracted task ✔
Consultants ✔

 Totals Totals Report
Product-Level Functions continued include exclude totals

System-Level Functions ✔

(Software effort only)
System requirements & design

System requirements analysis ✔

System design ✔

Software requirements analysis ✔

Integration, test, & evaluation
System integration & testing ✔

Testing & evaluation ✔

Production and deployment ✔

Management ✔

Software quality assurance ✔

Configuration management ✔

Data ✔

Training
Training of development employees ✔

 Customer training ✔

Support ✔

Figure 3-5 Sections of the Recommended Definition for Staff-Hour Reports

From the full definition in the framework report on effort and schedule measurement,
organizations can construct a number of data specifications to meet specific needs. For
example, subtotals can be requested for any element or collection of elements in the
checklist. Many organizations will want to use these subtotals to estimate and track the effort
expended on major functional activities. Measuring effort for requirements analysis, design,
coding, unit testing, integration, IV&V, and configuration management are cases in point.
Similarly, individual totals for overtime or for system-level activities may be useful. Individual
totals can also be collected for elements that are excluded from formal definitions of total
effort.

The coverage requested by our recommended definition ranges more widely than some
projects or organizations may encounter. This should not be a problem. If some elements
in the checklist are not present in a particular project, the effort associated with them will be
zero and the overall totals will not be affected.

Of more concern are cases where elements are present but not recorded. There is an
important distinction that must be maintained between elements excluded from a report and
elements of effort not performed on a project. It is generally safer and more explicit to
include elements in your coverage and report zero values for them when they are not present
than to exclude these values and make readers guess about their existence. This is the
reason the definition we recommend for staff-hour coverage includes almost all elements in
the definition checklist. It is also the reason why you will find individual reports for subtotals
to be useful additions to overall measures of total effort.

3.3.1. Reasons for using staff-hour measures

Reliable measures for effort are prerequisites for reliable measures of software cost. They
are also important in a more direct way. The principal means we have for managing and
controlling costs and schedules is through planning and tracking the human resources we
assign to individual tasks and activities.

Some candidate units for measuring and reporting effort data are labor-months, staff-weeks
and staff-hours. The concept of a labor-month is well understood. Nevertheless, using
labor-months to record and report effort data presents two obstacles:

• There is no standard for the number of hours in a labor-month. Practices vary widely
among contractors and within the government, and reported values range from less
than 150 hours per labor-month to more than 170. Moreover, it is possible for
individual organizations to use different definitions for a labor-month on different
projects, either because of government requirements or because the organization is
working as a subcontractor to another contractor.

• Labor-months often do not provide the granularity we need for measuring and
tracking individual activities and processes, particularly when our focus is on process
improvement.

Measuring effort in terms of staff-weeks presents many of the same problems and some
additional ones as well. For example, although the basic assumption is that a calendar week
is five working days, the length of a standard working day can vary from organization to
organization. Weekend work, overtime work, and holidays falling within a week must also be
addressed and defined if staff-week measures are to be used.

By using staff-hours as the fundamental unit for recording and reporting effort data, we avoid
these problems. Labor-month and staff-week measures can still be calculated from staff-
hours, should these measures be needed for presentations or other summaries.

3.3.2. Specific recommendations for counting staff-hours

• Adopt staff-hours as your fundamental measure of effort.

• Use the Staff-Hour Definition Checklist and the Supplemental Information Form to
record the definition of staff-hours you are currently using [Goethert 92, Appendix E
and Figure 4-1].

• Use the Staff-Hour Definition Checklist to specify the rules for the effort elements you
want included in and excluded from total staff-hour measures.

• When adopting a definition for the coverage of staff-hour measures, use the one
recommended in the framework report on software effort and schedule measurement
[Goethert 92, Figure 8-1].

• Report staff-hour totals at the computer software configuration item (CSCI) level,
build level, and system level.

• Use the Staff-Hour Definition Checklist to report and communicate attributes and
values included in the staff-hour measures.

• At the beginning of projects, use the staff-hour definition checklist to define the
coverage of the effort measures you want reported.

• During projects, use the reporting forms in the framework report to augment (not
replace) your contractually required status reports.

• At the end of projects, retain your staff-hour definition checklists, periodic staff-hour
reports, and final staff-hour report.

3.4. Schedule

We recommend that DoD projects adopt structured methods for defining two important and
related aspects of the schedules they report: the dates (both planned and actual) associated
with project milestones, reviews, audits, and deliverables; and the exit or completion
criteria associated with each date.

The checklist we recommend for defining dates for milestones, reviews, audits, and
deliverables is presented in the framework report on effort and schedule measurement
[Goethert 92, Figures 6-1, 6-2]. Figure 3-6 below shows portions of this checklist so you can
see how the rules for defining dates are recorded. The figure illustrates a specification that
requires dates for all milestones, reviews, and audits from the software specification review
(SSR) through functional and physical configurations audits to be reported. Critical design
reviews (CDRs) and subsequent milestones are to be reported for each build as well. In the
example, three events are required for exit or completion criteria for SSR, PDR, and CDR;

Schedule Checklist Date:
Part A: Date Information Originator:

Page 1 of 3

Project will record planned dates: Yes ✔ No
If Yes, reporting frequency: Weekly Monthly ✔ Other: ____________

Project will record actual dates: Yes ✔ No
If Yes, reporting frequency: Weekly Monthly ✔ Other: ____________

Number of builds

Repeat Relevant dates
Milestones, Reviews, and Audits Include Exclude each build reported*
 CSCI-Level

Software specification review ✔ 2,3,6
Preliminary design review ✔ 2,3,6
Critical design review ✔ ✔ 2,3,6
Code complete ✔ ✔ 1
Unit test complete ✔ ✔ 6
CSC integration and test complete ✔ ✔ 5
Test readiness review ✔ ✔ 3
CSCI functional & physical configuration audits ✔ ✔ 3

*Key to indicate “relevant dates reported” for reviews and audits
 1 - Internal review complete
 2 - Formal review with customer complete
 3 - Sign-off by customer
 4 - All high-priority action items closed
 5 - All action items closed
 6 - Product of activity/phase placed under configuration management
 7 - Inspection of product signed off by QA
 8 - QA sign-off
 9 - Management sign-off
10 - ______________________
11 - ______________________

Figure 3-6 Sections of the Schedule Checklist for Milestones, Reviews, and Audits

but only a single criterion is used for each of the remaining milestones, reviews, and audits.
Reporting the dates associated with the individual criteria helps insure accuracy in the overall
report. It also provides insight into process timelines that can be useful for planning future
projects and for process improvement.

The schedule checklist in the framework report lists several completion criteria for
milestones, reviews, audits, and deliverables. Others can easily be added. Examples that
could be appropriate for specific activities include the following:

• Internal review held.

• Formal review with customer held.

• All high-priority action items closed.

• All action items closed.

• Document entered under configuration management.

• Deliverer to customer.

• Customer comments received.

• Changes incorporated.

• Customer sign-off obtained.

The part of the checklist that addresses deliverables is similar to the part that describes
milestones, reviews, and audits. Figure 3-7 shows the portion of the part that defines the
deliverables associated with CSCI-level products.

Page 2 of 3
Part A: Date Information (cont.)

Repeat Relevant dates
Deliverable Products Include Exclude each build reported*
 CSCI-Level

Preliminary software requirements spec(s) ✔ 3
Software requirements specification(s) ✔ 1,3,5,6
Software preliminary design document(s) ✔ 1,3,5,6
Software (detailed) design document(s) ✔ ✔ 1,3,5,6
Software test description(s) (cases) ✔ ✔ 1,3,5,6
Software test description(s) (procedures) ✔ ✔ 1,3,5,6
Software test report(s) ✔ ✔ 3,7
Source code ✔ ✔ 1,2,3,6,7
Software development files ✔
Version description document(s) ✔

*Key to indicate “relevant dates reported” for deliverable products
1 - Product under configuration control
2 - Internal delivery
3 - Delivery to customer
4 - Customer comments received
5 - Changes incorporated
6 - Sign-off by customer
7 - IV&V sign-off
8 -

Figure 3-7 Sections of the Schedule Checklist for CSCI-Level Products

Note that there are no sections in the checklist for specifying project activities or “phases.”
The reason for this is two-fold:

1. The variations associated with beginning and ending activities make it difficult to
define start and end dates in a precise, unambiguous way. Most activities (e.g.,
requirements analysis, design, code) continue to some extent throughout the
project. Where one project may consider requirements analysis complete at
completion of a software specification review, another may consider it to be
ongoing throughout development.

2. A second source of ambiguity stems from the fact that some activities start, stop,
and start again, making it very difficult to pin down any meaningful dates.

In contrast to phases, project milestones, reviews, audits, and deliverables have clear-cut
completion criteria that can be associated with specific dates. The schedule checklist we
recommend deals exclusively with events of this sort.

Schedule Reporting Form Date:

Date Information Originator:

CSCI-Level Information Project: Example from Figure 3-6

Period ending:

CSCI:

Build:

Milestones, Reviews, and Audits* Planned Changed Actual
Software specification review

2 - Formal review with customer complete
3 - Sign-off by customer
6 - Products under configuration management

Preliminary design review
2 - Formal review with customer complete
3 - Sign-off by customer
6 - Products under configuration management

Critical design review
2 - Formal review with customer complete
3 - Sign-off by customer
6 - Products under configuration management

Code complete
1 - Internal review complete

Unit test complete
6 - Products under configuration management

CSC integration and test complete
5 - All action items closed

Test readiness review
3 - Sign-off by customer

CSCI functional & physical config. audits
3 - Sign-off by customer

*Only those completion criteria specified on the checklist appear below each deliverable.
 Enter a check mark in the “Changed” column if Planned date has changed since last reporting.

Figure 3-8 Example of a Report Form for System-Level Milestone Dates

We recommend that milestones, reviews, audits, and deliverables be reported on forms like
the one in Figure 3-8 on the previous page. This figure shows how a report has been
tailored to reflect the dates and completion criteria checked in Figure 3-6. Note the column
labeled Changed. A check in this column indicates that the value shown is different from the
previous report (either changed or newly added). This is intended to make it easy for the
receiver of the report to update only those values that have changed. We recommend that a
separate report be filled out for each CSCI. A similar form is presented in the framework
report for reporting system-level dates. Reporting forms, in general, are intended to be
tailored.

A checklist for specifying progress measures is also illustrated in the framework report for
effort and schedule measurement. Appendix D of that report gives three examples that show
how this checklist can be used to define progress measures used in Air Force Pamphlet 800-
48 (Acquisition Management Software Management Indicators) [USAF 92], the Army
Software Test and Evaluation Panel (STEP) measurement set [Betz 92], and the MITRE
metrics (Software Management Metrics) [Schultz 88].

3.4.1. Reasons for using calendar dates

Schedule is a primary concern of project management. Timely delivery is often as important
as either functionality or quality in determining the ultimate value of a software product.
Moreover, project management can become especially complicated when delivery dates are
determined by external constraints rather than by the inherent size and complexity of the
software product. Extremely ambitious schedules often result.

Because schedule is a key concern, it is important for managers to monitor adherence to
intermediate milestone dates. Early schedule slips are often a precursor to future problems.
It is also important to have objective and timely measures of progress that provide an
accurate indication of status and that can be used for projecting completion dates for future
milestones.

Cost estimators and cost model developers are also very interested in schedules. Project
duration is a key parameter when developing or calibrating cost models. Both model
developers and estimators must understand what activities the duration includes and
excludes. If we are told that a project took three and half years, a reasonable response is to
ask exactly what was included in that time period. Does the period include system
requirements analysis and design or just software activities? Does it include hardware-
software integration and testing or just software integration?

People involved in process improvement also use schedule information. They need to
understand the basic time dependencies of the project and so they can identify bottlenecks in
the process.

Tracking dates for milestones, reviews, audits, and deliverables provides a macro-level view
of project schedule. Not only can slips in early milestones be precursors of future problems,
but also insight can be gained by tracking the progress of activities which culminate in

reviews and deliverables. By tracking the rate at which the underlying units of work are
completed, we have an objective basis for knowing where the project is at any given point in
time and for projecting where it will be in the future.

3.4.2. Specific recommendations for using calendar dates

We recommend the following practices be used by acquisition and development managers:

Dates of milestones, reviews, audits, and deliverables

• Require and report both planned and actual dates for milestones, reviews,
audits, and deliverables.

• Use the checklist to specify the exact dates to be reported. A good first set
includes the date of baselining for products developed as part of a given activity,
the date of formal review, the date of delivery for interim products, and the date
of formal sign-off.

• Some dates apply to the entire build or system. In other cases, there will be
dates for each CSCI. Track schedule information at least to the CSCI level. For
critical CSCIs, you may want to track dates for individual computers software
components (CSCs) and computer software units (CSUs).

• Require that planned and actual dates be updated at regular intervals. Keep all
plans. Much can be learned by looking at the volatility of plans over time and the
extent to which they are based on supporting data (like the progress measures).

Progress measures

• Use the checklist for progress measures to specify the measures to be tracked.

• Require or produce a plan that shows the rate at which work will be
accomplished. There should be a plan for each CSCI. Require that the planned
and measured values be reported at regular intervals.

• Progress measures are meaningless without objective completion criteria. Make
sure that these criteria can be audited. It is your way of being assured that
progress is real.

• At a minimum, require that the following be planned for and tracked:

the number of CSUs completing unit test.

the number of lines of code completing unit test.

the number of CSUs integrated.

the number of lines of code integrated.

DOD-STD-2167A leaves a huge gap between the critical design review which precedes
coding and the test readiness review which precedes CSCI testing. If there are problems in
meeting integration and test schedules, the earlier you know about it the better. These
simple measures have been found to be extremely useful. Schultz presents an example in
which counts of the number of CSUs completing unit test were plotted weekly [Schultz 88]. A
simple linear extrapolation of the plot provided a remarkably accurate projection of when unit

testing would be complete for all CSUs . We present a similar example for source lines of
code in Appendix B (Figure B-11).

We recommend the following practices for cost estimators and database administrators:

• Whenever possible, use the checklist before data is reported to specify the dates you
would like to see (e.g., “For all reviews, report the date the review began and the date
that the last document to be included in that review was signed off”).

• Require a filled-out definition checklist from anyone submitting schedule data, so that
you can understand and document what the dates represent.

• For project start and end dates, make sure that it is clear which activities are included
and whether the dates are planned or actual.

3.5. Quality

We recommend that counts of software problems and defects be used to help plan and track
development and support of software systems. We recommend also that they be used to
help determine when products are ready for delivery to customers and to provide
fundamental data for process and product improvement We recommend that these counts
be clearly and completely defined. We recommend that the checklists and forms in the
framework report on software quality measurement be one of the methods used for
describing and reporting the quality of DoD software systems.

We do not recommend that standardized definitions for the details of problem and defect
measurement be attempted above the organization level. The situation is different here than
it is for size, effort, and schedule measures. Processes for detecting, recording, fixing, and
preventing problems and defects are far more closely coupled with the specific software
processes that individual developers and maintainers use. Each process may well use
different stages for defect resolution and have different definitions for states such as open,
recognized, evaluated, resolved, and closed. Moreover, these processes and the definitions
that accompany them are the prerogatives of the individual organizations. However, we do
believe that the checklists and forms we have constructed (or others much like them) can be
used by most organizations in purely descriptive ways to report the definitions of the
numerical measures they report.

The checklists and forms we recommend for counting problems and defects are presented in
the framework report on software quality measurement [Florac 92]. Figures 3-9, 3-10, and
3-11 in the paragraphs that follow illustrate portions of these forms.

Problem Count Definition Checklist. The Problem Count Definition Checklist (Figure 3-9)
provides a structured approach for dealing with the details that we must resolve to reduce
misunderstandings when collecting and communicating measures of problems and defects.
With such a checklist, we can address issues one at a time by designating the elements that
people want included in measurement results. We can also designate the elements to be
excluded and, by doing so, direct attention to actions that must be taken to avoid

contaminating measurement results with unwanted elements. We recommend that the
Problem Count Definition Checklist be used within DoD projects to define and select the
attributes and values that must be counted to implement the problem and defect
measurements selected by the software organization.

 Problem Count Definition Checklist-1
Software Product ID [Example V1 R1]
Definition Identifier: [Problem Count A] Definition Date [01/02/92]
Attributes/Values Definition [] Specification [X]
Problem Status Include Exclude Value Count Array Count

Open ✔ ✔
Recognized
Evaluated ✔
Resolved ✔

Closed ✔ ✔
Problem Type Include Exclude Value Count Array Count

Software defect
Requirements defect ✔ ✔

Design defect ✔ ✔

Code defect ✔ ✔

Operational document defect ✔ ✔

Test case defect ✔

Other work product defect ✔

Other problems
Hardware problem ✔
Operating system problem ✔
User mistake ✔
Operations mistake ✔
New requirement/enhancement ✔

Undetermined
Not repeatable/Cause unknown ✔
Value not identified ✔

Uniqueness Include Exclude Value Count Array Count
Original ✔
Duplicate ✔ ✔
Value not identifed ✔

Figure 3-9 A Portion of the Definition Checklist for Counting Problems and Defects

Problem Status Definition Form. Problem status is an important attribute by which
problems are measured. The criteria for establishing problem status is determined by the
existence of data that reflects the progress made toward resolving the problem. We can use
the Problem Status Definition Form to define the meaning of various problem states by
defining the criteria for reaching each state. We do this in terms of the problem’s attributes.
The role of the Problem Status Definition Form is to communicate, either in a descriptive or
prescriptive sense, the meaning of the Problem Status attribute. Figure 3-10 shows a
portion of the Problem Status Definition Form.

Problem Status Definition Rules
Product ID: Example Status Definition ID: Customer probs
Finding Activity ID: Customer Support Definition Date: 06/30/92

Section I
When is a problem considered to be Open? When is a problem considered to be Closed?
A problem is considered to be Open when A problem is considered to be Closed when
all the attributes checked below have a all the attributes checked below have a
valid value: valid value:

✔ Software Product Name or ID ✔ Date Evaluation Completed
✔ Date/Time of Receipt Evaluation Completed By

Date/Time of Problem Occurence ✔ Date Resolution Completed
✔ Originator ID Resolution Completed By

Environment ID ✔ Projected Availability
Problem Description (text) Released/Shipped
Finding Activity Applied
Finding Mode ✔ Approved By
Criticality Accepted By

Section II
What Substates are used for Open?
Name # Name

1 Recognized 6
2 Evaluated 7
3 Resolved 8
4 9
5 10

Figure 3-10 A Portion of the Checklist for Defining Status Criteria

Problem Count Request Form. The Problem Count Request Form is a checklist used to
describe (or specify) attribute values that are literals (dates, customer IDs, etc.). The
purpose is to explain the terms used in a problem counting definition or specification. This
checklist is used to also describe (or specify) problem or defect measurements in terms of
dates, specific software artifacts, or specific hardware or software configurations. Figure 3-
11 shows a portion of the Problem Count Request Form.

The framework report on software quality measurement [Florac 92] provides a structure for
describing and defining measurable attributes for software problems and defects. It uses a
checklists and supporting forms to organize the attributes so that methodical and
straightforward descriptions of software problem and defect measurements can be made.
The checklists and supporting forms can be used for defining or specifying a wide variety of
problem and defect counts, including those found by static or non-operational processes
(e.g., design reviews or code inspections) or by dynamic or operational processes (e.g.,
testing or customer operation). Use of these checklists offers a method for reducing
ambiguities and misunderstandings in these measures by giving organizations clear
definitions of the terms used when measuring and reporting problem sand defects.

Problem Count Request Form
Product ID, Ver/Rel: [Example V1R1] Problem Count Def ID: [Problem Count A]
Date of Request: [6-15-92] Requester’s Name or ID: [W.T. Door]
Date Count to be made: [7-1-92]
Time Interval for Count: From [1-1-92] To [6-30-92]

Aggregate Time By: Day Week Month Year
Date opened
Date closed
Date evaluated
Date resolved
Date/time of occurence

Report Count By: Attribute Select Special Instructions
Sort Order Value, or Comments

Originator Sort Order
Site ID
Customer ID
User ID
Contractor ID
Specific ID(s) list

Environment Sort Order
Hardware config ID
Software config ID
System config ID
Test proc ID
Specific ID(s) list

Defects Found In:
Select a configuration Type of Artifact
component level: Requirement Design Code User Document

Product (CSCI)
Component (CSC) ✔ ✔ ✔ ✔

Module (CSU)
Specific (list)

Figure 3-11 A Portion of the Checklist for Requesting Counts of Problems and Defects

3.5.1. Reasons for counting problems and defects

Determining what truly represents software quality in the view of a customer or user can be
elusive. But whatever the criteria, it is clear that the number of problems and defects
associated with a software product varies inversely with perceived quality. Counts of
software problems and defects are among the few direct measures we have for software
processes and products. These counts allow us to quantitatively describe trends in detection
and repair activities. They also allow us to track our progress in identifying and fixing
process and product imperfections. In addition, problem and defect measures are the basis
for quantifying other software quality attributes such as reliability, correctness, completeness,
efficiency, and usabilty [IEEE P1061/D21].

Defect correction (rework) is a significant cost in most development and maintenance
environments. The number of problems and defects associated with a product are direct

contributors to this cost. Counting problems and defects can help us understand where and
how they occur and provide insight into methods for detection, prevention, and prediction.
Counting problems and defects can also provide direct help in tracking project progress,
identifying process inefficiencies, and forecasting obstacles that will jeopardize schedule
commitments.

3.5.2. Specific recommendations for counting problems and defects

Our principal recommendation is that organizations begin using the checklists in the
framework report on software quality measurement to describe the meaning of their problem
and defect tracking reports [Florac 92]. There are many opportunities for using the checklists
to advantage. We outline several below:

Ongoing projects. For projects that are currently in development and are measuring
problem and defects, we recommend using the Problem Count Definition Checklist and
supporting forms to verify that the data collected conforms to requirements and needs. This
may reveal two things about the measurements: (1) the measurements do not “measure up”,
that is, they are less than clear and precise in their meaning, or (2) the existing
measurements fall short of what is needed to control the development or maintenance
activity. If the measurements in use can be documented by using the Problem Count
Definition checklist, we recommend you to use the checklist to describe the measurements to
those who will use the measurement results. The combination of a completed checklist and
its supporting forms then becomes a vehicle for communicating the meaning of
measurement results to others, both within and outside the originating organization.

New and expanding projects. For projects that want to establish or expand a
measurement system, an initial task is to define the measurements that will be used to
determine and assess progress, process stability, and attainment of quality requirements or
goals. We recommend using the Problem Count Definition Checklist and supporting forms
as mechanisms for specifying the software problem and defect measurement part of the
software process. Using the checklists to precisely define the measurements helps to
crystallize several significant questions—what data is required, when is it required, who
collects it, how is it collected, where and how is it kept, when it is reported, who has access,
and how are the measurements to be used?

Serving the needs of many. Software problem and defect measurements have direct
application to estimating, planning, and tracking various parts of the software development
process. Users within organizations are likely to have different purposes for using and
reporting this data. We recommend that the Problem Count Definition Checklist be used to
negotiate and resolve the conflicting views that can arise from these different purposes.

Repository starting point. Finally, the attributes and attribute values in the checklists can
serve as a starting point for developing a repository of problem and defect data that can be
used as a basis for comparing past experience to new projects, showing the degree of
improvement or deterioration, rationalizing or justifying equipment investment, and tracking
product reliability and responsiveness to customers.

4. Implementing the Basic Measures

This chapter outlines some priorities and related actions we recommend for implementing the
basic measures discussed in this report and the supporting framework documents.

4.1. Initial Steps

The checklists and supporting forms in the framework documents can be used in two distinct
ways: (1) to describe measurement results that are being reported now and (2) to prescribe
those that will be collected in the future. When implementing the methods in the framework
reports, first priority should go to describing information that is currently being reported. With
clear descriptions for measurement results, misunderstandings can be minimized and
inappropriate decisions avoided. Descriptions of existing measures can be obtained in short
order and at very little cost. Standardizing definitions across projects or across
organizations, on the other hand, will require more in the way of guidelines, training, and user
support. This will require time to put in place, and the DoD need not wait to benefit from the
methods in the framework reports. If organizations cannot describe what they are doing
now, it is unlikely that the measures they use will be interpreted correctly.

To help make our advice specific, we have organized the priorities that we see into three
classes—priorities within a project, within an organization, and within the DoD. We anticipate
that the methods in the framework reports will be used in slightly different ways at each
organizational level.

Within a project:

1. Understand the data you are getting now. Have your acquisition, development,
and maintenance organizations use the checklists and supplemental forms to
describe the measurements they currently report. To do this, they need only read
the framework documents, reproduce the forms found at the back of each, and fill
out those that are useful for describing the information they report.

2. Standardize the content of future measurement reports. Use the checklists and
supplemental forms to define the counting and coverage rules that you want applied
when collecting and reporting future software measurements.

3. Define and collect the additional information you need for project planning
and tracking. Use the checklists and related forms to describe the additional data
elements you want recorded and reported to support your primary measures.

Within an organization:

1. Understand the historical data you already have. Use the checklists for size,
effort, and schedule to describe the data from past projects that you currently use as
references for estimating and planning. This will help you see what the data

contains and what it excludes, so that projections made from the data can be applied
appropriately to new projects.

2. Get consistent data from project to project. Use the checklists and their
supplemental forms to ensure that the same definitions get applied to all projects.

3. Get consistent data over time, while adjusting to the needs and practices of
increasing process maturities. Use the same checklist-based definitions with all
projects. Use additional checklists as needed to create specialized specifications for
the individual data elements that address your changing needs.

Within the DoD:

1. Understand the data you are getting now. Have reporting organizations attach
copies of the checklists and their supplemental forms to each measurement report,
so that readers of the reports will know exactly what the numbers in the reports
represent.

2. Get consistent data across different organizations. Use the checklists and
supplemental forms to create and communicate standardized specifications for the
principal data elements you want recorded and reported for each project.

3. Get consistent data over time, while permitting individual organizations to
adjust to increasing process maturities. Use the checklists and supplemental
forms to define the basic data you want recorded and reported for each project.
Permit each organization to add data elements and reports to meet their individual
needs, provided they use the checklists and supplemental forms to specify their
methods and report their results.

4.2. Related Actions for DoD Consideration

In addition to the priorities just listed, other actions will be needed if a consistent and
sustained measurement program is to be implemented successfully across the DoD. To
make implementation effective, we recommend that the DoD consider the following actions:

• Develop instructional and training materials to support the introduction and use of the
definitions and measurement methods that will be implemented.

• Offer an initial implementation period in which individual organizations are permitted
to test the checklist-based forms in their own operations. This will help insure that the
proposed practices and definitions work for those organizations and that people are
comfortable when using the forms to specify and report measurement results.

• Designate and staff an organization to respond to user questions and provide advice
and assistance to organizations that are implementing the practices described in the
framework reports.

• Consider preparing and distributing software to assist in automatically collecting the
recommended measures. This would avoid duplicative development of automated
tools and help ensure standardized (and comparable) measurement results.

• Provide for a review and revision cycle for updating the framework documents.
Feedback from organizations that use the methods in the framework documents is
very likely to identify ways in which the checklists and definitions can be improved
and made to better serve DoD needs.

• Plan for republishing and redistributing of the framework documents after they are
updated.

• Consider extending the set of framework reports to cover other useful measures.
Extensions that should be considered include the following:

• Develop checklists and methods for formally defining counts of software units (or
functions). These definitions would be helpful in estimating software size and in
planning and tracking convergence to completion. They could also be used early
in planning cycles, before size estimates for individual software units are
available. Since many of the coverage issues are the same as for source
statement counting, a substantial foundation for this work has already been laid.

• Apply the checklists in the size measurement report [Park 92] to prepare rules for
identifying the beginnings and endings of logical source statements for the
principal programming languages used in DoD systems. These rules would help
organizations implement a measure of source code size that is less dependent
on programming style than physical source lines of code. These rules could be
added to automated code counters so that counts for logical source statements
can be obtained at the same time as counts for physical source lines.

• Construct analogs of the staff-hour checklists and supplemental forms that can
be used to define and specify dollar cost measures. Much of the groundwork
has been laid already in the framework report on effort and schedule
measurement.

4.3. From Definition to Action—A Concluding Note

The power of clear definitions is not that they require action, but that they set goals and
facilitate communication and consistent interpretation. In the framework reports and the
initial measures we recommend, we seek only to bring clarity to definitions. Implementation
and enforcement, on the other hand, are action-oriented endeavors. These endeavors are
the prerogative and responsibility of the Department of Defense and its acquisition,
development, and support agencies. We hope that the recommendations in this report and
in the supporting framework documents provide the foundations and operational methods
that will make this implementation effective.

References

[ami 92] Metric Users’ Handbook. London, England: The ami Consortium,
South Bank Polytechnic, 1992.

[ANSI/IEEE 729-1983] IEEE Standard Glossary of Software Engineering Terminology
(ANSI/IEEE Std 729-1983). New York, N.Y.: Institute of Electrical
and Electronic Engineers, Inc., 1983.

[Bailey 86] Bailey, Elizabeth K.; Frazier, Tom P.; & Bailey, John W.
A Descriptive Evaluation of Automated Software Cost-Estimation
Models (IDA Paper P-1979). Alexandria, Virginia: October 1986.

[Basili 88] Basili, V.; & Rombach, H. D. “The TAME Project: Towards
Improvement Oriented Software Environment”. IEEE Transactions
on Software Engineering, 14 , 6 (June 1988): 758-773 .

[Baumert 92] Baumert, John H. Software Measures and the Capability Maturity
Model (CMU/SEI-92-TR-25). Pittsburgh, Pa.: Software Engineering
Institute, Carnegie Mellon University, 1992.

[Betz 92] Betz, Henry P.; & O’Neill, Patrick J. Army Software Test and
Evaluation Panel (STEP) Software Metrics Initiatives Report.
Aberdeen Proving Grounds, Md.: U. S. Army Materiel Systems
Analysis Activity, 1992.

[Conte 86] Conte, S. D.; Dunsmore H. E.; & Shen V. Y. Software Engineering
Metrics and Models. Menlo Park, California: Benjamin-Cummings,
1986.

[Deming 86] Deming, W. Edwards. Out of the Crisis. Cambridge, Mass.: Center
for Advanced Engineering Study, Massachusetts Institute of
Technology, 1986.

[DoD 91] Department of Defense Software Technology Strategy (draft).
Washington D.C.: Department of Defense, December 1991.

[DOD-STD-2167A] Military Standard, Defense System Software Development (DOD-
STD-2167A). Washington, D.C.: United States Department of
Defense, February 1989.

[Florac 92] Florac, William A. et al. Software Quality Measurement: A
Framework for Counting Problems and Defects (CMU/SEI-92-TR-
22). Pittsburgh, Pa: Software Engineering Institute, Carnegie Mellon
University, September 1992.

[Goethert 92] Goethert, Wolfhart B. et al. Software Effort Measurement: A
Framework for Counting Staff-Hours (CMU/SEI-92-TR-21).
Pittsburgh, Pa: Software Engineering Institute, Carnegie Mellon
University, September 1992.

[Grady 87] Grady, Robert B.; & Caswell, Deborah L. Software Metrics:
Establishing a Company-Wide Program. Englewood Cliffs, N.J.:
Prentice-Hall, 1987.

[Humphrey 89] Humphrey, Watts S. Managing the Software Process. Reading,
Mass.: Addison-Wesley, 1989.

[IEEE P1045/D5.0] Standard for Software Productivity Metrics [draft] (P1045/D5.0).
Washington, D.C.: The Institute of Electrical and Electronics
Engineers, Inc., 1992.

[IEEE P1061/D21] IEEE Standard for a Software Quality Metrics Methodology (IEEE
Standard P-1061/D21). New York, N.Y.: Institute of Electrical and
Electronic Engineers, Inc., 1990.

[Kitson 92] Kitson, David H.; & Masters, Steve. An Analysis of SEI Software
Process Assessment Results (CMU/SEI-92-TR-24). Pittsburgh, Pa:
Software Engineering Institute, Carnegie Mellon University, July
1992.

[McAndrews 92] McAndrews, Donald R. “Establishing a Software Measurement
Process,” Proceeding of the 4th Annual Software Quality Workshop .
Alexandria Bay, New York: Rome Laboratory, August 2-6, 1992.

[MIL-STD-881B] Work Breakdown Structures for Defense Material Items (MIL-STD-
881B, draft). Air Force System Command, 18 February 1992.

[Park 92] Park, Robert E. et al. Software Size Measurement: A Framework for
Counting Source Statements (CMU/SEI-92-TR-20). Pittsburgh, Pa:
Software Engineering Institute, Carnegie Mellon University,
September 1992.

[Paulk 91] Paulk, Mark et al. Capability Maturity Model (CMU/SEI-91-TR-24).
Pittsburgh, Pa: Software Engineering Institute, Carnegie Mellon
University, August 1991.

[Pfleeger 89] Pfleeger, Shari Lawrence. Recommendations for an Initial Metrics
Set (Contel Technology Center Technical Report CTC-TR-89-017).
Chantilly, Virginia: 1989 (available from GTE).

[Pfleeger 90] Pfleeger, Shari Lawrence; & McGowan, Clement L. “Software
Metrics in a Process Maturity Framework”. Journal of Systems and
Software, 12 (July 1990): 255-261.

[Pfleeger 91] Pfleeger, Shari Lawrence. Software Engineering: The Production of
Quality Software, 2nd edition. New York, New York: Macmillan,
1991.

[Rifkin 91] Rifkin, Stan; & Cox, Charles. Measurement in Practice (CMU/SEI-
91-TR-16). Pittsburgh, PA: Software Engineering Institute, Carnegie
Mellon University, 1991.

[Schultz 88] Schultz, Herman P. Software Management Metrics (ESD-TR-88-
001). Bedford, Mass.: The MITRE Corporation, 1988.

[USAF 92] Software Management Indicators (Air Force Pamphlet 800-48).
Washington, D.C.: Department of the Air Force, 1992.

[Weber 91] Weber, Charles V.; Paulk, Mark C.; Wise, Cynthia J.; & Withey,
James V. Key Practices for the Capability Maturity Model (CMU/SEI-
91-TR-25). Pittsburgh, Pa: Software Engineering Institute, Carnegie
Mellon University, August 1991.

Appendix A: Acronyms and Terms

A.1. Acronyms

BAFO best and final offer

CMM Capability Maturity Model

CMU Carnegie Mellon University

CDR critical design review

CSC computer software component

CSCI computer software configuration item

CSU computer software unit

DACS Data & Analysis Center for Software

DISA Defense Information Systems Agency

DoD Department of Defense

I-CASE Integrated Computer-Aided Software Engineering

IV&V independent verification and validation

IEEE The Institute of Electrical and Electronics Engineers, Inc.

KSLOC thousands of source lines of code

PDR preliminary design review

QA quality assurance

SEI Software Engineering Institute

SLOC source lines of code

SSR software specification review

STARS Software Technology for Adaptable, Reliable Systems

SWAP Software Action Plan

WBS work breakdown structure

A.2. Terms Used

Attribute – A quality or characteristic of a person or thing. Attributes describe the nature of
objects measured.

Baseline – A specification or product that has been formally reviewed and agreed upon,
which thereafter serves as the basis for future development, and which can be changed only
through formal change control procedures.

Blank comments – Source lines or source statements that are designated as comments but
contain no other visible textual symbols.

Blank lines – Lines in a source listing or display that have no visible textual symbols.

Comments – Textual strings, lines, or statements that have no effect on compiler or program
operations. Usually designated or delimited by special symbols. Omitting or changing
comments has no effect on program logic or data structures.

Compiler directives – Instructions to compilers, preprocessors, or translators. Usually
designated by special symbols or keywords.

Computer software component (CSC) – A distinct part of a computer software
configuration item (CSCI). CSCs may be further decomposed into other CSCs and computer
software units (CSUs) [DOD-STD-2167A].

Computer software configuration item (CSCI) – A configuration item for software [DOD-
STD-2167A].

Computer software unit (CSU) – An element specified in the design of a computer software
component (CSC) that is separately testable [DOD-STD-2167A].

Declarations – A non-executable program statement that affects the assembler’s or
compiler’s interpretation of other statements in the program. Examples include type and
bounds declarations, variable definitions, declarations of constants, static initializations,
procedure headers and argument lists, function declarations, task declarations, package
declarations, interface specifications, generic declarations, and generic instantiations.

Defect – (1) Any unintended characteristic that impairs the utility or worth of an item, (2) Any
kind of shortcoming, imperfection or deficiency, (3) Any flaw or imperfection in a software
work product or software process. Examples include such things as mistakes, omissions
and imperfections in software artifacts, or faults contained in software sufficiently mature for
test or operation. See also fault.

Delivered statements – Statements that are delivered to a customer as part of or along with
a software product. There are two subclasses: (1) statements delivered in source form and
(2) statements delivered in executable form but not as source.

Duplicate problem – A problem encountered in a software product for which a problem
report has already been created.

Embedded statement – A statement used within or as an argument to another or inserted
between begin/end markers.

Error – (1) differences between computed, observed, or measured values and the true,
specified, or theoretically correct value or conditions, (2) an incorrect step process or data
definition, (3) an incorrect result, (4) a human action that produces an incorrect result.
Distinguished by using “error” for (1), “fault” for (2), “failure” for (3), and “mistake” for (4).
(IEEE 610.12-1990). See also failure, fault and mistake.

Executable statement – A statement that produces runtime actions or controls program
flow.

Failure – The inability of a system or component to perform its required functions within
specified performance requirements (IEEE 610.12-1990).

Fault – (1) a defect in a hardware device or component, (2) an incorrect step in a process or
data definition in a computer program (IEEE 610.12-1990).

Format statement – A statement that provides information (data) for formatting or editing
inputs or outputs.

Logical source statement – A single software instruction, having a defined beginning and
ending independent of any relationship to the physical lines on which it is recorded or printed.
Logical source statements are used to measure software size in ways that are independent
of the physical formats in which the instructions appear.

Measure – n. A standard or unit of measurement; the extent, dimensions, capacity, etc. of
anything, especially as determined by a standard; an act or process of measuring; a result of
measurement. v. To ascertain the quantity, mass, extent, or degree of something in terms
of a standard unit or fixed amount, usually by means of an instrument or process; to compute
the size of something from dimensional measurements; to estimate the extent, strength,
worth, or character of something; to take measurements.

Measurement – The act or process of measuring something. Also a result, such as a figure
expressing the extent or value that is obtained by measuring.

Mistake (software) – Human action that was taken during software development or
maintenance and that produced an incorrect result. A software defect is a manifestation of a
mistake. Examples are (1) typographical or syntactical mistakes (2) mistakes in the
application of judgment, knowledge, or experience (3) mistakes made due to inadequacies of
the development process.

Module – (1) A program unit that is discrete and identifiable with respect to other units (2) A
logically separable part of a program (adapted from ANSI/IEEE 729-1983). (This is
comparable to a CSU as defined in DOD-STD-2167A.)

Nondelivered statements – Statements developed in support of the final product, but not
delivered to the customer.

Origin – An attribute that identifies the prior form, if any, upon which product software is
based.

Problem report – A document or set of documents (electronic or hard copy) used to
recognize, record, track, and close problems. (Sometimes referred to as trouble reports,
discrepancy reports, anomaly reports, etc.).

Problem (software) – A human encounter with software that causes a difficulty, doubt, or
uncertainty with the use of or examination of the software. Examples include: (1) a difficulty
encountered with a software product or software work product resulting from an apparent
failure, misuse, misunderstanding, or inadequacy (2) a perception that the software product
or software work product is not behaving or responding according to specification (3) an
observation that the software product or software work product is lacking function or
capability needed to complete a task or work effort.

Software life cycle – The period of time that begins when a software product is conceived
and ends when the software is no longer available for use. Typically includes following
stages or phases: concept, requirements, design, implementation, test, installation and
checkout, operation and maintenance, and retirement (IEEE 610.12-1990).

Software product – The complete set, or any of the individual items of the set, of computer
programs, procedures, and associated documentation and data designated for delivery to a
customer or end-user (IEEE 610.12-1990).

Software work product – Any artifact created as part of the software process, including
computer programs, plans, procedures, and associated documentation and data, that may
not be intended for delivery to a customer or end-user [Weber 91].

Source statements – Instructions or other textual symbols, either written by people or
intended to be read by people, that direct the compilation or operation of a computer-based
system.

Staff-hour – An hour of time expended by a member of the staff [P1045/D4.0].

Statement type – An attribute that classifies source statements and source lines of code by
the principal functions that they perform.

Appendix B: Illustrations of Use

The purpose of this chapter is to illustrate some ways the measures in this report can be
used to provide early warnings of potential problems, generate reliable projections for the
future, or suggest and evaluate process improvements. The examples are organized into
five sections:

1. The first section discusses the use of the measures in establishing the feasibility of
size-schedule-cost parameters prior to the start of a project.

2. The second section gives examples of information that can be obtained from
project plans. Some patterns that characterize high-risk projects are shown.

3. The third section discusses the use of measurements to track projects. Some
identifiable symptoms that point to a project at risk are illustrated. This section
includes examples of trends that reflect likely problems. It also includes examples
of how the measures have been used to provide objective information regarding a
project’s current status and to generate projections regarding the future.

4. The fourth section discusses the use of the basic measures in process
improvement. Examples are presented of using measurement results to
streamline maintenance and evaluate the impact of design and code inspections.

5. The fifth section discusses the use of the measures in calibrating cost and
reliability models.

Most of the examples in these sections are real. Several have been provided through the
generosity of John McGarry (Naval Undersea Warfare Center, Newport), Steve Keller
(Dynamics Research Corporation), and Douglas Putnam (Quantitative Software
Management, Inc.). These individuals have extensive experience in working with software
measurements. Their willingness to share their observations and insights is greatly
appreciated. The measurement results in the examples have been changed to prevent
identification of the projects in question, but the relative values and trends are shown as they
were reported. It is hoped that the examples may help to convey some of the richness
contained in the measures recommended in this report.

It is important to add that the measures often need supplementary information to be useful.
This supplementary data can characterize the system being developed, the development
process, resources, and so forth. The parameters of cost-estimation models provide good
examples of the kinds of data that are useful in comparing and calibrating measures across
projects and organizations.

B.1. Establishing Project Feasibility

If a project is to be successful (that is, if it is to deliver the required functionality on schedule,
within budget, and with acceptable quality), it has to begin with realistic estimates. Many

projects are in trouble before they ever start. They may be aiming for a level of functionality
within a time frame and budget that has never been achieved before.

Software cost models provide an objective basis for determining the feasibility of the planned
functionality-effort-schedule combination. Functionality is represented by estimates of size
combined with descriptions of complexity, hardware constraints, etc. On many projects the
schedule is determined by outside pressures (when the hardware platform will be ready or
when the marketing department promised the new release, for example.). The budget may
also be determined by outside constraints. Software cost models allow estimators to put
these basic project dimensions together to determine whether the project is at all feasible. If
it is not, one has the option of down-sizing the functionality, increasing the schedule, or
increasing the budget.

Several cost models allow estimators to enter a specific schedule as a constraint and to
observe the effect on total effort. Some also allow users to enter effort as a constraint and
observe the effect on schedule. Bailey describes and compares the capabilities of seven
commercially available software cost models [Bailey 86], and information on capabilities
added since that report was published can be obtained from the model vendors. Bailey also
includes a survey of the program offices associated with approximately twenty major DoD
software acquisitions. It is interesting that fewer than one-third reported that a formal cost
model had ever been used in estimating resource requirements.

One of the key issues at the beginning of any software project is schedule. A highly com-
pressed schedule leads to substantially increased effort and costs. A real-life example of this
cost-schedule tradeoff is shown in Figure B-1. The data in the figure are from two projects
within the same organization. They represent the same types of application (business data
processing) and are of similar complexity. Project 1, however, was on an extremely tight
schedule, while the time pressures for Project 2 were much more relaxed. At the peak of
staffing, Project 1 brought on three times as many people as Project 2 and ended up
requiring 50% more staff-hours of effort. Project 1 also experienced a much greater
proportion of defects than Project 2.

Characteristic Project 1 Project 2

Size (KSLOC) 73 80

Application Data processing Data processing

Duration (months) 11 24

Peak effort (avg. staff per month) 46 13

Total effort (staff-hours) 30400 20216

Defects at delivery 20 per KSLOC 4 per KSLOC

Note: Projects were of similar complexity

Figure B-1Illustration of Effects of Schedule Acceleration

If measures like these are available from past projects, they can be used to calibrate several
of the available cost models. These models accept historical data that describe projects in
terms of size (in source lines of code), total staff-hours or staff-months of effort, and total
duration. This use of the software measures is discussed later in Section B.5.

All managers would like to avoid impossible projects. Most would like to avoid (or at least
control) risky projects as well. In both cases, examinations of tradeoffs like the one
illustrated in Figure B-1 provide a basis for understanding the extent of cost and schedule
risk.

B.2. Evaluating Plans

Much can be learned by looking at project plans, often before any software has been
developed. The following examples show how potential problems can sometimes be
identified from staffing and schedule plans and from successive size estimates.

Effort

Effort profiles can provide one useful early indication of project problems. Figure B-2 shows
the planned manpower for a project with a very steep ramp-up during preliminary design. It
is highly questionable that this number of people can be effectively utilized at this stage of
the project. In fact, this project became more than two years late and had a 100% cost
overrun. A more typical staff loading is shown in Figure B-3.

Time

Staffing Rate

P
eo

p
le

Start PDR CDR Integration/
Test

Delivery

Figure B-2Indications of Premature Staffing

Start PDR CDR Integration/
Test

Delivery

Time

Staffing Rate
P

eo
p

le

Figure B-3A More Typical Staffing Profile

Size

Size is often underestimated early on. A great deal of useful information can be obtained
from periodically updating size estimates. As more is understood about the product, the
estimates are likely to change. Size growth will have implications for cost and schedule that
should be identified and dealt with as early as possible. Figure B-4 shows one such case. In

BAFO Contract Plan 1 SDR Plan 2 Plan 3 Plan 4 Plan 5
0

100

200

300

400

New Code
Reused Code

Plans

 Source
Statements
(thousands)

Figure B-4Exposing Potential Cost Growth—The Disappearance of Reused Code

this example, counts of reused and new code have been extracted from each of a
succession of development plans. This contract was bid and won on the basis that there
would be substantial reuse of existing code. The first conclusion that we can draw from
Figure B-4 is that code growth appears to be nearing 20% and that costs are likely to be
similarly affected. The second conclusion is that the situation is actually much worse—all of
the promised reuse has disappeared and the forecast for new code development is now up
by 50%. If this information has not been reflected in current schedules and cost estimates,
some serious questions should be asked.

The next three figures demonstrate the importance of keeping and comparing earlier sets of
plans. Figures B-5, B-6, and B-7 show three views of the same project. Figure B-5 shows
coding progress plotted against the third version of the development plan. If this is all the
information we have, we might infer that the project was pretty much on schedule through
month 10 but that it has now started to fall behind and may require some minor adjustments
or replanning to bring it back onto track.

20151050
0

50

100

150

Plan 3
Actuals

Contract Month

 Source
Statements
(thousands)

Figure B-5Project Tracking—The Deviations May Seem Manageable

Figure B-6, however, suggests that the problems may be more serious than Figure B-5
suggests. This figure compares actual progress with the projections that were made in the
original plan. Major shortfalls are now apparent. After seeing Figure B-6, we would certainly
want to ask about the replanning that has occurred since the original plan and the impact that
the departures from the original plan will have on projected costs and schedules.

Interestingly, we do not have to wait for actual measurements from the development
organization to gain much of the insight we seek. In fact, we can obtain this insight even
earlier. As Figure B-7 shows, if we simply plot the data from each of the developer’s plans
on the same graph, we see that early dates have simply been slipped and that no real
schedule replanning has been done.

20151050
0

50

100

150

Original Plan
Actuals

Contract Month

 Source
Statements
(thousands)

Figure B-6Project Tracking—Deviations from Original Plan Indicate Serious Problems

20151050
0

50

100

150

Original Plan
Plan 2

Plan 3
Current Plan

Contract Month

 Source
Statements
(thousands)

Figure B-7Project Tracking—Comparisons of Developer’s Plans Can Give Early Warnings of
Problems

Figure B-7 suggests some even more probing questions that might be asked. Since the
project has made only minor changes in the planned completion date despite falling
significantly below the original profile over the last nine months, there is reason to examine
the code production rate that the current plan implies. When we do this, we see that the
current plan requires an average rate of 12,000 statements per month for months 12 through
20 to reach the planned completion date. This is highly suspect since the demonstrated

production capability has yet to reach an average rate of even 2,500 statements per month,
something considerably less than the 7,600 statements per month that was required for the
original plan. It would be interesting at this point to examine the current plan to see how it
proposes to more than quadruple the rate of code production. If, in fact, the project sticks
with its proposal to use accelerations of this magnitude to meet the original completion date,
it may be wise to place increased emphasis on measuring and tracking the quality of the
evolving product.

Schedule

Attempts to compress schedules typically lead to increased risk. As discussed earlier, there
are fairly severe limits as to how quickly any project can ramp up in terms of staffing. One
common manifestation of a compressed schedule is the type of plan, shown for computer
software configuration item number 1 (CSCI 1) in Figure B-8, in which fundamentally
sequential activities are run in parallel. Contrast this with the plan for CSCI 2. One would
feel much more comfortable with the latter schedule.

Software Development Schedule (months)

CSCI 1

CSCI 2

Top Level Design

Detailed Design

Code/Unit Test

Top Level Design

Detailed Design

Code/Unit Test

Figure B-8Comparison of Compressed and Normal Schedules

Another obvious symptom of a project in trouble is a series of continually slipping milestones,
with no objective basis for new projections. Figure B-9 shows an example. In each new
plan, the scheduled delivery date slipped, with the result that delivery was a continually
moving target. The plans were made every two to three months. It is interesting to note that
the delivery slipped by almost that amount with each new plan.

Time (months)

Plan 1

Plan 2

Plan 3

Plan 4

Plan 5

Date of plan
Scheduled Delivery

Figure B-9Continually Slipping Milestones

A third pattern sometimes seen is a series of plans in which intermediate milestones keep
slipping without corresponding adjustments in the delivery date. The result is that the
amount of time allocated to integration and test gets pinched. When this happens, defect
detection rates reach sharp peaks, and backlogs of open problem reports rise rapidly. The
detection pattern shown in Figure B-10 is typical for projects in trouble—manpower and
defects detected peak during integration and test. These peaks should not be interpreted as
something that we put up with to get shorter schedules. Rather, they are indications that
considerably more time than anticipated will be required to complete the project. The
choices are either a realistic adjustment in the delivery date or the delivery of a product with
a high number of residual defects.

Start PDR CDR Integration/
Test

Delivery

Time (months)

Defect Discovery Rate

D
ef

ec
ts

Figure B-10 Effects of Slipping Intermediate Milestones

In cases like this—which are more common than most people like to think—objective
progress measures can play a key role in providing a basis for defensible schedule
projections. The use of size estimates and projected defect rates and their comparisons with
periodic measurement results also provide a basis for this type of analysis. This is illustrated
in the next section.

B.3. Tracking Progress

In managing any project, the following questions are fundamental:

• How much have we done?

• How much is there left to do?

• When will it be completed?

These questions can be answered for any activity whose outputs or products can be
expressed in quantifiable units. For requirements analysis, this could be the number of
requirements to be allocated to CSCIs; for preliminary design, it could be the number of
external interfaces to be specified; for integration and test, it could be the number of test
procedures to be executed. We simply need to estimate the total number of units to be
completed and then, at regular time intervals (weekly or monthly), track the actual number
completed. We can then generate a production curve for that activity. By extrapolating the
curve, we get an objective basis for projecting the completion date for that activity. A simple
linear extrapolation is often remarkably accurate [Schultz 88].

Figure B-11 shows an example of this type of analysis for code production. In this case, the
total number of physical lines of code was estimated at 120K. The actual number which had
completed coding was plotted over a five-month period. An extrapolation made at that point
yielded a very accurate projection of when coding would be complete.

Time

N
u

m
b

er
 L

in
es

 C
o

d
ed

Estimated Total Size

Estimated
Completion

Date

Actual
Completion

Date

Figure B-11 Extrapolating Measurements to Forecast a Completion Date

This type of analysis is valid only if we have objective criteria for when units are counted as
complete. The criteria in this case were that the code had completed unit test and had been
entered under configuration control. At that point it was processed by an automated code
counter.

We can perform the same analysis for individual CSCIs. If one or more CSCIs are lagging
behind the others, we have the option of adding more people or in some other way working
to increase the code production rate for the affected CSCIs.

Time (months)

Defect Discovery Rate

D
ef

ec
ts

Start PDR CDR Integration/
Test

Delivery

Figure B-12 Effects of Normal Schedules

Another set of measures that provides valuable information for projecting completion dates is
the rate of defect discovery, especially during integration and test. Ideally, we would like to
see a steady decline in defect discoveries as the schedule delivery date approaches. An
example from one project that delivered on schedule is shown in Figure B-12. Contrast this
with the pattern shown in Figure B-10, in which the number of defects detected peaked near
the end of integration and test.

B.4. Improving the Process

The measures we have recommended increase our insight into the development and
maintenance process. This, in turn, helps us identify bottlenecks and problem areas so that
appropriate actions can be taken. The measures also provide a basis for evaluating the
impact of changes made to the software process. This section contains two such examples
of this kind of use, one from development and the other from maintenance.

Evaluating the impact of design and code inspections

Problem reports can be used to evaluate the impact of implementing design and code
inspections. Figure B-13 shows the profile of problems reported over time for a project within
an organization that had implemented inspections in an attempt to find as many defects as
early in the process as possible. As can be seen from the figure, the number of defects
detected peaks during design and coding activities and drops off quickly to a low level during
integration and testing—just as we would hope to see. It is interesting to compare the
pattern shown in Figure B-13 with that in Figures B-10 and B-12.

Time (months)

Defect Discovery Rate

D
ef

ec
ts

Start PDR CDR Integration/
Test

Delivery

Figure B-13 Effects of Detecting Defects Early

Improving maintenance

This example comes from the commercial sector. It is an instance where measures were
used to bring much needed visibility to software maintenance. The organization that
implemented these measures was maintaining fielded versions of their software worldwide.
Whenever a problem came in from the field, the organization began tracking which system
components were at fault and the amount of time spent isolating and fixing the problem.
(This typically involved a work-around for the customer and a revision to the software for the
next release.) With information about where the problems occurred and the effort to fix them,
the organization was able to identify their most error-prone components and to know exactly
how much they were spending to maintain them. This helped them make informed decisions
about the costs and benefits of redesigning these components.

B.5. Calibrating Cost and Reliability Models

The final use for basic software measures is in calibrating cost models. As noted earlier in
Section B.1, several commercially available cost models allow estimators to use historical
size-effort-duration data to calibrate their underlying estimating algorithms. Some models
use this information to compute adjusted values for coefficients and exponents. Others use
the data to derive tailored values for parameters that characterize resources, productivities,
product difficulties, or organizational capabilities in more complex ways. In either case, once
these values are determined from projects that organizations have actually completed, we
have baselines that can be used as references to help make future estimates consistent with
demonstrated past performance.

To be valid, calibration of cost models requires full knowledge of the definitions and
coverages used when collecting and reporting effort, schedule, and size measurements.
Calibration is greatly assisted when consistent definitions and measurement rules are used
across projects and organizations. The checklists in the SEI framework reports should prove
invaluable for both of these purposes.

Appendix C: A Proposed DoD Software Measurement
Strategy

This appendix shows where the SEI basic measurement set fits in the context of other DoD
measurement activities. Figure C-1 is from the DoD SWAP Working Group. It shows a
strategy that members of the working group have proposed for building on the measurement
work described in the SEI framework reports and relates the activities to calendar years.

CY 1992 1993

Uniform
definitions

Management
metrics set

Modeling
metrics set

Reporting
policies

Training

Tools

Data analysis
support
centers

1994 1995 1996

Core
Set

- SEI

Usage feedback,
iteration, extension

Expanded
definitions set

STEP,
AFP 800-48

–ICASE

IOC, integrated
with core
definitions

Core modeling
 metrics

Usage feedback
iteration, extension

FOC, integrated
with expanded
definitions set

MIL-STD-881B

IOC metrics
policy—ASD(C31),
USD(A)

Organization’s
implementation
of IOC policy

Core definitions &
management metrics

Govt. Commercial

Revision,
including policy,
modeling metrics

ICASE mgmt.
metrics tools

Integrate w/
core definitions,
modeling metrics,
training

- STARS

Usage feedback,
iteration, extension

– ICASE, STARS

FOC tools,
training

Basic capability
- DISA, DACS

Expanded
capability

Continuous process improvements

Proposed DoD Software Measurement Strategy

}

FOC policy,
Organizational
Implementation

Figure C-1Context for Initial Core Measures

	Table of Contents
	List of Figures
	Acknowledgments
	1. Introduction
	2. Integrating Measurement with Software Processes
	2.1. Defining the Measurement Process
	2.2. Measurement and the Capability Maturity Model

	3. Recommendations for Specific Measures
	3.1. The Basic Measures
	3.2. Size
	3.3. Effort
	3.4. Schedule
	3.5. Quality

	4. Implementing the Basic Measures
	4.1. Initial Steps
	4.2. Related Actions for DoD Consideration
	4.3. From Definition to Action—A Concluding Note
	References

