

A Description of Cluster Code Generated
by the Durra Compiler

Dennis N. Doubleday
Michael J. Gardner
Charles B. Weinstock

December 1991

TECHNICAL REPORT
CMU/SEI-91-TR-019

Unlimited distribution subject to the copyright.

http://www.sei.cmu.edu

This technical report was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR T' E COMMANDER

John S. Herman, Capt. USAF
7SEI Joint Program Office

The Software Engineering Institute Is sponsored by the U.S. Department of Defense.
This report was funded by the U.S. Department of Defense.
Copyright 0 1992 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Government
agency personnel and their contractors. To obtain a copy, please contact DTIC irecty: Defense Technical Information
Center, Atm: FDRA, Cameron Station. Alexandria. VA 22304-6145.
Copies of this document are also available through the National Technical Information Service. For information on ordering,
please contact NTIS dirctly: National Technical Information Service, U.S. Department of Commerce, Springfield. VA 22161.

Copies of this document wre also available from Research Access, Inc., 3400 Forbes Avenue. Suite 302, Pittsburgh. PA 15213.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents

1 Introduction 1

2 Standard Template 3

3 Cluster-Specific Code Fragments 9

3.1 With Clauses for User Procedures 9

3.2 With Clauses for Channel Packages 9

3.3 Enumeration of Channels Used 9

3.4 LinkTaskInfo Case Alternatives 10

3.5 Instantiations of ProcessShell 10

3.6 Task Object Declarations for Each Imported Procedure 10

3.7 Start_UnkProcess Case Alternatives 11

3.8 Reconfiguration Trigger Functions 11

3.9 Level Configuration Procedures 12

3.10 Get_Port Case Alternatives 12

3.11 GetPortReturn Case Alternatives 13

3.12 SendPort Case Alternatives 13

3.13 SendPortReturn Case Alternatives 13

3.14 TestInput-Port Case Alternatives 13

3.15 TesLOutput._Port Case Alternatives 14

3.16 Case Alternative for Each Configuration Level 14

3.17 TypeTable Entries 16

3.18 ProcessTable Entries 17

3.19 Process Attribute Value Assignments 18

3.20 LinkTable Entries 18

3.21 Link Attribute Value Assignments 19

3.22 LevelTable Entries 19

3.23 ClusterTable Entries 21

References 23

WYt.' T.ib

J: L (I 0 ar QEi. _

CMU SEw I 'ad/erR

i CMU/SEI-91 .TR.1 9

A Description of Cluster Code Generated by the Durra
Compiler

Abstract: Durra is a language and support environment for the specification
and execution of distributed Ada applications. The Durra programmer specifies
the distribution of application components by assigning them to virtual nodes
called clusters. For each cluster named in an application description, the Durra
compiler generates an Ada package body with a standardized format. Within
the confines of the format, the content of the package body varies according to
the requirements placed upon the cluster by the Durra application description.
The cluster-specific package body is compiled and linked with a fixed set of Ada
compilation units, common to all clusters, to form a multitasking Ada program.
The intended audience for this document is Durra application developers, who
will need an understanding of the concepts presented here in order to be
effective Durra application debuggers.

1 Introduction

The Durra language [1] is a task-level application description language.1 The basic building
blocks of the language are the task description, which specifies the properties of an associated
Ada subprogram or subsystem, and the channel description, which specifies the properties of
an Ada package implementing a communication facility. Task descriptions may be either prim-
itive or compound. A primitive task description represents a single thread of control.2 A com-
pound task description is a composition of other task and channel descriptions. Channel de-
scriptions are syntactically similar to primitive task descriptions although the implementations
exhibit different behaviors. Task implementations are active components; they initiate re-
quests to send or receive messages by calling procedures provided by the runtime environ-
ment. Channel implementations are passive components; they wait for and respond to re-
quests from the runtime environment.

A Durra programmer describes an application as a collection of processes (instances of Durra
task descriptions) connected to each other in a graph structure by links (instances of channel
descriptions). Lower level components are used as building blocks for higher-level task de-
scriptions. Application descriptions are simply compound task descriptions that describe a
complete application.

A component's input/output interface is specified by the ports section of its description. Ports
are named, unidirectional, locally-defined conduits through which processes may transmit/re-
ceive data. Ports have a Durra data type associated with them to allow semantic checking of
intercomponent port connections.

1. Throughout this document, the term task refers to a generalized "thread of control" concept rather than to the
analogous Ada construct, except where noted.
2. The actual Ada code that implements a Durra task may, in fact, be a multitasking program. However, from the
Durra perspective the program is a single thread of control.

CMU/SEI-91-TR-19 1

A compound task description must include additional information about its structure. Its com-
ponent processes and links are defined in its components section and the manner in which
they are logically connected (which may vary dynamically) is specified in its structures section.
If the structure of the compound task is allowed to vary, then there must be a reconfigurations
section that describes a set of structural changes and the conditions under which the changes
will occur. The clusters section specifies the physical grouping of components into executable
images, which may well be orthogonal to the logical connections described in the structures
section.

If the compound description is a complete application description, then the Durra compiler
generates an Ada package body with a standardized format for each cluster defined in the ap-
plication. Within the confines of the format, the content of the package body (called Tables)
varies according to the requirements placed upon the cluster by the Durra application descrip-
tion. The cluster-specific Tables package body imports the implementations of the compo-
nents assigned to the cluster, creates Ada tasks to serve as threads for the Durra process
implementations, and creates instances of the Ada task types that implement the Durra links
assigned to the cluster. The package body contains a set of subprograms that route inter-task
communications; a set of subprograms that evaluate reconfiguration conditions, if any; and a
set of Ada tasks that together control the runtime configuration of Durra processes assigned
to the cluster. The package body also defines a set of tables, common to all clusters in the
application, that describe the complete application structure. The Tables package body is
compiled and linked with a fixed set of Ada compilation units, common to all clusters, to form
a multitasking Ada program. If only one cluster is specified in the application description, then
this program is the complete application implementation. Otherwise, the application is distrib-
uted and the cluster program will communicate at runtime with other cluster programs.

Each generated Tables package body will consist of twc parts:

1. A standard template that is constant across all applications.

2. A cluster-specific part that is distributed throughout the standard template.

In the specifications in the following sections, program text comprising the standard template
appears in botdface Italic, while program text that is included for sample purposes but will vary
with the application appears in italic. Text surrounded by the "<>" character pair is a placehold-
er for actual program text. If expansion and explanation of a placeholder is required, the place-
holder refers to a subsequent section of this document. Program text lines beginning with the
string "- -" are simply commentary.

2 CMU/SEI-91-TR-19

2 Standard Template

The following code comprises the standard template for the Tables package body. Placehold-
ers in the template substitute for cluster-specific code fragments which will be described in lat-
er sections.

with Configuration_ Manager;
with Durra Interface;
with Process Shell;
with StorageManager;
with String Pkg;
with Text 10;
-- packages Calendar, System, DurraInterface Types, and Table_ Types
-- are "withed" by the package specification

<additional "with" clauses for user procedures (see section 3.1 on page 9)>
<additional "with" clauses for channel packages (see section 3.2 on page 9)>

package body Tables Is

-- <comment indicating version of code generator used to create this package body>

package CM renames ConfigurationManager;
package SM renames StorageManager;
package SP renames String Pkg;
package DI renames Durra_Interface;

-- package TT renames Table Types in package specification
-- package DT renames DurraInterface Types in package specification

TYPES

type Channel Types Is (<enumeration of Channels used (see section 3.3 on page 9)>);
type LinkTaskjInfo (ChannelType: ChannelTypes) Is

record
case ChannelType Is
<case alternative for each value of ChannelType (see section 3.4 on page 10)>

end case;
end record;

type Llnk TaskPtr is access Link TaskInfo;
type Link Task Index Is array (TT.LnkID Range range <>) of Link Task Ptr;

OBJECTS

CMU/SEI-91-TR-19 3

LinkTaskTable: LinkTask_lndex(1..<n>);
-- where n = number of links defined in the application

<Instantiation of ProcessShell for each user procedure in the cluster
(see section 3.5 on page 10)>

<Task object declaration for each Durra process assigned to the cluster
(see section 3.6 on page 10)>

LOCAL SUBPROGRAMS

procedure Start_ LinkProcess (Channel_ Type :in Channel Types;
TheLink :in TT.Link_ TablePtr) is

begin
case Channel Type Is

<case alternative for each value of Channel Type (see section 3.7 on page 11)>
end case;
The_Link.lnitialized:= TRUE;

end Start_ Link_ Process;

-- Assume level numbers run from 1..n
<A set of functions with names of the form Lx, where x is in the range O..n.

These functions are used to determine which level to go to next, and when to do it.
The Oth level is equivalent to ENTER.
(see section 3.8 on page 11)>

<A set of procedures with names of the form ConfigureLevel x where x is in the range 1..n+ 1.
These functions are used to configure to a particular level and to start and stop
relevant processes and links. The n+ 1 level is EXIT.
(see section 3.9 on page 12)>

VISIBLE SUBPROGRAMS

procedure Get Port(
ThePort :in TT.PortTablePtr;
DataLocation : In System.Address;
DataSize : out NATURAL;
Data_ Type ID : out DT.TypeID_Range PlusfNull;
Completed : out BOOLEAN) is

begin
case Link_ Task Table(The Port.Assocated_Link.ID).Channel_ Type Is

4 CMU/SEI-91-TR-19

<case alternative for each value of ChanneiType (see section 3.10 on page 12)>
end case;

end Get_Port;

procedure Get_PortReturn(
The_Port : In TT.Port_ TablePtr;

Size-of_Data : out NATURAL;
Type ID : out DT.TypelIDRangePlus Null) Is

begin
case LinkTaskTable(ThePort.Assocated_Lnk.D).Channel_ Type Is

<case alternative for each value of Channel Type (see section 3.11 on page 13)>
end case;

end GetPort Return;

procedure SendPort(
The_ Port : In TT.Port_ Table_ Ptr;
DataLocation : In System.Address;
DataSize : In POSITIVE;
Data TypeID : In DT. Type-IDRangePlusNulI ;
Completed : out BOOLEAN;
Priority : In DT.MessagePriortyRange.-=

DT.NULLMESSAGEPRIORITY) Is

begin
case Link_ Task_ Table(The Port.AssociatedLink.ID).Channel Type Is

<case alternative for each value of ChanneiType (see section 3.12 on page 13)>
end case;

end SendPort;

procedure SendPort Return(ThePort :In TT.PortTable_ Ptr) Is

LinkTask: Link_ Task Ptr;

begin
case Link_ TaskTable(ThePort.Assoclated_Lnk.ID).Channel Type Is

<case alternative for each value of Channel Type (see section 3.13 on page 13)>
end case;

end SendPortReturn;

CMU/SEI-91-TR-19 5

procedure Test Input Port(
ThePort : in TT.Port_ TablePtr;
TypeofNext Input : out DT.Type ID Range_PlusNull;
SizeofNext_Input : out NATURAL;
Inputs._Available : out NATURAL) is

begin
LinkTaskTable(The Port.AssociatedLink.ID).Channel Type Is

<case alternative for each value of Channel Type (see section 3.14 on page 13)>
end case;

end TestInputPort;

procedure TestOutputPort(
ThePort :In TT.PortTable Ptr;
SlotsAvailable out NATURAL) Is

begin
case LinkTaskTable(ThePort.AssoclatedLink.ID).ChannelType Is

<case alternative for each value of Channel Type (see section 3.15 on page 14)>
end case;

end TestOutputPort;

VISIBLE TASKS

task body StateChanger Is
Done: BOOLEAN.= FALSE;

NextLevelID: INTEGER:= 0;
Prev LevelID :INTEGER =0;
begin
accept start;
while not Done loop
if Cluster Table(Thls_ClusterlD).Master then

-- The master is in charge of reconfiguration decisions
case NextLevelID Is

when 0 => NextLevel ID = LO(O); -- This is the entry condition
when <I..n+ 1> =.
<One case alternative for each configuration level in the application and one addtional
alternative for termination (see section 3.16 on page 14)>

when others =*
Text_IlO.Put_Line ("Illegal reconfiguration to Level" &

6 CMU/SEI-91-TR-19

LevelIDRange'IMA GE(Next_LevelID) & "requested.");

end case;
else

-- Non-masters respond to requests from the master
accept Reconflgure(To_Level : In NA TURAL) do

PreyLevel_ ID := NextLevel ID;
NextLevelID:= ToLevel;

end Reconfigure;
case extLevelID Is

when 0 => null;
when <1..n+1> =>
<One case alternative for each configuration level in the applications and one

additional alternative for termination (see section 3.16 on page 14)>
when others =>

Text_lO.Put_Line("lllegal reconfiguration to Level" &
TT.Level IDRange'MAGE(Next_Level ID) & "requested.");

end case;
end if;

end loop;
accept FinishUp;

end State_ Changer;

TABLE DEFINITIONS

begin

ThisClusterID := <index of this cluster in the ClusterTable>;
TheMaster.= <index of the master in the ClusterTable>;

Type Table :=
new TT. Type Index'(

<one TypeTable Entry for each data type defined in the application
(see section 3.17 on page 16)>

Process_ Table
new TT.Process_ lndex'(

<one ProcessTableEntry for each process in the application
(see section 3.18 on page 17)>

<series of assignments to the Attributes field of any Process containing attribute values
(see section 3.19 on page 18)>

CMU/SEI-91-TR-19 7

Link_ Table.=
new TT.LinkIndex'(

<one LinkTableEntry for each link in the application

(see section 3.20 on page 18)>

<series of assignments to the Attributes field of any Link containing attribute values

(see section 3.21 on page 19)>

LevelTable:=
new 1-".LevelIndex'(

<one LevelTableEntry for each configuration level in the application

(see section 3.22 on page 19)>

Cluster_ Table
new TT.Cluster Index'(

<one Cluster_ Table-Entry for each cluster in the application

(see section 3.23 on page 21)>

end Tables;

8- CMU/SEI-91 -TR- 19

3 Cluster-Specific Code Fragments

This section describes the cluster-specific code fragments referred to by the placeholders in
the standard template description above.

3.1 With Clauses for User Procedures
There must be a "with" clause for every Ada procedure named in the Durra application descrip-
tion as the implementation of a Durra process assigned to the cluster. An Ada procedure is the
implementation of a Durra process if it is named in the procedurename attribute for that pro-
cess.

Example:

with Producer;
with Consumer;
with Console;
etc.

3.2 With Clauses for Channel Packages

There must be a "with" clause for every Ada package named in the Durra application descrip-
tion as the implementation of a Durra link assigned to the cluster. An Ada package is the im-
plementation of a Durra link if it is named in the package name attribute for that link.

Example:

with FIFOChannel;
with BroadcastChannel;
etc.

3.3 Enumeration of Channels Used

Each channel package named in a "with" clause must have a corresponding enumeration lit-
eral in type ChannelTypes. The enumeration literal name is the name of the package with the
suffix "-Type" appended.

Example:

type Channel_ Types is (FIFO_Channel Type, BroadcastChannel_ Type);

CMU/SEI-91-TR-19 9

3.4 Link Task Info Case Alternatives
In the definition of the LinkTaskInfo record, there must be a case alternative for each literal
in the enumerated type ChannelTypes. The form of the case alternative must be:

when <ChannelType value>=>
<channel package name>_Link :<channel package name>. Channel Task;

Example:

when FIFO_Channel_ Type =>
FIFO_ Channel_ Link: FIFO_ Channel.Channel_ Task,

3.5 Instantiations of Process Shell
ProcessShell is the name of a generic package supplied with the Durra runtime library. This
package exports an Ada task type that serves as a "wrapper" around the Ada subprogram
named as its actual parameter. There must be an instantiation of ProcessShell for each user
procedure named in a "with" clause. The form of the instantiation must be:

package <Ada procedure name>_Shell Is new ProcessShell(<Ada procedure name>);

Example:

package Producer_ Shell is new Process Shell(Producer);
package ConsumerShell is new ProcessShell(Consumer);
package ConsoleShell is new Process Shell(Console);
etc.

3.6 Task Object Declarations for Each Imported Procedure
There must be an Ada task object declaration for each Durra process assigned to the cluster.
The object declaration for each process must refer to the instantiation of ProcessShell asso-
ciated with the Ada procedure that implements the Durra process. The process ID of a process
is its index in the ProcessTable (see section 3.18 on page 17).

Process <process ID> : <Ada procedure name>_Shell.Caller;

Example:

Process_ 1 : ProducerShell. Caller;
Process_2: ConsumerShell.Caller;
Process_3: ConsoleShell.Caller;
Process_4 : ProducerShell.Caller;
etc.

10 CMU/SEI-91-TR-19

3.7 Start Link Process Case Alternatives

In the body of the StartLinkProcess subprogram, there must be a case alternative for each
literal in the enumerated type Channel Types. The form of the case alternative must be:

when <Channel Type value>=>
LinkTask Table(The Link.ID):= new LinkTaskInfo(<Channel Type value>);
Link_ Task Table(TheLink.ID).<channel package name>_Link.Initialize(TheLink);

Example:

when FIFOChannel Type =>
LinkTaskTable(TheLink.ID) ---new LinkTask nfo(FIFOChanneliType);
Link_ Task Table(The Link.ID).FIFO_Channel_Link. lnitialize(The Link);

3.8 Reconfiguration Trigger Functions

For each configuration level specified in the application description there is a function which
determines which level to go to next, and when to go to it. An additional function for the initial
level (level 0), a hidden level not specified in the application description, determines when and
at what level to start the application.

function L<Level iD>(Prev: In NATURAL) return NATURAL Is
theDelta: DURATION.= DURATION'LAST;
aDelta : DURATION;

begin
loop

-- A series of statements that evaluate reconfiguration expressions at this level.
-- When an expression evaluates true the function returns the new level to go to.
-- The expressions take the following form:
If <reconfiguration condition> then
return <new Level ID>;

end If;
A series of statements that determine the next time the expressions should be

-- evaluated in the absence of a signal. The expressions take the form:>
aDelta := <duration evaluation>;
Ht aDeta < theDeita then
theDelta : aDeta;

end If;
CM.ReconflgurationConditionTask.Start(theOelta);
CM.Reconfiguration_ Condition_ Task.Check;

end loop;
end L<Level ID>;

CMU/SEI-91-TR-19 11

3.9 Level Configuration Procedures

For each configuration level there is a procedure that actually carries out the steps necessary
to configure for that level. For all but the termination level (the level entered when an applica-
tion is about terminate) the procedure is of the form:

procedure ConfigureLevel_ <Level ID> Is
begin
CM.DoLevelConfiguration(<Level ID>);
<A series of statements that start processes and links in the configuration.

They take on the form>
If ThisClusterID = LinkTable(<x>).ClusterID and then

not LInkTable(<x>).lnitlalized then
StartLinkProcess(

<link type>,
Link Table(<x>));

end if;
if ThisClusterID = Process Table(<y>).ClusterID and then

not Process Table(<y>).lnitlalized then
Process <z>.Start(<y>);

end if;
end ConfigureLevel_<Level ID>;

For the termination level (level n+1), the procedure has the form:

procedure ConfigureLevel_<Level ID> Is
begin
CM.DoLevelConfiguratlon(<Level ID>);
-- A series of statements that stop processes in the configuration.
-- They take the form>
If This Cluster_ID = Process Table(<y>).ClusterID and then

Process_ Tabe(<y>).lnItlallzed then
Process_ <z>.Stop;

end I;
end ConfigureLevel_ <Level 1D>;

3.10 Get Port Case Alternatives

In the body of the GetPort subprogram, there must be a case alternative for each literal in the
enumerated type Channel Types. The form of the case alternative must be:

when <Channel Types value> =>
Link_ Task_ Table(ThePort.AssoclatedL lnk.ID).

<channel package name>_Lnk.GetPort(
The_Port,
DataLocation,
Data Size,

12 CMU/SEI-91-TR-19

I

Data TypeID,
Completed);

3.11 Get Port Return Case Alternatives

In the body of the GetPortReturn subprogram, there must be a case alternative for each lit-
eral in the enumerated type Channel Types. The form of the case alternative must be:

when <Channel Types value> =>
LinkTaskTable(ThePort.Assoclated Lnk.ID).<channel package name>_Link.
GetPortReturn(The_ Port.ConnectionPoint)(Size of Data, Type ID);

3.12 Send Port Case Alternatives
In the body of the SendPort subprogram, there must be a case alternative for each literal in
the enumerated type ChannelTypes. The form of the case alternative must be:

when <Channel Types value> =>
LinkTask_ Table(The Port.Assocated_Link.ID).

<channel package name>_Link.SendPort(
ThePort,
DataLocation,
Data Size,
Data TypejD,
Completed,
Priority);

3.13 Send Port Return Case Alternatives

In the body of the SendPortReturn subprogram, there must be a case alternative for each
literal in the enumerated type Channel Types. The form of the case alternative must be:

when <Channel Types value> =>
-- compiler bug requires this workaround
LinkTask.*= Link_ TaskTable(The Port.Assocated_Link.ID);
Link_ Task.<channel package name>_Link.

SendPort Return(The_Port. Connection Point);

3.14 Test Input Port Case Alternatives

In the body of the Test input Port subprogram, there must be a case alternative for each lit-
eral in the enumerated type ChannelTypes. The form of the case alternative must be:

when <ChannelTypes value> =>

Link_ Task Table(The Port.Assoclated_Lnk.ID).

CMU/SEI-91-TR-19 13

<channel package name>_Link. TestInputPort(
The Port,
Type of Next Input,
Sizeof_ Next Input,
InputsAvallable);

3.15 Test_Output Port Case Alternatives

In the body of the TestOutput Port subprogram, there must be a case alternative for each
literal in the enumerated type Channel Types. The form of the case alternative must be:

when <ChannelTypes value> =>
LinkTaskTable(ThePort.AssoclatedLink.ID).<channeLpackage name>_Link.

Test_OutpuLPor(The_ Port, SIotsA vailable);

3.16 Case Alternative for Each Configuration Level
There are two case statements in the body of the StateChanger task. The first is executed by
the master cluster and the second is executed by all other clusters. For each configuration lev-
el in the application there must be a case alternative in both case statements. The case alter-
native choice is the ID of the configuration level, which is its index in the LevelTable. There
are also alternatives for ENTER (alternative 0) and EXIT (alternative n+1). For the master, the
form of the alternative is as follows:

when <level ID> =>
CM.ReconfigurationTask.Configure_to_Leve(<level ID>);
accept Reconflgure(ToLevel: in NATURAL);
Configure Level_<level ID>;
NextLevelID L <Level ID>(Prev_LevelID);
PrevLevelID <level ID>;

The ENTER alternative is:

when 0 => NextLevelID :- LO(O);

The EXIT alternative is:

when <n+1> =>

CM.ReconfigurationTask. Configure toLeve(<n+ 1>);
accept Reconfigure(ToLevel: in NATURAL);
ConfigureLevelcn+ >;
Done.= TRUE;

For the non-master clusters, the form of all alternatives except the ENTER alternative is as fol-

lows:

when <level ID> => Configure_Level_<Level ID>;

14 CMU/SEI-91-TR-19

The ENTER alternative for non-master clusters is:

when 0 => null;

Example:

In the following example, there are two application levels, Level 1 and Level 2. Level 0 is the
ENTER level and Level 3 is the EXIT level.

if Cluster Table(ThisCluster_ ID).Master then
case NextLevelID is

when 0 => Next LevelID := LO(O);

when I =>
CM.ReconfigurationTask.Configure to Level(l);
accept Reconfigure(ToLevel: in NATURAL);
Configure-Level_ 1;
NextLevelID := L (PrevLevel ID);
PrevLevel ID:= 1;

when 2 =>

CM.Reconfiguration Task.Configure to Level(2);
accept Reconfigure(ToLevel: in NATURAL);
ConfigureLevel_2;
NextLevelID :=L2(PrevLevel ID);
PreyLevelID := 2;

when 3 =>
CM.Reconfiguration_ Task. Configureto Level(3);
accept Reconfigure(To Level : in NATURAL);
ConfigureLevel_3;
Done := TRUE;

when others =>
Text_lO.PutLine("lllegal reconfiguration to Level" &

TTLevel ID Range'MAGE(NextLevel ID) & "requested.");

end case;
else

accept Recoiigure(ToLevel: in NATURAL) do
PrevLevelID.. NextLevel ID;
NextLevelID := To-Level;
end Reconfigure;

case NextLevel ID is

when 0 => null;

CMU/SEI-91-TR-19 15

when I => Configure_Level_ 1;

when 2 => Configure_Level_2;

when 3 => Configure jevel_3;

when others =>
Text_ 1O.PutLine("Ilegal reconfiguration to Level &

TTLevel ID Range'lMAGE(NextLevel ID) & "requested.");
end case;

end if;

3.17 Type_ Table Entries

There must be an entry in the Type Table for each Durra type defined in the application de-
scription. The Type Table Entry assignment shall have the form:

<sequential index n, starting at 1> => new TT. TypeTableEntry'(
Kind => <TT.Size- Type or TT. Union_ Type>,
Name => SP.MakePersistent("<Durra type name>"),
ID => <n>,
FreeList => <if the type has a fixed upper bound, then

SM.CreateFree LIst(<upperbound/8>),
else null,>

BytesRequired =>. <maximum size of data, or 0 if unbounded>,
-- if Kind is Size_ Type then

Upper_Bound =2 <upper bound from type definition>,
LowerBound => <lower bound from type definition>

-. elsif Kind = Union Type then
Component Types => null

)

Example:

1 => new TT. Type Table Entry'(
Kind ,> TT.SizeType,
Name -> SP.MakePersistent("GENERAL),

ID => 1,
FreeList=> SM. CreateFree List(4),

BytesRequired -> 4,
Upper_Bound ,> 32,
LowerBound => 32

)

16 CMU/SEI-91 -TR-1 9

3.18 ProcessTable Entries
There must be an entry in the ProcessTable for each process defined in the application de-

scription. The ProcessTableEntry assignment shall have the form:

<sequential index n, starting at 1> => new TProcessTableEntry'(
Name => SP.MakePerslstent("<expanded Durra process name>"),
ID => <n>,
StartTime => DT.NULL_ TIME,
Initialized => FALSE,
Ports => new 7T.PortIndex'(

-- for each port defined for this process, one Port_ Table-Entry
<sequential index m, starting at 1> => iT Tnew PortTable Entry'(
Name => SP.MakePersistentC'<simple/expanded Durra port namne>"),
ID => <in,

OwnerProcess => null,
Data Type => Type _Tabie(<ID of data type for this port>),
AssociatedLink => null,
ConnectionPoint => DT.PortID RangeLAST,
Isinput => <FALSE or TRUE, depending on port direction>

Attributes => TTAttributePairs. Create,
Blocked => FALSE,
Blocked _DataBuffer => System.NO ADDR,
BlockedData Size => 0,
BlockedDatajTypejID => NULLTYPE ID,
RemoteData => null,
Cluster:_ID => 0

Example:

1 => new ProcessTable Ent ry'(
Name .> SP.MakePersistent("MA IN.P1"),
ID => 1,
Start lime => DT.NulITime,
Initialized .> FALSE,
Ports->, new TT. PortIndex'(

I => new TT.PortTable Entry'(
-- Port MA IN.P1.OUT1

Name,-.> SP.MakePersistent("OUTI "),
/D => 1,
OwnerProcess => NULL,
Data- Type-=> TypeTable(1),
AssociatedLink -> NULL,
ConnectionPoint => DT.Port ID RangeLAST,

CMU/SEI-91 -TR-1 9 17

IsInput => FALSE
)

Attributes=> TT.AttributePairs. Create,
Blocked => FALSE,
BlockedDataBuffer => System.NOADDR,
BlockedDataSize => 0,
BlockedDataType_lD => DT.NULLTYPEID,
RemoteData => null,
ClusterID => TTCluster ID Range'LAST

3.19 Process Attribute Value Assignments
For each attribute of each process defined in the application description, there must be an as-

signment of the form:

TT.A ttributePalrs.Append

(Element => (SP.MakePersstent("<simple attribute name>"),

SP.MakePersistent("attribute value>")),
L => Process_ Table(<process_table_index>).Attributes);

Example:

TT.AttributePairs.Append
(Element => (SP.Make-Persistent("cluster),

SP.Make Persistent(cl l")),
L => Process_ Table(1).Attributes);

3.20 Link Table Entries

There must be an entry in the LinkTable for each link defined in the application description.

The LinkTable Entry assignment shall have the form:

<sequential index n, starting at 1> => new TT.LInk_ TableEntry'(
Name -> SP.Make_ Persistent(<expanded Durra link name>),
ID => <n>,
InPorts => new TT.Port lndex'(

-- one entry for each input port defined for this link
<sequential index m, starting at 1> z> null

OutPorts =. new TT.Por Index'(

-- one entry for each output port defined for this link
<sequential index j, starting at 1> --.> null

Attributes =o TT.Attrlbute_ Palrs.Create,

18 CMU/SEI-91-TR-19

BufferSize => <message buffer bound specified for link>,
ClusterID => TT.Cluster ID Range'LAST

)

Example:

1 => new TT.LinkTable_Etry'(
Name => SP.MakePersistent("MAIN.Q 1"),
ID => 1,
InPorts => new TT.Portlndex'(1 => null),
OutPorts => new T.Port Index'(1 => null),
BufferSize => 10,
ClusterID => TT.Cluster ID Range'LAST

)

3.21 Link Attribute Value Assignments
For each attribute of each link defined in the application description, there must be an assign-

ment of the form:

TT.AttrlbutePalrs.Append
(Element => (SP.MakePersistent("<simple attribute name>"),

SP.Make_ Persistent("<attribute value>")),
L => LinkTable(<link table-index>)Attributes);

Example:

TT.AttributePairs.Append

(Element => (SP. Make Persistent("cluster"),

SP.Make_ Persistent("cl ")),
L => LinkTable(l).Attributes);

3.22 Level Table Entries
There must be an entry in the LevelTable for each configuration level defined in the applica-

tion description. The LevelTable Entry assignment shall have the form:

<sequential index n, starting at 1> => new TT.LevelTableEntry'(
Number of Processes => <number of processes in Process Table>,
Number of Links => <number of links in Link Table>,
NumberofConnections => <number of connection records for this level>,
Name =;. SP.Make_ Persistent(<expanded name of configuration level>),
ID --> <n>,
Processes = (

-- for each process in the ProcessTable

<sequential index m, starting at 1> =

CMU/SEI-91 -TR-19 19

(The_Process => Process Table(<m>),
Cluster ID => <cluster ID or 0 if not active at this level>

)

Links=(
-- for each link in the LinkTable
<sequential index j, starting at 1> =>

(TheLink => LinkTable(<j>),
ClusterID => <cluster ID or 0 if not active at this level>)

Connections => (
-- for each port requiring connection at this level
<sequential index k, starting at 1> =>

(The_Port => Process Tabie(<s>).Ports(<t>),
TheLink => Link_ Table(<r>),
ConnectionPoint => <v>

)
)

)
In the Connections assignment, the values s, t, r, and v vary according to the process ports to
be connected, the links to which they are to be connected, and the link port index where the
process port is attached to the link. All the variables are positive integer values. The meaning
of the field ConnectionPoint varies with the type of process port being connected. If the port
is of type In-Port, then ConnectionPoint is an index into the OutPorts index of the Link Ta-
bleEntry if the port is of type OutPort, then ConnectionPoint is an index into the In_Ports
index of the LinkTableEntry.

Example:

1 => new TT.LevelTableEntry'(
Number of Processes => 3,
Number of Links => 1,
Number of Connections => 3,
Name => SP.MakePersistent("MAIN"),
ID => 1,
Processes => (

1 => (The-Process => ProcessTable(I), ClusterID => 1),
2=> (The-Process => ProcessTable(2), ClusterID => 1),
3 => (The-Process => ProcessTable(3), ClusterID => 0)

Links =>
1 => (The-Link => Link Table(l), Cluster ID => 1)

Connections => (
1 => (The-Port => ProcessTable(1).Ports(l),

The_Link => Link Table(l),

20 CMU/SEI-91-TR-19

ConnectionPoint => 1

2 => (ThePort => ProcessTable(2).Ports(l),
TheLink => Link Table(I),

ConnectionPoint => 1

3 => (ThePort => ProcessTable(3).Ports(l),
TheLink => NULL,

ConnectionPoint => 1
)

3.23 Cluster Table Entries

There must be an entry in the Cluster Table for each cluster defined in the application descrip-

tion. The ClusterTable Entry record shall have the form:

<sequential index n, starting at 1> => new TTCluster TableEntry'(
ID => <n>,
HostName => SP.MakePerslstent(
"<host processor >'; or "localhost" if no compile-time configuration file),
Connected => FALSE,
Launched => FALSE,
Command => SP.MakePersistent(".),

Example:

1 => new TT.Cluster_ Table Entry'(
ID => 1,
HostName => SP.Make Persistent("hx.sei.cmu.edu"),

Connected => FALSE,
Launched => FALSE,
Command => SP.MakePersistent(-),

CMU/SEI-91-TR-19 21

22 CMU/SEI-91-TR-1 9

References
[1] Barbacci, M.R., D.L. Doubleday, C.B. Weinstock, M.J. Gardner, J.M. Wing. Durra:A Task-

Level Description Language Reference Manual (Version 3), SEI Technical Report
CMU/SEI-91-TR-18, December, 1991, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, Pa.

CMU/SEI-91 -TR-19 23

UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OFThIS PAGB

REPORT DOCUMENTATION PAGE
I&. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified None

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

N/A Approved for Public Release
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Distribution Unlimited
N/A
4. PERFORMING ORGANIZATION REPORT NUMBER(S 5. MONITORING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-91 -TR-19 ESD-91 -TR-19

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Software Engineering Institute (if apcab) SEI Joint Program Office
SEI

6c. ADDRESS (City, State and ZIP Code) 7b. ADDRESS (City. State and ZIP Code)

Carnegie Mellon University ESD/AVS
Pittsburgh PA 15213 Hanscom Air Force Base, MA 01731

8a. NAME OFFUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (if applicable) F1 962890C0003
SEI Joint Program Office ESD/AVS

8c. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.Carnegie Mellon University PROGRAM PROJECT TASK WORK UNIT

Pittsburgh PA 15213 EUMIN O NO. NO NO.63756E N/A N/A N/A

11 TITLE (Include SecLunty Claaaification)

A Description of Cluster Code Generated by the Durra Compiler
12. PERSONAL AUTHOR(S)

Dennis L. Doubleday, Michael J. Gardner, and Charles B. Weinstock
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPOWr (Yi, Mo., Day) 15. PAGE COUNT

Final FROM M December 1991 23 pp.
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 19. SUBJECT TERMS (Contirm an evowa of neamuy and identify by block mmb)

FID GROUP SUB. GL code generation distributed processing
configuration management task-description languages
distributed processing

19. ABSTRAF (C on ven= ife necsary and idalwy by block zmmb)

Durra is a language and support environment for the specification and execution of distributed Ada applica-
tions. The Durra programmer specifies the distribution of application components by assigning them to virtual
nodes called clusters. For each cluster named in an application description, the Durra compiler generates an
Ada package body with a standardized format. Within the confines of the format, the content of the package
body varies according to the requirements placed upon the cluster by the Durra application description. The
cluster-specific package body is compiled and linked with a fixed set of Ada compilation units, common to all
clusters, to form a multitasking Ada program. The intended audience for this document is Durra application
developers, who will need an understanding of the concepts presented here in order to be effective Durra appli-
cation debuggers.

(pleme m over)

20. DISTRIBUTION/AVAILABHITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSFIEDUNUMIT SAME AS RP'=C USERS. Unclassified, Unlimited Distribution

22. NAME OF RESPONSIBLE INDIVIDUAL 2b. 1EEWNE NUMBER Include Am Code) 22c. OFFICE SYMBOL

John S. Herman, Capt, USAF (412) 268-7631 ESD/AVS (SEI)

DO PORM 1473.83 AR EDITION of I JAN 7313 OBSOLETE UNLIED, UNCLASSIFIED
mO~tMrr aAWWaTIO OF IM

ASTRACY -cmtnuod froan paos on.. blck 19

