
Technical Report
CMU/SEI-92-TR-17
ESC-TR-92-017

Experience With a Course on
Architectures for Software Systems
Part I: Course Description

David Garlan
Mary Shaw

Chris Okasaki
Curtis M. Scott

Roy F. Swonger

August 1992

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Approved for public release.
Distribution unlimited.

Technical Report
CMU/SEI-92-TR-17

ESC-TR-92-017
August 1992

Experience With a Course on
Achitectures for Software Systems

Part I: Course Description

David Garlan
School of Computer Science, Carnegie Mellon University

Mary Shaw
School of Computer Science, Carnegie Mellon University

Software Engineering Institute, Carnegie Mellon University

Chris Okasaki
School of Computer Science, Carnegie Mellon University

Curtis M. Scott
School of Computer Science, Carnegie Mellon University

Roy F. Swonger
Digital Equipment Corporation

This report will also appear as Carnegie Mellon University School of Computer Science Technical Report No. CMU-CS-92-176.

This report was prepared for the

SEI Joint Program Office
ESC/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official DoD position. It is
published in the interest of scientific and technical information exchange.

 Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

John S. Herman, Capt, USAF
SEI Joint Program Office

Development of this course was funded in part by the Department of Defense Advanced Research Project Agency under grant

MDA972-92-J-1002. It was also funded in part by the National Science Foundation under Grants CCR-9109469 and CCR-

9112880 and by the Carnegie Mellon University School of Computer Science and Software Engineering Institute (which is

sponsored by the U.S. Department of Defense). The views and conclusions contained in this document are those of the au-

thors and should not be interpreted as representing the official policies, either expressed or implied, of the U.S. Government,

the Department of Defense, or Carnegie Mellon University.

Copyright © 1992 by David Garlan and Mary Shaw

This document is available through Research Access, Inc., 3400 Forbes Avenue, Suite 302, Pittsburgh, PA

15213. Phone: 1-800-685-6510. FAX: (412) 682-6530.

Copies of this document are available through the National Technical Information Service (NTIS). For informa-

tion on ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of

Commerce, Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides ac-

cess to and transfer of scientific and technical information for DoD personnel, DoD contractors and potential con-

tractors, and other U.S. Government agency personnel and their contractors. To obtain a copy, please contact

DTIC directly: Defense Technical Information Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-

6145. Phone: (703) 274-7633.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

CMU/SEI-92-TR-17 i

Table of Contents

1. Overview 1

2. Background and Rationale 3

3. Philosophy and Course Overview 5
3.1. Objectives 5
3.2. Approach 5

4. Course Description 9
4.1. Introduction (2 lectures) 10
4.2. Architectural Idioms (5 lectures) 10
4.3. Module Interconnection Languages (4 lectures) 10
4.4. Formal Models of Software Architecture (5 lectures) 11
4.5. Domain-Specific Architectures (5 lectures) 11
4.6. Tools, Environments, and Automated Design Guidance (5 lectures) 11

5. Assignments 13
5.1. Purpose 13
5.2. Readings 14
5.3. Architectural Development Tasks 15
5.4. Formal Modelling 16
5.5. Analysis and Interpretation of a System 17

6. Evaluation 19
6.1. Lessons from the Initial Offering 19

6.1.1. Content 19
6.1.2. Format 20
6.1.3. Comments From Students 21

6.2. Changes to Consider 22
6.3. Conclusions About Teaching Software Architecture 23

References 25

ii CMU/SEI-92-TR-17

CMU/SEI-92-TR-17 iii

List of Figures

Figure 4-1: Summary of Course Topics 9

iv CMU/SEI-92-TR-17

CMU/SEI-92-TR-17 1

Experience With a Course on
Architectures for Software Systems Part I:

Course Description

Abstract: As software systems grow in size and complexity their design
problem extends beyond algorithms and data structures to issues of system
design. This area receives little or no treatment in existing computer science
curricula. Although courses about specific systems are usually available, there
is no systematic treatment of the organizations used to assemble components
into systems. These issues—the software architecture level of software
design—are the subject of a new course that we taught for the first time in
Spring 1992. In this pair of reports, Part I presents the motivation for the course,
the content and structure of the current version, and our plans for improving the
next version. Part II consists of teaching materials from the first offering,
including assignments and overheads for lectures.

1 Overview

The software component of the typical undergraduate curriculum emphasizes algorithms and
data structures. Although courses on compilers, operating systems, or databases are usually
offered, there is no systematic treatment of the organization of modules into systems, or of the
concepts and techniques at an architectural level of software design. Thus, system issues are
seriously underrepresented in current undergraduate programs. Further, students now face a
large gap between lower-level courses, in which they learn programming techniques, and up-
per-level project courses, in which they are expected to design more significant systems. With-
out knowing the alternatives and criteria that distinguish good architectural choices, the
already-challenging task of defining an appropriate architecture becomes formidable.
We have developed a course that will help to bridge this gap: Architectures for Software Sys-
tems. Specifically, the course:

• teaches how to understand and evaluate designs of existing software
systems from an architectural perspective,

• provides the intellectual building blocks for designing new systems in
principled ways using well-understood architectural paradigms,

• shows how formal notations and models can be used to characterize and
reason about a system design, and

• presents concrete examples of actual system architectures that can serve as
models for new designs.

This course adds innovative material to existing curricula on the subject of software architec-
tures. It also helps define the field of software architecture by organizing and regularizing the
concepts so that software designers can be educated in those concepts.

2 CMU/SEI-92-TR-17

CMU/SEI-92-TR-17 3

2 Background and Rationale

As the size and complexity of software systems increases, the design problem goes beyond
the algorithms and data structures of the computation: designing and specifying the overall
system structure emerges as a new kind of problem. Structural issues include gross organiza-
tion and global control structure; protocols for communication, synchronization, and data ac-
cess; assignment of functionality to design elements; composition of design elements; scaling
and performance; and selection among design alternatives.
This set of issues comprises the software architecture level of design. There is a considerable
body of work on this topic, including module interconnection languages, templates and frame-
works for systems that serve the needs of specific domains, and formal models of component
integration mechanisms. However, there is not currently a consistent terminology to charac-
terize the common elements of these fields. Instead, many architectural structures are de-
scribed in terms of idiomatic patterns that have emerged informally over time. For example,
typical descriptions of software architectures include statements such as:

• “Camelot is based on the client-server model and uses remote procedure
calls both locally and remotely to provide communication among applications
and servers.' [Spector87]'

• “Abstraction layering and system decomposition provide the appearance of
system uniformity to clients, yet allow Helix to accommodate a diversity of
autonomous devices. The architecture encourages a client-server model for
the structuring of applications.'' [Fridrich85]

• “We have chosen a distributed, object-oriented approach to managing
information.''[Linton87]

• “The easiest way to make the canonical sequential compiler into a concurrent
compiler is to pipeline the execution of the compiler phases over a number of
processors. ... A more effective way [is to] split the source code into many
segments, which are concurrently processed through the various phases of
compilation [by multiple compiler processes] before a final, merging pass
recombines the object code into a single program.'' [Seshadri88]

Other software architectures are carefully documented and often widely disseminated. Exam-
ples include the International Standard Organization's Open Systems Interconnection Refer-
ence Model—a layered network architecture [Paulk85], the NIST CASEE Reference Model—
a generic software engineering environment architecture [Earl90], and the X Window Sys-
tem—a windowed user interface architecture. [Scheifler86]
It is increasingly clear that effective software engineering requires facility in architectural soft-
ware design. First, it is important to be able to recognize common paradigms so that software
designers can understand high-level relationships among systems and build new systems as
variations on old systems. Second, detailed understanding of software architectures allows
the engineer to make principled choices among design alternatives. Third, an architectural
system description is often essential for analyzing and describing the high-level properties of
a complex system. Fourth, fluency in the use of formal notations for describing architectural
paradigms allows the software engineer to communicate new systems designs to others.

4 CMU/SEI-92-TR-17

Regrettably, software architectures receive little or no systematic treatment in most existing
software engineering curricula, either undergraduate or graduate. At best, students are ex-
posed to one or two specific application architectures (such as for a compiler or for parts of an
operating system) and may hear about a few other architectural paradigms, but no serious at-
tempt is made to develop comprehensive skills for understanding existing architectures and
developing new ones. This results in a serious gap in current curricula: students are expected
to learn how to design complex systems without the requisite intellectual tools for doing so ef-
fectively.
We have developed a course to bridge this gap. This course brings together the emerging
models for software architectures and the best of current practice. It examines how to ap-
proach systems from an architectural point of view. Other curriculum proposals have touched
on this subject, but to our knowledge this is the first implementation of a full course in the area.

CMU/SEI-92-TR-17 5

3 Philosophy and Course Overview

3.1 Objectives

We designed a course for senior undergraduates and students in a professional master's pro-
gram for software engineering. By the end of this course, students should be able to:

• Recognize major architectural styles in existing software systems.

• Describe an architecture accurately.

• Generate reasonable architectural alternatives for a problem and choose
among them.

• Construct a medium-sized software system that satisfies an architectural
specification.

• Use existing definitions and development tools to expedite such tasks.

• Understand the formal definition of a number of architectures and be able to
reason precisely about the properties of those architectures.

• Understand how to use domain knowledge to specialize an architecture for a
particular family of applications.

3.2 Approach

We believe that a course that examines systems from an architectural point of view can pro-
vide important skills for designing complex systems. Specifically, our course considers com-
monly-used software system structures, techniques for designing and implementing these
structures, models and formal notations for characterizing and reasoning about architectures,
tools for generating specific instances of an architecture, and case studies of actual system
architectures. It teaches the skills and background students need to evaluate the underlying
architecture of existing systems and to design new systems in principled ways using well-
founded architectural paradigms.
Since this is an entirely new course rather than a modification of an existing course, the major
challenge in its development was to define and delimit its intellectual content. While the ability
to recognize and use software architectures is essential for the practicing software engineer,
there is to date no codified body of knowledge that deals specifically with this subject. Rather,
relevant material is scattered over published case studies, standards reports, formal models,
informal system documentation, and anecdotal experience. We collected many of these
sources, distilled them into a corpus of presentable knowledge, and discovered ways to make
that knowledge directly usable by university students and the software engineering community
at large.
Our approach focuses on developing four specific, related topic areas:

Classification In order to use software architectures, it is first necessary to be able
to recognize an architectural style and to describe a system in terms
of its architecture. The tools required to describe and categorize
common architectural models include notations for defining archi-

6 CMU/SEI-92-TR-17

tectures and a taxonomy of existing models. In addition to introduc-
ing the student to these tools, this topic addresses the problem of
architectural selection to solve a given software engineering prob-
lem. It covers both high-level architectural idioms (such as, pipeline
architectures) and specific reference models (for example, the OSI
layered model).

Analysis Effective use of a software architecture depends on the ability to un-
derstand and reason about its properties (such as functional behav-
ior, performance, developmental flexibility, evolvability, and real-
time behavior). Such analysis can be applied to many kinds of ar-
chitectural description, but it is particularly effective in the context of
formal descriptions, where the power of mathematics can be ex-
ploited. This topic covers techniques for analyzing an architecture.
It introduces students to formal and informal methods and illustrates
the ways in which formal analysis can be used to evaluate and se-
lect among architectural alternatives. [Flinn87] [Garlan90]

Tools Certain architectures have evolved to the point where there is sys-
tem support for defining applications using them and for executing
those applications once they are built. Examples include Unix sup-
port for single-stream pipeline architectures, compilers for module
interconnection languages (such as Ada package specifications),
and IDL (Interface Description Language) readers and writers for
shared data. Facility with such tools is a valuable skill for using the
supported architectures in the context of current technology. More-
over, existing tools provide good illustrations of the kinds of auto-
mated support that we can expect to become pervasive as the field
becomes more fully developed and populated with useful architec-
tures.

Domain-Specific

Architectures
Specific knowledge about an application domain can improve the
power of the notations and tools for constructing systems in that do-
main. The same holds true for architectures, and there is active re-
search and industrial development in the area of domain-specific
software architectures. [DSSA90] The course looks at a number of

CMU/SEI-92-TR-17 7

these to understand how domain knowledge can be exploited in de-
signing an architecture tailored to a specific application family.

We rely heavily on case studies in each of these topic areas. These are used to motivate the
importance and scope of architectural approaches, illustrate what has been done so far, and
give students models for creating architectural descriptions of their own. In addition to exam-
ining existing case studies, students are expected to carry out a significant case study of their
own. By doing this they practice applying the techniques of architectural description and anal-
ysis and contribute to the field by adding to the body of carefully documented architectural de-
scriptions.

8 CMU/SEI-92-TR-17

CMU/SEI-92-TR-17 9

4 Course Description

In this section, we give an overview of each topic covered in the course. Figure 4-1 summa-
rizes this information. Each row of the figure contains the lecture number, the major topic and
subtopic covered in the lecture (as described below), the reading which the student is to com-
plete prior to attending the lecture, and the homework assignment (if any) to be discussed or
turned in on that date. The assignments are numbered A1 through A4, with the course project
due at the end of the semester. Sections 5.3 through 5.5 discuss these assignments. Part II

Lecture Topic Subtopic Reading Assignment

1 Introduction Orientation

2 What is a SW Arch? [Shaw90b], [DeRemer76], [Perry91]

3 Architectural Objects [Parnas85], [Booch86], [Wirfs-Brock90]

4 Idioms Pipes & Events [Parnas72], [Garlan88]

5 Multi-process Systems [Andrews91]

6 Blackboards [Nii86a], [Nii86b]

7 Heterogeneous Design [Shaw90a], [Shaw91] A1 discuss

8 MILs Classical MILS [Prieto-Diaz86], [Lauer79]

9 Unix Pipes [Bach86] A1 due

10 SML & Ada [Harper88], [Ichbiah83]

11 Augmentations [Perry87] A2 discuss

12 Formal Models Intro to Z [Spivey89b], [Shaw85]

13 Industrial Experience [Garlan90], [Houston91] A2 due

14 Executable Specs [Zave91]

15 Event Systems [Garlan91] A3 discuss

16 Pipes and Filters [Allen92]

17 Domain-Specific Data Processing [Fisher91], [Raghavan86] A3 due

18 Architectures Distol., Heterogeneous [Barbacci88], [Doubleday91]

19 Real-Time [Sha90], [Stankovic88]

20 Robotics [Hayes-Roth90], [Shafer86]

21 Communication [Tannenbaum81] A4 discuss

22 Tools & Envts. Hints on Syst Design [Lampson84]

23 Design Guidance [Lane90] A4 due

24 Arch. transformers [Bishop87a], [Bishop87b]

25 System Generators [Lesk86], [Johnson86], [Batory91]

26 Envt. Generators [Habermann91] Project due

27 Student Project

28 Presentations

29

Figure 4-1: Summary of Course Topics

10 CMU/SEI-92-TR-17

of this report presents the overhead projection transparencies for all lectures except guest lec-
tures. It also presents all the assignments.

4.1 Introduction (2 lectures)

• Orientation. What is the architectural level of software design, and how does
it differ from intra-module programming? Overview of the course.

• What is a Software Architecture? Constructing systems from modules. Some
familiar kinds of architectures. Some common kinds of modules.[Shaw90]
[DeRemer76] [Perry91]

4.2 Architectural Idioms (5 lectures)

• Objects. Information hiding, abstract data types, and objects. Organizing
systems by encapsulating design decisions, or “keeping secrets.'' [Parnas85]
[Booch86] [Wirfs-Brock90]

• Pipes & Events. Two architectural idioms: pipes and event systems. Pipes
support a dataflow model. Event systems support loosely-coupled
components interacting via event broadcast. [Parnas72] [Garlan88]

• Multi-process Systems. Organizing systems as collections of independent
computations that run cooperatively on one or many processors.
[Andrews91]

• Blackboards. Sharing complex knowledge about a problem; making progress
when you can't tell in advance what order to impose on the subproblems.
[Nii86a] [Nii86b]

• Heterogeneous Design. Designers need not limit themselves to a single
architectural idiom. Examples of systems that use several idioms at various
places in the system. [Shaw90a] [Shaw91]

4.3 Module Interconnection Languages (4 lectures)

• Classical MILS. Historically, the earliest large systems were developed in
procedural languages. The most common of the MILs reflect this in their
emphasis on importing and exporting names of procedures, variables, and a
few other constructs. [Prieto-Diaz86] [Lauer79]

• Unix Pipes. The Unix paradigm connects independent processes by data
flow. The organization of the processes and the style and tools for connection
are substantially different. [Bach86]

• Module Interconnection in Standard ML and Ada. An important property of
modern module interconnection languages is the ability to parameterize
modules. This is represented by generics in Ada and functors in SML.
[Harper88] [Ichbiah83]

• Augmentations to Module Interfaces. Future prospects for module
interconnection. How to augment a module's interface so that it conveys
more than signatures. [Perry87]

CMU/SEI-92-TR-17 11

4.4 Formal Models of Software Architecture (5 lectures)

• Introduction to Z. Basic notation of the Z Specification Language. The
schema calculus. [Spivey89b] [Shaw85]

• Industrial Experience with Formal Models. Use of formal models to
understand, document, and analyze system architectures in two major
industrial case studies. [Garlan90] [Houston91]

• Paisley. Executable specification language that supports some elementary
performance analysis. [Zave91]

• Event Systems. Formal model of event systems. Specialization of abstract
formal models to describe specific systems. [Garlan91]

• Pipes and Filters. Abstract model of pipes and filters. Use of formalism to
explain what a software architecture is and to analyze its properties. [Allen92]

4.5 Domain-Specific Architectures (5 lectures)

• Data Processing. Architectures for management information systems.
[Fisher91] [Raghavan86]

• Distributed, Heterogeneous Computing. Applied pipe and filter architectures.
Architectures to support flexible processor allocation and reconfiguration.
[Barbacci88] [Doubleday91]

• Real-Time System Architectures. Real-time schedulers: rate-monotonic
scheduling, cyclic executives, and others. Conditions under which a
particular real-time architecture can be applied. [Sha90] [Stankovic88]

• Architectures for Mobile Robotics. Software organization of reactor-effector
systems that operate in an uncertain environment. The CMU task control
architecture. [Hayes-Roth90] [Shafer86]

• Layered Architectures for Communication. Network protocols based on
layered model of communication abstractions. Special emphasis on ISO
Open System Interconnection (OSI) standard. [Tannenbaum81]

4.6 Tools, Environments, and Automated Design Guidance (5
lectures)

• Hints on System Design. Sage guidance and rules of thumb about designing
good systems. [Lampson84]

• Automated Design Guidance. The selection of a software architecture should
depend on the requirements of the application. This example of a system
shows how to make the structural design of a user interface explicitly
dependent on the functional requirements. [Lane90]

• Architecture Transformers. Semi-automatic conversion of the uniprocessor
version of a system to a multiprocesor version; not fully general, but works
under clearly stated conditions. [Bishop87a] [Bishop87b]

• System Generators. Automatic production of certain classes of systems from
their specifications. [Lesk86] [Johnson86] [Batory91]

12 CMU/SEI-92-TR-17

• Environment Generators. Automatic production of environments from
descriptions of the tasks to be performed. [Habermann91]

CMU/SEI-92-TR-17 13

5 Assignments

5.1 Purpose

The purpose of the assignments, as in any course, is to help students master the material. As-
signments serve the additional purpose of demonstrating the students' mastery of the material,
thereby establishing a basis for evaluation.
Students begin by examining and understanding existing work in the area. Then they apply
what they have seen and heard, first by trying to emulate it and then by performing analysis.
Three kinds of assignments lead students through these activities.
First, the course is organized around written papers and lectures that present and interpret this
material. We believe that the lectures are most useful if they provide interpretation, explana-
tion, and additional elaboration of material students have already read and thought about. In
addition to assigning readings, we provide guidance about the important points to read for and
questions to help students focus on the most significant points in the reading.
Second, four two-week assignments ask students to apply the lecture material. Three of these
assignments require students to develop small software systems in specific architectural
styles. The fourth is a formal analysis task, which allows the students to work with a specific
architectural formalism.
Third, students examine existing software systems to determine their architectures. We iden-
tified several systems of about 20 modules. For the final project of the course, each student
team analyzed the actual system structure of one of these and interpreted the designer's ar-
chitectural intentions.
All these assignments are presented in Part II of this report.
We organized the students into teams of two (with one team of three because an odd number
of students enrolled). This encouraged students to enhance their understanding through dis-
cussions with another student, reduced the amount of overhead required of any one student
to get to the meat of a problem, and allowed us to partially compensate for differences in pro-
gramming language and other related experience. The course included both undergraduate
students and students in the Master of Software Engineering program; to the extent possible
we paired undergraduates with graduates so that their experience would complement each
other.
Since students often tend to spend most of their attention and energy on the components of a
course that contribute to the final grade, we used the allocation of credit as a device to focus
them on the most important activities. We based our grades on four factors (as stated in the
initial course handout):

• Readings: (25%) Each lecture will be accompanied by one or more readings,
which we expect you to read before you come to class. To help you focus
your thoughts on the main points of the reading we will assign a question to
be answered for each of the reading assignments. Each question should be
addressed in less than a page, due at the beginning of the class for which it
is assigned. Each of these will be evaluated on a simple ok/not-ok basis and
will count for about 1% of your grade.

14 CMU/SEI-92-TR-17

• Homework Assignments: (40%). There will be four homework assignments.
Each will count for 10% of your grade. The first three will be system-building
exercises. Their purpose is to give you some experience using architectures
to design and implement real systems. You will work in groups of two
(assigned by us) to carry out each assignment. To help clarify your designs
we will hold a brief, un-graded design review for each assignment during
class a week before it is due. Groups will take turns presenting their
preliminary designs and getting feedback from the class and instructors. The
fourth assignment will give you some practice using formal models of
software architectures.

• Project: (25%) There will be a course project, designed to give you some
experience with the architecture of a substantial software system. You will
analyze an existing software system from an architectural point of view,
document your analysis, and present the results to the rest of the class. Your
grade will depend both on the quality of your analysis and also on the
presentation of that analysis.

• Instructors' judgement: (10%)

5.2 Readings

No textbook exists for this course. Background material for the course consisted of readings,
primarily from professional journals, selected to complement the lectures and discussions.
The objective was for every student to read each paper before the corresponding class lecture.
To ensure this, a short homework assignment was set for each class. Each homework con-
sisted of a few questions to be answered about the readings. These assignments were due at
the beginning of the corresponding lecture and discussion. Though the single grade attached
to a particular assignment would not significantly affect the course grade, the cumulative effect
of these individual grades resulted in significant weight being placed on the readings.
A beneficial side effect of this policy was that it eliminated the need for examinations. The in-
cremental learning process was monitored and reinforced by the assignments, so there was
no need for a final exam to measure student progress. As a result, end-of-semester energy
could be productively directed to the course project.
Each reading was accompanied by hints which identified points to look for in each paper and
gave advice on parts to ignore. These hints helped students to focus on the important con-
cepts in each paper, and were particularly important because of the wide variety of notations
and languages introduced in the readings.
Here are some examples of the hints we gave:

• In these readings you will be exposed to many different languages. You
should not try to learn the specific syntax of each language, nor should you
memorize the specific features of each language. Rather, you should try to
get a feel for the design space of module interconnection languages—what
it is possible to represent and what it is desirable to represent.

• First and foremost, read to understand the blackboard model and the kinds
of problems for which it is appropriate. Study Hearsay and HASP to see how
the model is realized in two rather different settings. Look at the other
examples to see the range of variability available within the basic framework.

CMU/SEI-92-TR-17 15

The questions for each assignment also played an important role in focusing the intellectual
energies of the students. The questions were structured to have the students understand the
concepts involved, rather than simply read to complete the homework. Since we intended the
reading and homework combined to take only a couple of hours, the questions dealt with major
points and did not require deep thought or analysis.
Here are some examples of the questions we asked:

• What are the essential differences between the architectural style advocated
by Parnas and that advocated by Garlan, Kaiser, and Notkin?

• What abstract data type does a pipe implement? What common
implementation of that abstract data type is used to implement pipes?

• What is the problem addressed by sharing specifications in SML? Why
doesn't this come up with Ada generics?

• What are the major abstractions of an interconnection model? How are these
specialized in the unit and syntactic models?

5.3 Architectural Development Tasks

Believing that one must constructively engage a style to understand it, we assigned program-
ming tasks in three different architectural idioms. For each task, we supplied an implementa-
tion in the required idiom that used several components from an available collection. The
assignment required students to extend the implementation in the same style by reconnecting
parts, using other components, or minimally changing components. The choice of this format
was driven by two guiding principles:

• The attention of the students should be focused at the architectural level
rather than at the algorithms-and-data-structures level. (Students should
already know how to do the latter.)

• It is unreasonable to expect the accurate use of an unfamiliar idiom without
providing illustrative sample code employing that idiom.

A pleasant side-effect of this choice of format was that problems more closely resembled soft-
ware maintenance/reuse than building a system from scratch. In addition, we were faced with
a considerable diversity of programming language background among the students. It is eas-
ier to work in an unfamiliar language if you have a working starting point.
To encourage cooperation and to balance unfamiliarity with particular programming languages
and systems, students worked in pairs on the programming tasks. However, each task had a
set of questions to be answered individually.
A major objective of this course is for students to leave with an understanding of the essential
features of a given problem that make a particular architectural choice appropriate or inappro-
priate. To do this, we assigned variations of a single core problem for all three tasks, differing
primarily in the features related to the choice of idiom. By assigning the same basic problem
for each architectural idiom, we avoided the risk of students associating problem class X with
architectural idiom Y, instead promoting understanding of the features of each problem that
should lead the designer to choose that idiom. By varying the features related to the architec-
tural choice, we also discouraged students from leaving each solution in the same basic archi-

16 CMU/SEI-92-TR-17

tectural idiom, adding only the superficial trappings of the second idiom. For example, by
changing the requirements on the system, we ensured that an event-driven solution would not
merely be a pipes and filters solution “dressed up'' to look like an event-driven system.
Because the problems involved not only the production of a working system but also the anal-
ysis of an architectural style, we held design reviews halfway through each assignment. These
reviews were presented by the students in the class, with each team making one presentation
sometime during the semester. The reviews were not graded; they thereby provided a means
for the class to engage in discussions about the architectural style and for the instructors to
guide the student solutions (both those being presented and those of the students watching
the presentation) by asking pointed questions. These presentations were performed during
class time, and Figure 4-1 presents their schedule.
The core task chosen was the KWIC indexing problem. [Parnas72] [Garlan88] In this problem,
a set of lines (sequences of words) is extended to include all circular shifts of each line, and
the resulting extended set is alphabetized. This core problem was varied in each architectural
idiom as follows:

Object-Oriented This variation was interactive: a user enters lines one at a time, in-
terspersed with requests for the KWIC index. We supplied students
with a system which generated the KWIC index without the circular
shifts (i.e., a line alphabetizer) and asked to include the shifts. In ad-
dition, students were asked to omit lines which began with a “trivial''
word (e.g., and or the).

Pipes and Filters In this variation, students generated a batch version which generat-
ed KWIC indices of login and user names (as generated by the fin-
ger command). Students carried out two tasks. In one task, students
used the Unix shell to connect “modules'' such as the common Unix
commands finger, sort, and uniq. A second task required them to
connect the same modules in a pipe organization too complex to de-
scribe in the shell, so that they had to use raw pipes from within C.
As before, they began with solutions which alphabetized lines but
did not generate circular shifts.

Event-driven (implicit invocation)
This variation extended the problem for the object-oriented architec-
ture with a delete command. Students had to reuse existing mod-
ules, augmenting them with event bindings to establish how they
communicated.

5.4 Formal Modelling

To develop skill in understanding and manipulating formal models we assigned a task that re-
quired students to extend an existing formal model of a software architecture.

CMU/SEI-92-TR-17 17

As with the architectural development tasks the formal modelling task builds on an existing
base—in this case the formal model developed by Garlan and Notkin of event systems.
[Garlan91] In this work the authors showed how a simple model of systems based on event
broadcast could be specialized for a number of common systems, including Smalltalk MVC,
Gandalf programming environments, the Field programming environment, and APPL/A.
The students performed similar specializations for two different architectures: spreadsheets
and blackboard systems. In addition, they wrote a commentary that answered the following
questions:

1. What important aspects of the modelled architectures are (intentionally) left
out of the model?

2. For the blackboard system, would it be possible to model some notion of
“non-interference''?

3. For the spreadsheet system, is the Circular property defined in the events
paper a useful concept? Why or why not?

4. Based on the formal models, briefly compare each of the two new systems
with the other ones that were formally modelled. For example, you might
explain which of the other systems are they most similar to.

5.5 Analysis and Interpretation of a System

In addition to the assignments described above, students also examined and described the
architecture of a non-trivial system. About midway through the semester we asked each group
of students to select a system from a list of candidates that we supplied. Alternatively, students
could volunteer a system of their own, provided it met the criteria outlined below.
The students' task was to complete an architectural analysis of the chosen system by the end
of the semester. This analysis was required to include the following components:

1. Parts catalog. A list of the modules in the system, making the interfaces ex-
plicit, together with an explanation of what each one does.

2. Interconnections catalog. A list of the connections between modules
together with a descriptions of each.

3. Architectural description. A description of the system's architecture, using
the vocabulary developed in the course.

4. Critique. An evaluation of how well the architectural documentation for the
system matches the actual implementation.

5. Revision. Suggestions for ways that the system architecture could have
been improved.

In addition to a written analysis students presented their analyses to the class. We allotted
three days at the end of the semester for this. The grade on the project was determined both
by the written analysis and the presentation.
In selecting candidate systems we attempted to find systems that are tractable but challeng-
ing. Specifically, we applied the following criteria for selection:

18 CMU/SEI-92-TR-17

• Size. Ten to twenty modules containing between 2,000 and 10,000 lines of
code.

• Documentation. It should have enough system documentation that students
do not need to start from raw code to do their analysis.

• Resident expert. There should be someone in the local environment who
knows the system and can answer questions about its design and
implementation.

CMU/SEI-92-TR-17 19

6 Evaluation

6.1 Lessons from the Initial Offering

The first offering of the course ran during the spring semester of the 1991-1992 academic year
at Carnegie Mellon University. Four undergraduate students and seven Master of Software
Engineering students took the course. There were also half a dozen regular auditors. The les-
sons we have learned as a result of that offering are based upon the students' progress in
learning the course material and on evaluation of the course by the students themselves.

6.1.1 Content
It is clear that a sufficiently large body of knowledge exists to support a course in software ar-
chitecture. When we designed this version we were unable to include all the topics of interest,
and we made some hard decisions among alternative materials for the topics we did include.
The specific topics of the course had varying success. The section on architectural idioms was
particularly valuable. While the section on MILs was important to have included in the course,
we now feel we spent too much time on that topic. Two lectures would have been more appro-
priate than the four that we scheduled. The formal methods segment worked out well, but for
students with no exposure to Z, it required considerably more effort than the other sections.
(Almost all of the master's level students had already had a course in formal methods.) The
lectures on domain-specific software architectures were of mixed value, since these lectures
were predominantly given by invited speakers. The section on tools and environments was
reasonably successful, but suffered from the fact that there is relatively little material directly
applicable to software architectures.
Many of the readings were quite good; others should be replaced. The best of the readings
included:

• Nii's survey of Blackboard Systems [Nii86a] [Nii86b],

• Andrews' survey of distributed architectures [Andrews91],

• Shaw's overview of architectural styles [Shaw90a],

• Parnas' classic “Criteria'' [Parnas72] and A7 papers [Parnas85],

• the Perry Inscape paper [Perry87],

• a paper on implicit invocation by Garlan, Kaiser, and Notkin [Garlan88],

• Lampson's hints on system design [Lampson84], and

• Lane's paper on the concept of the design space. [Lane90].

The course syllabus would have been much better if we had been able to find good readings
about Unix pipes, management information system architectures, the ISO Open Systems In-
terconnection model, and architectural tools. We would also like to find readings about object-
oriented systems that deal specifically with architectural issues, rather than programming is-
sues.
The assignments that involved construction and analysis of systems were generally quite valu-
able, as they gave students practice in applying the principles of the course. However, we felt
that we could have chosen tasks that would have both challenged the students more than we

20 CMU/SEI-92-TR-17

did, and at the same time focused on some of the more important issues of architectural de-
sign.
Choosing good practical problems is one of the most difficult (and important) parts of develop-
ing such a course. Part of the problem centers around finding systems that are of the right size
and complexity. On the one hand, it is important to find systems that are large enough to rep-
resent nontrivial architectures. On the other hand, there is a limit to the size of system students
that can handle, particularly given the fact that we wanted students to have experience with
several architectures.
Our approach to the problem was to give students a working system and a collection of parts
that they could reuse and modify in adapting the system to the task assigned. Overall this was
a good approach, although it takes a lot of preparation to make it successful. We attempted to
use Booch components [Booch87] for the first and third assignments, and the standard Unix
tools for the second assignment. However, many of the software needed in the solutions to
the problems could not be found in these standard collections. As a result a majority of the
code in the starting frameworks was developed by us from scratch. For example we used only
one Booch component package (a total of 200 lines), but wrote 1400 lines of Ada and 300 lines
of C for the frameworks provided to the students.
Another aspect of the problem of choosing good assignments is to find problems that exploit
the target architecture but do not have a single solution. Our assignments were not sufficiently
rich to accomplish this. Moreover, time constraints prevented us from making more parts avail-
able than were absolutely required for the assignments, so the students did not face the chal-
lenge of selecting an architectural solution from a rich parts kit.
One issue involving the assignments was the use of multiple programming languages. We
wanted to avoid giving the impression that there is a one-to-one mapping between program-
ming languages and architectures. However, our parts kit (the Booch components) was in
Ada, and our version of the Ada compiler did not provide a library for manipulating Unix pipes.
This led us to use Ada for the first and third assignments, and C for the second.

6.1.2 Format
The division of the course into the major topics had some advantages, but overall was viewed
as needing revision. The course lectures touch each of the architectural idioms three times: to
introduce the idiom, to examine a suitable module connection language or tool, and to intro-
duce a formal model and analysis technique useful within the idiom. In addition, some idioms
reappear in domain-specific examples. In retrospect, a course organization that factors the
course along the lines of architectural idioms seems more appropriate.
We were pleased to teach from selected readings. The readings allowed students to hear the
ideas in the voices of their creators. Moreover, we believe the state of knowledge in software
architectures is not advanced enough to provide a single canonical picture of the various ar-
chitectures. We were able to order the topics appropriately to meet our ideas of how the topics
should be presented, and to flexibly schedule the guest lecturers.
The chief disadvantages of using readings as source material are that notations and terminol-
ogy vary from paper to paper, and that the architectural significance of a paper may not be well

CMU/SEI-92-TR-17 21

articulated. It is also a nuisance to deal with copyright considerations (though many of the pa-
pers carry blanket permissions for educational use).
Assigning questions on the class readings was a good idea. It served both to focus students'
attention and to encourage them to do the reading in advance. This worked well enough that
we could plan lectures that elaborated and interpreted the material rather than repeating it.
The task formats worked well in terms of the amount of time allotted and overall structure of
the assignments. However, one challenge lay in the diversity of language experience among
the students. In particular, Ada was familiar to some students, but new to others. While this
course was not intended to be a “programming course,'' we found it necessary to provide a
brief Ada help session for students without Ada experience. This session's effectiveness was
limited because it was held outside normal class hours and was not directly graded. Ideally in
an architectures course, however, all students should know the programming languages to be
used for the assignments prior to entering the class.
Using groups to accomplish the assignments had generally positive results. By mixing gradu-
ate and undergraduate students on each team, the teams formed a balanced collection of
strengths which enabled them to grasp the essentials of the programming assignments quick-
ly. Also, having a team environment allowed the students to discuss the architectural issues
among themselves in a more structured format than might otherwise have been available. We
believe this would have been even more effective if a more challenging set of problems were
presented.

6.1.3 Comments From Students
We distributed two course evaluations to students, one midway through the course and one
at the end. Overall student responses were quite positive. Typical comments were: “I've no-
ticed that I'm viewing problems in other classes from a different perspective,'' and “I now finally
understand what we were doing when we built that system in the way we did.''
At a more detailed level the students felt that the study of architectural idioms was most im-
portant, and that it provided a foundation for a body of knowledge to which they had not been
exposed. They also said that the course encouraged a new perspective on software systems.
Some students wanted more emphasis on the process of architectural design and guidance
in choosing an architectural idioms. The general opinion was that more could be added to the
course, but not at the expense of current material.
The readings were generally viewed as a valuable part of the course. Students appreciated
the incentive to read them regularly, and they particularly appreciated the absence of a final
exam. They also liked having lectures serve to elaborate the readings rather than repeating
them—something that is only possible when the instructor can assume that students have ac-
tually read the readings.
The course required a significant amount of work, but the students thought it was worth the
effort. They noted that, unlike most courses, the load is fairly level. They had to pay attention
to the course regularly, but they didn't wind up with massive deadline crunches.
The team organization was also judged favorably. We received no complaints about unequal
workload within a team, although some team members commented that getting a consensus,
even on a small team, took time.

22 CMU/SEI-92-TR-17

6.2 Changes to Consider

While we are generally satisfied with the course as taught, we see some areas that we plan to
change the next time we teach the course.

Content
While the course did not suffer from a lack of material, a number of areas could be added to
the curriculum. In particular, study of heterogeneous and integrated architectural idioms would
be appropriate, as would more study and practice in architectural design and decision making.
One way that room could be made for this material is by reducing the time spent on module
interconnection languages.
Another improvement would be to develop a more consistent terminology in our lectures on
architectures. Within the area generally termed software architecture, there is a bewildering
diversity of terms for similar concepts. As the discipline evolves and the terminology stabilizes,
we would expect this problem to diminish.

Format
There are a number of format changes which we believe would improve the coherency and
conceptual integrity of the course. They are:

1. Concentrate on a particular idiom for a span of 3-4 lectures to give the stu-
dents a deeper understanding of each class of architecture. A consistent for-
mat for the study of each idiom might be:

• Introduction of idiom and survey of class

• Related languages or tools

• Formal model

• Case study and analysis

This could be complemented by an assignment for each idiom, to give a
single, coherent presentation of an architectural style.

2. The assignments could be better planned to emphasize the architectural
nature of the projects, and minimize the “hacking'' necessary to build a
system. Assignments should allow the students to create unsuccessful
solutions as well as different but successful solutions to the same problem.
More emphasis should be placed on analysis of the assignment, encouraging
students to reflect on the choices made and the reasons for these choices.

The only way we see to create reasonable projects is to provide collections of
ready-made components. Unfortunately, reasonable “parts kits'' are scarce,
and most existing parts kits do not clearly illustrate an architectural style.
Moreover, in many cases (such as in event systems), architectural styles
require tools beyond those provided even by a carefully constructed parts kit.
This infrastructure is likely to be different for each architectural style,
compounding the problem when multiple architectural styles are presented.
Generally, in order to effectively teach multiple architectural styles within the
constraints of a single-semester course, we need architectural tools as well
as parts kits.

CMU/SEI-92-TR-17 23

3. The architectural analysis project should use examples that are familiar to the
instructors and which have existing architectural documents for the students
to start with.

4. The reports that the students produce from the architectural analysis project
should emphasize the high-level structural and communications paradigms of
the system, rather than specific functionality or detailed algorithmic analysis.
To this end, the assignment of the project should specify the structure of the
report, and provide good examples of existing architectural analyses.

6.3 Conclusions About Teaching Software Architecture

Software architecture is worth teaching. It can be taught in many ways. Based on our experi-
ence with the present course and previous experience with four semesters of graduate reading
seminars in the area, we can draw some conclusions about teaching software architecture in
any format.

• Architecture provides a bridge between theory and coding. In any program
teaching system design, there are high principles of program construction
which are difficult to relate to the small programming assignments that
comprise the majority of the undergraduate experience. A course that
presents students with the terminology of software architecture and that
gives them concrete examples of systems to relate to specific architectural
styles allows the students to relate these two disparate bodies of information
more readily and concretely.

• Students seem capable of rapidly developing an aesthetic about
architectures. They can identify systems in their own experience which match
specific styles, and they can also identify flawed designs as examples of
poorly-formed or poorly-understood architectures. They are quite capable of
answering open-ended questions about the appropriateness of a specific
architecture to a problem and defending their positions rationally and
powerfully. Unity does not evolve among the students, however. Different
students will promote different architectures for the same problem,
depending upon their particular points of view.

• There is little concrete material available in any form to guide design
decisions. Absent such material, students get little help in resolving point-of-
view differences. Instructors should make every effort to present techniques
for selecting among architectural alternatives, including even simple rules of
thumb such as “consider an interpreter when you're designing for a machine
that doesn't actually exist.”

• There is enough substantive material to fill a course. The selection we made
for this offering was based on the coverage of our graduate reading
seminars. However, we recognize that there were a number of difficult
choices in our selection which might well have gone another way. In our
opinion, the field of software architectures is moving from a point where
finding enough papers is difficult to one where the challenge is to select the
appropriate complement of papers.

24 CMU/SEI-92-TR-17

• We wish there were more organized surveys of the material than are
currently present. Currently, the fragmented nature of the material requires
that the students be carefully instructed on exactly which information within a
given paper is appropriate to the subject at hand. This is compounded by the
sheer size and disorganization of the current software architectures field.
There are few papers which view problems from a purely architectural
perspective, and the boundaries between architectural idioms are not always
clear. We would like to see more papers presenting architectural analysis
techniques, and more worked examples in specific architectures. We would
also like to see more mature distributed systems architectures and more
papers like Nii's [Nii86a] [Nii86b] that survey a class of systems against a
single architectural paradigm. We think this will come with a better
understanding of the idioms that comprise software architecture.

• It is tempting to treat the subject of software architectures abstractly and
present only idealized views of the various architectural idioms. Resist this.
Students have weak intuitions about the high-level architectural abstractions.
Every formal or abstract model must be related to a real example, so that the
student not only learns the abstract view of the architecture, but also the
characteristics of a concrete instance of that architecture.

• Practice in using models is important. Analyzing existing architectures
without working within the specific architectural framework does not allow the
student to recognize the strengths and weaknesses of individual architectural
styles. It is not sufficient for a student to be able to recognize a specific idiom;
the student must also be able to decide which idiom to apply to a particular
problem. For that skill, analysis alone is not enough.

Acknowledgments

The authors would like to thank Robert Allen, Mario Barbacci, Marc Graham, Kevin Jeffay, Dan
Klein, Reid Simmons, and Pamela Zave for participating as guest lecturers in the first offering
of this course. We would also like to thank James Alstad for his participation in the develop-
ment of the early curriculum of this course.

CMU/SEI-92-TR-17 25

References

[Allen92] Allen, R. and Garlan, D. "A Formal Approach to Software Architectures." To
appear in the Proceedings of the 12th World Computer Congress IFIP,
Madrid Spain: Elsevier Science Publishers B.V., September 1992.

[Andrews91] Andrews, G.R. “Paradigms for Process Interaction in Distributed
Programs.” ACM Computing Surveys 23, 1 (March 1991): 49-90.

[Bach86] Bach, M.J. The Design of the UNIX Operating System. Englewood Cliffs,
New Jersey: Prentice-Hall, 1986.

[Barbacci88] Barbacci, M.R.; Weinstock, C.B.; and Wing, J.M. “Programming at the
Processor-Memory-Switch Level,” pp 19-28. Proceedings of the 10th
International Conference on Software Engineering. Singapore: IEEE
Computer Society Press, April 1988.

[Batory91] Batory, D. and O’Malley, S. The Design and Implementation of Hierarchical
Software Systems Using Reusable Components (TR-91-22). Austin, Texas:
Department of Computer Science, University of Texas, 1991.

[Bishop87a] Bishop, J. M.; Adams, S. R.; and Pritchard, D. J. “Distributing Concurrent
Ada Programs by Source Translation.” Software–Practice and Experience
17, 12 (December 1987): 859-884.

[Bishop87b] Bishop, J.M. “Ada Profile Charts in Software Development.” Journal of
Pascal, Ada, and Module-2 8, 2 (October 1987).

[Booch86] Booch, G. “Object-Oriented Development.” IEEE Transactions on Software
Engineering, SE-12 2 (February 1986): 211-221.

[Booch87] Booch, G. Software Components with Ada: Structures, Tools and
Subsystems. Menlo Park, California: Benjamin Cummings, 1987.

[DeRemer76] DeRemer, F. and Kron, H.H. “Programming-in-the-Large Versus
Programming-in-the-Small.” IEEE Transactions on Software Engineering,
SE-2, 2 (June 1976): 80-86.

[Doubleday91] Doubleday, D.L.; Barbacci, M.R.; and Weinstock, C.B. “Building Distributed
Ada Applications from Specifications and Functional Components.”
Proceedings of TRI-Ada’91. San Jose, California: ACM Press, October
1991.

[DSSA90] MIF Working Group. "Proceedings of the Workshop on Domain-Specific
Software Architectures." Hidden Valley, PA: Software Engineering Institute,
1990.

[Earl90] Earl, A. A Reference Model for Computer Assisted Software Engineering
Environment Frameworks (HPL-SEG-TN-90-11). Bristol, England: Hewlett
Packard Laboratories, August 1990.

26 CMU/SEI-92-TR-17

[Fisher91] Fisher, G. Application Portability Profile -APP- The U.S. Government's Open
System Environment Profile (NTIS special report 500-187). US Department
of Commerce, 1991.

[Flinn87] Flinn, B. and ib Holm Sorensen. CAVIAR: A Case Study in Specification.
Englewood Cliffs, New Jersey: Prentice-Hall International, 1987.

[Fridrich85] Fridrich, M. and Older, W. “Helix: The Architecture of the XMS Distributed
File System.” IEEE Software 2, 3 (May 1985): 21-29.

[Garlan88] Garlan, D.; Kaiser, G.E.; and Notkin, D. On the Criteria to be Used in
Composing Tools into Systems (88-08-09). Seattle, WA: Department of
Computer Science, University of Washington, 1988.

[Garlan90] Garlan, D. and Delisle, N. “Formal Specifications as Reusable
Frameworks.” VDM'90: VDM and Z – Formal Methods in Software
Development. Kiel, Germany: Springer-Verlag, LNCS 428, 1990.

[Garlan91] Garlan, D. and Notkin, D. “Formalizing Design Spaces: Implicit Invocation
Mechanisms,” pp 31-44. VDM'91: Formal Software Development Methods,
Noordwijkerhout, The Netherlands: Springer-Verlag, LNCS 551, October
1991.

[Habermann91] Habermann, A.N.; Garlan, D.; and Notkin, D. “Generation of Integrated
Task-Specific Software Environments,” pp 69-98. Anthology Series: CMU
Computer Science: A 25th Commemorative. Pittsburgh, Pennsylvania:
ACM Press, 1991.

[Harper86] Harper, R.; Introduction to Standard ML (ECS-LFCS-86-14). Edinburgh,
United Kingdom: Laboratory for Foundations of Computer Science,
University of Edinburgh, 1986.

[Hayes-Roth90] Hayes-Roth, B. “Architectural Foundations for Real-Time Performance in
Intelligent Agents.” The Journal of Real-Time Systems, 2 (January 1990):
99-125.

[Houston91] Houston, I. and King, S. “Experiences and Results from the Use of Z in
IBM,” pp 588-595. VDM'91: Formal Software Development Methods.
Noordwijkerhout, The Netherlands: Springer-Verlag, 1991.

[Ichbiah83] Ichbiah, J.D.; Heliard, J.C.; Roubine, O.; Bar-Brueckner, J.G.P.; and
Wichman, B.A. “Rationale for the Design of the Ada Programming
Language.” SIGPLAN Notices 14, 16 (June 1983): 1-16.

[Johnson86] Johnson, S.C., “YACC: Yet Another Compiler-Compiler,” pp 1-33. UNIX
Programmer's Supplementary Documents. Berkeley, California: University
of California, 1986.

[Lampson84] Lampson, B.W. “Hints for Computer System Design.” IEEE Software 1, 1
(January 1984): 11-28.

CMU/SEI-92-TR-17 27

[Lane90] Lane, T.G. A Design Space and Design Rules for User Interface Software
Architecture (CMU/SEI-90-TR-22, DTIC: ADA237049). Pittsburgh,
Pennsylvania: Software Engineering Institute, Carnegie Mellon University,
1990.

[Lauer79] Lauer, H.C. and Satterwaite, E.H. “Impact of MESA On System Design,” pp
174-179. Proceedings of the Third International Conference on Software
Engineering, Atlanta, Georgia: IEEE Computer Society Press, 1979.

[Lesk86] Lesk, M.E. and Schmidt, E. “LEX—A Lexical Analyzer Generator,” pp 16:1-
13. UNIX Programmer's Supplementary Documents. Berkeley, California:
University of California, Berkeley, 1986.

[Linton87] Linton, M.A. “Distributed Management of a Software Database.” IEEE
Software 4, 6 (November 1987): 70-76.

[Nii86a] Nii, H.P. “Blackboard Systems Part 1: The Blackboard Model of Problem
Solving and the Evolution of Blackboard Architectures.” AI Magazine 7, 3
(Summer 1986): 38-53.

[Nii86b] Nii, H.P. “Blackboard Systems Part 2: Blackboard Application Systems and
a Knowledge Engineering Perspective.” AI Magazine 7, 4 (August 1986):
82-107.

[Parnas72] Parnas, D.L. “On the Criteria To Be Used in Decomposing Systems into
Modules.” Communications of the ACM 15, 12 (December 1972): 1053-
1058.

[Parnas85] Parnas, D.L.; Clements, P.C.; and Weiss, D.M. “The Modular Structure of
Complex Systems.” IEEE Transactions on Software Engineering SE-11, 3
(March 1985): 259-266.

[Paulk85] Paulk, M.C. “The ARC Network: A Case Study.” IEEE Software 2, 3 (May
1985): 61-69.

[Perry87] Perry, D.E. “Software Interconnection Models,” pp 61-68. Proceedings of
the Ninth International Conference on Software Engineering. Monterey,
California: IEEE Computer Society Press, March 1987.

[Perry91] Perry, D.E. and Wolf, A.L. “Software Architecture.” Murray Hill, NJ: AT&T
Bell Laboratories, January 1991 (available from the authors).

[Prieto-Diaz86] Prieto-Diaz, R. and Neighbors, J.M. “Module Interconnection Languages.”
The Journal of Systems and Software 6, 4 (November 1986): 307-334.

[Raghavan86] Raghavan, S.A. and Chand, D.R. Applications Generators & Fourth
Generation Languages (TR-86-02). Waltham, Massachusetts: Wang
Institute and Bentley College, February 1986.

[Scheifler86] Scheifler, R.W. and Gettys, J. “The X Window System.” ACM Transactions
on Graphics 5, 2 (April 1986): 79-109.

28 CMU/SEI-92-TR-17

[Seshadri88] Seshadri, V.; Wortman, D.B.; Junkin, M.D.; Weber, S.; Yu, C.P.; and Small,
I. “Semantic Analysis in a Concurrent Compiler,” pp 233-240. Proceedings
of ACM SIGPLAN '88 Conference on Programming Language Design and
Implementation. Atlanta, Georgia: ACM SIGPLAN Notices, June 1988.

[Sha90] Sha, L., and Goodenough, J.B. “Real-Time Scheduling Theory and Ada.”
Computer 53, 62 (April 1990): pp 53-62.

[Shafer86] Shafer, S.A.; Stentz, A.; and Thorpe, C.E. “An Architecture for Sensor
Fursion in a Mobile Robot,” pp 2002-2010. Proceedings of the IEEE
International Conference on Robotics and Automation. San Francisco,
California: IEEE Society Press, April 1986.

[Shaw85] Shaw, M. “What Can We Specify? Questions in the Domains of Software
Specifications,” pp 214-215. Proceedings of the Third International
Workshop on Software Specification and Design. London, United Kingdom:
IEEE Computer Society Press, August 1985.

[Shaw90a] Shaw, M. “Elements of a Design Language for Software Architecture.”
Position paper for IEEE Design Automation Workshop on System Level
Modelling. Scottsdale, Arizona, January 1990.

[Shaw90b] Shaw, M. “Toward Higher-Level Abstractions for Software Systems,” pp
119-128. Data & Knowledge Engineering. North Holland: Elsevier Science
Publishers, B.V., 1990.

[Shaw91] Shaw, M. “Heterogeneous Design Idioms for Software Architecture,” pp
158-165. Proceedings of the Sixth International Workshop on Software
Specification and Design. Como, Italy: IEEE Computer Society, Software
Engineering Notes, October 1991.

[Spector87] Spector, A.Z.; Thompson, D.; Pausch, R.F.; Eppinger, J.L.; Duchamp, D.;
Draves, R.; Daniels, D.S.; and Block, J.J. Camelot: A Distributed
Transaction Facility for Mach and the Internet – An Interim Report (CMU-
CS-87-129). Pittsburgh, Pennsylvania: Carnegie Mellon University, June
1987.

[Spivey88] Spivey, J.M. The Fuzz Manual. Garsington, Oxford: Computing Science
Consultancy, 1988.

[Spivey89a] Spivey, J.M. The Z Notation: A Reference Manual. Englewood Cliffs, New
Jersey: Prentice-Hall, 1989.

[Spivey89b] Spivey, J.M. “An Introduction to Z and Formal Specification.” Software
Engineering Journal 4, 1 (January 1989): 40-50.

[Stankovic88] Stankovic, J.A. “Misconceptions About Real-Time Computing.” Computer
21, 10 (October 1988): 10-19.

[Tannenbaum81] Tannenbaum, A.S. “Network Protocols.” ACM Computing Surveys 13, 4
(December 1981): 453-489.

CMU/SEI-92-TR-17 29

[Wirfs-Brock90] Wirfs-Brock, R.J. and Johnson, R.E. “Surveying Current Research in
Object-Oriented Design.” Communications of the ACM 33, 9 (September
1990): 104-124.

[Zave91] Zave, P. “An Insider's Evaluation of PAISey.” IEEE Transactions on
Software Engineering 17, 3 (March 1991): 212-225.

30 CMU/SEI-92-TR-17

13a. TYPE OF REPORT

Final

UNCLASSIFIED/UNLIMITED SAME AS RPT DTIC USERS

2a. SECURITY CLASSIFICATION AUTHORITY

N/A

15. PAGE COUNT13b. TIME COVERED

FROM TO

14. DATE OF REPORT (Yr., Mo., Day)

11. TITLE (Include Security Classification)

1a. REPORT SECURITY CLASSIFICATION

Unclassified

5. MONITORING ORGANIZATION REPORT NUMBER(S)4. PERFORMING ORGANIZATION REPORT NUMBER(S

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

N/A

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for Public Release
Distribution Unlimited

1b. RESTRICTIVE MARKINGS

None

10. SOURCE OF FUNDING NOS.

6c. ADDRESS (City, State and ZIP Code)

Carnegie Mellon University
Pittsburgh PA 15213

7a. NAME OF MONITORING ORGANIZATION

SEI Joint Program Office
6b. OFFICE SYMBOL
(if applicable)

6a. NAME OF PERFORMING ORGANIZATION

Software Engineering Institute

7b. ADDRESS (City, State and ZIP Code)

ESC/AVS
Hanscom Air Force Base, MA 01731

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F1962890C0003
8b. OFFICE SYMBOL
(if applicable)

8a. NAME OFFUNDING/SPONSORING
 ORGANIZATION

SEI Joint Program Office

22a. NAME OF RESPONSIBLE INDIVIDUAL

John S. Herman, Capt, USAF

16. SUPPLEMENTARY NOTATION

12. PERSONAL AUTHOR(S)

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse of necessary and identify by block number)

PROGRAM
ELEMENT NO

PROJECT
NO.

TASK
NO

WORK UNIT
NO.

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

21. ABSTRACT SECURITY CLASSIFICATION

Unclassified, Unlimited Distribution

FIELD SUB. GR.GROUP

22c. OFFICE SYMBOL

ESC/AVS (SEI)
22b. TELEPHONE NUMBER (Include Area Code)

(412) 268-7631

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

SEI

ESD/AVS

REPORT DOCUMENTATION PAGE

UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

DD FORM 1473, 83 APR EDITION of 1 JAN 73 IS OBSOLETE UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS

63756E N/A N/A N/A

8c. ADDRESS (City, State and ZIP Code)

Carnegie Mellon University
Pittsburgh PA 15213

(please turn over)

CMU/SEI-92-TR-17 ESC-TR-92-017

Experience With a Course on Architectures for Software Systems

August 1992 30

software architecture, software engineering education, software system
structure, software design

As software systems grow in size and complexity their design problem extends beyond algorithms
and data structures to issues of system design. This area receives little or no treatment in existing
computer science curricula. Although courses about specific systems are usually available, there is
no systematic treatment of the organizations used to assemble components into systems. These
issues—the software architecture level of software design—are the subject of a new course that we
taught for the first time in Spring 1992. In this pair of reports, Part I presents the motivation for the
course, the content and structure of the current version, and our plans for improving the next version.

David Garlan, Mary Shaw, Chris Okasaki, and Curtis M. Scott

ABSTRACT —continued from page one, block 19

Part II consists of teaching materials from the first offering, including assignments and overheads
for lectures.

