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Issues in Real-Time
Data Management

Abstract: This report explores issues related to the use of database management
technology in support of real-time system programming.  It describes the potential
benefits of database support for real-time systems, and it describes the state of
the art in database technologies relevant to real-time. The report concludes that
more research and development will be needed before the benefits of database
management can be applied to real-time system development.

1. Introduction

This paper explores real-time data and database management with the goal of determining
whether and how the engineering of real-time systems can be improved through exploitation
of these technologies. Improving the engineering of real-time systems means decreasing
the cost of construction and maintenance and increasing the reliability of the product.  A
powerful technique to accomplish that improvement is to substitute off-the-shelf technology
for customized technology.

Database management systems (DBMSs) handle shared, persistent data; real-time systems
are more usually concerned with transient data with very short meaningful lifetimes.  How-
ever, persistent and transient, shared and exclusive are relative terms.  Data may be consid-
ered shared and persistent if it lasts long enough to be used by subsystems written by differ-
ent people or organizations.  Database technology facilitates communication among engi-
neers, not just among their products.

Stankovic maintains [52] that real-time computing is not high-performance computing, but
rather computing with time constraints.  The correctness criteria of a real-time system in-

1clude explicit statements about the time in which the computing must be done. In order to
engineer a system that meets its time constraints, it must be possible to analyze the system
to determine its time consumption.  Commercial, off-the-shelf (COTS) database technology
cannot be analyzed in this way because the producers of that technology will publish neither
the analysis (if they have it) nor the code, in order to protect it.  There appears to be no
example of a successfully fielded, real-time database application using any commercial, off-
the-shelf DBMS.  This may reflect the fact that practitioners are too busy to publish their
practices. However, some successful industrial R&D efforts that "would have worked had
they been fielded" have been noted [26, 44]. A British software house that produces sys-
tems for the British Navy has developed software for real-time database management [58],
but the British consider it a competitive advantage and are unwilling to discuss it.

1For every system, there is a time constraint that, if not met, makes the system unusable.  Consider a word
processing system with a thirty second response to a keystroke.  In that sense, every system is a real-time
system. We say a system is a real-time system if the time constraints are explicit and quantitative.
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The current state of the practice in real-time data management relies heavily on customi-
zation and innovation and little on routine, off-the-shelf technology.  This situation cannot be
reversed in the near term.  As I will demonstrate, not all of the fundamental problems under-
lying real-time data management have been understood, although many have.  More impor-
tantly, there is little or nothing in the way of production quality methods, designs, and soft-
ware, with which to bring the technology that is understood to the field.

The remainder of this paper is organized as follows.  Chapter 2 gives a high-level descrip-
tion of the services offered by database management systems.  These are the benefits that
might be made available in a cost effective way to real-time applications.  Chapter 3 is a
survey of the state of research in the most heavily researched aspect of real-time database
management, namely concurrency control.  Chapter 4 briefly describes other topics in the
database literature that are of interest to real-time applications.  Finally, Chapter 5 describes
what remains to be done to make the practice of real-time data management more routine
and cost-effective.
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2. Benefits of Database Management Systems

It is worthwhile to recall the benefits of DBMS technology.  Some benefits are not obvious,
many have nothing to do with real-time computing per se, and all may get lost in the detailed
discussions of subsequent chapters.

Database management systems provide central control of the data in a system.  This
centralization of control permits:

• Controlled elimination of redundancy.  When data description is not centrally controlled,
different applications or application segments maintain their own versions of the data.
This not only wastes storage space, but, more importantly, may introduce inconsistencies
as the various versions diverge.

• Maintenance of integrity constraints.  The DBMS can protect the database from some
classes of application errors: impossible data values (400 hours worked in a week), con-
flicting data (duplicate keys), etc.

• Publication of the data description as a resource.

The last item affects the application designers, rather than the applications.  The database
description, and the DBMS which realizes the described data, serves as a public interface
between and among the implementors of large systems.  Rather than have every pair of
organizations and individuals involved in the construction and maintenance of a large sys-
tem negotiate agreements to satisfy each other’s need for information, the DBMS forms a
common repository from which every application segment acquires its inputs and to which
every segment deposits its results.  The enterprise or conceptual schema [56] serves an
information-hiding role and an information-publishing role which allow the parts of an appli-
cation development team to work independently from each other.

A conceptual schema in the design of an application does not necessitate a DBMS in its
implementation. But a good deal more work will be needed and a good deal more code will
be generated if the those services are implemented by custom software. A fundamental
question of this paper is: Can DBMS benefits be brought to real-time application construc-
tion at "off-the-shelf" prices?

One of the most important achievements of database technology is data independence, the
separation of the functional and performance aspects of database interaction.  An applica-
tion specifies only the functional characteristics of its database interactions.  With the needs
of the complete collection of applications in view, the database administration staff specifies
the storage structures and access paths that determine the performance characteristics of
those applications.  Of course, performance, i.e., timing, is a functional characteristic for
real-time systems.  It remains to be seen if conventional DBMS performance tuning is suf-
ficient for real-time needs.

The technology of distributed database management has progressed to the point that many
commercial DBMSs offer a degree of distribution, particularly on local area nets.  This distri-
bution is provided in a location-independent way.  Like data independence, location inde-
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pendence separates the application software from performance-oriented decisions, in this
case, data location within a network.

Database technology includes a form of fault tolerance and recovery.  The faults involved
2are those which cause a loss of volatile main memory but not of secondary memory (disks).

Examples of such faults are power loss and operating system failure. The next chapter ex-
amines the utility of this notion of fault tolerance for real-time computing.

2When combined with checkpointing and sound risk management, e.g., offsite storage, these techniques also
provide for recovery of secondary storage from more catastrophic failure.
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3. Concurrency Control and Data Sharing

Database management systems traditionally provide facilities for the management of trans-
actions. A transaction is an indivisible, or atomic, unit of work; a bank withdrawal or deposit
and the sale of a seat on an aircraft are frequently cited examples of transactions.  Bat-
tlefield management and stock arbitrage are often cited as examples of transaction proc-
essing systems with real-time constraints.  Real-time transaction management adds the is-
sue of timing constraint to conventional transaction management.

Conventional transaction management controls the concurrent execution of transactions to
ensure that the effect of that execution on the database and its users is identical to the effect
those transactions would have had, had they run in some serial (non-concurrent) order.  The
so-called "serializability" goal of transaction management is well established as an appro-
priate notion of correctness for schedules of interleaved transaction operations. Most (if not
all) commercial DBMS rely on "two-phase locking" (2PL) concurrency controllers [16].

Real-time system designers and researchers are more likely to think in terms of tasks than
transactions. Tasks and transactions are different computational concepts, and their
similarities and differences affect how they are designed, implemented, and controlled.

• The task and the transaction abstractions are both units of work and therefore also units
of design. In other words, a well designed task or transaction implements a well under-
stood function or performs a well understood service.

• The task and the transaction abstractions are both threads of control; that is, they are the
units of scheduling.

• All transactions are designed to terminate; many tasks are designed to be non-
terminating.

• The transaction is a unit of recovery; the task is not.  The atomic nature of a transaction
requires that the effects of any failed transaction not be visible to any other transaction.
Therefore, concurrently executing transactions must be isolated from each other; correct
interleavings of transaction operations are serializable.  Concurrently executing tasks are
cooperative and inter-communicative; they are explicitly aware of each other and, as they
request and perform services for each other, are explicitly not serializable.

The distinctions between tasks and transactions do not always hold, but are generally what
a speaker has in mind when he or she uses the term task or transaction.

• The runtime behavior of a task is statically predictable; thus, the execution time of a task
is calculable. The runtime behavior of a transaction is dynamic in that it depends upon the
values it finds in the database. The execution time of a transaction is therefore difficult to
predict accurately. When disk-resident data is involved, worst case estimates of trans-
action times may be wildly pessimistic.  They are more likely to be simply unavailable.

• Tasks wait only for other tasks; transactions also wait for the completion of I/O events.

• Resources accessed by more than one task in a real-time system are few in number and
generally known at design time. They take the form of critical regions or rendezvous con-
taining procedures for updating shared data.

The resources (database data granules) which may be accessed by multiple transactions
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of a transaction processing system are very many in number. The granules, which are in
fact needed by any collection of concurrently executing transactions, will be relatively few
in number. In other words, the database is much larger than its active, in-use subset, at
any moment.  There is generally a very low probability of conflict between transactions, a
very low probability that any data granule will be needed by two concurrently executing
transactions. However, the identity of the contested granules is not known until runtime.

As a consequence of these distinctions, critical regions and rendezvous, which always
represent potential blocking, will be shorter than transactions, which represent potential
blocking with low probability.

3.1. Consistent Schedules for Real-Time Applications

The popularity of serializability as a criterion for correctness of concurrent transaction execu-
tion is understandable. The argument for its correctness is straightforward and easy to
grasp: if each transaction is correct, the effect of running any number of correct trans-

3actions in sequence must also be correct. A few authors have ventured to define criteria for
allowable interleavings of database operations that claim to allow non-serializable
schedules. This section discusses a few of them.

Sha et al. [45] suggest a decomposition of the database into so-called atomic data sets with
the property that the consistency of each atomic data set is defined without reference to
anything outside of the data set, and that global database consistency is merely the non-
interfering conjunction of these local consistency conditions.  The authors [45] then suggest
that the tasks of a real-time system be divided into elementary transactions with the property
that each such transaction accesses only one atomic data set.  Serializable executions of
the elementary transactions may be non-serializable executions of the compound
transactions or tasks from which they were derived.  The essence of these ideas [45] is not
"a generalization of serializability theory" but rather the recognition of the distinctions be-
tween the concepts of task and transaction.

The decomposition described by Sha et al. [45] results in decreased transaction lengths.
Decreased transaction length, like decreased critical region size, results in fewer resource
conflicts and shorter waiting times when conflicts do occur. It has been suggested [19] that
the amount of blocking among a collection of transactions is proportional to the square of
their lengths. Decreasing transaction length via decomposition is the most powerful tool a
designer has for improving transaction performance.

The decomposition of the database into atomic data sets is done off-line by the software
designers. This decomposition is essentially global to the system design and may not be
stable with respect to system evolution.  From an engineering point of view, what is needed
is a method by which this decomposition or some other theory of transaction design, e.g.,

3The popularity of the 2PL algorithm—actually a constraint on the behavior of the applications and not an
algorithm—stems from its ease of implementation.
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the transaction steps of Garcia-Molina [18] or the nested transactions of Moss [36], can be
carried out and managed in the presence of complex and evolving system requirements.

Lin [31, 57] suggests a decomposition of the database into external and internal objects and
corresponding external and internal consistency constraints and external and internal trans-
action segments. (An external transaction segment is one which writes external objects that

4satisfy external constraints.) An external object "records the state of the real world." Lin
repeatedly stresses the opinion that the timeliness of external data is often more important
than the consistency of the database.  He does not give any method that exploits these
insights nor a theory from which such a method might be derived. He does present some
interesting examples, to which we will return.

I suggest that there is no substitute for serializability as a definition of correct interleavings of
transaction operations. As is discussed in Section 3.4, real-time transaction schedulers pro-
duce serializable schedules that meet time constraints, a proper subset of the serializable
schedules. As shown by Sha et al. [45], the application of the theory to practice, in partic-
ular, the identity of the transactions to be serialized, is not trivial. I suggest that if the pro-
gramming agents to be controlled are not to be serialized in some sense, then they are not
transactions. Lin remarks that "most real-time transactions are cooperating rather than
conflicting with each other" [57]. In that case, their interactions are best understood in the
theory of concurrent cooperating systems and parallel programming. There may be room
for a theory of interactions of programs that are both cooperating and competitive, that are,
for example, Ada tasks and Structured Query Language (SQL) transactions (see [11] and
see also the transaction concept in Common APSE Interface Set-A (CAIS-A [8]), but the
shape and the utility of such a theory are far from clear.

3.2. Temporal Consistency

The following example appears in Vrbsky et al. [57]:

[Consider] a system in which robots use a database to recognize objects in front
of them. . . . Suppose T1 is to recognize what is in front of a moving robot and T2
is to receive the current view.  When the robot is far from the object, it will be
difficult for T1 to identify the object. . . .[I]f T2 [receives] a closer picture of the
object, instead of trying to resume the old recognition process, T1 may want to
use the new picture from T2 to get a more effective result.

The scheduling decision that this example implies, the abort/restart of T1, would not be
made by any conventional scheduling algorithm. The concept of "temporal consistency" sug-
gests that the age of data be taken into account in making scheduling decisions. This is a
new form of timing constraint, specifying bounds on the start time of one transaction relative

4This is a rather confused idea, as the purpose of any database is to record the state of the real world. Lin
apparently has in mind the distinction between measurements of the world, e.g., sensor readings, and inferences
about the world, e.g., track identities.
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to the stop time of one or more transactions. [21] Temporal consistency can reference ei-
ther the absolute age of the data read by a transaction, or the dispersal of those ages, the
age of each data item relative to the age of every other data item in the read set of a trans-
action [51].

Liu and Song [51] apply temporal consistency along with serializability as a criterion for cor-
rectness. This is consistent with the observation that the correct operation interleavings for
real-time transactions are those serializable interleavings which meet their timing con-
straints. No one has proposed a scheduler that uses temporal consistency in making
scheduling decisions.  (Liu and Song use it to judge the effectiveness of scheduling
algorithms.)

Temporal consistency is used as the only criterion for correctness by the telemetry data
acquisition functions of the Real Time Data System, part of the ground control software of
the NASA shuttle system [37]. The stuffer (sic) routines organize "time homogeneous"
buffers for evaluation by application tasks. These routines form a classic producer/consumer
collection; their executions are serialized by design.

Temporal consistency is an interesting concept about which more can be learned. For ex-
ample, no one has used temporal consistency in a manner that naturally requires the
abort/restart of Lin’s example (quoted above).

3.3. Imprecise Computation

As noted by Lin et al. [30], some algorithms, particularly the numeric algorithms, proceed by
a method of successive approximation.  They [30] propose to use such algorithms to trade
accuracy for time. If "time runs out" (that is, a deadline is reached) before an algorithm
computes a precise result, the larger system may be willing to use a prior approximation of
the result.

Smith and Liu [47] have extended imprecise computation to the database realm.  Their algo-
rithms compute query answers incrementally.  Hou et al. [23] present methods for comput-
ing approximations of aggregations (Count, Sum, etc.) with statistical techniques.

Strictly speaking, imprecise computation is not a database topic, as the computations are
considered to produce answers, not to update shared data.  Imprecise computation affects
scheduling decisions [12], although the decisions are not specific to transaction scheduling.
From an engineering point of view, the use of imprecise computations requires an under-
standing of the effect of imprecise answers on the application.
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3.4. Real-Time Transaction Schedulers

I have argued that serializability is the correct notion of transaction concurrency control. In
real-time applications, not every serializable schedule is acceptable; those which fail to sat-
isfy timing constraints are incorrect.  Researchers of real-time transaction schedulers ( [1],
[2], [3], [6], [10], [22], [24], [35], [46], [48], [49], [50], [51], and [53]) have developed and
analyzed a great many paradigms that consider timing constraints when making scheduling
decisions.

Priorities can be assigned to real-time database transactions by many of the same strat-
egies used to assign priorities to real-time tasks. As transactions are generally less predict-
able than tasks, priority assignment strategies using information about runtime behavior
(e.g., execution time, needed resources, etc.) may not be feasible.  Of the papers cited, only
four ( [1], [2], [24] and [53]) consider priority assignment strategies. The authors of the other
papers are content to assume priority is determined by some unexamined mechanism.

Transactions allow for conflict resolution strategies not available for tasks. When a task dis-
covers another task in a contested critical region, it has little choice but to wait for the resi-
dent of the region to depart. A transaction owning a contested resource may be aborted,
thereby freeing the resource. As transactions are units of recovery, transaction managers
must have facilities to repair the effects of aborted transactions. This is not the case for task
managers. Aborting a task in a critical region will generally leave a shared resource in a
corrupt state.

The obvious modification of 2PL with priorities is as follows: When a transaction T requests
a resource owned by transaction U, if the priority of T is not greater than that of U, then T is
blocked, as in standard 2PL. If, however, T’s priority exceeds that of U, then U is aborted.
This policy is discussed in the proceedings of three conferences ( [24], [1], [2]). A variation
[1] considers the priority of the newly restarted instance of transaction U. In a least slack
priority scheme, the new U has a higher priority than the old U and may have a priority
higher than T. If it does, U is not aborted.

Optimistic concurrency control [25] exploits the low probability, under reasonable assump-
tions on transaction behavior, that any two concurrent transactions request the same data-
base granule. It is a non-locking protocol: all database operations issued by transactions are
performed when requested, although write requests do not immediately update the shared
database but are deferred until such time as the transaction attempts to commit. When a
transaction issues a commit request, the set of items read by the transaction is examined for
any item written by some transaction that was committed since the committing transaction
started. If such an item exists, the committing transaction is aborted; otherwise, it is com-
mitted. Since writes effectively occur at commit time, the serialization order selected by an
optimistic concurrency controller is the order in which the transactions commit. In other
words, the effect of a collection of transactions controlled by such a controller is the effect
they would have had had each transaction executed, atomically, at its commit time.
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Haritsa et al. [22] adapt optimism to the presence of priorities. Commit processing is modi-
fied as follows: if the committing transaction has written an item read by some concurrent
transaction still in execution, the priorities of the two transactions are compared. If the com-
mitting transaction has the higher priority, the executing transaction is aborted.  As that
transaction would be aborted by standard optimistic protocols when it attempted to commit,
the resources that it would have consumed are saved.  If, however, the executing trans-
action has the higher priority, the committing transaction may abort itself or it may wait until
the executing transaction commits, in hopes it will not be aborted by some higher priority
transaction in the interim.  Haritsa et al. [22] also present a compromise strategy, in which
the committing transaction waits until fewer than half of the conflicting transactions have
higher priority. Once that state is reached, remaining conflicting transactions are aborted,
irrespective of their relative priorities, and the committing transaction is committed. The goal
is avoiding the loss of work already accomplished for the committing transaction.

Timestamping [42] is another concurrency control method that avoids the use of locks.
Every transaction is assigned a timestamp at the moment it enters the system. Those trans-
actions that commit will be serializable in timestamp order, i.e., in the order in which they
began. Any read or write operation that would, if executed, invalidate that ordering causes
the requesting transaction to abort.

The order in which the set of active transactions arrived in the system has generally no
relationship to their relative real-time priorities. It would appear that timestamping is not

5amenable to real-time scheduling. Marzullo [35] presents a scheme for assigning times-
tamps, which he claims respects a static priority assignment. The rules are:

1. The timestamp assigned to a transaction is greater than the timestamp of any committed
transaction.

2. The timestamp s of transaction t is set such that, for any active transaction t with times-i i j
tamp s , s < s if and only if the priority of t exceeds that of t .j i j i j

But these rules do not appear to be sound. Consider that transaction t with timestamp 3 is1
executing at the moment that transaction t , with a priority greater than that of t , arrives in2 1
the system. Transaction t is given timestamp 2, in accordance with rule 2. Transaction t2 1
then commits and transaction t , with a priority greater than that of t , arrives.  Transaction t3 2 3
cannot be given a timestamp that is simultaneously greater than 3, to satisfy rule 1, and less
than 2, to satisfy rule 2.

Multiversion concurrency control [5] interprets write operations as the creation of new ver-
sions of the items (in contrast to the update-in-place semantics normally given to writing).
Timestamps are used to return "appropriate" versions for read requests. Song and Liu
[51] notice that, if sensor readings create new versions rather than update in place, the
tasks servicing the sensors will never be blocked due to conflicts with the tasks reading the

5A variant of timestamping, called time intervals [38], may have a priority-driven derivative, but I have not
found it in the literature.
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sensors. They do performance studies to determine the extent of temporal inconsistency
(see Section 3.2) introduced under differing workloads. As the purpose of multiple versions
is precisely to allow for the reading of old data, the results in [51] should be interpreted as
describing overload behavior and delineating overload thresholds under various workload
assignments.

Lin and Son [32] present a complex protocol which shares features of optimistic (deferred
writing, delayed selection of serialization order) and multiversion concurrency control. They
do not present any performance figures, making it impossible to determine if the complexity
of their algorithm is cost effective.

The priority ceiling protocol [46] is the only transaction scheduling system yet proposed that
never aborts transactions.  Interestingly, Marzullo [35] denies the existence of any priority-
based scheduling mechanism that never aborts transactions. This is because he, and most

6other researchers, consider only systems in which priority inversions never occur. The pri-
ority ceiling protocol seeks only to put a static, constant time bound, a bound that does not
depend on runtime system behavior, on the length of any period of priority inversion.

The essential mechanism of priority ceiling protocols is the temporary promotion in priority of
any transaction which holds a data granule to the highest priority of any transaction which
may request the granule.  Although Sha et al. [46] do not discuss of how this "highest
priority" is determined, it must be determined statically, that is, from the design and imple-
mentation documents rather than from the dynamic system behavior.  That implies that
these priorities are determined not for the granule itself but for its type.  Therefore, a trans-
action owning a particular granule, no matter its priority, blocks all transactions that may
request granules of that type. The other protocols discussed deal only with actual, not po-
tential, conflicts.  The authors [46] claim that this is "the ‘insurance premium’ for preventing
mutual deadlock and [ensuring] the block-at-most-once property," although it is more accu-
rately the price paid for never aborting transactions.  This price may be prohibitive when the
size of a data granule is quite large, e.g., a page or a file.  Under those conditions, it is likely
that every data access potentially conflicts with every other data access, effectively serializ-
ing access to the database.

3.5. Scheduling I/O

Serialization of transactions is not the only scheduling process undertaken by a DBMS.  A
DBMS has control over the order in which I/O events occur and over the allocation and
deallocation of buffers to be used by those events.  The effect of deadlines and priorities on
these aspects of database management have been studied only recently, notably by Carey
et al. [10] and Abbott and Garcia-Molina [3]. These authors present simulation studies of
various algorithms for scheduling disk I/O and managing buffers.  They show that consid-

6A priority inversion occurs when a transaction must wait for actions, e.g., lock releases, of transactions with
lower priority.
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erable improvement in meeting timing constraints can be obtained by I/O schedulers which
take those constraints into account in their scheduling decisions.

As noted, transaction concurrency control may defer writing to the database until the re-
questing transaction commits. This is a popular strategy, since it means that no repair work
is necessary for failed transactions. Since all database writes occur after transaction com-
mit, Abbot and Garcia-Molina [3] maintain that writes may be done "at leisure," even in real-
time systems. This leads them to propose a novel I/O architecture that treats reads and
writes asymmetrically.

3.6. Fault Tolerance and Failure Recovery

As noted at the start of this chapter, transaction atomicity requires the existence of trans-
action failure recovery in the transaction monitoring system.  Nevertheless, none of the work

7previously discussed deals with issues of transaction failure recovery. Of the simulation
studies, only two ( [2] and [3]) mention the existence of failure recovery, and their purpose is
to dismiss its impact on the simulation.  The argument is that the log device is distinct from
the database device; therefore, database I/O scheduling is independent of log I/O schedul-
ing. This is not strictly correct.

All commercial DBMSs follow a write-ahead log policy.  All database updates are recorded
in the log before being recorded in the database.  If this were not done, and if a system
failure occurred after an update but before transaction completion, it would be impossible to
roll the database, backward or forward, into a consistent state, i.e., a state in which the
transaction had either completed or never started.  Whereas database updates may be

8delayed until after transaction commitment, log writes may not be.

The popularity of logging, as opposed to shadowing [34], for example, is due in part to the
fact that, since logs may be removed from the system and saved indefinitely, they may
serve functions beyond those of transaction recovery.  Logs can be used as audit trails.
When used with periodic checkpointing, logs can be used to recover from catastrophic
media failure (head crashes, fire, etc).

Conventional database recovery is a form of "backward error recovery" [7]. The database is
returned to a state reflecting none of the modifications made by computations in process,
i.e., uncommitted, at the time of the failure. That state is an approximation of the system’s
knowledge of the world at the time of the failure. At the point of recovery of a real-time
system, some of that information may be of no interest.  Consider, for example, the failure of
a telephone switching system.  When such a system is recovered, it may not be necessary

7This statement holds despite the titles of [45] and [57].

8In [2] and [3], the log device is a serial, dedicated device which experiences no schedule delays.  Therefore
logging overhead is part of overhead per data item and need not be explicitly simulated.  This is not an unrealistic
scenario, but surely there are environments in which no such device is available.
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to recover the connections active at the time of failure.  But the system will not want to lose
the billing information for those connections.  Therefore, the system recovers to a state in
which some of the previous information is retained and some is discarded.  This is likely to
be typical of real-time recovery.

I have found no work that has been done on real-time transaction failure recovery. Consid-
ering that failure recovery consumes substantial resources even in the absence of failure,
this work will have substantial benefit.  Many of the fundamental questions of failure
recovery must be re-examined for real-time data management.  The fundamental recom-
mendation is that transaction failure recovery must be integrated into the system design for
fault tolerance. Just as conventional transaction scheduling treats all transactions alike,
conventional recovery treats all data and all failures alike.  Real-time recovery must consider
various classes of failures and the time and resources available for performing the recovery.

Although there is research work to be done in real-time transaction recovery, the central
question is: How are the results of that research to be transferred into practice?
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4. Database Technologies with Impacts on Real-Time

This chapter discusses aspects of database technology that may prove useful to real-time
applications. The list is admittedly arbitrary.  The selection criterion is roughly this: technol-
ogies are included which are likely to be useful in applications having real-time data man-
agement needs and not readily available commercially.

4.1. Main Memory Databases

During the 1980’s a good deal of research investigated the effects of the availability of very
large main memories.  The earlier work ( [14], [15]) considered effects on query processing
strategies, data structures, and failure recovery mechanisms when a substantial percentage
of the database could fit into the DBMS buffer pool.  Other researchers ( [27], [28], [43], [17],
[40], [41]) assume the entire database can be made main memory resident.  Li and
Naughton [29] allow for multiple processors as well as for massive main memory.

Real-time processing environments are often constrained by external factors, but the trend
is towards larger memories. Real-time databases can be very large, but there should be
many cases for which a database that is fully or mostly resident in main memory is appro-
priate. The research cited above suggests that algorithms specialized for main memory
databases offer considerably improved performance over conventional DBMS with very
large buffer pools.  However, the engineering work in determining cost-benefit tradeoffs is
yet to be done.

Much of the work in main memory databases addresses recovery techniques. As I’ve
argued above, recovery must be reconsidered for the real-time case, and hence real-time
recovery of main memory must likewise be reconsidered.

4.2. Database Machines

Although there are usually good reasons to avoid specialized hardware in production sys-
tems, the performance constraints of real-time systems may be impossible to meet in con-
ventional architectures. Research into DBMS-specific hardware architectures is quite well
established [39] and has resulted in several commercial offerings, include Britton-Lee’s Intel-
ligent Database Machine (IDM) and Terradata’s Database Computer (DBC). These products
are disk-based associative memories, possibly unsuitable for the rugged environments of
many real-time systems.  There is at least one proposal [55], by the English firm Software
Sciences, for a microprocessor (transputer) network-based database machine, DIOMEDES,
specifically designed to operate under such conditions.

A database machine is used by applications in much the same way as a database server is
used by its application clients. The server-client architecture is ubiquitous on local area net-
works. Real-time systems implemented in such networks, e.g., ship and aircraft systems,
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can exploit that architecture at no added risk. Database machine insertion is accomplished
through the substitution of a special purpose DBMS machine for a general purpose data-
base server. The effect on application engineering, on the general purpose host machines,
is minimal.

The future of real-time database applications is likely to include a role for specialized data-
base hardware.

4.3. Active Databases and Knowledge-Based Systems

Knowledge-based and expert systems are becoming increasingly common in real-time sys-
tems [37], [20]. Even if the deductive, inferential tasks of the system have lax timing con-
straints, the interface between the database and knowledge base paradigms must not im-
pose excessive overhead. The database component may act as a scheduler for the expert
system by monitoring the enabling conditions for rules.

9"Rule processing" is an active area of database research. The particular needs of real-time
rule processing have had some attention [13]. The area may not yet be ready for transition
into practice, but the pressure to do so is already evident.

9Six of the 37 papers in the 1990 ACM SIGMOD conference were classified under the Rule Processing
heading.
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5. Conclusions

The state of the art and practice of real-time data management is not sufficiently advanced
to warrant the creation of standards. Although some of the necessary research has been
done, there remain issues, e.g., transaction recovery, which are not fully understood.  Fur-
ther development of the technology is not in itself sufficient, as the engineering needed to
make the technology practical in the field has not been done.

Two very different collections of engineering artifacts are needed.  Real-time system desig-
ners need theories and methods based on those theories which they can use:

• in the design of real-time databases at both the conceptual and access path level

• in the design and decomposition of real-time transactions

• in the design and integration of real-time data recovery schemes

But there must also be some cost-effective means of implementing these designs. In the
commercial world, these means are supplied by the commercial software houses through
the commercial DBMSs that they market.  Those systems are unsuitable for many real-time
applications. They are very large, very powerful, general purpose systems that are very diffi-
cult to analyze.  They offer neither priority scheduling nor flexible recovery. Although iso-
lated, real-time use of commercial DBMS has been reported [44], it is not likely such usage
will become widespread. How can the cost benefits of commercial software be exploited in
the construction of real-time systems?

The software engineering community has been developing the concept of "reuse-based,"
"domain-specific," and "mega-programming" software engineering techniques. The data-
base community has developed the concept of extensible, application-oriented database
management systems [4], [9], [54], [33]. These two strands of research might be profitably
combined and applied to the real-time data management problem.

DBMS toolkit and building block technology has been primarily concerned with extensibility
to unusual data structures, with an eye toward CAD/CAM and other applications in which
data objects can be very large (e.g., engineering diagrams) and in which transactions can
be very long and require configuration management and version control rather than concur-
rency control. These are not of central concern in real-time applications. In building a real-
time application-specific DBMS, it might be necessary to customize:

• storage handling and mapping functions (e.g., main or secondary storage schemes)

• concurrency control paradigms and schedulers

• buffer management and disk scheduling

• recovery schemes for various classes of faults and of data

It is not possible at this time to determine if there exist "best" or "universal" solutions to these
problems. In real-time systems, it seems advisable to assume that for every solution, there
is a problem which it does not fit. Building block technology specifically allows for different
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solutions in different applications. It also allows much more rapid introduction of technology
into practice.

Many of the functions of a DBMS (e.g., scheduling and resource control) are also functions
of an operating system.  Real-time applications cannot afford duplication of these functions.
A DBMS application written in Ada might find its execution controlled by the:

• operating system process scheduler

• Ada runtime task scheduler

• DBMS transaction scheduler

• DBMS resource (lock) manager

• operating system virtual memory manager

• DBMS buffer manager

• disk scheduler (supplied either by the DBMS or the operating system or, in the worst
case, both)

• DBMS recovery (log) manager

Clearly, this situation is intolerable for real-time applications. The lesson to be learned is that
database building blocks must be integrated with operating system and other runtime envi-
ronment building blocks in order to avoid wasteful duplication.

Research on database building blocks for real-time applications carries substantial risk.  In
order to succeed, it may be necessary to:

• Discover or invent "the" real-time DBMS architecture, if such a thing exists.

• Determine a good packaging material for the building blocks.  If the blocks are con-
structed directly from source code, can they be both general and efficient enough to be
reused in real-time applications?

• Show how to compose performance (or complexity) information for the building blocks
into performance information for the complete system.

It is not certain that these things can be done but these are among the problems confronting
the application of "mega-programming" to any real-time domain.
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