

Edge Enabled Systems

Zacharie Hall

Command and Control Directorate

Communications-Electronics

Research Development and Engineering Center

Aberdeen Proving Ground, USA

zacharie.t.hall@us.army.mil

Rick Kazman, Daniel Plakosh, Joseph Giampapa,

Kurt Wallnau

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA USA

{rkazman, dplakosh, garof, kwallnau} @sei.cmu.edu

Abstract—Users of today have ever-increasing levels of technical

skill with computing and communication technologies. For

example, on the battlefield, some soldiers are capable of creating

or modifying existing systems in response to needs that were not

anticipated by the designers of the original systems. In a growing

number of situations this ability is crucial, because the soldier

must be able to adapt rapidly to a dynamically changing

operating environment; thus the software must also be adaptable.

Software architectures and software development methods must

be created that enable user innovation “at the edge” so that users

can be as effective as possible in the face of changing missions

and unanticipated needs. In this paper, we describe the

characteristics of edge systems and the edge organizations in

which these systems operate, and make initial recommendations

about how such systems and organizations can be created to

serve the needs of users at the edge.

Keywords-edge programming; crowdsourcing; agility; adaptability;

edge enabled; open source; ultra large scale systems; socal systems;

architecture; community based software

I. INTRODUCTION

Traditionally, military software has been designed to
discourage the end user from modifying the application, to
ensure application integrity, security, reliability and
consistency. However, today‘s Warfighter relies more than
ever on information technology; this means that they must be
adept at using technology and to rapidly adapt to changes in
their environment. Today‘s Warfighters have substantial and
ever-increasing levels of technical skills. In the battlefield,
some soldiers are capable of creating or modifying systems in
response to needs that were not anticipated by the original
designers of the systems. Thus software that the Warfighter
uses must also be adaptable. Software architectures and
development methods must be defined or developed to help
enable user innovation ―at the edge‖ so that Warfighters can be
effective as possible in the face of changing missions and
unanticipated needs [1].

These methods of facilitating the user at the edge have been
referred to as ―Edge Programming‖[23], but what is actually
required is much broader than just programming: edge activity
does not necessarily involve writing ―code‖ and may also
involve substantial changes in organizational structure and
governance [1]. In this paper we use the term ―Edge Enabled

Systems‖ (EESs) to emphasize our interest in systems that
enable the creative contribution of users at the edge. In the
remainder of this paper we will describe the principles on
which EESs are grounded, and will describe the architectural
and process principles for creating and supporting EESs.

A. Enabling the Edge

Yochai Benkler in his book ―The Wealth of Networks‖ [4]
puts forth a compelling argument: we are in the midst of a
radical transformation in how we create our information
environments. This change underlies the open-source
movement in software, but open source is just one example of
how society is restructuring around new models of production
and consumption. The most impressive aspect “is the rise of
effective, large-scale cooperative efforts—peer production of
information, knowledge, and culture... We are beginning to see
the expansion of this model not only to our core software
platforms, but beyond them into every domain of information
and cultural production.” [4]

Our networked information environment has transformed
the marketplace, creating new opportunities for how we make
and exchange information. ―Crowdsourcing‖—one form of
value creation at ―the edge‖—is already widely used in the arts,
in basic research, and in retail business [7]. The world has
changed: increasing the role of non-market and non-proprietary
production and the role of individuals and loosely affiliated
groups, while reducing the power of big business.

Another trend changing our world is that businesses are
themselves transforming, in part as a reaction to net-enabled
consumers; firms are moving towards service orientation.
Service industries account for over 55% of economic activity in
the United States [5]. According to Vargo, businesses have
moved from “a goods-dominant view, in which tangible output
and discrete transactions were central, to a service-dominant
view, in which intangibility, exchange processes, and
relationships are central.” [24] Service-dominant logic
requires a fundamental shift on the part of businesses, to see
consumers not as passive recipients of goods, but as co-creators
of value. Inviting and enabling the crowds helps to align
systems with the real and rapidly changing needs of their users.
In a service-dominant view of the Army, Warfighters are
therefore not treated as passive receivers of information, but as

co-creators of information and the value that attends this
information. In Section 2 we will show some examples where
co-creation is already occurring in the Army.

Vargo claims that the shift from a product/goods focus to a
service focus actually entails several shifts in thinking [24]:

1. From thinking about the purpose of firm activity as
making something (goods or services) to a process of
assisting customers in their own value-creation
processes.

2. From thinking about value as something produced and
sold to thinking about value as something co-created
with the customer and other value-creation partners.

3. From thinking of customers as isolated entities to
understanding them in the context of their own
networks.

4. From thinking of firm resources primarily as
operand—tangible resources such as natural
resources—to operant—usually intangible resources
such as knowledge and skills.

5. From thinking of customers as targets to thinking of
customers as resources.

6. From making efficiency primary to increasing
efficiency through effectiveness.

Collectively, these shifts imply more than just a move from
goods to services. They are a reframing of the purpose of the
enterprise and its role in value creation, for both the entities
involved and for society. So our research goal is to determine
what an organization (such as the US Army) must do to use
and to manage projects in a service-dominant world? How can
we create the service systems [15] (or, in our terms, the Edge
Enabled Systems) of the future?

These are difficult questions for which existing system and
software development models—waterfall, agile, spiral, and so
forth—are of little help. These older models all contains
―closed world‖ assumptions: projects have dedicated finite
resources, management can ―manage‖ these resources,
requirements can be known, software is developed, tested, and
released in planned increments. But these assumptions all
break—to varying degrees—in a crowdsourced world, where
most of the value is created at the ―edge‖.

Traditionally, system analysts have been trained to focus on
the ―value propositions‖ of firms instead of ―value co-
creation.‖ At best, ―co-production‖ with stakeholders on the
edge has been considered in design methodologies such as
Joint Product Design, Joint Application Design, Rapid
Application Development and, more recently, agile methods in
which customers‘ requirements are solicited and modeled
through an iterative process that incorporates intense customer
feed-back. Examples of projects that have had intensive
stakeholder input include the Command Post of the Future
(CPoF), Tactical Ground Reporting (TiGR), Combined
Information Data Network Exchange (CIDNE), FusionNet and
FalconView.

While innovative in many ways, each of these still exhibits
a goods-dominant logic perspective. Product-focused and
goods-focused design treats customers as isolated entities—as
recipients of value—and neglects customers‘ own resources
and networks for dynamic collaborative value co-creation.
Service-dominant design, on the other hand, considers resource
integration from various entities (users, firms, suppliers, and
their networks) for value co-creation. Examples of such co-
creation have already emerged, from open-source software to
Wikipedia, Facebook, Amazon‘s Mechanical Turk, and many
other community-based service systems. Each of these
examples is a complex software-intensive or software-enabled
system that is co-created by its participants—the crowds.

This paper characterizes edge-enabled systems from two
perspectives: first as an organizational construct that contains
what we term a ―Metropolis‖ orientation, then as a collection of
mechanisms to create and manage edge systems. Building on
these two perspectives we provide a set of recommendations
for changes in the way that the Army (or any other organization
that creates complex life-critical systems) designs, builds, and
manages complex systems. This paper does not suggest that
Edge enablement is right for all systems—certainly there are
and will always be some classes of system that need to be
tightly controlled and rigorously developed—but we maintain
that a large and important class of systems can be profitably
created with an eye to engaging the Edge.

II. EDGE ENABLED SYSTEMS IN THE DOD

A. Edge Enabled Systems Today

One of the oldest examples of Edge enablement, in military
systems, is the US Navy‘s AEGIS Weapon System (AWS) see
Figure 1. Excerpts from [20] provide clues to the way that
Edge Enabling, in somewhat constrained form, is used in high-
end systems today:

Figure 1: Aegis Weapon System Information

―AWS automates many functions in the ship‟s operations
room such as picture compilation, tracking, identification,
target-weapons pairing, „quick reaction‟ or „late detect‟
procedures and tactical data link management. These

automated functions reside within „AWS Doctrine‟; a set of
standard operating procedures that allow the ship‟s command
to adapt to changing operational situations with a series of
user-defined ‘doctrine statements’. AWS Doctrine is thus
adaptable to various rules of engagement and compatible with
different tactical control structures”.

 “Aegis tactical doctrine can be implemented in an
automatic, semi-automatic or manual mode. The first two
modes reduce delays introduced by required operator actions.
Doctrine statements are essentially „standing orders‟ to the
Aegis Combat System (ACS) collated in different types of „if
<expectation>, then <action>‟ statements that are
created/modified and activated/deactivated, one at a time or in
sets, by authorized sub-modes. Doctrine statements combine
operator and system automation strengths. Principal Warfare
Officers and Combat System Operators will use them to allow
the combat system to make tactical decisions under human
supervision”. Note that in this description, the Principle
Warfare Officers and Combat System Operators can both be
considered ―Edge programmers.‖

There is anecdotal evidence that soldiers are already
leveraging and, in some cases, customizing Commercial off the
Shelf (COTS) and Open-Source Software (OSS) to solve
urgent problems, enhance the dissemination of information, or
simply make their jobs easier. In one example, a Sergeant
stationed near Mosul used second hand laptops, salvaged wires,
and freely available Voice over IP (VoIP) software to improve
communications between watch towers and the home base.
That same sergeant also integrated open source video software
with his Forward Looking Infrared (FLIR) system to assist in
monitoring for insurgents [13].

PBS‘s Frontline published an interview with a Major from
1st Cavalry Division who created CAVNET—a ―knowledge
transfer system‖—accessible to company level commanders for
sharing and evolving Tactics, Techniques and Procedures
between missions. In the interview, the Major contrasts
traditional military organizations with one more consistent with
Edge Enabled principles [19]:

“…our culture is inherently hierarchical and stove-piped

when it comes to the validation of "new actionable

knowledge." Normally it will stay within the unit based on the

way we have created our After-Action Review process. The

learning that is achieved will be fed back into the same unit.

But wouldn't it be great if that learning could be transferred

laterally?”

“I had an idea for a series of unit-level networks at each of the

major Army installations, re-sourced by high-powered

captains who worked directly for the commanding general

[and] who would collect, observe, connect, collaborate, and

disseminate -- on behalf of the command -- the created

knowledge of a unit.

It was not initially received well...” "…‟Too hard,‟ „Not

relevant,‟ „Won't work,‟ „Not what we're about,‟ were the

common responses. I guess the idea kind of festered in the

mind of my old commander, Col. Paul Funk, who brought up a

variation of the idea to Maj. Gen. Chiarelli, and Lt. Gen.

Thomas Metz (III Corps commander) who saw the power of

the idea in a different con-text.”
Many commonly used commercial software applications

are Edge-enabled, and provide varying degrees of user
programmability. Email clients enable users to create rules that
automatically perform any number of actions according to user
definable criteria. A number of popular video games give users
the tools to create customized characters and environments.
Productivity suites such as Microsoft Office have long included
scripting and macro capabilities to extend or auto-mate
functionality and as of Mac OS 10.4, Apple has provided
Automator which lets users build customized workflows and
automate repetitive tasks across applications.

B. Inhibitors to Enabling the Edge

All change introduces risk, and all change is disruptive; and
edge programming is especially disruptive to an organization
such as the Army where the consequences of risk may be
matters of life and death. Inhibitors to adopting edge
technology arise in several areas of concern:

 Established Practices: US Warfighters are trained to solve
their own problems when existing tools do not meet their
needs. However, for many good reasons, it is often argued
that all changes to a sys-tem should be done through a
Program Manager. Only in this way can the Army avoid
configuration management problems, duplication of efforts
or the development of over-lapping capabilities, and an
inability to standardize across the forces to include
training, maintenance, interoperability, logistics and
sustainment.

 Cultural Disconnect: Warfighters are still seen primarily
as consumers of information rather than producers of
information, and many are not convinced a community
would form that could sustain an edge enabled
environment in the long run. Moreover, there is
skepticism that crowd-sourcing has any bearing on combat
operations, and there is no doctrine that corresponds to
value creation and co-creation.

 Information Assurance and Policy: There exists a lengthy
certification and accreditation process for getting new
systems approved for use on DoD networks. Prior to
becoming operational a system must obtain an Authority to
Operate and in some cases a Certificate of Networthiness.
Unfortunately, that process is difficult to navigate, can be
very time consuming and requires specific personnel
certified to perform the analysis. The fear is that by
enabling edge programming, Warfighters may
inadvertently create security vulnerabilities in the
application or system being modified.

 Security and Classifications: Some fear that enabling users
to ―mash up‖ existing data from various sources might un-
intentionally result in hybrid information that requires a
higher level of classification than its original components.
Additionally, there are concerns with rights management
and controlling user access to data across systems. In fact,
over-classification of data can itself be regarded as a
fundamental inhibitor to edge-enabled systems.

III. STRUCTURE AND CHARACTERISTICS OF EDGE

ORGANIZATIONS

A. “The Edge” in the DoD

In ―Power to the Edge: Command… Control… in the
Information Age‖ Alberts and Hayes discuss the concept of an
―Edge Organization‖ and what it means to migrate from an
―Industrial Age‖ organization of stovepipes and hierarchies to
an ―Information Age‖ organization of empowered individuals
[2]. In their book, they focus on the need for interoperability,
agility and enabling rapid information exchange through highly
networked peer-to-peer relationships. The goal is ―not to be
able to perform well in a particular mission, but to create an
organization that is agile … able to meet unexpected
challenges, accomplish tasks in new ways, and learn to
accomplish new tasks.‖ GAO Report (GAO-04-547) to
Congress endorses this thinking by stating:

While senior leaders are becoming increasingly involved in

operations, information is also being distributed to lower and

lower organizational levels, raising the potential for in-

creased autonomy for small units and individual soldiers. For

example, one of the principal organizing and operating tenets

of network-centric operations is the concept called power to

the edge. This concept involves empowering individuals at the

“edge” of an organization—where it interacts with its

operating environment—by expanding access to information

and eliminating unnecessary constraints on action. [10]
This mentality must extend down to the systems and

applications that facilitate information ex-change within the
organization. In effect, getting away from the notion of ―one
size fits all‖ systems and enabling users to work together to
more rapidly create applications that better suit their needs:
―capabilities that are better tailored, better understood and
easier to use and modify.‖ [2]

B. The Acquisition Process

To become an ―Edge Organization‖, organizations have to
rethink their current acquisition processes. Originally, designed
for an Industrial Age military and the procurement of military
specific hardware (e.g. tanks and ships), the US Army‘s
acquisition process was not designed to keep up with the ever
increasing speed of technology change. This problem is
compounded by the sheer size and number or organizations
involved in the creation of an Army System. The Training and
Doctrine Command (TRADOC) creates the doctrine and
identifies gaps in capabilities. Program Executive Offices
(PEOs) and Program Managers (PMs) plan, design, develop,
test, field and maintain software that fills the identified gap.
Research and Development organizations and private
contractors develop the systems according to PEO/PM
requirements. The Office of the Chief Information Officer
(CIO) and other organizations (e.g. Defense Information
Systems Agency (DISA)) create and enforce the policies to
which software based systems must adhere. All of this happens
in multi-year cycles with minimal input from the actual users of
the systems: the experts with the best understanding of the
problem space and operating environment.

But most soldiers today are ―digital natives‖: they own a
smart phone, belong to social networking sites and have used
or even contributed to OSS projects. Compare this with the
Army-provided environment: a centralized procurement
process that often delivers systems that are not what the soldier
asked for, no longer applicable to the current mission, or are
desperately outdated. It should be of no surprise that soldiers
often resort to solving their own problems.

C. Implications of Enabling the Edge

Software engineering has long embraced centralized
production models, where requirements are collected, projects
are managed, architectures are created, and correctness is
determined in a tightly controlled process. It is hierarchical
and rule-oriented (not commons-based or egalitarian).
Software development methods emphasize centralized planning
and control. Even Agile methods stress the importance of face-
to-face communication and the advantages of the "bullpen"—
an open office where workers freely interact.

But if EESs are to be truly embraced then the rules and
tools must be radically changed. Such projects will, to varying
degrees, be community driven and de-centralized with little
overall control, as is the case with the major social networking
communities (e.g. MySpace, Facebook), open content systems
(e.g. Wikipedia, YouTube), and with OSS development today
([9], [16]). Thus we can no longer design and implement such
systems using older models. If systems are constantly in a state
of perpetual beta [18], if they are regularly updated and
combined in novel ways, and if a large part of their utility is in
their comprehensiveness and ubiquity then our concerns, from
a software engineering and project management perspective,
must reflect this. All successful EESs and the organizations
that develop and use these systems, share a common structure,
shown in Figure 2. We refer to this as a Metropolis structure.

Figure 2: The Metropolis Structure of an Edge-Enabled

System [14]

There are three concentric realms of roles (and associated
infrastructure) in an EES, as indicated by the ―circles‖ labeled
kernel, edge, and masses in Figure 2. In the outermost ring are
the masses of end users of such systems. They contribute
requirements, but not content. The middle ring contains

developers and prosumers (a portmanteau of producer and
consumer), and these are the stakeholders at the edge whose
actions and whose value-creation the organization would like to
facilitate. All of this is held together by the kernel. Some
example roles for individuals involved with the kernel are
architects, business owners, and policy makers.

There are also differences in the ―permeability‖ between
the realms—as the figure indicates by the dashed and solid
lines—between the two major types of edge-enabled systems:
community-based service systems (such as Wikipedia, Twitter,
YouTube, Slashdot, and Facebook) and OSS systems (such as
Linux, MySQL, Apache, Eclipse, and Firefox). For example,
in OSS development it is possible to move from the role of an
end user to a developer to a kernel architect, by consistently
contributing and moving up in the meritocracy. Thus a key
question for an organization that wishes to foster edge-enabled
systems is: how should we craft the kernel and what
development principles and practices should we embrace?

In addition, we must recognize that there are many forms of
contribution to EESs that are not programming. To be truly
successful EESs must foster the prosumers, who are typically
not programmers or technical contributors. But prosumers are
responsible for most of the content on Wikipedia, YouTube,
and on the recommender systems [22] and collaborative
tagging systems [11] that provide so much of the content of
today‘s Web.

Not all prosumers are created equal. Frequently there is a
system of regulation that accompanies the contributions to
EESs. For example in Slashdot, the on-line technology news
and news commentary site, users are only granted moderator
status after they have earned enough ―karma‖ (positive
recommendations) from the community. Moderations perform
an accreditation function which is continually responding to the
reactions of the prosumers to a moderator‘s postings. And there
are meta-moderators, whose function is to rate moderators.
This accreditation function is similar to the process of peer
review found in academic communities, relying on the
accumulation of comments by peers (who themselves have
undergone some form of vetting to be in this position) to
establish trustworthiness and quality. [4]

We see prosumers functioning in ―quality control‖
functions in many aspects of the Web. Wikipedia has a group
of volunteer editors (administrators) who have oversight
responsibilities for its integrity. As with Slashdot, such rights
and responsibilities are earned, as determined by a group of
peers (other editors). In this way EESs are self-monitoring and
self-regulating. In the OSS domain there is an analogous
system of rights and responsibilities. Anyone can contribute to
an OSS project, but only a few can contribute to the kernel and
these individuals must be approved by existing members of the
core group [8].

Metropolis projects (and the organizations that create them)
share the following characteristics [14]:

1. Mashability: the systems are seldom created from
scratch; creation as ―mashups‖ is far more common,
borrowing freely from other Metropolis efforts

2. Conflicting, Unknowable Requirements: requirements
in a peer-produced system emerge from its
individuals, operating independently; requirements are
never knowable in any global sense and they will
inevitably conflict, just as the requirements of a city‘s
inhabitants often conflict

3. Continuous Evolution: Metropolis systems are
constantly changing; resources are non-centralized
and so a peer-produced system is never stable. One
cannot conceive of its functionality in terms of
―releases‖ any more than a city has a release: parts are
being created, modified, and torn down at all times

4. Focus on Operations: Metropolis systems focus on
operations as a core competency. This implies high
availability, scalability, and seamless evolution.

5. Open Teams: these projects have decentralized
production processes with no traditional management.
Teams are diverse with differing, sometimes
irreconcilable, views.

6. Sufficient Correctness: Metropolis systems do not
claim to be complete or correct. Sufficient correctness
and perpetual beta are the norm. This is a deliberate
tradeoff to achieve agility and rapid alignment with
user needs.

7. Unstable Resources: Applications that are peer-
produced are subject to the whims of the peers;
however large numbers tend to ameliorate the actions
of any individual. Despite the lack of guarantees,
unstable resource pools have resulted in significant
computational achievements (consider, for example,
that Skype achieves near telephone quality through
peer-contributed resources).

8. Emergent Behaviors: in contrast to existing systems
emergent behavior is considered normal and desirable.
Metropolis systems regularly push the boundaries of
what their creators intended.

In the next section we will discuss a number of different
models for structuring the software of a Metropolis system.
Some of these models apply just to the kernel and others are
applicable to the entire system.

IV. MECHANISMS FOR MANAGING THE EDGE

Here we summarize a variety of products, processes,
information access models, and technologies found in practice
which, although not invented for use in EESs, has particular
resonance with the Edge. We refer to these collectively as
―mechanisms.‖ We characterize each of these mechanisms and
then we describe their advantages and disadvantages.

A. Configuration

The system provides a number of parameters that the user can
choose from and set. This is a fairly traditional notion of
system configurability and typically only provides for a small
amount of edge-based tailoring. Examples of such systems
include:

 Enterprise Resource Planning (ERP) systems (such as
Oracle Financials, Oracle Mobile Supply chain
Applications, SAP Business Suite, PeopleSoft etc.).

 Server-based applications systems such as web servers,
databases, content management (such as Apache,
Microsoft IIS, Google GWS, etc.)

 User applications (such as Microsoft Word, Excel, Safari,
Internet Explorer, Integrated Development Environments).

ERP systems are highly configurable to fit the needs of
different users, with varying requirements and in different
environments. In fact, configurability is perhaps the most
salient architectural characteristic of ERP systems. Here
configurability extends well beyond simple configuration files
and typically also includes templates, scripting, plug-ins,
execution rules or other methods that can be used to extend or
modify the behavior of a software system. Thus as systems
become more configurable they tend to include a mix of
mechanisms to extend or modify their behavior. These types of
systems win in the marketplace with respect to buy-versus-
build decisions as they can be customized quickly and cheaply.
However, due to the highly configurable nature of these
systems their kernels are often more expensive to build and
maintain than a simple custom solution, thus they are usually
only cost-effective with a very large user base. Moreover, the
process of configuring an ERP system can itself be daunting,
and this should be sufficient to demonstrate that highly
configurable kernels is not sufficient to achieve agility, which
bears with it notions of quick adaptation.

At the other end of the scale, user applications typically
only allow limited configurability. This level of configurability
usually only allows the user to turn on and off various program
features and occasionally some customization of the
application displays. At the high end of user application
configurability, Integrated Development Environments (IDE)
often allow the user to include scripts to support customized
build environments and applications such as Microsoft Word
and Excel allow the user to build customized user
environments through the use of Visual Basic Macros which
would fall into the category of mixed mechanisms (i.e.
configuration with scripts or plug-ins).

Advantages: Providing the user the ability to choose among a
pre-determined set of possibilities limits possible options at the
edge. For this reason the system‘s creators can employ
substantial quality assurance effort to validate that the system
operates consistent with its specification. Consequently such a
system can provide much greater quality of service guarantees.

Disadvantages: In highly dynamic environments—where the
nature of the use of the system can change dramatically—the
configuration approach typically adds relatively little value to
the end user, particularly as the user‘s requirements extend
beyond the envelope of what the system‘s specification cover.

B. Scripting

The system provides a special-purpose scripting language that
allows the user to tailor, specialize, and augment the system‘s
capabilities. Examples of such systems include web servers,
web browsers, and IDEs. Scripting languages and the

environment in which they are used can also control the kinds
of modifications and/or enhancements that can be made by the
end user or script writer. Some applications allow scripts
completely unrestricted access (un-sandboxed) with respect to
the application, its data, the underlying operating system and
connected hardware. In this situation, the ability to modify the
application is only limited by the application‘s inherit
architecture along with the restrictions placed on the
application by the underlying operating system. Scripts that are
allowed to run with unrestricted access can put system security,
robustness, and integrity into jeopardy. For this reason scripting
languages typically only allow restricted access to resources
and capabilities. These types of restrictions are also referred to
as ―sandboxing‖.

Advantages: Scripting languages provide a great deal of
flexibility and generative power to the users, and relieve the
system creators from the difficulty of trying to anticipate all the
requirements in advance.

Disadvantages: Scripting languages are very complex to
create, and users typically do not want to learn special-purpose
languages. And because they are special purpose, they often
have subtle performance or security flaws that their creators did
not envision. Scripts can cause application instability issues
due to unforeseen memory and CPU resource allocation by the
script developer. Since such languages do not have the
widespread scrutiny of major programming languages, such
flaws may go undetected indefinitely. Last, as is well known,
scripting languages often emphasize ease of writing scripts
rather than ease of reading, or maintaining scripts. A perverse
consequence of scripting is that systems can become less
adaptive as the volume of ad hoc scripts, with their uneven
quality and undocumented interactions grows over time.

C. Application Platforms

The system provides a coherent set of APIs (application
programming interfaces) and supporting infrastructure that
collectively represent an ―application platform‖—a platform
upon which user-created applications can be built. The user or
third party module/applications that utilize these APIs are often
referred to as ―Plug-Ins‖. The user programs their own
application using the plat-form‘s services as primitives.
Examples of well-known application platforms include
Facebook, Google Earth, Firefox and Internet Explorer. The
Java language/JVM (Java Virtual Machine) and the .NET
framework are also application platforms, but with a much
broader mandate—to support virtually any kind of application
development on top of a consistent computational base.

Advantages: application platforms are a widely accepted and
widely successful way of enabling third party creation of
functionality. They provide an easy (and potentially seamless)
method for adding additional functionality to an application.
They provide a structure for programmers, guiding them in
creation and freeing them from many of the mundane platform
and resource management issues. The JVM, for example, frees
a developer from many concerns regarding porting and
memory management.

Disadvantages: application platforms are complex and hence
difficult to engineer successfully and contain tradeoffs that may

or may not be appropriate for the application under
development. It can be difficult to restrict access to resources
and capabilities. For example, the JVM sacrifices performance
in return for platform independence. The platform may be a
single point of failure (for example, a failure in the infra-
structure may create many common mode failures among the
applications which are built on the platform). A poorly
designed extension architecture along with the platform can
needlessly limit a programmer‘s creativity.

D. Sandbox

The user can create any kind of application, but it can only
be run in a ―sandbox‖—an execution area with limited
resources and capabilities. Sandboxes have long been used in
software testing and maintenance activities, to provide a safe
area to try out new ideas and new code. But this is typically
just a matter of cloning an existing system or environment and
providing it to developers as their personal ―play area‖. A
more relevant use of sandboxing comes from computer
security, providing a virtualized environment for running
unproven or untested applications. Such sandboxes typically
have limited access to system resources, system information,
network, and I/O devices. Common forms of sandboxing are
seen in the applets that most modern web browsers support
(e.g. Flash, Java applets, etc.). Google‘s Chrome web browser
has implemented sandboxing as a security mechanism. Each
tab within the browser is its own process and cannot directly
affect other browser processes (for example, malware running
in one tab could not capture credit card information entered in
another tab). Nokia platforms running the Symbian OS
accomplish sandboxing though the use of certificates that
control application capabilities and data access.

Advantages: this form of programming provides few
constraints on a programmer‘s creativity, so long as the
programmer‘s creation does not attempt to use resources
beyond those prescribed by the sandbox. Also a sandbox can
put limits on resource usage (e.g. CPU, disk I/O, network
bandwidth) which can serve as a way to manage performance
amongst many competing applications.

Disadvantages: this form of programming, while providing
few constraints, also provides no structure for enabling or
enhancing a programmer‘s creativity; it is a mechanism for
controlling what they do, not guiding them in the act of
creation. Also the requirements for the limits of the sandbox
will be difficult to determine, since they must limit what a
programmer can do, to ensure the safety, security, availability,
and performance of the system, but at the same time they must
provide the programmer with enough resources to be able to
create something of value. Finally, creating a sandbox that is
―bullet-proof‖ is a substantial software engineering challenge.

E. Qualification

The user can create any kind of application, but before it is
included in the system it must be qualified (approved, certified,
and signed) by a third-party agency. Applications that are not
signed by the agency will not run in the system. For example,
Microsoft runs the WHQL (Windows Hardware Quality Labs)
testing process on third-party software or hardware. Apple has
provided a similar mechanism for the iPhone, attempting to

limit iPhone apps to just those provided by Apple‘s ―App
Store‖. Another form of qualification is third-party, often
relying on crowdsourcing. For example, Facebook applications
are rated by users, not by Facebook.

Advantages: qualification can provide some assurance to users
that the applications they are using have passed some level of
quality assurance testing.

Disadvantages: There are three common problems with
software qualification: 1) the qualification process itself may
have exploitable flaws in it that allow an unsafe application to
be signed; 2) like any security measure, software signing can
be circumvented, either by providing fake signatures, by
tricking a user into running unsigned code; 3) the assurance
may not address all qualities of interest (e.g. safety, robustness,
performance, security, etc.).

F. Monitoring

The user can create any kind of application, but the system
monitors its execution and, if it exceeds any limits (resource
usage, behavioral) it is either terminated or non-complying
operations are ignored and/or non-complying operations are
recorded and appropriate entities are notified. Monitoring is
already common practice for networks (detecting intrusions,
overloaded servers, crashed servers, etc.), disk usage, CPU
loading, transaction throughput, etc.

Advantages: monitoring software and hardware sets few limits
on what an application can be and what it can do. And
monitoring can free humans from the tedious oversight process,
where fatigue is a perpetual concern.

Disadvantages: monitoring, when it works, will at best detect
a problem that has already occurred. This approach is thus
limited to organizations where there is tolerance for some
forms of aberrant behavior (for example, the organization
might tolerate overloaded servers for a short duration). Also
monitoring systems often need to be ―trained‖ to establish a
baseline of acceptable performance parameters.

G. Adaptive Need-to-Know Information Access

The way in which access to information is managed at the
Edge is a crucial consideration. Contrary to common binary
risk assessments, in which any possibility of exfiltration is
considered an absolutely negative consequence, risk
assessment for unauthorized information access in an EES
requires considerations of timeliness of information, as well as
its useful lifespan. For example, legitimate users of an EES
may need to rapidly exchange confidential information at
lower-than-usual levels of security to foster timely access to
information that will quickly lose its value. The application of
the usual security controls and procedures that would be
appropriate for the information may actually shorten the
lifespan of the information, or render it completely useless.
The issue of disseminating information in an EES, therefore,
becomes primarily one of evaluating if a security control is a
sufficient impediment to retard unauthorized access, with the
notion of sufficiency to include both time-to-access and the
lifespan of usefulness of the information.

The most frequently used technique for protecting access to
confidential information is an Access Control List (ACL).
There have been three major approaches to this type of security
[12]. The first is a multi-level security (MLS) approach that
imposes mandatory security policies on all confidential
information hierarchically. The second approach is a
discretionary access control (DAC) that works on the basis of
the creator‘s permissions: the creator of confidential
information is responsible for the decision of who has what
access. Finally, a role-based access control (RBAC) approach
maintains a list of roles that encapsulates access rights to a set
of confidential information. The users under this type of
system are assigned corresponding roles according to their
responsibilities. These approaches employ ACLs in response
to requests for confidential information. They are slightly
different from one another in what they emphasize, however:
DAC and MLS focus on the item to protect and RBAC focuses
on the role of the user. These approaches suffer three short-
falls that render them difficult to apply to EES contexts:

1. Inadequate coverage: determining membership in an
access control list is difficult and time-consuming, and so
rapid membership decision criteria will either be too
restrictive, excluding some on the Edge who should have
access, or too broad, giving access to all members of a
category, irrespective of their need-to-know.

2. Non-adaptive: in accessing information on the edge, the
process of vetting information or a user for membership in
an ACL can be a significant overhead, and possibly defeat
the usefulness of access to the information.

3. Expensive maintenance: The maintenance and
assignment of ACLs is challenging. Since the number of
ACLs that must be updated increases cubically in
proportion to the units of: confidential information, the
groups of constituents, and the number of operations; it is
computationally and temporally expensive to maintain.

A more adaptive technique for allowing security
classification of documents based on a user‘s need-to-know,
has been proposed by [21]. This technique, which can be
applied in conjunction with an ACL, treats the determination of
kneed-to-know as a statistical document classification problem.
With this technique, the user declares positive and negative
examples of the types of information that they have a need-to-
know. The classifying system creates a profile of the user-
declared ―topic‖, and subsequently matches all future
documents requested by the user to that profile. If the
document matches the user‘s profile, they can access the
information, if not, they may not. Such profiles are tamper-
resistant and can be verified by external security auditors. This
technique addresses the shortcomings of ACLs, by allowing
adequate coverage, being adaptive, and cost-effective to
maintain. The drawback is that it requires a training set of
around 100 documents to create the initial profile.

Advantages: ACLs are quick and easy to implement for small
numbers of classification categories and users. Adaptive need-
to-know authorization allows for the scalable tuning of access
control based on a generalized profile description of a topic in a
document collection. Since it is complementary to the ACL
method, adaptive authorization is best applied to a large

document collection that is already protected by a coarse-
grained level of classification that can potentially facilitate
access by a large variety and number of users.

Disadvantages: Access control lists are not scalable or tunable
to fine-grained discrimination, requiring human classification
for each new document and classification category. The lack
of scalability typically results in little or no access to timely
sensitive information, which is more likely to occur in an EES.
While adaptive need-to-know authorization is scalable and
provides for the automatic classification of documents, it
requires initial training of around 100 documents to prevent
unauthorized access to confidential information.

V. RECOMMENDATIONS FOR A NEW MODEL OF SOFTWARE

DEVELOPMENT AND ACQUISITION

The ―Edge‖ is the intersection between users and their
operating environment. If future systems are to be EESs then
the organizations that are tasked to build these systems must
change. ―Edge organizations are characterized by the
widespread sharing of information and the predominance of
peer-to-peer relationships. Edge organizations have a
fundamentally different power topology as compared to
traditional organizations. In an Edge organization, virtually
everyone is at the edge because they are empowered. An edge
organizations means that everyone is empowered by
information and has the freedom to do what makes sense‖ [2].

To move towards Edge-enablement—some form of a
Metropolis Model—many things about the process of
developing, testing, and fielding such systems must change.
First, a Metropolis Model must be a hospitable place. As with
a city, people must want to ―live‖ there. Therefore
infrastructure and rules must be in place to create the social and
technical mechanisms to entice long-term participation,
encouraging community custodianship, recognizing the merits
of individuals and promoting them through different ―ranks‖
with appropriate rights and responsibilities, and protecting the
community from the acts of malicious participants. Below we
suggest a number of changes that an organization must
consider if it wishes to foster EESs.

A. Leadership and Management

To manage a Metropolis project the periphery must share in
its success. The project must be—to a far greater extent than is
the norm today—self-governing and self-adaptive. Many
leaders of OSS projects have admitted that they do not ―lead‖
such projects in any traditional sense. In OSS project work is
not assigned; developers choose their work. As such, the
leaders of such projects spend much of their time attracting,
motivating and coordinating developers. The little structure
that does exist in such projects is based on a meritocracy [16].
Periphery members cannot be strictly controlled and managed
in the way that traditional projects are controlled and managed
today (largely top-down, hierarchical, and rule-oriented), but
must instead be inspired, persuaded, and motivated.

B. Project Structure and Communications

Because of its distributed nature, a Metropolis project must
have a minimum of hierarchy and bureaucracy, and there must

be collaboration technology in place for communication and
coordination [16]—typically email lists, wikis, and discussion
forums but perhaps including teleconferences,
videoconferences, and web-conferences. Even the entrance of
many for-profit companies to the OSS movement has not
changed the nature of their project management; they remain
consensus based meritocracies rather than top-down
hierarchies. This implies the need to focus project management
on communication and negotiation to guide contributors and to
persuade them to share in the project vision.

Any environment that claims to enable or facilitate the
Edge must provide some mechanism for members of the
community to discover, communicate and network with others
to freely exchange knowledge, insight and experiences. The
nature of being on the edge means users will be distributed,
have varying technical skills, different backgrounds and will
not all be expert software developers. To create new
capabilities users must be able to leverage the knowledge,
experience and work of others.

C. Requirements Management

The requirements process in such projects needs to be
radically changed from what exists today, where the Army still
follows a waterfall lifecycle model in most cases. In a
Metropolis the kernel is centrally specified and controlled (and
may be created as today‘s current projects are created: plan
driven and top-down), but the requirements of the edge emerge
from the participants who are intense users of the system.
These requirements and their fulfillment are what allow the
organization and the system as a whole to be agile; and they
contribute the vast majority of the value in such a system. This
means that there is still a role for central planning and
deployment—as suggested in Section IV, a model for
managing the edge must be chosen and implemented—but the
main purpose of the kernel is to enable the edge and not to
provide a comprehensive ―one size fits all‖ system, as was
discussed in Section III.C.

Information and knowledge can no longer be treated as a
scarce and guarded commodity. Edge enablement requires that
everyone has the ability inspect and repurpose the work of
others. This not only ensures knowledge transfer, it lowers the
barrier of entry and reduces duplication of work.

D. Quality Assurance

The system must be able to maintain its core security,
robustness, and integrity characteristics throughout
modification. But the process of quality assurance must change
in a Metropolis organization. First and foremost, the kernel
must be highly reliable. However, this requirement is tractable
because the kernel is typically small; often orders of magnitude
smaller than the edge. Also the kernel will be highly controlled,
and slow to change (as are most Army systems today). This can
and does work: the reliability and security of the most popular
OSS products has been reported to be quite high [6], [17]. The
reliability of the edge, on the other hand, is indeterminate;
sufficient correctness is the norm. This is why it is critical to
choose the appropriate model (as discussed in Section IV) for
the enablement and management of the edge.

E. Architecture

Because so much depends on the architecture of the kernel,
it must be designed to accommodate the needs of the edge. For
this reason, the architecture cannot ―emerge‖ as it often does in
traditional and agile lifecycle models. The architecture must be
designed up front, built by a small, experienced team who
focus on: 1) modularity, to enable the parallel activities of the
edge, and 2) the core quality attributes of the kernel (security,
performance, availability, etc.). The kernel creators also need
to pay attention to the usability (simplicity and learnability) of
the kernel, so that it is easy for the periphery to build on it.
Wikipedia succeeds, in part, because it is trivial for a prosumer
change an article. Facebook and the iPhone succeed, in part,
because a developer can create simple applications in a few
hours. Thus the kernel creators also need to make examples
and tutorials available, to aid the programmer at the edge.

F. Delivery Mechanisms

Edge-enabled systems are never complete and they are not
delivered in an all-or-nothing fashion. Therefore delivery
mechanisms must be created that work in a distributed,
asynchronous manner. And these mechanisms must be flexible
enough to accept incompleteness of the installed base as the
norm [25]. Thus, any delivery mechanism must be tolerant of
older versions, multiple co-existing versions or even
incomplete versions.

G. Moving Forward

Any organization that wishes to foster the edge needs to
think about the sources of risk. There are many operational
risks that an EES creates as compared with the relatively
―locked down‖ systems of today. However, a locked-down
system also creates risks—principally from being poorly
aligned with the needs of the Warfighter. As the system is
opened up and controls are loosened, operational risks increase.
And as a system is locked down, misalignment risks will
increase. This situation, along with its inherent tradeoffs, is
depicted in Figure 3.

Figure 3: Edge Models and Risk

H. Conclusions/Road Map

Some of the key questions that must be answered for an
organization or group that wishes to foster EES are:

1. How adaptable should the system be? Greater adaptability
increases both flexibility and the risk of losing control of
integrity, reliability and consistency. Guidance on how
assess Risk/Return tradeoffs need to be developed.

2. What development principles should be employed to
maintain to ensure EESs?

3. What project management procedures and methods should
be applied to EESs?

4. What fundamental changes need to occur in the QA
process when fielding and operating an EES?

5. What fundamental changes need to occur in the acquisition
organization and their processes?

6. Does an organization provide additional incentives to the
participants? For example is there a need to compensate or
acknowledge high performers?

No one set of recommendations can possibly fit all of the
variability implied by the above discussion. Different projects
have different risk/reward profiles. Hence we recommend that
a small number of model projects be started that follow a
Metropolis model. Such projects will allow the Army to better
understand the risks and rewards of employing the edge in a
realistic context, and will best inform the way forward.

To make progress in enabling the edge we believe a
documented, repeatable edge design and evaluation method is
required. This would include:

1. Needs analysis and problem focus would involve a
classification of edge problems and the selection of
problems for edge experimentation.

2. Empirical analysis of EES mechanisms would involve
designing experiments that permit the analysis of
management mechanisms in simulated EES programming
workflows. The experiments would be designed to
determine, for a given class of Edge problems, how well
the mechanism facilitates agile responses to evolving
problems, and if not, what future requirements might be.

An example of this would be building a number of systems
with varying levels of constraints utilizing the mechanisms
discussed in Section IV. Subjects would then extend these
systems to include edge enabled capabilities and the
impact of the constraint mechanisms would be analyzed.

3. The development of an Edge design and evaluation
methodology would enable all stakeholders to analyze the
criteria used in determining the applicability of an EES,
the architecture of the EES, the appropriateness of the
choice of Edge management mechanisms, as well
establishing criteria to know when the EES architecture is
being stressed beyond its capabilities.

REFERENCES

[1] A—Edge Programming, Solicitation Number: W15P7T08P00, Agency:
Department of the Army, Office: Army Contracting Command Location:
CECOM Contracting Center (CECOM-CC), Oct 13, 2009 10:06 am
https://www.fbo.gov/index?&s=opportunity&mode=form&id=520059c5
16f2031d3de912d982414006&tab=core&tabmode=list, Retrieved 12/2/
2009

[2] D. S. Alberts and R. E. Hays, Power to the Edge: Command Control in
the Information Age (CCRP: April 2005) ISBN 1-893723-13-5

[3] J. Barr, ―The Paradox of free/open source project management‖,
http://www.linux.com/feature/42466, Retrieved December 18, 2009

[4] Y. Benkler, The Wealth of Networks: How Social Production
Transforms Markets and Freedom, Yale. University Press, 2006

[5] M. Bergman, ―Commerce Secretary Evans Says New Economic
Indicator on Service Industries Will Help Close ‗Critical Gap‘, 2004

http://www.census.gov/Press-
Release/www/releases/archives/economic_census/005366.html

[6] Coverity.com, ―Analysis of the Linux Kernel‖,
http://www.coverity.com/library/pdf/linux_report.pdf. Retrieved 12/21/
2009.

[7] J. Howe, ―The Rise of Crowdsourcing‖, Wired, 14.06, June 2006.

[8] R. Fielding, ―Shared Leadership in the Apache Project‖,
Communications of the ACM, April 1999, Vol. 42, No. 4, 42-43.

[9] R. Fielding, R. Taylor, ―Principled Design of the Modern Web
Architecture‖, Proc. International Conference on Software Engineering
2000, 407-416.

[10] GAO 04-547, ―Military Operations: Recent Campaigns Benefited from
Improved Communications and Technology, but Barriers to Continued
Progress Remain,‖ GAO Report to Congressional Committees, June
2004.

[11] S. Golder, B. Huberman, ―The Structure of Collaborative Tagging
Systems‖. Technical report, Information Dynamics Lab, HP Labs, 2005.

[12] D. Gollmann, Computer Security, John Wiley and Sons, Inc., (1999).

[13] Gunnar Hellekson, OnePeople Blog ―Open Source on the Battlefield‖,
http://onepeople.org/node/1600, Retrieved 12/16/ 2009.

[14] R. Kazman, H-M Chen, ―The Metropolis Model: A New Logic for
Development of Crowd-sourced Systems‖, Communications of the
ACM, 2009, No. 7.

[15] P. Maglio, S. Srinivasan, J. Kreulen, J. Spohrer, ―Service Systems,
Service Scientists, SSME, and Innovation‖, Communications of the
ACM, July 2006, Vol. 49, No. 7, 81-85.

[16] M. L. Markus, B. Manville, C. Agres, ―What Makes a Virtual
Organization Work?‖ Sloan Man-agement Review, Fall 2000, 13-25.

[17] A. Mockus, R. Fielding, J. Herbsleb, ―Two Case Studies of OSS
Development: Apache and Mozilla‖, ACM Transactions on Software
Engineering and Methodology, Vol. 11, No. 3, July 2002, 309-346.

[18] T. O‘Reilly, ―What is Web 2.0: Design Patterns and Business Models for
the Next Generation of Software‖,
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-
web-20.html, Retrieved 11/2/ 2009.

[19] PBS interview with Maj. Patrick Michaelis, ―Innovating &
Improvising‖,
http://www.pbs.org/wgbh/pages/frontline/shows/company/lessons/,
Retrieved 12/16/ 2009.

[20] Semaphore Issue 07, JUNE 2009 Sea Power Centre–Australia
Department of Defence Canberra Act 2600
http://www.navy.gov.au/Semaphore_Issue_7,_June_2009, Retrieved
12/4/ 2009.

[21] Y.-W. Seo, J. Giampapa, K. Sycara, ―A Multi-Agent System for
Enforcing `Kneed-to-Know‘ Security Policies,‖ 6th Int‟l Bi-Conference
Workshop on Agent-Oriented Information Systems, July, 2004.

[22] G. Shani, A. Gunawardana,‖ Evaluating Recommender Systems‖,
Microsoft Research Report MSR-TR-2009-159, Nov. 2009,
http://research.microsoft.com/apps/pubs/default.aspx?id=115396,
Retrieved 12/14/ 2009.

[23] K. Sullivan, ―Edge Programming‖, Proc. 29th International Conference
on Software Engineering Workshops, 149, 2007 , ISBN:0-7695-2830-9

[24] S. Vargo, R. Lusch. ―Evolving to a new dominant logic for marketing‖,
Journal of Marketing, Vol. 68, Jan. 2004, 1–17.

[25] Werner Vogels ―All Things Distributed Werner Vogels' weblog on
building scalable and robust distributed systems‖, ―Eventually
Consistent‖
http://www.allthingsdistributed.com/2007/12/eventually_consistent.htm,
Retrieved 12/14/ 2009.

https://www.fbo.gov/index?&s=opportunity&mode=form&id=520059c516f2031d3de912d982414006&tab=core&tabmode=list
https://www.fbo.gov/index?&s=opportunity&mode=form&id=520059c516f2031d3de912d982414006&tab=core&tabmode=list
http://www.linux.com/feature/42466
http://www.census.gov/Press-Release/www/releases/archives/economic_census/005366.html
http://www.census.gov/Press-Release/www/releases/archives/economic_census/005366.html
http://www.coverity.com/library/pdf/linux_report.pdf
http://onepeople.org/node/1600
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
http://www.pbs.org/wgbh/pages/frontline/shows/company/lessons/
http://www.navy.gov.au/Semaphore_Issue_7,_June_2009
http://research.microsoft.com/apps/pubs/default.aspx?id=115396
http://www.allthingsdistributed.com/2007/12/eventually_consistent.htm

