

The Illusion of Certainty

Grady Campbell
CMU Software Engineering Institute
4301 Wilson Blvd., Suite 200
Arlington, VA 22203
703-908-8223
ghc@sei.cmu.edu

Abstract

Acquisition policy and, even more so, acquisition practice today presumes that certainty
is key to success, and that uncertainty or delays in achieving certainty regarding user
needs or solution approach will necessarily impede progress. This means that when
uncertainty arises during an acquisition effort, the natural response is to make decisions
that resolve this uncertainty. Uncertainties arise for various reasons, such as poorly
understood, conflicting, or changing needs. If under pressure to maintain progress an
acquisition effort makes decisions to resolve these uncertainties without sufficient
information, expertise, or deliberation, they are really only creating an illusion of
certainty; in a practical sense, the uncertainty still exists. This artificial certainty then
leads to flaws such as insufficient detail concerning specific needs or premature limiting
of solution options. A new approach to acquisition is needed that recognizes that hiding
uncertainty is detrimental to success. Systematically exposing uncertainties will be
beneficial toward making acquisitions more flexible, cost-effective, and responsive to
changing needs.

The Requirements Challenge in Acquisition

The purpose of the acquisition system is to acquire products that provide users in an
enterprise (e.g., warfighters) with capabilities needed to perform their mission effectively
and efficiently. To this end, user needs must be understood in terms of opportunities for
improving the enterprise’s operational systems. Based on this understanding, a product
must then be conceived/identified, acquired/developed (engineered and manufactured),
deployed, and sustained/evolved. As long experience has shown, many challenges
arise in trying to determine actual user needs and achieve a satisfactory product that
properly addresses those needs. The essence of those challenges is achieving a
balance among needed capabilities, enabling technology, cost, and timeliness in
providing a product.

The beginning of the acquisition life cycle is the identification of user needs and
technology opportunities that suggest the potential for improved capabilities. These
needs are progressively refined, elaborated, and reviewed to create specifications of
requirements in increasing levels of detail, feeding into efforts that interpret those
requirements to create a conformant product. Again, proper understanding of actual
needs in sufficient detail to permit acquisition of a product that meets those needs is a
significant challenge, but, further, needs to be met by a product are not static but
continue to change. Future sustainability and improvement requires an acquirer and
developer of a product to understand not only existing needs and technologies but how
those needs and technologies are likely to evolve in the future.

mailto:ghc@sei.cmu.edu

What experience and numerous studies over the years, by the Department of Defense,
Office of Management and Budget, Government Accountability Office, National
Academies, and industry groups, have suggested is that properly determining needs
and expressing these as requirements for product acquisition is difficult and prone to
inflexibility and error. For example, quoting from [6], “Today, „requirements‟ are used to
define capability needs, implying that nothing less than a specified set of criteria is
sufficient. Instead, a more prudent answer is to buy the best capability affordable, in the
quantity desired, and fielded in as timely a manner as possible.” However, even this
opinion fails to fully address how the acquisition approach could be improved so that
products would better address both current and future needs. The following discussion
proposes the notion that premature decision making, leading to only an illusion of
certainty, is a factor in the requirements problem and that a greater awareness and
explicit accommodation of uncertainty throughout the acquisition process would be
beneficial.

Understanding the Concept of Requirements

“Requirements” is a term that everyone understands on an intuitive level but it can
specifically mean many different things. In acquisition policy [1], requirements is used
variously to mean:

• Capabilities needed by a community of users (e.g., mission, user, or capability
requirements)

• Rules that must be followed in performing acquisition activities (e.g., statutory and
regulatory requirements)

• Criteria against which the acceptability of a product development effort will be
evaluated (e.g, program requirements)

• A specification of the expected behavior of a product being acquired (e.g., product,
operational, or system requirements) (i.e., the guidance that product developers
are given to know what to build or to describe what has been built)

In a general sense, all of these uses are consistent but the practical implications of each
for acquisition differ substantially. In particular, user requirements, program
requirements, and system requirements are all different expressions of the single notion
that a product is needed that will allow users to perform their mission more effectively.
For an acquisition to be successful, all of these expressions must be consistent.

In fact, however, this presents a dilemma: acquisition rules require that an acquisition
program can proceed only after its requirements have been approved. Program
requirements are derived based on user requirements and are the basis for defining
product requirements. With respect to an envisioned or existing product, its
requirements can be thought of as a model of the observable behavior that the product
must exhibit to provide the capabilities needed by users. If user requirements are
inaccurate, this will undermine program and product requirements unless there is a
means for modifying them during the course of product development.

What the experience of many people suggests, supported by recurring government and
industry studies, is that requirements at any level of detail are often flawed: incomplete,
inaccurate, misunderstood, and prone to unforeseen change. The best means we have
for mitigating these flaws is systematic iteration through all aspects of product

development, allowing for the progressive refinement of a shared understanding of
needs, constraints, potential solutions, and tradeoffs. If acquisition policy or practice
dictates that requirements at some point early in the acquisition process must be viewed
as complete and immutable, it is likely that resulting products will both embody difficult-
to-correct flaws and fail to keep up with changing needs.

The acquisition system today seems to encourage, and practitioners conform to, the
idea that a proper acquisition depends on achieving certainty, in requirements and in
the cascade of subsequent decisions that flow through the acquisition process. What
they actually achieve is the appearance of certainty but such certainty can in fact be an
illusion built upon premature, inadequately reasoned decisions, inadequate
understanding of needs, and failure to account for changing needs, technology, and
operational context. Explicit recognition and accommodation of uncertainties is a way
around this dilemma that will help programs avoid commonly experienced cost
overruns, schedule delays, and product defects, while supporting concerns for proper
accountability.

Causes of Uncertainty in Requirements

In thinking about the nature of requirements, we can easily identify several potential
sources of uncertainty. To properly understand and specify requirements, these need to
be exposed, analyzed, and documented with rationale:

• Incomplete knowledge. User needs are usually specified by people who are
knowledgeable in the mission of the enterprise and how it currently works.
However, they often have only limited knowledge of how those needs may be
realized in solution products, how different aspects may interact in a solution, or
how new solutions could change the way the enterprise works; as a result, they
may express needs in ways that unintentionally seem to limit the potential solution.
Furthermore, there are usually aspects of user needs about which even experts
disagree. Because no one can have complete knowledge of all aspects of any
endeavor, it is likely that any description of user needs will mask areas of
uncertainty or disagreement. Customers may recognize that this uncertainty exists
but, lacking a proper awareness of the need and means to communicate the
variety of alternatives that they see, they may instead make a reasoned but
ultimately arbitrary choice.

• Imprecise understanding of needs. While customers may be competent to define
user needs, developers are likely to lack the same depth of understanding. Experts
in a field may share assumptions, concepts, and terminology that enable them to
describe needs in simpler terms that acquisition agents or developers with less of
that expertise may misinterpret. It may not be apparent that developers have a
different understanding until a product exists and its behavior can be observed in
use. Needs are often better understood after potential solutions have been
developed and comparatively evaluated, preferably with exposure to
knowledgeable users, leading then to being able to define better requirements.

• Differing needs among users. Users doing similar jobs may in fact legitimately not
have exactly the same needs. If requirements characterize all users doing similar
jobs as having the same needs, the developer may create a product that properly

meets the needs of only some users. A product that imposes a particular viewpoint
on all such users will make some of those users less effective.

• Changing needs. Needs change over time because of changes in mission,
operational context, and technology. Defining needs only from the perspective of a
single point in time ensures that these are inaccurate with respect to other times.
Framing needs as fixed without consideration of potential change over time
imposes uncertainty on what is potentially predictable change that may be better
accommodated by developers if known.

Why Apparent Certainty in Requirements May Be an Illusion

By the time a product is deployed, its actual (“as-built”) requirements have been
effectively determined. Still, although in a practical sense there can be no actual
uncertainties about the behavior of a deployed product, there may not be a complete
and accurate specification of what those requirements are. In that sense, there may be
no one who can be certain about all aspects of the product’s behavior.

Although acceptance of a product depends on compliance with acceptance criteria
usually expressed in the form of requirements, the same problem can exist for those:
there may be unacknowledged uncertainties that have been improperly resolved. In a
process in which encountered uncertainties are simply decided away, without proper
identification and systematic analysis of factors and tradeoffs, and not documented with
rationale, it is likely that some uncertainty still exists relative to actual current or future
needs. This same argument applies as the reasoning behind particular requirements
are traced back through acquisition decision making.

Uncertainty can exist at any level of requirements. The fundamental uncertainty is how
does someone determine and communicate what they want or need. That phrase itself
reveals a basic issue: how do we distinguish aspects that we must have from what we
might like to have from what we would accept. The essence of engineering is identifying
and weighing tradeoffs among alternatives but the nature of defining requirements is not
only to make a definitive statement about what a customer needs but in doing that to
also eliminate unsuitable solutions. When this is done without full knowledge of actual
possibilities, potential solutions can be prematurely constrained.

In looking at how requirements are determined, there are many factors that can lead to
the various kinds of uncertainty:

• No individual or collection of people will have complete knowledge of all aspects of
an existing system and its operational context; requirements are inevitably only a
partial description that requires particular expertise for correct understanding.

• It is not possible to communicate all that an individual or collection of people do
know about a system or how it might be improved; a complete description of what
is known would require years to produce and years to consume.

• Among a collection of people, even with similar spans and depths of knowledge in
an area, there will be disagreements, some that can be resolved and some that are
fundamental; the conventional answer is to insist on achieving agreement, even
though the substance of the disagreement may itself provide more accurate insight
into a correct solution than either individual or consensus viewpoint.

• Even if people are able to correctly characterize needs at a point in time, needs as
well as enabling technologies change over time; requirements that only describe
what is needed currently will be incorrect at other times in the future.

• Both natural language and graphical notations are frequently understood differently
by different people, particularly when lacking similar expertise; two examples of
gaps in communications are between users and developers and between systems
engineers and software engineers.

There are other factors, in the nature of requirements, that can also lead to uncertainties
about the needed product:

• Users typically view their needs in terms of being able to accomplish their job and
new or improved capabilities that would enhance this; this view is often constrained
by inaccurate assumptions about what is possible and what can and cannot be
changed.

• When a product built to address users’ needs is deployed, it often changes the
users’ perceptions not only of what their needs are but also of what is possible,
leading to their needs “changing” yet again.

• Requirements being only approximate descriptions of needs and constraints on
potential solutions may in fact omit information that the customer knows and
assumes but that the product developer does not.

• Requirements are frequently not limited to what is absolutely needed but also
reflects the customer’s perception of what is desirable without distinguishing
between these; this in fact often precludes options that would allow the developer
to make better tradeoffs in creating a product that is a best fit to purpose within
given cost and schedule constraints.

Using Uncertainty in Writing Better Requirements

Parnas and Clements [2] argue for the ideal of a rational process for the design and
building of (software) products. As part of this, they characterize requirements as a
definition of the expected observable behavior of a needed product, sufficient to answer
developer questions about what is to be built. A way to understand this is to recognize
that requirements constitute a model of a needed product. From this perspective,
requirements should define the capabilities that a product needs to enable for its users.

However, it is not enough to describe a product at a fixed point in time and with
uncertainties hidden. In fact, Parnas and Clements argued that a rational process is not
usual practice because of incomplete and inaccurate information in documentation
caused by underlying issues in how documents are written (e.g., poorly organized,
stream of consciousness exposition, poorly and inconsistently written by multiple
authors, dispersed repetition of related or conflicting information, confusing and
inconsistent terminology, narrowly conceived). In fact, these problems still exist and are
often symptoms of false certainty. Authors must produce requirements that appear
certain even if uncertainty has not been properly resolved. No means is given to
indicate areas of uncertainty, doubt, or likely change that are left to be resolved.

A common effect of resolving uncertainty with arbitrary decisions is to prematurely limit
solution options. Not having a means of specifying requirements so as to permit
alternative solutions, the customer may instead resort to describing a particular solution

that has worked for similar problems in the past. By hiding the uncertainty and
precluding further analysis, the developer may be forced to adopt the described solution
rather than having the option of developing and evaluating other potentially more
appropriate solutions.

A factor in being able to evolve a product as user needs change is the ability to recover
the rationale for why requirements are what they are. Some products today include
obsolete capabilities and are difficult to change simply because no one is sure why the
product does all that it does, why it is built the way it is, and whether any aspects of
what it does are no longer needed by users. A natural by-product of focusing on and
explicitly analyzing uncertainties is that the rationale for the resolution actually chosen
will be documented. By capturing this rationale, we have at least a partial
characterization for the product not only as it finally exists but also as it might have been
differently done, giving a basis from which to revise the product when needs change.

An Existing Approach for Limited Accommodation of Uncertainty

Some experience already exists with building products with a focus on uncertainty.
When an organization has a need to build multiple products, in support of customers
having similar but not identical needs, a product line approach [7, 8] provides a process
for building a set of similar products from a common base of reusable software,
documentation, and test assets. This approach depends on identifying precisely the
ways in which the products needed will be alike (commonalities) and the ways in which
they will differ (variabilities). The techniques for identifying how products will differ and in
resolving those differences to create a specific product is similar to the model proposed
for identifying and resolving requirements uncertainties in general.

With a product line approach, not all types of uncertainty are addressed but only those
related to customers’ changing or diverse needs. Uncertainties related to potential
changes in customer needs or to needs that differ among customers are systematically
identified and formulated as decisions that will be resolved late in the production of each
specific product in consultation with the individual customer for that product. The ability
to resolve these uncertainties in different ways is systematically engineered as
production options. This provides the means to deliver a customized product to each
customer and to deliver a revised product to each customer as their needs change.
Identifying decisions that encapsulate the implications of diverse and changing
customer needs on product requirements for a set of customized products is integral to
the concept of a product line. This approach also provides the means to rapidly build
alternative solutions to particular customer needs as a means to helping the customer
find the best fit to their needs.

A Strategy for Comprehensively Accommodating Uncertainty

A recent National Academies study [4] has recommended that system requirements
(“big R”) for IT systems be defined strictly and fixed at the mission capabilities level and
that more detailed requirements (“little r”) continue to be developed and refined
throughout the acquisition process. Consistent with the challenges of uncertainty, this
study advised that requirements evolve progressively through ongoing interactions with
end users and assessments of available technologies. The study alluded to a recent
Joint Capabilities Integration Development System policy that prescribed a similar
approach.

Uncertainty in requirements is not a “problem” to be eliminated. Recognizing and
properly exposing uncertainty is an aid to communicating more effectively about needs
and potential solutions. Some uncertainties, once recognized as such, can be resolved
through an analysis of alternatives and tradeoffs during the development process;
others are inherent aspects of the problem being addressed and require different
resolutions over time or for different customers. From experience with product lines,
there are good techniques for expressing uncertainty which can guide developers in
providing needed flexibility with mechanisms for tailoring and product customization to
better accommodate the needs of customers over time.

A strategy comprising three elements will give the means to better expose and resolve
or accommodate uncertainties in requirements:

• View product development as a process whose ancillary purpose is the
elaboration, refinement, and correction of requirements as initially defined.

• Document all differences and their implications when domain experts have differing
views on any aspect of requirements.

• For any aspect of requirements for which there are alternatives, that is the subject
of tradeoffs, or that may change in the future, document the rationale for its current
realization in comparison with identified alternatives.

These elements together are meant both to improve the requirements as a description
of the product being acquired and also to provide the basis for revising those
requirements as understanding of needs improve or when needs or technology change
in the future. When uncertainties exist and are resolved, capturing the rationale provides
valuable insight to future developers. When needs change, this rationale provides a
basis for understanding the implications of having to differently resolve those previous
uncertainties in order to revise the product. To build a product, all requirements
uncertainties have to be resolved in some way to finally build a product but the goal is to
not resolve an uncertainty prematurely or for all time.

A key focus suggested in a proposed roadmap for improving software producibility [5]
was bridging the conceptual gap between customers and product developers, based on
recognizing that there are alternative ways of expressing any problem and many
potential solutions that can result. With this perspective, no specific expression of
requirements is the “right” one; rather different expressions may be suitable for different
purposes. However, underlying all valid expressions are a set of assumptions about
certainty, which aspects of needs and associated potential solutions are intrinsic and
fixed and which are tradable and changeable. In product lines, these assumptions, of
commonality and variability, provide a framework in which true certainties provide a
framework within which uncertainties are identified as choices that customers and
developers must make through an ongoing process of evaluation and refinement over
the life of a needed product.

As is true for product lines, a shift to uncertainty-based acquisition does not require
major changes in acquisition policy [3] but rather only a change in the level at which
programs are required to establish binding requirements. These should be at the level
of observable mission-enabling capabilities to be achieved through an iterative process
of learning and refinement rather than with a premature over-constrained specification
of a specific top-down solution to narrowly conceived needs. This will require changes in

the practice of acquisition, replacing the illusion of certainty with a process that, by
exposing uncertainties, builds a stronger foundation for the efficient, predictable delivery
of correct and effective capabilities needed by customers.

References

1. DoDI 5000.02, "Operation of the Defense Acquisition System", USD(AT&L), 8
December 2008.

2. D.L. Parnas and P.C. Clements, "A Rational Design Process: How and Why to Fake
It", IEEE Trans. on Software Engineering 12 (2), February 1986 , 251-257.

3. G.H. Campbell, "A Software Product Line Vision for Defense Acquisition" (CMU/SEI-
2002-TN-002), CMU Software Engineering Institute, June 2002.

4. Achieving Effective Acquisition of Information Technology in the Department of
Defense, The National Academies Press, Washington, D.C., 2009, pp. S4-S5.

5. G.H. Campbell, “Advancing Producibility for Software-Intensive Systems”, Software
Tech News 11 (4), December 2008, 13-17.

6. Creating a DoD Strategic Acquisition Platform, Defense Science Board Report, April
2009.

7. G.H. Campbell, S.R. Faulk, and D.M. Weiss, Introduction to Synthesis, Software
Productivity Consortium, June 1990. <http://www.domain-
specific.com/PDFfiles/IntroSyn.pdf>

8. P.C. Clements and L.M. Northrop, Software Product Lines: Practices and Patterns,
Addison-Wesley, 2002.

Acknowledgements

The views expressed here are solely those of the author and do not represent positions
of the Software Engineering Institute, Carnegie Mellon University, or the U.S.
Department of Defense. Comments by John Robert, Dr. Ken Nidiffer, Patricia
Oberndorf, and Terry Dailey were very helpful to me in improving this paper.

Biography

At CMU’s Software Engineering Institute (SEI), Grady Campbell identifies, develops,
and transitions improvements in the process and practices of software acquisition and
engineering. In the early 1990’s, Mr. Campbell was responsible at the Software
Productivity Consortium for conceiving and developing the first comprehensive software
product line methodology. Subsequently, he was an independent consultant in software
product lines and a Visiting Scientist to SEI’s Product Line Practices Initiative. Other
highlights in his 40 years of experience include a Naval Research Laboratory Software
Cost Reduction project and a project to build an application generation environment
based on adaptable software.

