
Technical Report
CMU/SEI-92-TR-007
ESC-TR-92-007

Introduction to Software Process
Improvement

Watts S. Humphrey

June 1992 (Revised June 1993)

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Unlimited distribution subject to the copyright.

Technical Report
CMU/SEI-92-TR-007

ESC-TR-92-007
June 1992 (Revised June 1993)

Introduction to Software Process Improvement

Watts S. Humphrey

Process Research Project

This report was prepared for the

SEI Joint Program Office
HQ ESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

FOR THE COMMANDER

(signature on file)

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1992 by Carnegie Mellon University.

Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative
works.

Requests for permission to reproduce this document or to prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRAN-
TIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTIBILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 52.227-7013.

This document is available through Research Access, Inc., 800 Vinial Street, Pittsburgh, PA 15212.
Phone: 1-800-685-6510. FAX: (412) 321-2994. RAI also maintains a World Wide Web home page. The URL is
http://www.rai.com

Copies of this document are available through the National Technical Information Service (NTIS). For informa-
tion on ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of
Commerce, Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides ac-
cess to and transfer of scientific and technical information for DoD personnel, DoD contractors and potential con-
tractors, and other U.S. Government agency personnel and their contractors. To obtain a copy, please contact
DTIC directly: Defense Technical Information Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-
6145. Phone: (703) 274-7633.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents

Author’s Note 1

1 Introduction 1

2 Background 5

3 Process Maturity Model Development 7

4 The Process Maturity Model 9

5 Uses of the Maturity Model 13

5.1 Software Process Assessment 13
5.2 Software Capability Evaluation 15
5.3 Contract Monitoring 16
5.4 Other Assessment Methods 17
5.5 Assessment and Evaluation Considerations 17

6 State of Software Practice 19

7 Process Maturity and CASE 23

8 Improvement Experience 25

9 Future Directions 27

10 Conclusions 29

References 31
CMU/SEI-92-TR-7 i

ii CMU/SEI-92-TR-7

List of Figures

Figure 1-1: Hardware and Software Differences 3
Figure 1-2: The Shewhart Improvement Cycle 3
Figure 4-1: The Five Levels of Software Process Maturity 10
Figure 4-2: The Key Process Challenges 11
Figure 5-1: Assessment Process Flow 15
Figure 6-1: U.S. Assessment Maturity Level Distribution 20
Figure 6-2: U.S. Assessment Maturity Level Distribution by Assessment Type 21
Figure 8-1: On-Board Shuttle Software 25
CMU/SEI-92-TR-7 iii

iv CMU/SEI-92-TR-7

Author’s Note

This version of CMU/SEI-92-TR-7 has been produced to reflect the current SEI assessment
practice of holding a five day on-site period. The reference to the earlier four day period had
resulted in some reader confusion. While making this update, I also took the opportunity to
bring the assessment and SCE data up to date and make a few minor corrections.
CMU/SEI-92-TR-7

CMU/SEI-92-TR-7

Introduction to Software Process Improvement

Abstract: While software now pervades most facets of modern life, its
historical problems have not been solved. This report explains why some of
these problems have been so difficult for organizations to address and the
actions required to address them. It describes the Software Engineering
Institute’s (SEI) software process maturity model, how this model can be used
to guide software organizations in process improvement, and the various
assessment and evaluation methods that use this model. The report concludes
with a discussion of improvement experience and some comments on future
directions for this work.

1 Introduction

The Software Process Capability Maturity Model (CMM) deals with the capability of software
organizations to consistently and predictably produce high quality products. It is closely related
to such topics as software process, quality management, and process improvement. The drive
for improved software quality is motivated by technology, customer need, regulation, and com-
petition. Although industry’s historical quality improvement focus has been on manufacturing,
software quality efforts must concentrate on product development and improvement.

Process capability is the inherent ability of a process to produce planned results. A capable
software process is characterized as mature. The principle objective of a mature software pro-
cess is to produce quality products to meet customers’ needs. For such human-intensive ac-
tivities as software development, the capability of an overall process is determined by
examining the performance of its defined subprocesses. As the capability of each subprocess
is improved, the most significant causes of poor quality and productivity are thus controlled or
eliminated. Overall process capability steadily improves and the organization is said to mature.

It should be noted that capability is not the same as performance. The performance of an or-
ganization at any specific time depends on many factors. While some of these factors can be
controlled by the process, others cannot. Changes in user needs or technology surprises can-
not be eliminated by process means. Their effects, however, can often be mitigated or even
anticipated. Within organizations, process capability may also vary across projects and even
within projects. It is theoretically possible to find a well controlled and managed project in a
chaotic and undisciplined organization, but it is not likely. The reason is that it takes time and
resources to develop a mature process capability. As a consequence, few projects can build
their process while they simultaneously build their product.

The term maturity implies that software process capability must be grown. Maturity improve-
ment requires strong management support and a consistent long-term focus. It involves fun-
damental changes in the way managers and software practitioners do their jobs. Standards
CMU/SEI-92-TR-7 1

are established and process data is systematically collected, analyzed, and used. The most
difficult change, however, is cultural. High maturity requires the recognition that managers do
not know everything that needs to be done to improve the process.

The software professionals often have more detailed knowledge of the limitations of the pro-
cesses they use. The key challenge of process management is to continuously capture and
apply this knowledge.

Process maturity improvement is a long-term incremental activity. In manufacturing organiza-
tions, the development and adoption of effective process methods typically has taken 10 to 20
years. Software organizations could easily take comparable periods to progress from low to
high process maturity. U.S. management is generally impatient for quick results and not ac-
customed to thinking in terms of long-term continuous process improvement. Once the cultur-
al, organizational, and managerial obstacles are removed, the needed technical and
procedural actions can often be implemented quite quickly. While history demonstrates that
such changes can take a long time, it also demonstrates that, given a great enough need and
broad consensus on the solution, surprising results can be produced quite quickly. The chal-
lenge is thus to define the need and achieve broad consensus on the solution. This is the basic
objective of the Software Process Maturity Model and the Software Process Assessment
method.

The focus on the software process has resulted from a growing recognition that the traditional
product focus of organizational improvement efforts has not generally had the desired results.
Many management and support activities are required to produce effective software organiza-
tions. Inadequate project management, for example, is often the principle cause of cost and
schedule problems. Similarly, weaknesses in configuration management, quality assurance,
inspection practices, or testing generally result in unsatisfactory quality. Typically, projects do
not have the time nor resources to address such issues and thus a broader process improve-
ment focus is required.

It is now recognized that traditional engineering management methods work for software just
as they do for other technical fields. There is an increasing volume of published material on
software project management and a growing body of experience with such topics as cost and
size estimation, configuration management, and quality improvement. While hardware man-
agement methods can provide useful background, as shown in Table 1-1, there are key differ-
ences between hardware and software. Hardware managers thus need to master many new
perspectives to be successful in directing software organizations.
2 CMU/SEI-92-TR-7

The Shewhart cycle provides the foundation for process improvement work. As shown in Table
1-2, it defines four steps for a general improvement process [Deming 82].

Software is generally more complex.

Software changes appear relatively easy to make.

Many late-discovered hardware problems are addressed
through software changes.

Because of its low reproduction cost, software does not have
the natural discipline of release to manufacturing.

Software discipline is not grounded in natural science and it
lacks ready techniques for feasibility testing and design
modeling.

Software is often the element that integrates an entire system,
thus adding to its complexity and creating exposures to late
change.

Software is generally most visible, thus most exposed to
requirements changes and most subject to user complaint.

Because software is a relatively new discipline, few managers
and executives have sufficient experience to appreciate the
principles or benefits of an effective software process.

Figure 1-1: Hardware and Software Differences

1. Plan
Define the problem
Establish improvement objectives

2. Do
Identify possible problem causes
Establish baselines
Test change

3. Check
Collect data
Evaluate data

4. Act
Implement system change
Determine effectiveness.

Figure 1-2: The Shewhart Improvement Cycle
CMU/SEI-92-TR-7 3

The cycle begins with a plan for improving an activity. Once the improvement plan is complet-
ed, the plan is implemented, results are checked, and actions taken to correct deviations. The
cycle is then repeated. If the implementation produced the desired results, actions are taken
to make the change permanent. In the Software Engineering Institute’s (SEI) process strategy,
this improvement plan is the principle objective of a Software Process Assessment.

The Shewhart approach, as espoused by W. E. Deming, was broadly adopted by Japanese
industry in the 1950s and 1960s. The key element of the remarkable success of Japanese in-
dustry has been the sustained focus on small incremental process improvements. To enroll
the employees in the improvement effort, quality control circles were formed and given con-
siderable authority and responsibility for instituting change. Japanese management’s basic
strategy, followed to this day, is to focus on quality improvement in the belief that the desired
productivity and profit improvements will naturally follow.

Based on these principles, the Software Process Maturity Model was designed to provide a
graduated improvement framework of software capabilities. Each level progressively adds fur-
ther enhancements that software organizations typically master as they improve. Since some
capabilities depend on others, it is important to maintain an orderly improvement progression.
Because of its progressive nature, this framework can be used to evaluate software organiza-
tions to determine the most important areas for immediate improvement. With the growing vol-
ume of software process maturity data, organizations can also determine their relative
standing with respect to other groups.

This technical report describes the background of the Software Process Maturity Model: what
it is, where it came from, how it was developed, and how it is being improved. Its major appli-
cations are also described, including the users, application methods, and the general state of
software practice. Future developments are then described, including improvement trends,
likely application issues, and current research thrusts. Finally, the conclusion outlines the crit-
ical issues to consider in applying these methods.
4 CMU/SEI-92-TR-7

2 Background

With the enormous improvements in the cost-performance of computers and microprocessors,
software now pervades most facets of modern life. It controls automobiles, flies airplanes, and
drives such everyday devices as wrist watches, microwave ovens, and VCRs. Software is now
often the gating element in most branches of engineering and science. Our businesses, our
wars, and even our leisure time have been irretrievably changed. As was demonstrated in the
War in the Middle East, “smart” weapons led to an early and overwhelming victory. The “smart”
in modern weapons is supplied by software.

While society increasingly depends on software, software development's historical problems
have not been addressed effectively. Software schedules, for example, are uniformly missed.
An unpublished review of 17 major DoD software contracts found that the average 28 month
schedule was missed by 20 months. One four year project was not delivered for 7 years; no
project was on time. Deployment of the B1 bomber was delayed by a software problem and
the $58 billion A12 aircraft program was cancelled partly for the same reason. While the mili-
tary has its own unique problems, industry does as well. In all spheres, however, one important
lesson is clear: large software content means trouble.

There are many reasons for this slow rate of improvement. Until recently, software project
management methods have not been defined well enough to permit their inclusion in university
curricula. They have thus generally been learned by observation, experience, or word of
mouth. Second, few managers have worked in organizations that effectively manage software.
This lack of role models means these managers must each learn from their own experiences.
Unfortunately, these experiences are often painful and the managers who have learned the
most are often associated with failed projects. By searching for an unblemished hero who can
“clean up the mess,” management generally picks someone who has not been tested by a
challenging software project. Unfortunately, this generally starts another disastrous learning
cycle.

The most serious problems in software organizations are not generally caused by an individual
manager or software team. They typically concern organizational procedures and cultural be-
havior. These are not things that individual managers can generally fix. They require a com-
prehensive and longer term focus on the organization's software process.
CMU/SEI-92-TR-7 5

6 CMU/SEI-92-TR-7

3 Process Maturity Model Development

The U.S. Department of Defense recognized the urgency of these software issues and in 1982
formed a joint service task force to review software problems in the U.S. Department of De-
fense. This resulted in several initiatives, including the establishment of the Software Engi-
neering Institute (SEI) at Carnegie Mellon University, the Software Technology for Adaptable
Reliable Systems (STARS) Program, and the Ada Program. Examples of U.S. industrial efforts
to improve software practices are the Software Productivity Consortium and the early software
work at the Micro-Electronics and Computer Consortium. Similar initiatives have been estab-
lished in Europe and Japan, although they are largely under government sponsorship.

The Software Engineering Institute was established at Carnegie Mellon University in Decem-
ber of 1984 to address the need for improved software in U.S. Department of Defense opera-
tions. As part of its work, SEI developed the Software Process Maturity Model for use both by
the Department of Defense and by industrial software organizations. The Software Capability
Evaluation Project was initiated by the SEI in 1986 at the request of the U.S. Air Force.

The Air Force sought a technically sound and consistent method for the acquisition community
to use to identify the most capable software contractors. The Air Force asked the MITRE Cor-
poration to participate in this work and a joint team was formed. They drew on the extensive
software and acquisition experience of the SEI, MITRE, and the Air Force Electronic Systems
Division of Hanscom Air Force Base, Ma. This SEI-MITRE team produced a technical report
that included a questionnaire and a framework for evaluating organizations according to the
maturity of their software processes [Humphrey 87]. This maturity questionnaire is a structured
set of yes-no questions that facilitates objective and consistent assessments of software or-
ganizations. The questions cover three principal areas.

1. Organization and resource management. This deals with functional responsibilities,
personnel, and other resources and facilities.

2. Software engineering process and its management. This concerns the scope, depth,
and completeness of the software engineering process and the way in which it is
measured, managed, and improved.

3. Tools and technology. This deals with the tools and technologies used in the software
engineering process and the effectiveness with which they are applied. This section
is not used in maturity evaluations or assessments.

Some sample questions from the maturity questionnaire are:

• Is there a software engineering process group or function?

• Is a formal procedure used to make estimates of software size?

• Are code and test errors projected and compared to actuals?
CMU/SEI-92-TR-7 7

There have been many contributors to this work and many companies have participated in ear-
ly questionnaire reviews. The basic ideas behind the maturity model and the SEI assessment
process come from several sources. The work of Phil Babel and his associates at Aeronautical
Systems Division, Wright Patterson Air Force Base, provided a useful model of an effective Air
Force evaluation method for software-intensive acquisitions. In the early 1980s, IBM initiated
a series of assessments of the technical capabilities of many of its development laboratories.
An IBM software quality and process group then coupled this work with the maturity framework
used by Phil Crosby in his Quality College [Crosby 79]. The result was an assessment process
and a generalized maturity framework [Radice 85]. SEI then extended this work to incorporate
the Deming principles and the Shewhart concepts of process management [Deming 82]. The
addition of the specific questions developed by MITRE and SEI resulted in the Software Ca-
pability Maturity Model [Humphrey 87, Humphrey 89].

As part of its initial development, SEI and MITRE held many reviews with individuals and or-
ganizations experienced in software development and acquisition. During this process it be-
came clear that software is a rapidly evolving technology and that no static criteria could be
valid for very long. Since this framework must evolve with advances in software technology
and methods, the SEI maintains a continuing improvement effort. This work has broad partic-
ipation by experienced software professionals from all branches of U.S. industry and govern-
ment. There is also growing interest in this work in Europe and Japan.

In 1991 SEI produced the Capability Maturity Model for Software (CMM) [Paulk 91]. This was
developed to clarify the structure and content of the maturity framework. It identifies the key
practice areas for each maturity level and provides an extensive summary of these practices.
To insure that this work properly balances the needs and interests of those most effected, a
CMM Advisory Board was established to review the SEI work and to advise on the suitability
of any proposed changes. This board has members from U.S. industry and government.
8 CMU/SEI-92-TR-7

4 The Process Maturity Model

The five-level improvement model for software is shown in Figure 4-1. The levels are designed
so that the capabilities at the lower levels provide a progressively stronger foundation on which
to build the upper levels.

These five developmental stages are referred to as maturity levels, and at each level, the or-
ganization has a distinct process capability. By moving up these levels, the organization’s ca-
pability is consistently improved.

At the initial level (level 1), an organization can be characterized as having an ad hoc, or pos-
sibly chaotic, process. Typically, the organization operates without formalized procedures,
cost estimates, and project plans. Even if formal project control procedures exist, there are no
management mechanisms to ensure that they are followed. Tools are not well integrated with
the process, nor are they uniformly applied. Change control is generally lax and senior man-
agement is not exposed to or does not understand the key software problems and issues.
When projects do succeed, it is generally because of the heroic efforts of a dedicated team
rather than the capability of the organization.

An organization at the repeatable level (level 2) has established basic project controls: project
management, management oversight, product assurance, and change control. The strength
of the organization stems from its experience at doing similar work, but it faces major risks
when presented with new challenges. The organization has frequent quality problems and
lacks an orderly framework for improvement.

At the defined level (level 3), the organization has laid the foundation for examining the pro-
cess and deciding how to improve it. A Software Engineering Process Group (SEPG) has
been established to focus and lead the process improvement efforts, to keep management in-
formed on the status of these efforts, and to facilitate the introduction of a family of software
engineering methods and technologies.

The managed level (level 4) builds on the foundation established at the defined level. When
the process is defined, it can be examined and improved but there is little data to indicate ef-
fectiveness. Thus, to advance to the managed level, organizations must establish a set of
quality and productivity measurements. A process database is also needed with analysis re-
sources and consultative skills to advise and support project members in its use. At level 4,
the Shewhart cycle is used to continually plan, implement, and track process improvements.

At the optimizing level (level 5) the organization has the means to identify its weakest process
elements and strengthen them, data are available to justify applying technology to critical
tasks, and evidence is available on process effectiveness. At this point, data gathering has at
least been partially automated and management has redirected its focus from product repair
to process analysis and improvement. The key additional activity at the optimizing level is rig-
orous defect cause analysis and defect prevention.
CMU/SEI-92-TR-7 9

These maturity levels have been selected because:

• They reasonably represent the historical phases of evolutionary
improvement experienced by software organizations.

• They represent a reasonable sequence of achievable improvement steps.

• They suggest interim improvement goals and progress measures.

• They make obvious a set of immediate improvement priorities, once an
organization’s status in this framework is known.

Figure 4-1: The Five Levels of Software Process Maturity
10 CMU/SEI-92-TR-7

While there are many aspects to the advancement from one maturity level to another, the ba-
sic objective is to achieve a controlled and measured process as the foundation for continuous
improvement. Some of the characteristics and key challenges of each of these levels are
shown in Figure 4-2. A more detailed discussion is included in [Humphrey 89].

Because of their impatience for results, organizations occasionally attempt to reach level 5
without progressing through levels 2, 3, or 4. This is counterproductive, however, because
each level forms a necessary platform for the next. Consistent and sustained improvement
also requires balanced attention to all key process areas. Inattention to one key area can
largely negate advantages gained from work on the others. For example, unless effective
means are established for developing realistic estimates at level 2, the organization is still ex-
posed to serious overcommitments. This is true even when important improvements have
been made in other areas. Thus, a crash effort to achieve some arbitrary maturity goal is likely
to be unrealistic. This can cause discouragement and management frustration and lead to
cancellation of the entire improvement effort. If the emphasis is on consistently making small
improvements, their benefits will gradually accumulate to impressive overall capability gains.

Level Characteristic Key Problem Areas Result

5
Optimizing

Improvement fed
back into process

Automation

4
Managed

(quantitative)
Measured process

Changing technology
Problem analysis
Problem prevention

3
Defined

(qualitative)
Process defined
and
institutionalized

Process measurement
Process analysis
Quantitative quality plans

2
Repeatable

(Intuitive)
Process dependent
on individuals

Training
Technical practices
 • reviews, testing

Process focus
 • standards, process groups

1
Initial

(ad hoc /chaotic) Project management
Project planning
Configuration management
Software quality assurance

Figure 4-2: The Key Process Challenges

Productivity
&
Quality

Risk
CMU/SEI-92-TR-7 11

Similarly, at level 3, the stability achieved through the repeatable level (level 2), permits the
process to be examined and defined. This is essential because a defined engineering process
cannot overcome the instability created by the absence of the sound management practices
established at level 2 [Humphrey 89]. With a defined process, there is a common basis for
measurements. The process phases are now more than mere numbers; they have recognized
prerequisites, activities, and products. This defined foundation permits the data gathered at
level 4 to have well-understood meaning. Similarly, level 4 provides the data with which to
judge proposed process improvements and their subsequent effects. This is a necessary foun-
dation for continuous process improvement at level 5.
12 CMU/SEI-92-TR-7

5 Uses of the Maturity Model

The major uses of the maturity model are in process improvement and evaluation:

• In assessments, organizations use the maturity model to study their own
operations and to identify the highest priority areas for improvement.

• In evaluations, acquisition agencies use the maturity model to identify
qualified bidders and to monitor existing contracts.

The assessment and evaluation methods are based upon the maturity model and use the SEI
questionnaire. It provides a structured basis for the investigation and permits the rapid and
reasonably consistent development of findings that identify the organization’s key strengths
and weaknesses. The significant difference between assessments and evaluations comes
from the way the results are used. For an assessment, the results form the basis for an action
plan for organizational self-improvement. For an evaluation, they guide the development of a
risk profile. In source selection, this risk profile augments the traditional criteria used to select
the most responsive and capable vendors. In contract monitoring, the risk profile may also be
used to motivate the contractor’s process improvement efforts.

5.1 Software Process Assessment

An assessment is a diagnostic tool to aid organizational improvement. Its objectives are to pro-
vide a clear and factual understanding of the organization’s state of software practice, to iden-
tify key areas for improvement, and to initiate actions to make these improvements. The
assessment starts with the senior manager’s commitment to support software process im-
provement. Since most executives are well aware of the need to improve the performance and
productivity of their software development operations, such support is often readily available.

The next step is to select an assessment coordinator who works with local management and
the assessing organization to make the necessary arrangements. The assessment team is
typically composed of senior software development professionals. Six to eight professionals
are generally selected from the organization being assessed together with one or two coaches
who have been trained in the SEI assessment method. While the on-site assessment period
takes only one week, the combined preparation and follow-on assessment activities generally
take at least four to six months. The resulting improvement program should then continue in-
definitely.

Software Process Assessments are conducted in accordance with a signed assessment
agreement between the SEI-licensed assessment vendor and the organization being as-
sessed. This agreement provides for senior management involvement, organizational repre-
sentation on the assessment team, confidentiality of results, and follow-up actions. As
described in Section 5.4, SEI has licensed a number of vendors to conduct assessments.
CMU/SEI-92-TR-7 13

Software Process Assessments are typically conducted in six phases. These phases are:

1. Selection Phase: During the first phase, an organization is identified as a candidate
for assessment and the assessing organization conducts an executive level briefing.

2. Commitment Phase: In the second phase, the organization commits to the full
assessment process. An assessment agreement is signed by a senior executive of
the organization to be assessed and the assessment vendor. This commitment
includes the personal participation of the senior site manager, site representation on
the assessment team, and agreement to take action on the assessment
recommendations.

3. Preparation Phase: The third phase is devoted to preparing for the on-site
assessment. An assessment team receives training and the on-site period of the
assessment process is fully planned. This includes identifying all the assessment
participants and briefing them on the process, including times, duration, and purpose
of their participation. The maturity questionnaire is also filled out at this time.

4. Assessment Phase: In the fourth phase, the on-site assessment is conducted. The
general structure and content of this phase is shown in Figure 5-1. On the first day,
senior management and assessment participants are briefed as a group about the
objectives and activities of the assessment. The team then holds discussions with the
leader of each selected project to clarify information provided from the maturity
questionnaire. On the second day, the team holds discussions with the functional
area representatives (FARs). These are selected software practitioners who provide
the team with insight into the actual conduct of the software process. At the end of
the second day, the team generates a preliminary set of findings. Over the course of
the third day, the assessment team seeks feedback from the project representatives
to help ensure that they properly understand the issues. A final findings briefing is
then produced by the team. On the fourth day, this briefing is further refined through
dry run presentations for the team, the FARs, and the project leaders. The findings
are revised and presented to the assessment participants and senior site
management on the fifth day. The assessment ends with an assessment team
meeting to formulate preliminary recommendations.

5. Report Phase: The fifth phase is for the preparation and presentation of the
assessment report. This includes the findings and recommendations for actions to
address these findings. The entire assessment team participates in preparing this
report and presenting it to senior management and the assessment participants. A
written assessment report provides an essential record of the assessment findings
and recommendations. Experience has shown that this record has lasting value for
the assessed organization.

6. Assessment Follow-Up Phase: In the final phase, a team from the assessed
organization formulates an action plan. This should include members from the
assessment team. There may be some support and guidance from the assessment
vendor during this phase. Action plan preparation typically takes from three to nine
months and requires several person-years’ professional effort. After approximately
18 months, the organization should do a reassessment to assess progress and to
sustain the software process improvement cycle.

To conduct assessments successfully, the assessment team must recognize that their objec-
tive is to learn from the organization. Consequently, 50 or more people are typically inter-
viewed to learn what is done, what works, where there are problems, and what ideas the
people have for process improvement. Most of the people interviewed are non-management
software professionals.
14 CMU/SEI-92-TR-7

5.2 Software Capability Evaluation

Software capability evaluations (SCE) are typically conducted as part of the Department of De-
fense or other government or commercial software acquisition process. Many U.S. govern-
ment groups have used SCE and several commercial organizations have also found them
useful in evaluating their software contractors and subcontractors. A software capability eval-
uation is applied to the site where the proposed software work is to be performed. While an
assessment is a confidential review of an organization’s software capability largely by its own
staff, an evaluation is more like an audit by an outside organization.

The software capability evaluation method helps acquisition agencies understand the software
management and engineering processes used by a bidder. To be fully effective, the SCE eval-
uation approach should be included in the Source Selection Plan and the key provisions de-
scribed in the request for proposal. After proposal submission and SCE evaluation team
training, site visits are planned with each bidder. The acquisition agency then selects several
representative projects from a set of submitted alternatives, and the project managers from
the selected projects are asked to fill out a maturity questionnaire.

The on-site evaluation team visits each bidder and uses the maturity questionnaire to guide
selection of the representative practices for detailed examination. Information is generally
gained through interviews and documentation reviews. By investigating the process used on

Opening Meeting

Management
Participants

Functional Area
Discussions

Project Leader
Feedback

PL Round 2

Dry Run Findings
Presentation

(Team)

Final Findings
Presentation

Review Response
Analysis

Preliminary
Findings

Final Findings
Draft

Dry Run Findings
Presentation

(FARs)
Executive Session

Project Leader
Discussions

PL Round 1

Dry Run Findings
Presentation (PLs)

Draft
Recommenda-

tions

Final Findings

Assessment
Debrief

Next Steps

Figure 5-1: Assessment Process Flow
CMU/SEI-92-TR-7 15

the bidder’s current projects, the team can identify specific records to review and quickly iden-
tify potential risk areas. The potential risk categories considered in these evaluations are of
three types:

1. The likelihood that the proposed process will meet the acquisition needs.
2. The likelihood that the vendor will actually install the proposed process.
3. The likelihood that the vendor will effectively implement the proposed process.

Because of the judgmental nature of such risk evaluations, it is essential that each evaluation
use consistent criteria and a consistent method. The SCE method provides this consistency.

Integrating the evaluation method into the acquisition process involves four steps:

1. Identifying the maturity of the contractor’s current software process.
2. Assessing program risks and how the contractor’s improvement plans alleviate these

risks.
3. Making continuous process improvement a part of the contractual acquisition

relationship .
4. Ongoing monitoring of software process performance.

Evaluations take time and resources. To be fully effective, the evaluation team must be com-
posed of qualified and experienced software professionals who understand both the acquisi-
tion and the software processes. They typically need at least two weeks to prepare for and
perform each site visit. Each bidder must support the site visit with the availability of qualified
managers and professional staff members. Both the government and the bidders thus expend
considerable resources in preparing for and performing evaluations for a single procurement.
Software capability evaluations should thus be limited to large-scale and/or critical software
systems, and they should only be performed after determining which bidders are in the com-
petitive range.

A principle reason for this SCE evaluation approach is to assist during the source selection
phase of a project. Since no development project has yet been established to do the work, oth-
er representative projects must be examined. The review thus examines the development
practices used on several current projects because these practices are likely representative
of those to be used on the new project. The SCE evaluation thus provides a basis for judging
the nature of the development process that will be used on a future development.

5.3 Contract Monitoring

The SCE method can also be used to monitor existing software contracts. Here, the organiza-
tion evaluates the maturity of the development work being done on the current contract. While
the process is similar to that used in source selection, it is somewhat simpler. During the site
visit, for example, the evaluation team typically only examines the project under contract. To
facilitate development of a cooperative problem-solving attitude, some acquisition agencies
16 CMU/SEI-92-TR-7

have found it helpful to use combined acquisition- contractor teams and to follow a process
that combines features of assessments and evaluations. As more experience is gained, it is
expected that contract monitoring techniques will evolve and improve as well.

5.4 Other Assessment Methods

Self-assessments are another form of SEI assessment, with the primary distinction being as-
sessment team composition. Self-assessment teams are composed of software professionals
from the organization being assessed. It is essential, however, to have one or two software
professionals on the team who have been trained in the SEI method. The context, objective,
and degree of validation are the same as for other SEI assessments.

Vendor-assisted assessments are SEI assessments that are conducted under the guidance
of commercial vendors who have been trained and licensed to do so by the SEI. The assess-
ment team is trained by the vendor and consists of software professionals from the organiza-
tion being assessed plus at least one vendor professional who has been licensed by the SEI.
By licensing commercial vendors, SEI has made software process assessments available to
the general software community.

During the early development of the assessment method, SEI conducted a number of assess-
ment tutorials. Here, professionals from various organizations learned about process manage-
ment concepts, assessment techniques, and the SEI assessment methodology. They also
supplied demographic data on themselves and their organizations as well as on a specific
project. They did this by completing several questionnaires. This format was designed to in-
form people about the SEI assessment methodology to get feedback on the method, and to
get some early data on the state of the software practice.

5.5 Assessment and Evaluation Considerations

The basic purposes of the Software Process Maturity Model, assessment method, and capa-
bility evaluation method are to foster the improvement of U.S. industrial software capability.
The assessment method assists industry in its self-improvement efforts and the capability
evaluation method provides acquisition groups with an objective and repeatable basis for de-
termining the software capabilities of their vendors. This in turn helps to motivate software or-
ganizations to improve their capabilities. Generally, vendors cannot continue to invest in
efforts that are not valued by their customers. Unless a software vendor’s capability is recog-
nized and valued by its customers, there can thus be little continuing motivation for process
improvement. The SCE approach facilitates sustained process improvement by establishing
process quality criteria, making these criteria public, and supporting software acquisition
groups in their application.

One common concern with any evaluation system concerns the possibility that software ven-
dors could customize their responses to achieve an artificially high result. This concern is a
consequence of the common misconception that questionnaire scores alone are used in SCE
CMU/SEI-92-TR-7 17

evaluations. Experience with acquisitions demonstrates that the SCE method makes this strat-
egy impractical. When properly trained evaluators look for evidence of sound process practic-
es, they have no difficulty in identifying organizations with poor software capability. Well-run
software projects leave a clear documented trail that less competent organizations are inca-
pable of emulating. For example, an organization that manages software changes has exten-
sive change review procedures, approval documents, and control board meeting minutes.
People who have not done such work are incapable of pretending that they do. In the few cas-
es where such pretense has been attempted, it was quickly detected and caused the evalua-
tors to doubt everything else they had been told. To date, the record indicates that the most
effective contractor strategy is to actually implement a software process improvement pro-
gram.
18 CMU/SEI-92-TR-7

6 State of Software Practice

One of the most effective quality improvement methods is called benchmarking. An organiza-
tion identifies one or more leading organizations in an area and then consciously strives to
match or surpass them. Benchmarking has several advantages. First, it clearly demonstrates
that the methods are not theoretical and that they are actually used by leading organizations.
Second, when the benchmarked organization is willing to cooperate, it can be very helpful in
providing guidance and suggestions. Third, a benchmarking strategy provides a real and tan-
gible goal and the excitement of a competition. SEI has established state-of-the-practice data
and has urged leading software organizations to identify themselves to help introduce the
benchmarking method to the software development community.

While no statistically constructed survey of software engineering practice is available, SEI has
published data drawn from the assessments SEI and its licensed vendors conducted from
1987 through 1991 [Kitson 92]. This includes data on 293 projects at 59 software locations to-
gether with interviews of several thousand software managers and practitioners. The bulk of
these software projects were in industrial organizations working under contract to the U.S. De-
partment of Defense (DoD). A smaller set of projects was drawn from U.S. commercial soft-
ware organizations and U.S. government software groups. While there is insufficient data to
draw definitive conclusions on the relative maturity of these three groups, SEI has generally
found that industrial DoD software contractors have somewhat stronger software process ma-
turity than either the commercial software industry or the government software groups.

Figure 6-2 shows the data obtained as of January 1992 on the maturity distribution of the U.S.
software sites assessed. These results indicate that the majority of the respondents reported
projects at the initial level of maturity with a few at levels 2 and 3. No sites were found at either
the managed level (level 4) or the optimizing level (level 5) of software process maturity.

While these results generally indicate the state of the software engineering practice in the
U.S., there are some important considerations relating to SEI’s data gathering and analytical
approach.

First, these samples were not statistically selected. Most respondents came from organiza-
tions affiliated with the SEI. Second, the respondents also varied in type and degree of involve-
ment with the projects on which they reported.

These results are also a mix of SEI-assisted and self-assessments. While the assessment
methods were the same in all cases, the selection process was not. SEI focused primarily on
organizations whose software work was of particular importance to the DoD or organizations
that were judged to be doing advanced work. Figure 6-2 shows these two distributions. Here,
the SEI-assisted assessments covered 63 projects at 13 sites and the self-assessments cov-
ered 233 projects at 46 sites.
CMU/SEI-92-TR-7 19

Figure 6-1: U.S. Assessment Maturity Level Distribution
20 CMU/SEI-92-TR-7

Figure 6-2: U.S. Assessment Maturity Level Distribution by
Assessment Type1
CMU/SEI-92-TR-7 21

1. Thirteen sites encompassing 63 projects conducted SEI-assisted assessments; 46 sites encompassing 233
projects conducted self-assessments.

22 CMU/SEI-92-TR-7

7 Process Maturity and CASE

CASE systems are intended to help automate the software process. By automating the routine
tasks, labor is potentially saved and sources of human error are eliminated. It has been found
that a more effective way to improve software productivity is by eliminating mistakes rather
than by performing tasks more efficiently [Humphrey 89B]. This requires an orderly focus on
process definition and improvement.

For a complex process to be understood, it must be relatively stable. W. Edwards Deming,
who inspired the post war Japanese industrial miracle, refers to this as statistical control [Dem-
ing 82]. When a process is under statistical control, repeating the work in roughly the same
way will produce roughly the same result. To get consistently better results, statistical methods
can be used to improve the process. The first essential step is to make the software process
reasonably stable. After this has been achieved, automation can be considered to improve its
efficiency.

Consistent and sustained software process improvement must ultimately utilize improved
technology. Improved tools and methods have been helpful throughout the history of software;
but once the software process reaches maturity level 5 (optimizing), organizations will be in a
far better position to understand where and how technology can help.

In advancing from the level 1 (chaotic) process, major improvements are made by simply turn-
ing a group of programmers into a coordinated team of professionals. The challenge faced by
immature software organizations is to learn how to plan and coordinate the creative work of
their professionals so they support rather than interfere with each other. The first priority is for
a level 1 organization to establish the project management practices required to reach level 2.
It must get its software process under control before it attempts to install a sophisticated CASE
system. To be fully effective, CASE systems must be based on and support a common set of
policies, procedures, and methods. If these systems are used with an immature process, au-
tomation will generally result in more rapid execution of chaotic activities. This may or may not
result in improved organizational performance. This conclusion does not apply to individual
task-oriented tools such as compilers and editors, where the tasks are reasonably well under-
stood.
CMU/SEI-92-TR-7 23

24 CMU/SEI-92-TR-7

8 Improvement Experience

Of the many organizations that have worked with SEI on improving their software capability,
some have described the benefits they obtained. At Hughes Aircraft, for example, a process
improvement investment of $400,000 produced an annual savings of $2,000,000. This was
the culmination of several years work by some experienced and able professionals, with
strong management support [Humphrey 91]. Similarly, Raytheon found that the cost benefits
of software process improvement work reduced their testing and repair efforts by $19.1 million
in about four years [Dion 92]. While the detailed results of their improvement efforts have not
been published, it is understood that their costs were of the same general order of magnitude
as at Hughes Aircraft.

A similar and longer term improvement program was undertaken at IBM Houston by the group
that develops and supports the on-board software for the NASA space shuttle. As a result of
their continuous process improvement work, and with the aid of IBM’s earlier assessment ef-
forts, they achieved the results shown in Table 8-1 [Kolkhorst 88].

1 9 82 1 98 5

Early error detection (%) 48 80

Reconfiguration time (weeks) 11 5

Reconfiguration effort (person-years) 10.5 4.5

Product error rate (errors per 1000 lines of code) 2.0 0.11

Figure 8-1: On-Board Shuttle Software
CMU/SEI-92-TR-7 25

26 CMU/SEI-92-TR-7

9 Future Directions

Future developments with the SEI maturity model must be intimately related to the future de-
velopments in software technology and software engineering methods. As the SEI works to
evolve and improve the software process maturity model, it will likely focus on organizations
in the U.S. but both the Europeans and Japanese are showing considerable interest. With
proper direction, this work should evolve into an internationally recognized framework for pro-
cess improvement. This would likely require broader and more formal review and approval
mechanisms to involve all interested parties.

Historically, almost all new developments in the software field have resulted in multiple com-
peting efforts. This has been highly destructive in the cases of languages and operating sys-
tems, and appears likely to be a serious problem with support environments as well. While
each competing idea may have some nuance to recommend it, the large number of choices
and the resulting confusion has severely limited the acceptance of many products and has
generally had painful economic consequences as well. The SEI has attempted to minimize
such a risk by inviting broad participation in the development and review of the CMM and ques-
tionnaire improvement efforts. Several hundred software professionals from many branches
of industry and government have participated in this work, and the SEI change control system
now has several thousand recorded comments and suggestions. It is thus hoped that anyone
with improvement suggestions will participate in this work rather than start their own. Such
separate efforts would dilute the motivational and communication value of the current software
process maturity model and make it less effective for process improvement. The need is to
evolve this instrument and framework to meet the needs of all interested parties. This would
assure maximum utility of the maturity model and retain its credibility in the eyes of managers
and acquisition groups.

Several divisions of the U.S. Department of Defense acquisition community are beginning to
adopt the SCE method, with the CMM as its basis, as a routine practice for evaluating its major
software vendors. This work has been started with the support of the SEI and, as of 1992,
more than 500 government personnel had been trained in SCE and more than 45 such acqui-
sitions have been conducted. Roughly 88% of the personnel trained and 75% of the acquisi-
tions conducted were during 1991-1992. This is indicative of the increasing user perception
and acceptance of the SCE method as a viable acquisition tool. The anecdotal evidence from
these acquisition experiences have been consistently positive for the users, and increased us-
age is likely.

The greatest risk with SCE is its accelerated use. In their eagerness to address the current
severe problems with software acquisition, management could push its application faster than
capability evaluation teams could be trained and qualified. If this results in an overzealous au-
dit mentality, industry’s improvement motivation will likely be damaged. The result could easily
be another expensive and counterproductive step in an already cumbersome and often inef-
fective acquisition process.
CMU/SEI-92-TR-7 27

More generally, several research efforts in the U.S. and Europe are addressing various as-
pects of process modeling and process definition. This work has recognized that processes
are much like programs and that their development requires many of the same disciplines and
technologies [Osterweil 87, Kellner 88]. This body of work is building improved understanding
of the methods and techniques for defining and using processes. This in turn will likely facilitate
work on improved automation support of the software process.
28 CMU/SEI-92-TR-7

10 Conclusions

Software is pivotal to U.S. industrial competitiveness, and improved performance of software
groups is required for the U.S. to maintain its current strong position. As has happened in
many industries, an early U.S. technological lead can easily be lost through lack of timely at-
tention to quality improvement. With proper management support, dedicated software profes-
sionals can make consistent and substantial improvements in the performance of their
organizations. The SEI Capability Maturity Model has been helpful to managers and profes-
sionals in motivating and guiding this work.
CMU/SEI-92-TR-7 29

30 CMU/SEI-92-TR-7

References

[Crosby 79] Crosby, P. B., Quality is Free, McGraw-Hill, New York, 1979.

[Deming 82] Deming, W. E., Out of the Crisis, MIT Center for Advanced Engineering
Study, Cambridge, MA, 1982.

[Dion 92] Dion, R.A., "Elements of a Process-Improvement Program," IEEE Soft-
ware, July 1992, pp. 83-85.

[Humphrey 87] Humphrey, W. S. and Sweet, W. L., A Method for Assessing the Soft-
ware Engineering Capability of Contractors, Software Engineering Insti-
tute Technical Report CMU/SEI-87-TR-23, ADA187230 Carnegie Mellon
University, Pittsburgh, PA, 1987.

[Humphrey 89] Humphrey, W. S., Managing the Software Process, Addison-Wesley,
Reading, MA, 1989(B).

[Humphrey 91] Humphrey, W. S., Snyder, T. R., and Willis, R. R., "Software Process Im-
provement at Hughes Aircraft," IEEE Software, July 1991.

[Kellner 88] Kellner, M. I., "Representation Formalism for Software Process Modeling,"
Proceedings of the 4th International Software Process Workshop,
ACM Press, 1988, pp. 93-96.

[Kitson 92] Kitson, D. H. and Masters, S., An Analysis of SEI Software Process As-
sessment Results 1987-1991, Software Engineering Institute Technical
Report CMU/SEI-92-TR-24, ADA253351, Carnegie Mellon University,
Pittsburgh, PA, 1992.

[Kolkhorst 88] Kolkhorst, B. G. and Macina, A. J., "Developing Error-Free Software," Pro-
ceedings of Computer Assurance Congress ‘88, IEEE Washington Sec-
tion on System Safety, June 27-July 1, 1988, pp. 99-107.

[Osterweil 87] Osterweil, L., "Software Processes are Software Too," Proceedings of the
9th International Conference on Software Engineering, Monterey, CA,
IEEE Computer Society Press, 1987, pp. 2-13.

[Paulk 91] Paulk, M. C., Curtis, B., and Chrissis, M. B., Capability Maturity Model for
Software, Software Engineering Institute Technical Report CMU/SEI-91-
TR-24, Carnegie Mellon University, Pittsburgh, PA, August 1991.

[Radice 85] Radice, R. A., Harding, J. T., Munnis, P. E., and Phillips, R. W., "A Program-
ming Process Study," IBM Systems Journal, vol. 24, no. 2, 1985.
CMU/SEI-92-TR-7 31

32 CMU/SEI-92-TR-7

13a. TYPE OF REPORT

Final

2a. SECURITY CLASSIFICATION AUTHORITY
N/A

15. PAGE COUNT13b. TIME COVERED

FROM TO

14. DATE OF REPORT (year, month, day)

11. TITLE (Include Security Classification)

1a. REPORT SECURITY CLASSIFICATION

Unclassified

5. MONITORING ORGANIZATION REPORT NUMBER(S)4. PERFORMING ORGANIZATION REPORT NUMBER(S)

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

N/A

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for Public Release
Distribution Unlimited

1b. RESTRICTIVE MARKINGS

None

10. SOURCE OF FUNDING NOS.

6c. ADDRESS (city, state, and zip code)

Carnegie Mellon University
Pittsburgh PA 15213

7a. NAME OF MONITORING ORGANIZATION

SEI Joint Program Office
6b. OFFICE SYMBOL
(if applicable)

6a. NAME OF PERFORMING ORGANIZATION

Software Engineering Institute

7b. ADDRESS (city, state, and zip code)

HQ ESC/ENS
5 Eglin Street
Hanscom AFB, MA 01731-2116

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F1962890C0003
8b. OFFICE SYMBOL
(if applicable)

8a. NAME OFFUNDING/SPONSORING
 ORGANIZATION

SEI Joint Program Office

16. SUPPLEMENTARY NOTATION

12. PERSONAL AUTHOR(S)

17. COSATI CODES 18. SUBJECT TERMS (continue on reverse of necessary and identify by block number)

PROGRAM
ELEMENT NO

PROJECT
NO.

TASK
NO

WORK UNIT
NO.

FIELD SUB. GR.GROUP

SEI

ESC/ENS

REPORT DOCUMENTATION PAGE

63756E N/A N/A N/A

8c. ADDRESS (city, state, and zip code))

Carnegie Mellon University
Pittsburgh PA 15213

CMU/SEI-92-TR-7 ESC-TR-92-007

Introduction to Software Process Improvement (Revised: June 1993)

June 1992 (Revised June 1993) 42

THIS IS A REVISION TO THE FIRST VERSION, WHICH WAS ORIGINALLY ISSUED IN JUNE 1992.

culture, goals, improvement, management, maturity model, measurement,
process, quality, resources, software

Watts S. Humphrey
19. ABSTRACT (continue on reverse if necessary and identify by block number)

While software now pervades most facets of modern life, its historical problems have not been
solved. This report explains why some of these problems have been so difficult for organizations to
address and the actions required to address them. It describes the Software Engineering Institute’s
(SEI) software process maturity model, how this model can be used to guide software organizations
in process improvement, and the various assessment and evaluation methods that use this model.
The report concludes with a discussion of improvement experience and some comments on future
directions for this work.
UNCLASSIFIED/UNLIMITED SAME AS RPT DTIC USERS

22a. NAME OF RESPONSIBLE INDIVIDUAL

Thomas R. Miller, Lt Col, USAF

21. ABSTRACT SECURITY CLASSIFICATION

Unclassified, Unlimited Distribution

22c. OFFICE SYMBOL

ESC/ENS (SEI)
22b. TELEPHONE NUMBER (include area code)

(412) 268-7631

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

(please turn over)

ABSTRACT — continued from page one, block 19

	Table of Contents
	List of Figures
	Author’s Note
	1 Introduction

	2 Background
	3 Process Maturity Model Development
	4 The Process Maturity Model
	5 Uses of the Maturity Model
	5.1 Software Process Assessment
	5.2 Software Capability Evaluation
	5.3 Contract Monitoring
	5.4 Other Assessment Methods
	5.5 Assessment and Evaluation Considerations

	6 State of Software Practice
	7 Process Maturity and CASE
	8 Improvement Experience
	1982
	1985

	9 Future Directions
	10 Conclusions
	References

