%% Software Engineering Institute

A Description of Cluster Code Generated
by the Durra Compiler

Dennis N. Doubleday
Michael J. Gardner
Charles B. Weinstock

December 1991

TECHNICAL REPORT
CMU/SEI-91-TR-019

Unlimited distribution subject to the copyright.

http://www.sei.cmu.edu

Carnegie Mellon

This technical report was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR T''E COMMANDER

A

John S. Herman, Capt, USAF
SEI Joint Program Office

The Software Engineering Institute is sponsored by the U.S. Department of Defense.
This report was funded by the U.S. Department of Defense.
Copyright © 1992 by Carnegie Melion University.

This document is avalable through the Defense Technical Information Center. DTIC provides access to and ¥ansfer of
scientific and technical information for DoD onnel, DoD contractors and potential contractors, and other U.S. Government
agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information
Centor, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145,

Copies of this document are also available through the National Technical Information Service. For information on ordering.
please contact NTIS directly: National Technical Information Service, U.S. Department of Corimerce, Springfield, VA 22161.

Copies of this document are aiso available from Research Access, Inc., 3400 Forbes Avenue, Suite 302, Pittsburgh, PA 15213
Use of any rademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents

1 Introduction
2 Standard Template

3 Cluster-Specific Code Fragments

3.1 With Clauses for User Procedures
3.2 With Clauses for Channel Packages
3.3 Enumeration of Channels Used

3.4 Link_Task_Info Case Alternatives

3.5 Instantiations of Process_Shell

3.6 Task Object Declarations for Each imported Procedure
3.7 Start_Link_Process Case Alternatives
3.8 Reconfiguration Trigger Functions
3.9 Level Configuration Procedures

3.10 Get_Port Case Alternatives

3.11 Get_Port_Return Case Alternatives
3.12 Send_Port Case Alternatives

3.13 Send_Port_Return Case Alternatives
3.14 Test_Input_Port Case Alternatives
3.15 Test_Output_Port Case Alternatives
3.16 Case Alternative for Each Configuration Level
3.17 Type_Table Entries

3.18 Process_Table Entries

3.19 Process Attribute Value Assignments
3.20 Link_Table Entries

3.21 Link Attribute Value Assignments
3.22 Level_Table Entries

3.23 Cluster_Table Entries

References

ACieBeidh Fer

B L

NITH o GRaad & _

e Tab r ;

Clewesio e ed M '

©orastifioattom oo

e e e ey

B T2 I |

ML Dtalilowiien’
3 Avmilabliiitvy Cokes
- AR o
Ava'l med/er

Giat i ppoeiad

l .

- ; {
CMU/SEN91-TR-19 A f\T J i

CMU/SEI-91-TR-19

A Description of Cluster Code Generated by the Durra
Compiler

Abstract: Durra is a language and support environment for the specification
and execution of distributed Ada applications. The Durra programmer specifies
the distribution of application components by assigning them to virtual nodes
called clusters. For each cluster named in an application description, the Durra
compiler generates an Ada package body with a standardized format. Within
the confines of the format, the content of the package body varies according to
the requirements placed upon the cluster by the Durra application description.
The cluster-specific package body is compiled and linked with a fixed set of Ada
compilation units, common to all clusters, to form a multitasking Ada program.
The intended audience for this document is Durra application developers, who
will need an understanding of the concepts presented here in order to be
effective Durra application debuggers.

1 Introduction

The Durra language [1] is a task-level application description Ianguage.1 The basic building
blocks of the language are the task description, which specifies the properties of an associated
Ada subprogram or subsystem, and the channel description, which specifies the properties of
an Ada package implementing a communication facility. Task descriptions may be either prim-
itive or compound. A primitive task description represents a single thread of control.2 A com-
pound task description is a composition of other task and channel descriptions. Channe! de-
scriptions are syntactically similar to primitive task descriptions although the implementations
exhibit different behaviors. Task implementations are active components; they initiate re-
quests to send or receive messages by calling procedures provided by the runtime environ-
ment. Channel implementations are passive components; they wait for and respond to re-
quests from the runtime environment.

A Durra programmer describes an application as a collection of processes (instances of Durra
task descriptions) connected to each other in a graph structure by links (instances of channel
descriptions). Lower level components are used as building blocks for higher-level task de-
scriptions. Application descriptions are simply compound task descriptions that describe a
complete application.

A component’s input/output interface is specified by the ports section of its description. Ports
are named, unidirectional, locally-defined conduits through which processes may transmit/re-
ceive data. Ports have a Durra data type associated with them to allow semantic checking of
intercomponent port connections.

1. Throughout this document, the term fask refers to a generalized “thread of control® concept rather than to the
analogous Ada construct, except where noted.

2. The actual Ada code that implements a Durra task may, in fact, be a multitasking program. However, from the
Durra perspective the program is a single thread of control.

CMU/SEI-91-TR-19 1

A compound task description must include additional information about its structure. Its com-
ponent processes and links are defined in its components section and the manner in which
they are logically connected (which may vary dynamically) is specified in its structures section.
If the structure of the compound task is allowed to vary, then there must be a reconfigurations
section that describes a set of structural changes and the conditions under which the changes
will occur. The clusters section specifies the physical grouping of components into executable
images, which may well be orthogonal to the logical connections described in the structures
section.

if the compound description is a complete application description, then the Durra compiler
generates an Ada package body with a standardized format for each cluster defined in the ap-
plication. Within the confines of the format, the content of the package body (called Tables)
varies according to the requirements placed upon the cluster by the Durra application descrip-
tion. The cluster-specific Tables package body imports the implementations of the compo-
nents assigned to the cluster, creates Ada tasks to serve as threads for the Durra process
implementations, and creates instances of the Ada task types that implement the Durra links
assigned to the cluster. The package body contains a set of subprograms that route inter-task
communications; a set of subprograms that evaluate reconfiguration conditions, if any; and a
set of Ada tasks that together control the runtime configuration of Durra processes assigned
to the cluster. The package body also defines a set of tables, common to all clusters in the
application, that describe the complete application structure. The Tables package body is
compiled and linked with a fixed set of Ada compilation units, common to all clusters, to form
a multitasking Ada program. !f only one cluster is specified in the application description, then
this program is the complete application implementation. Otherwise, the application is distrib-
uted and the cluster program will communicate at runtime with other cluster programs.

Each generated Tables package body will consist of twc parts:

1. A standard template that is constant across all applications.
2. A cluster-specific part that is distributed throughout the standard template.

In the specifications in the following sections, program text comprising the standard template
appears in bofdface ltalic, while program text that is included for sample purposes but will vary
with the application appears in italic. Text surrounded by the "<>" character pair is a placehold-
er for actual program text. If expansion and explanation of a placeholder is required, the place-
holder refers to a subsequent section of this document. Program text lines beginning with the
string "- -* are simply commentary.

2 CMU/SEI-91-TR-19

2 Standard Template

The following code comprises the standard template for the Tables package body. Placehold-
ers in the template substitute for cluster-specific code fragments which will be described in lat-
er sections.

with Contiguration_Manager;

with Durra_Iinterface;

with Process_Shell;

with Storage_Manager;

with String_Pkg;

with Text_IO;

-- packages Calendar, System, Durra_Interface_Types, and Table_Types
-- are "withed” by the package specification

<additional "with" clauses for user procedures (see section 3.1 on page 9)>
<additional "with" clauses for channel packages (see section 3.2 on page 9)>

package body Tables Is
-- ccomment indicating version of code generator used to create this package body>

package CM renames Configuration_Manager;
package SM renames Storage_Manager;
package SP renames String_Pkg;

package DI renames Durra_interface;

-- package TT renames Table_Types in package specification
-- package DT renames Durra_Interface_Types in package specification

e TERIRRLERARENLAREXARRRRRRAR

- TYPES
type Channel_Types Is (<enumeration of Channels used (see section 3.3 on page 9)>);
type Link_Task_Info (Channel_Type : Channel_Types) is
record
case Channel_Type Is
<case alternative for each value of Channel_Type (see section 3.4 on page 10)>
end case;
end record;
type Link_Task_Ptr is access Link_Task_info;
type Link_Task_Iindex Is array (TT.Link_ID_Range range <>) of Link_Task_Ptr;

—aTTEIRAARNRSARRAARNSRLLARAANRARAALRNRE

- OBJECTS

anTEIIERRN SRR ARNELERRARRRARANERR SRS

CMU/SEI-91-TR-19 3

Link_Task_Table : Link_Task_Index(1..<n>);
-- where n = number of links defined in the application

<Instantiation of Process _Shell for each user procedure in the cluster

(see section 3.5 on page 10)>
<Task object declaration for each Durra process assigned to the cluster

(see section 3.6 on page 10)>

ca¥AXARARRERERERARAARRERRANAS AR AR R ARR

- LOCAL SUBPROGRAMS

TR ARERARAXRAERRARAAAAARAAREARARER AR R

procedure Start_Link_Process (Channel_Type :iIn Channel_Types;
The_Link :in TT.Link_Table_Ptr) is

begin

case Channel_Type Is
<case afternative for each value of Channel_Type (see section 3.7 on page 11)>

end case;
The_Link.Initialized := TRUE;
end Start_Link_Process;

-- Assume level numbers run from 1..n
<A set of functions with names of the form Lx, where x is in the range 0..n.

These functions are used to determine which level to go to next, and when to do it.
The Oth level is equivalent to ENTER.
(see section 3.8 on page 11)>

<A set of procedures with names of the form Configure_Level_x where x is in the range 1..n+1.
These functions are used to configure to a particular level and to start and stop

relevant processes and links. The n+1 level is EXIT.
(see section 3.9 on page 12)>

—aTTARRERRSRARALAAARERARERRRLARARRERRD

- VISIBLE SUBPROGRAMS

—aTERRARREESRRRRRARRRARASRERAR AR AR AR AR

procedure Get_Port(

The_Port :in TT.Port_Table_Ptr;
Data_Location :in System.Address;

Data_Size : out NATURAL;

Data_Type_ID : out DT.Type_ID_Range_ Pilus_Null;
Completed : out BOOLEAN)Is

begin
case Link_Task_Table(The_Port.Assoclated_Link.ID).Channel_Type Is

CMU/SEI-91-TR-19

<case alternative for each value of Channel_Type (see section 3.10 on page 12)>
end case;
end Get_Pont;

e TRTRERRRERARANRRRRRAXERERRAFARRRRAERRARREARERRRRRRRE AR AR A R

procedure Get_Port_Return(

The_Port :in TT.Port_Table Ptr;
Size_of Data : out NATURAL;
Type_ID : out DT.Type_ID_Range Plus_Null) is

begin
case Link_Task_Table(The_Port.Assoclated_Link.ID).Channel_Type is
<case alternative for each value of Channel_Type (see section 3.11 on page 13)>
end case;
end Get_Port_Return;

aa WAARARAAAEERRANARAARAERAARSARBARRRRARARREE AR kR R ok R

procedure Send_Port(

The_Port :in TT.Port_Table_Ptr;
Data_Locatlon :in System.Address;

Data_Size :in POSITIVE;

Data_Type ID :in DT.Type ID_Range Plus_Null;
Compileted : out BOOLEAN;

Priority :in DT.Message Priority Range :=

DT.NULL_MESSAGE_PRIORITY) Is

begin
case Link_Task_Table(The_Port. Associated_Link.ID).Channel_Type is
<case alternative for each value of Channel_Type (see section 3.12 on page 13)>
end case;
end Send_Port;

_aTARARRARRARRRRRARXRRRXAARARARRRAERREARAARARERRAARAARRARR RN

procedure Send_Port_Return(The_Port : in TT.Port_Table_Ptr) Is
Link_Task : Link_Task_Ptr;

begin
case Link_Task_Table(The_Port.Associated_Link.ID).Channel_Type Is
<case alternative for each value of Channel_Type (see section 3.13 on page 13)>
end case;
end Send_Port_Return;

CMU/SEI-91-TR-19

-y TINRRARRRAAXBRANRARRANAR AR AR ERANR SRR BRI AR 2R R ok ook 30k

procedure Test_input_Port(
The Port :in TT.Port_Table_Ptr;
Type_of _Next_Input : out DT. Type_ID_Range Plus_Null;
Size_of _Next _Input : out NATURAL;
Inputs_Avallable : out NATURAL)Is

begin
Link_Task_Table(The__Port.Assoclated_LInk.ID).Channel_ Type s
<case alternative for each value of Channel_Type (see section 3.14 on page 13)>
end case;
end Test_Input_Port;

 ANARARRAARAARRAARARRRARASARRRRA SRR XXX RN RARBRAR R AR R4 AR N A

procedure Test_Output_Port(
The_Port :in TT.Port_Table Ptr;
Slots_Avalilable : out NATURAL)Is

begin
case Link_Task_Table(The_Port.Associated_Link.ID). Channel_Type is
<case alternative for each vaiue of Channel_Type (see section 3.15 on page 14)>
end case;
end Test_Output_Port;

aTERANERRIREERRRARREARLERRRRERARA AR RS

-~ VISIBLE TASKS

aaBARRRARSESRARRRARRAAAKAARAARRRRE SRR R

task body State_Changer is
Done : BOOLEAN := FALSE;
Next_Level_ID : INTEGER := 0;
Prev_Level ID : INTEGER := 0;
begin
accept start;
while not Done loop
If Cluster_Table(This_Cluster_ID).Master then
-- The master is in charge of reconfiguration decisions
case Next_Level ID is
when 0 => Next_Level_ID := LO(0); -- This is the entry condition
when <1..n+1> =>
<One case alternative for each configuration level in the application and one addtional
alternative for termination (see section 3.16 on page 14)>
when others =>
Text_[O.Put_Line ("lilegal reconfiguration to Level” &

6 CMU/SEI-91-TR-19

Level_ID_Range’IMAGE(Next_Level_ID) & " requested.”);
end case;
eise
-- Non-masters respond to requests from the master
accept Reconfigure(To_Level : in NATURAL) do
Prev_Level_ID := Next_Level_ID;
Next_Level_ID := To_Level;
end Reconfigure;
case Next_Level ID Is
when 0 => null;
when <1..n+1> =>
<One case alternative for each configuration level in the applications and one
additional alternative for termination (see section 3.16 on page 14)>
when others =>
Text_10.Put_Line(“Illegal reconfiguration to Level” &
TT.Level_ID_Range’IMAGE(Next_Level_ID) & “requested.”);
end case;
end if;
end loop;
accept Finish_Up;
end State_Changer;

_-.'.ii.....".ltﬂ".ﬁﬁ"....lﬁtl

- TABLE DEFINITIONS

._ll.!Iﬁ'....'.ﬁ.ﬂt.'."."ﬂ.'tt'

begin

This_Cluster_ID := <index of this cluster in the Cluster_Table>;
The_Master := <index of the master in the Cluster_Table>;

Type_Table :=
new TT.Type_Index’(
<one Type_Table_Entry for each data type defined in the application
(see section 3.17 on page 16)>

)

- THEERARRASREERRAAREARARRRRARERAARRARALAARRAE AR AR AR AR %

Process_Table :=
new TT.Process_index’(
<2ne Process_Table_Entry for each process in the application
(see section 3.18 on page 17)>

»

<series of assignments to the Attributes field of any Process containing attribute values

(see section 3.19 on page 18)>

CMU/SEI-91-TR-19

- LAY TI R 2R e s a2 2 2 atddct2yst g zadsdseecdt ittt assssdsd

Link_Table :=
new TT.Link_Index’(
<one Link_Table_Entry for each link in the application
(see section 3.20 on page 18)>

)

<series of assignments to the Attributes field of any Link containing attribute values
(see section 3.21 on page 19)>

AR R R sk sk s 22 A ok ook S50 g o o ko ok

Level_Table :=
new TT.Level_Index’(
<one Level_Table_Entry for each configuration level in the application
(see section 3.22 on page 19)>

)

- ARRAREAAAARERRRAAREARRR IR RERRRAAAARAAAARRRRARRERERARRARARE AR

Cluster_Table :=
new TT.Cluster_Index’(
<one Cluster_Table_Entry for each cluster in the application
(see section 3.23 on page 21)>
VA
end Tables;

%l

CMU/SEI-91-TR-19

3 Cluster-Specific Code Fragments

This section describes the cluster-specific code fragments referred to by the placeholders in
the standard template description above.

3.1 With Clauses for User Procedures

There must be a "with" clause for every Ada procedure named in the Durra application descrip-
tion as the implementation of a Durra process assigned to the cluster. An Ada procedure is the
implementation of a Durra process if it is named in the procedure_name attribute for that pro-
cess.

Example:

with Producer;
with Consumer;
with Console;
etc.

3.2 With Clauses for Channel Packages

There must be a "with" clause for every Ada package named in the Durra application descrip-
tion as the implementation of a Durra link assigned to the cluster. An Ada package is the im-
plementation of a Durra link if it is named in the package name attribute for that link.

Example:

with FIFO_Channel;
with Broadcast_Channel;
etc.

3.3 Enumeration of Channels Used

Each channel package named in a "with” clause must have a corresponding enumeration lit-
eral in type Channel_Types. The enumeration literal name is the name of the package with the
suffix *_Type" appended.

Example:

type Channel_Types is (FIFO_Channel_Type, Broadcast_Channel_Type);

CMU/SEI-91-TR-19 9

3.4 Link_Task_Info Case Alternatives

In the definition of the Link_Task_Infc record, there must be a case alternative for each literal
in the enumerated type Channel_Types. The form of the case alternative must be:

when <Channel_Type value>=>
<channel package name>_LInk : <channel package name>.Channel_Task;

Example:

when FIFO_Channel_Type =>
FIFO_Channe|_Link : FIFO_Channel.Channel_Task;

3.5 Instantiations of Process_Shell

Process_Shellis the name of a generic package supplied with the Durra runtime library. This
package exports an Ada task type that serves as a "wrapper” around the Ada subprogram
named as its actual parameter. There must be an instantiation of Process_Shell for each user
procedure named in a "with" clause. The form of the instantiation must be:

package <Ada procedure name>_Shell Is new Process_Shell(<Ada procedure name>);

Example:

package Producer_Shell is new Process_Shell(Producer);
package Consumer_Shell is new Process_Shell(Consumer);
package Console_Shell is new Process_Shell{Console);

etc.

3.6 Task Object Declarations for Each Imported Procedure

There must be an Ada task object declaration for each Durra process assigned to the cluster.
The object declaration for each process must refer to the instantiation of Process_Shell asso-
ciated with the Ada procedure that implements the Durra process. The process ID of a process
is its index in the Process_Table (see section 3.18 on page 17).

Process_<process ID> : <Ada procedure names_Shell.Caller;

Example:

Process_1 : Producer_Shell.Caller;
Process_2 : Consumer_Shell.Caller;
Process_3 : Console_Shell.Caller;
Process_4 : Producer_Shell.Caller;
efc.

10 CMU/SEI-91-TR-19

3.7 Start_Link Process Case Alternatives

In the body of the Start_Link_Process subprogram, there must be a case alternative for each
literal in the enumerated type Channel_Types. The form of the case alternative must be:

when <Channel_Type value>=>
Link_Task_Table(The_Link.iD) := new Link_Task_Info(<Channel_Type value>);
Link_Task_Table(The_Link.ID).<channel package name>_Link.Initialize(The_Link);

Example:

when FIFO_Channel_Type =>
Link_Task_Table(The_Link.ID) := new Link_Task_Info(FIFO_Channel_Type),
Link_Task_Table(The_Link.ID).FIFO_Channel_Link.Initialize(The_Link);

3.8 Reconfiguration Trigger Functions

For each configuration level specified in the application description there is a function which
determines which level to go to next, and when to go to it. An additional function for the initial
level (level 0), a hidden level not specified in the application description, determines when and
at what level to start the application.

function L<Level iD>(Prev: In NATURAL) return NATURAL is
theDelta : DURATION := DURATION’LAST;
aDelta : DURATION;
begin
loop
-- A series of statements that evaluate reconfiguration expressions at this level.
-- When an expression evaluates true the function returns the new level to go to.
-- The expressions take the following form:
If <reconfiguration condition> then
return <new Level ID>;
end If;
-- A series of statements that determine the next time the expressions should be
-- evaluated in the absence of a signal. The expressions take the form:>
aDelta := <duration evaluation>;

iIf aDelta < theDelta then
theDelta := aDelia;
end If;

CM.Reconfiguration_Condition_Task.Start(theDelta);
CM.Reconfiguration_Condition_Task.Check;
end loop;
end L<Level ID>;

CMU/SEI-91-TR-19 1

3.9 Level Configuration Procedures

For each configuration level there is a procedure that actually carries out the steps necessary
to configure for that level. For all but the termination level (the level entered when an applica-
tion is about terminate) the procedure is of the form:

procedure Configure_Level_<Level ID> Is
begin
CM.Do_Level_Configuration(<Level ID>);

<A series of statements that start processes and links in the configuration.
They take on the form:>
If This_Cluster_ID = Link_Table(<x>).Cluster_ID and then
not Link_Table(<x>).Initlalized then
Start_Link_Process(
<link_type>,
Link_Table(<x>));
end If;
if This_Cluster_ID = Process_Table(<y>).Cluster_ID and then
not Process_Table(<y>).Initlalized then
Process_<z>.Start(<y>);
endir;
end Configure_Level <Level ID>;

For the termination level (level n+1), the procedure has the form:

procedure Configure_Level _<Level ID> Is
begin
CM.Do_Level_Configuration(<Level ID>);

-- A series of statements that stop processes in the configuration.
-- They take the form:>

If This_Cluster_ID = Process_Table(<y>).Cluster_ID and then
Process_Table(<y>).Initlalized then
Process_<z>.Stop;

endlif;

end Configure_Level <Level I1D>;

3.10 Get_Port Case Alternatives

in the body of the Get_Port subprogram, there must be a case alternative for each literal in the
enumerated type Channel_Types. The form of the case alternative must be:

when <Channel_Types value> =>
Link_Task_Table(The_Port.Associated_Link.iD).

<channel package name>_Link.Get_Port{
The_Port,

Data_Location,
Data_Size,

12 CMU/SEI-91-TR-19

Data_Type_ID,
Completed);

3.11 Get_Port_Return Case Alternatives

in the body of the Get_Port_Return subprogram, there must be a case alternative for each lit-
eral in the enumerated type Channel_Types. The form of the case alternative must be:

when <Channel_Types value> =>
Link_Task_Table(The_Port.Associated_LInk.ID).<channel package name>_Link.
Get_Port_Return(The_Port.Connection_Point)(Size_of_Data, Type_ ID);

3.12 Send_Port Case Alternatives

In the body of the Send_Port subprogram, there must be a case alternative for each literal in
the enumerated type Channel_Types. The form of the case alternative must be:

when <Channel_Types value> =>
Link_Task_Table(The_Pori.Assoclated_Link.ID).
<channel package name>_LInk.Send_Port(
The_Port,
Data_Location,
Data_Size,
Data_Type_ID,
Completed,
Priority);

3.13 Send_Port_Return Case Alternatives

in the body of the Send_Port_Return subprogram, there must be a case alternative for each
literal in the enumerated type Channel_Types. The form of the case alternative must be:

when <Channel_Types value> =>
-- compiler bug requires this workaround
Link_Task := Link_Task_Table(The_Port.Associated_Link.ID);
Link_Task.<channel package name>_LInk.
Send_Port_Return(The_Port.Connection_Point);

3.14 Test_Input_Port Case Alternatives

in the body of the Test Input_Port subprogram, there must be a case alternative for each lit-
eral in the enumerated type Channel_Types. The form of the case alternative must be:

when <Channel_Types value> =>
Link_Task_Table(The_Port.Assoclated Link.ID).

CMU/SEI-91-TR-19 13

<channel package name>_LInk.Test_Input_Port(
The_Pont,
Type_of_Next_Input,
Size_of_Next_Input,
Inputs_Avallable);

3.15 Test_Output Port Case Alternatives

In the body of the Test_Output_Port subprogram, there must be a case alternative for each
literal in the enumerated type Channel_Types. The form of the case alternative must be:

when <Channel_Types value> =>
Link_Task_Table(The_Port.Associated_Link.ID).<channel_package _name>_Link.
Test_Output_Port(The _Port, Slots_Avallable);

3.16 Case Alternative for Each Conrfiguration Level

There are two case statements in the body of the State_Changer task. The first is executed by
the master cluster and the second is executed by all other clusters. For each configuration lev-
el in the application there must be a case alternative in both case statements. The case alter-
native choice is the ID of the configuration level, which is its index in the Level _Table. There
are also alternatives for ENTER (alternative 0) and EXIT (alternative n+1). For the master, the
form of the alternative is as follows:

when <level ID> =>
CM.Reconfiguration_Task.Configure_to_Level(<level ID>);
accept Reconfigure(To_Level : In NATURAL);
Configure_Level_<level ID>;
Next_Level_ID := L<Level ID>(Prev_Level_ID);
Prev_Level_ID := <level ID>;

The ENTER alternative is:

when 0 => Next_Level_ID := L0(0);

The EXIT alternative is:

when <n+1> =>
CM.Reconfiguration_Task.Configure_to_Level(<n+1>);
accept Reconfigure(To_Level : in NATURAL);
Configure_Level_<n+1>;
Done := TRUE;

For the non-master clusters, the form of all alternatives except the ENTER alternative is as fol-
lows:

when <level ID> => Configure_Level_<Level ID>;

14 CMU/SEI-91-TR-19

The ENTER alternative for non-master clusters is:

when 0 => null;

Example:

In the following example, there are two application levels, Level 1 and Level 2. Level 0 is the
ENTER level and Level 3 is the EXIT level.

if Cluster_Table(This_Cluster_ID).Master then
case Next_Level ID is
when 0 => Next_Level_ID = L0O(0);

when 1 =>
CM.Reconfiguration_Task.Configure_to_Level(1);
accept Reconfigure(To_Level : in NATURAL);
Configure_Level_1;
Next_Level_ID := L1(Prev_Level_ID);
Prev_Level ID = 1;

when 2 =>
CM.Reconfiguration_Task.Configure_to_Level(2);
accept Reconfigure(To_Level : in NATURAL);
Configure_Level_2;
Next_Level_ID := L2(Prev_Level_ID);
Prev_Level ID := 2;

when 3 =>
CM.Recontfiguration_Task.Configure_to_Level(3);
accept Reconfigure(To_Level : in NATURAL);
Configure_Level_3;
Done := TRUE;

when others =>
Text_IO.Put_Line("lllegal reconfiguration to Level” &
TT.Level_ID_Range'IMAGE(Next_Level_ID) & "requested.”);

end case;
else
accept Heconfigure(To_Level : in NATURAL) do
Prev_Level_ID := Next_Level_ID;
Next_Level _ID := To_Level;
end Reconfigure;

case Next_Level_ID is
when 0 => null;

CMU/SEI-91-TR-19 15

when 1 => Configure_Level_1;
when 2 => Configure_Level_2;
when 3 => Configure_Level_3;

when others =>
Text_IO.Put_Line("llegal reconfiguration to Level” &
TT.Level_ID_Range'IMAGE(Next_Level ID) & “requested.”);
end case;
end if;

3.17 Type_Table Entries

There must be an entry in the Type_Table for each Durra type defined in the application de-
scription. The Type_Table_Entry assignment shall have the form:

<sequential index n, starting at 1> => new TT.Type_Table_Entry’(
Kind => <TT.Size_Type or TT.Union_Type>,
Name => SP.Make_Persistent("<Durra type name>"),
ID => <n>,
Free_List => <if the type has a fixed upper bound, then
SM.Create_Free_LIst(<upper_bound/8>),
else null,>
Bytes Required => <maximum size of data, or 0 if unbounded>,
-- if Kind is Size_Type then
Upper_Bound => <upper bound from type definition>,
Lower_Bound => <lower bound from type definition>
-- elsif Kind = Union_Type then
Component_Types => null
)

Example:

1 => new TT.Type_Table_Entry'(
Kind => TT.Size_Type,
Name => SP.Make_Persistent("GENERAL"),
D => 1,
Free_List => SM.Create_Free_List(4),
Bytes_Required => 4,
Upper_Bound => 32,
Lower_Bound => 32

16 CMU/SEI-91-TR-19

3.18 Process_Table Entries

There must be an entry in the Process_Table for each process defined in the application de-
scription. The Process_Table Entry assignment shall have the form:

<sequential index n, starting at 1> => new TT.Process_Table Entry’(
Name => SP.Make_Persistent("<expanded Durra process name>"),
ID => <n>,
Start_Time => DT.NULL_TIME,
Initialized => FALSE,
Ports => new TT.Port_Index’(
-- for each port defined for this process, one Port_Table_Entry
<sequential index m, starting at 1> => TT.new Port_Table_Entry’(
Name => SP.Make_Persistent("<simple/expanded Durra port name>"),
ID => <m>,
Owner_Process => null,
Data_Type => Type_Table(<ID of data type for this port>),
Associated_Link => null,
Connection_Point => DT.Port_ID_Range’LAST,
Is_Input => <FALSE or TRUE, depending on port direction>
)
)
Attributes => TT.Attribute_Pairs.Create,
Blocked => FALSE,
Blocked_Data_Buffer => System.NO_ADDR,
Blocked_Data_Size => 0,
Blocked_Data Type ID => NULL_TYPE_ID,
Remote_Data => null,
Cluster_ID => 0

Example:

1 => new Process_Table_Entry'(
Name => SP.Make_Persistent("MAIN.P1"),
ID => 1,
Start_Time => DT.Null_Time,
Initialized => FALSE,
Ports => new TT.Port_Index'(
1 => new TT.Port_Table_Entry’(
-- Port MAIN.P1.0UT1
Name => SP.Make_Persistent("OUT1"),
1D => 1,
Owner_Process => NULL,
Data_Type => Type_Table(1),
Associated_Link => NULL,
Connection_Point => DT.Port_ID_Range'LAST,

CMU/SEI-91-TR-19 17

Is_Input => FALSE
)

)
Attributes => TT.Attribute_Pairs.Create,
Blocked => FALSE,
Blocked _Data_Buffer => System.NO_ADDR,
Blocked_Data_Size => 0,
Blocked Data Type_ID => DT.NULL_TYPE_ID,
Remote_Data => null,
Cluster_ID => TT.Cluster_ID_Range'LAST

3.19 Process Attribute Value Assignments

For each attribute of each process defined in the application description, there must be an as-
signment of the form:

TT.Attribute_Palirs.Append
(Element => (SP.Make_Persistent("<simple aftribute name>"),
SP.Make_Persistent("<attribute value>")),
L => Process_Table(<process _table_index>).Attributes);

Example:

TT.Attribute_Pairs.Append
(Element => (SP.Make_Persistent("cluster”),
SP.Make_Persistent("cl1")),
L => Process_Table(1).Attributes);

3.20 Link_Table Entries

There must be an entry in the Link_Table for each link defined in the application description.
The Link_Table_Entry assignment shall have the form:

<sequential index n, starting at 1> => new TT.LInk_Table_Entry’(
Name => SP.Make_Persistent{<expanded Durra link name>),
1D => <n>,
In_Ports => new TT.Port_Index’(
-- one entry for each input port defined for this link
<Sequential index m, starting at 1> => null
)
Out_Ports => new TT.Port_Index’(
-- one entry for each output port defined for this link
<sequential index j, starting at 1> => null

)
Attributes => TT.Attribute_Pairs.Create,

18 CMU/SEI-91-TR-19

Buffer_Size => <message buffer bound specified for link>,
Cluster_ID => TT.Cluster_ID_Range’LAST
)

Example:

1 => new TT.Link_Table_Eutry(
Name => SP.Make_Persistent("MAIN.Q1"),

ID => 1,
In_Ports => new TT.Port_Index'(1 => null),
Out_Ports => new TT.Port_Index’(1 => null), {

Buffer_Size => 10,
Cluster_ID => TT.Cluster_ID_Range’LAST

3.21 Link Attribute Value Assignments

For each attribute of each link defined in the application description, there must be an assign-
ment of the form:

TT.Attribute_Pairs.Append
(Element => (SP.Make_Persistent("<simple attribute name>"'),
SP.Make_Persistent("<attribute value>")),
L => Link_Table(<link_table_index>).Attributes);

Example:

TT Attribute_Pairs.Append
(Element => (SP.Make_Persistent("cluster”),
SP.Make_Persistent("cl1")),
L => Link_Table(1).Attributes};

3.22 Level_Table Entries

There must be an entry in the Level_Table for each configuration level defined in the applica-
tion description. The Level_Table_Entry assignment shall have the form:

<sequential index n, starting at 1> => new TT.Level_Table_Entry’(
Number_ot _Processes => <number of processes in Process_Table>,
Number_of_Links => <number of links in Link_Table>,
Number_of_Connections => <number of connection records for this level>,
Name => SP.Make_Persistent(<expanded name of configuration level>),
ID => <n>,
Processes => (

-- for each process in the Process_Table
* <sequential index m, starting at 1> =>

CMU/SEI91-TR-19 19

(The_Process => Process_Table(<m>),
Cluster_ID => <cluster ID or 0 if not active at this level>

)
)
Links => (
-- for each link in the Link_Table
<sequential index j, starting at 1> =>
(The_Link => Link_Table(<j>),
Cluster_ID => <cluster ID or 0 if not active at this level>)
),

Connections => (
-- for each port requiring connection at this level
<Sequential index k, starting at 1> =>
(The_Port => Process_Table(<s>).Ports(<t>),
The_Link => Link_Table(<r>),
Connection_Point => <v>

)
)
In the Connections assignment, the values s, t, r, and v vary according to the process ports to
be connected, the links to which they are to be connected, and the link port index where the
process port is attached to the link. All the variables are positive integer values. The meaning
of the field Connection_Point varies with the type of process port being connected. If the port
is of type In_Ponrt, then Connection_Pointis an index into the Out_Ports index of the Link_Ta-
ble_Entry, if the port is of type Out_Port, then Connection_Pointis an index into the In_Ports
index of the Link_Table_Entry.

Example:

1 =>new TT.Level Table_Entry’(

Number_of_Processes => 3,

Number_of_Links => 1,

Number_of_Connections => 3,

Name => SP.Make_Persistent("MAIN"),

ID => 1,

Processes => (
1 => (The_Process => Process_Table(1), Cluster_ID => 1),
2 => (The_Process => Process_Table(2), Cluster_ID => 1),
3 => (The_Process => Process_Table(3), Cluster_ID => 0)

),
Links => (

1 => (The_Link => Link_Table(1), Cluster_ID => 1)
),

Connections => (
1 => (The_Port => Process_Table(1).Ports(1),
The_Link => Link_Table(1),

20 CMU/SEI-91-TR-19

Connection_Point => 1
);

2 => (The_Port => Process_Table(2).Ports(1),
The_Link => Link_Table(1),
Connection_Point => 1

):

3 => (The_Port => Process_Table(3).Ports(1),
The_Link => NULL,

Connection_Point => 1

)

3.23 Cluster_Table Entries

There must be an entry in the Cluster_Table for each cluster defined in the application descrip-
tion. The Cluster_Table_Entry record shall have the form:

<sequential index n, starting at 1> => new TT.Cluster_Table_Entry’(
ID = <N>,
Host_Name => SP.Make_Persistent(
"<host processor >", or "“localhost” if no compile-time configuration file),
Connected => FALSE,
Launched => FALSE,
Command => SP.Make_Persistent(""),

)

Example:

1 => new TT.Cluster_Table_Entry’(
ID =>1,
Host Name => SP.Make_Persistent("hx.sei.cmu.edu”),
Connected => FALSE,
Launched => FALSE,
Command => SP.Make_Persistent(™),

CMU/SEI-91-TR-19 21

22

CMU/SEI-91-TR-19

References

[1] Barbacci, M.R., D.L. Doubleday, C.B. Weinstock, M.J. Gardner, J.M. Wing. Durra: A Task-
Level Description Language Reference Manual (Version 3), SEl Technical Report
CMU/SEI-91-TR-18, December, 1991, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, Pa.

CMU/SEI-91-TR-19 23

UNLIMITED, UNCLASSIFIED
SECURITY QLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

la. REPORT SECURITY CLASSIFICATION
Unclassified

1b. RESTRICTIVE MARKINGS
None

2a. SECURITY CLASSIFICATION AUTHORITY
N/A

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE
N/A

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for Public Release
Distribution Unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S

CMU/SEI-91-TR-19

. MONITORING ORGANIZATION REPORT NUMBER(S)
ESD-91-TR-19

6b. OFFICE SYMBOL
(if applicable)

SEl

6s. NAME OF PERFORMING ORGANIZATION
Software Engineering Institute

7a. NAME OF MONITORING ORGANIZATION
SEl Joint Program Office

6¢c. ADDRESS (City, State and ZIP Code)

Carnegie Mellon University
Pittsburgh PA 15213

To. ADDRESS (City, State and ZIP Code)

ESD/AVS
Hanscom Air Force Base, MA 01731

8b. OFFICE SYMBOL
(if applicable)

ESD/AVS

8s. NAME OFFUNDING/SPONSORING
ORGANIZATION

SEIl Joint Program Office

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
F1962890C0003

8c. ADDRESS (City, State and ZIP Code)

10. SOURCE OF FUNDING NOS.

gamegie Meillon University PROGRAM PROJECT TASK WORK UNIT
ittsburgh PA 15213 MENT - -
g 63756E N/A N/A N/A
11. TTTLE (Include Security Classification)
A Description of Cluster Code Generated by the Durra Compiler
12. PERSONAL AUTHORG) .
Dennis L. Doubleday, Michael J. Gardner, and Charles B. Weinstock
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr, Mo., Day) 15. PAGE COUNT
Final FROM TO December 1991 23 pp.

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse of necessary and identify by block mumber)
FIELD GrouP SUB. GR code generation distributed processing
configuration management task-description languages
distributed processing
19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Durra is a language and support environment for the specification and execution of distributed Ada applica-

tions. The Durra programmer specifies the distribution of application components by assigning them to virtual
nodes called clusters. For each cluster named in an application description, the Durra compiler generates an
Ada package body with a standardized format. Within the confines of the format, the content of the package

body

varies according to the requirements placed upon the cluster by the Durra application description. The

cluster-specific package body is compiled and linked with a fixed set of Ada compilation units, common to all

clusters, to form a multitasking Ada prog

ram. The intended audience for this document is Durra application

developers, who will need an understanding of the concepts presented here in order to be effective Durra appli-

cation debuggers.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT
UNCLASSIFIED/UNLIMITED SAME AS RPTDTIC USERS .

21. ABSTRACT SECURITY CLASSIFICATION
Unclassified, Unlimited Distribution

22s. NAME OF RESPONSIBLE INDIVIDUAL

John S. Herman, Capt, USAF

DD PORM 1473, 83 APR

EDITION of 1 JAN 73 1S OBSOLETE

22. TELEPHONE NUMBER (Include Aroa Code)

(412) 268-7631 ESD/AVS (SEl)

UNLIMITED, UNCLASSIFIED
SBOURITY QLASSIFICATION OF THIS

STRACT —cantinued fram page one, block 19

