
Technical Report
CMU/SEI-91-TR-13
ESD-91-TR-13

Case Studies in Environment
Integration

Ed Morris
Peter Feiler

Dennis Smith

December 1991

 Technical Report
CMU/SEI-91-TR-13

ESD-91-TR-13
December 1991

Case Studies in Environment Integration

Ed Morris
Peter Feiler

Dennis Smith

CASE Technology/Software Development Environments Projects

Unlimited distribution subject to the copyright.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This report was prepared for the

SEI Joint Program Office
HQ ESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

FOR THE COMMANDER

(signature on file)

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1991 by Carnegie Mellon University.

Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative
works.

Requests for permission to reproduce this document or to prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRAN-
TIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTIBILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 52.227-7013.

This document is available through Research Access, Inc., 800 Vinial Street, Pittsburgh, PA 15212.
Phone: 1-800-685-6510. FAX: (412) 321-2994. RAI also maintains a World Wide Web home page. The URL is
http://www.rai.com

Copies of this document are available through the National Technical Information Service (NTIS). For informa-
tion on ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of
Commerce, Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides ac-
cess to and transfer of scientific and technical information for DoD personnel, DoD contractors and potential con-
tractors, and other U.S. Government agency personnel and their contractors. To obtain a copy, please contact
DTIC directly: Defense Technical Information Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-
6145. Phone: (703) 274-7633.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

CMU/SEI-91-TR-13 i

Table of Contents

1 Introduction 1

2 Historical Influences on Tool Support 3
2.1 Technology-Driven Environments 3
2.2 Market-Driven Tool Evolution 4
2.3 Toward Federated CASE Environments 4

3 Rationale for Interview Subjects 7

4 Summary of Environments 9
4.1 BASE 9
4.2 SLCSE 10
4.3 VADS APSE 11
4.4 SoftBench 11

5 Observations on Tools and Environments 13
5.1 Maturing Tools 13
5.2 Egocentric Relationships 14
5.3 Conservative Integration of Tools into Coalitions 15
5.4 Virtual Interfaces 17
5.5 Toward “Small Scale” Data Interchange Formats 17
5.6 Consensus on User Interfaces 18
5.7 Isolation of Services from Tools 18
5.8 Better Control Mechanisms 19
5.9 Support for Software Process 20
5.10 Better Framework Support 22
5.11 Improved Data Flow Mechanisms 23
5.12 Toward Finer Granularity of Data 24
5.13 Support for Programming-in-the-Large 25
5.14 Difficult Transition Issues 26

6 Discussion 27
6.1 Current Tool Standardization Efforts 27
6.2 Mechanisms vs. Process 28
6.3 The Cycle of Technology 29
6.4 Tool Coalitions or Tool Federations? 29

7 Conclusion 31

Appendix A Identified Integration Standards 33

References 35

ii CMU/SEI-91-TR-13

CMU/SEI-91-TR-13 1

Case Studies in Environment Integration
Abstract:Four environment builders and participants at two workshops were
queried concerning the environment standards, implementations, and
technology that prove useful in the integration of tools into software
engineering environments. Specific information was gathered about the
software and hardware environments in which tool integration occurred, the
goals of integration, the tools integrated, mechanisms used, and the standards
applied. Observations concerning the current state of tool and environment
integration are provided, and trends in integration are identified.

1 Introduction

The Navy Next Generation Computer Resources (NGCR) program proposes to establish
commercially-based interface, protocol, and services standards for mandatory use in future
Navy systems developments beginning in 1995. The NGCR has adopted an open systems ap-
proach in an attempt to field more current technology, increase flexibility, control costs, and
allow the Navy to benefit from the existing marketplace. Existing NGCR working groups are
developing backplane standards (based on IEEE 896 Futurebus+), fiber optic local area net-
works (based on IEEE 802.5 and ANSI X3T9.5 FDDI) and operating systems standards
(based on IEEE 1003 POSIX).

An additional interface area identified as being in need of standardization is that of Project
Support Environments (PSE). Initiated during February 1991, the Navy NGCR Project Support
Environment Working Group (PSEWG) has as its main objective the identification of a set of
industry-based standards to form an “open” framework for project support environment tools,
user interfaces, database management systems, and other components of the computing en-
vironment. This framework will be applied in the development and maintenance of future Navy
systems. Specific objectives include:

• The identification of Navy project support environment requirements,
particularly with regard to environment frameworks.

• The identification of existing and evolving environment standards,
environment implementations, and environment technology.

• The determination of the applicability of identified environment capabilities to
the requirements.

• The recommendation of environment framework interfaces, protocols, and
services to the Program Office (SPAWAR-324) for Navy-wide
standardization.

Of potential value in the identification of existing environment standards and technology are
the experiences of other groups which have built or are building project support environments.
These groups possess a wealth of experience regarding approaches and standards selected

2 CMU/SEI-91-TR-13

for projects, as well as information about interfaces which have simplified the building of a PSE
from substrates and tools available in the commercial market today.

During the fall of 1990, information for this report was gathered at workshops held at the Soft-
ware Engineering Institute (the CASE Adoption and the Tool and Configuration Management
Integration workshops), through informal contacts with various PSE builders, and by conduct-
ing a small number of intensive interviews with organizations involved in building software en-
gineering environments (SEE). Interviews were conducted with representatives of the Boeing
Automated Software Engineering Environment (BASE), the RADC funded Software Life Cycle
Support Environment (SLCSE), Verdix VADS APSE, and Hewlett Packard SoftBench environ-
ment efforts. Information was gathered about the software and hardware environments in
which tool integration occurred, the goals of integration, the tools integrated and mechanisms
used, and the standards applied.

This report summarizes information gathered from PSE and tool builders. The intent of this
report is to identify areas where successful standardization would improve tool and environ-
ment integration, as well as to pinpoint areas where successful integration standards exist.
The findings of this report will be used by the NGCR PSEWG as background information to
help assess the use of current standards and design concepts in the building of a SEE and to
help identify the need for additional standards or new design concepts.

Chapter 2 of this report will discuss historical influences on tool support that have helped to
create the current situation concerning tools and environments. Chapter 3 presents a rationale
for the selection of interview candidates. Chapter 4 summarizes each of the selected environ-
ment efforts. Chapter 5 provides observations on the evolution and current state of tools and
environments. Chapter 6 discusses these observations in relation to the goals of the NGCR
PSEWG. Chapter 7 summarizes and concludes this report.

CMU/SEI-91-TR-13 3

2 Historical Influences on Tool Support

Software engineering tool technology of the late 1970’s was characterized by compiler-cen-
tered programming environments executing in a time-shared hardware environment. Tool
technology primarily consisted of tightly coupled support for the compilation, linking, and de-
bugging of software. Non-integrated tool support was available for editing of programs and
text. Tools were primarily single user, and therefore placed little emphasis on policies to sup-
port large-scaled software development.

Two major traditions that developed during the early 1980’s have influenced the characteris-
tics of current software engineering environment support. A technology-driven push toward in-
tegrated environments offering cradle-to-grave support for software development was the first
of these traditions. It spawned many integrated project support environments (IPSE), including
ISTAR [1], and PACT [2], and Ada programming support environments (APSE), including Ra-
tional [3], and the Ada Language System (ALS). The second tradition, stand-alone commercial
tool support for portions of the software life cycle, was essentially a market-driven push to de-
velop new tools to automate additional tasks in the software life cycle. This tradition can be
considered the natural extension of tool technology to the next levels beyond simple compiler-
centered programming. The resulting explosion of new tools developed in this tradition in-
cludes the many commercially available CASE tools and document generation systems.

2.1 Technology-Driven Environments
The IPSE tradition derives from the publication of the Stoneman Report in 1980 [4]. Stoneman
described a tool interface (an APSE) that offered services for the building of an integrated set
of tools, or an environment. Unlike tools generated via the tools market tradition, early at-
tempts at constructing IPSEs were large-scale, government-supported efforts; however, com-
mercial attempts at developing an IPSE were undertaken [1]. IPSE environments were to span
large portions of the life cycle, and be shared by multiple users. The practical constraint of mul-
tiple users sharing data required that tools and environments generated by IPSEs provide
complex, centralized database support, as well as extensive support for the policies enforcing
cooperation.

The nature of long-lived, large-scale software engineering projects addressed by the technol-
ogy-driven tradition placed many additional requirements on environments. Because the sup-
porting hardware platform could be expected to change over the life of the IPSE and, perhaps,
from project to project, IPSEs were expected to be easily portable between multiple platforms.
They were expected to provide for plug-compatible tool replacement, and support the tailoring
of tool support to individual projects. And they were expected to be suitable for the develop-
ment of software from many domains.

Due to technical limitations of database support and performance at the time, the construction
of IPSEs proved difficult. In fact, research and development of sufficiently capable project da-

4 CMU/SEI-91-TR-13

tabases continues to draw significant interest. Those IPSEs that actually were constructed
were not widely adopted.

2.2 Market-Driven Tool Evolution
The tradition embodied in the market-driven explosion of new tools to support software engi-
neering activities was made feasible by the development of low-cost, single-user personal
computers and workstations. The graphics capabilities of these computers made it possible to
develop tools that automated many of the structured analysis and design techniques pio-
neered in the 1970’s, as well as documentation tools that could integrate text with graphics.

In their initial manifestation, early CASE tools were market driven to automate popular meth-
ods and relied on a simple proprietary database or the file system to maintain tool data. They
were primarily single-user tools which only later attempted to provide policies to support mul-
tiple developers. Since these tools were built by different companies with little inherent reason
to integrate tool actions, control of a set of such tools could at best be decentralized.

As soon as early CASE tools were developed, users discovered that such tools were of limited
usefulness, particularly for large projects. Individual tools suffered from a lack of support for
decomposition of the tool database, configuration management, and version control. The tools
did not provide a mechanism for encoding organizational policies. Tools, including in some
cases tools from the same toolset, would not work together. Individual tool databases were
inaccessible, interfaces were inconsistent, terminologies conflicted, and data synchronization
and reconciliation between tools was often manual.

CASE tool builders spent the early part of the 1980’s learning about and solving the many
problems with early tools. By the mid 1980’s, the design and performance problems encoun-
tered in developing single-user, graphic workstation-based tools were being solved. Problems
of offering support across multiple platforms and providing flexibility to adapt to multiple meth-
ods are now being addressed.

2.3 Toward Federated CASE Environments
While early IPSEs suffered through technical limitations and lack of customer acceptance, in-
dividual tool vendors constructed first-generation CASE tools which did not rely on IPSE ser-
vices. As the investment in these individual tools increased, vendor enthusiasm for IPSE stan-
dards declined.

Pushed by market forces, CASE vendors did not stand still, but instead attempted to redress
many of the initial grievances against CASE tools. In order to make tool use more attractive
for large projects, CASE tool vendors added configuration management and version control to
products and provided database locking schemes to prevent simultaneous access to tool data.
Tools were configured with licensing schemes that allowed them to work in distributed envi-
ronments.

CMU/SEI-91-TR-13 5

In order to provide a greater degree of integration with other tools, CASE vendors began pro-
viding “open” architectures which define interfaces for other tools which wish to access the tool
database. Many vendors have now formed technical and marketing agreements with other
vendors to provide a tighter level of integration with other, non-competing tools, such as doc-
umentation systems.

While offering a level of tool integration, such environments are not ideal. Because the inclu-
sion of tools in the environment is determined by strategic marketing agreements of the ven-
dors, the customer relinquishes much of the flexibility of tool selection. Since the individual
tools remain distinct (and can be purchased separately), the degree of integration between
tools is limited. Customers are also limited to the usage models foreseen by the tool integra-
tors. Finally, upgrade paths are limited by the willingness and capabilities of the vendors in-
volved to maintain and improve both the individual tools and the integrated toolset.

As database and interprocess communication technologies have improved, a new concept of
an environment framework has been developed by vendors such as Atherton (Atherton Soft-
ware Backplane) and Hewlett Packard (SoftBench). Like the original IPSEs, such frameworks
provide a set of integration services for software tools. However, since they do not require gen-
eral conformance of the tool to the IPSE format, these services are non-intrusive to the tool.
In addition, such frameworks do not attempt to define the policies to be enacted in the envi-
ronment; rather, they provide additional services to enact policies.

Recently, Wallnau [5] has defined a taxonomy of environment types based on these historical
trends in PSE technology. This taxonomy identifies a trend from early, monolithic attempts to
build IPSEs, to collections of tool vendors providing limited tool integration (tool coalitions),
and finally toward independent tools integrated by an environment framework (tool federa-
tions).

Tool federations represent a merging of the traditions of market-driven tools and technology-
driven environments. Tools integrated within such federations maintain their own data storage
and access mechanisms, as a vestige of the now long history of independent tool develop-
ment. The federated environment framework provides specialized services to allow tools to
communicate actions and intentions, and to share data. The customer maintains a degree of
flexibility in choosing which tools are to be integrated in the environment.

6 CMU/SEI-91-TR-13

CMU/SEI-91-TR-13 7

3 Rationale for Interview Subjects

Regardless of the specific focus for the construction of an integrated environment, the basic
mechanisms used to connect tools have remained remarkably consistent over time. Discus-
sion of tool integration has commonly centered around three major classes of mechanisms for
integration of tools: presentation integration (common look and feel among tools), control in-
tegration (execution of functions provided by other tools), and data integration (sharing of da-
ta).

Tool builders have recognized that presentation integration, control integration, and data inte-
gration are necessary, but not sufficient to provide truly integrated environments [6]. The clas-
sic forms of integration provide only a mechanistic view, addressing issues such as integrating
architectures, interfaces, and techniques. A process-oriented view of integration, which ad-
dresses the integration of an organization’s development model and life-cycle process with
tools and environments has also been postulated.

The specific environments that were chosen for study by the SEI demonstrate the evolution of
both mechanistic and process-oriented integration of tools over time. While few in number, we
believe that these environments represent a wide range of environment approaches and pro-
vide for the formulation of conclusions regarding:

• Specific mechanisms useful in integration. Of particular interest are those
mechanisms that are universal to all integration efforts, clearly defined, and
demonstrated to be effective.

• The evolution of mechanisms over time. In particular, we were interested
in which integration mechanisms were specific to a time period or particular
effort, and which mechanisms transcended all time periods and efforts.

• The effect of the type of integration effort (in-house, commercial,
general purpose, or military-specific efforts) on mechanistic and
process-oriented integration. Often, different efforts can have different
goals. For example, while commercial efforts may be aimed at generating
short- to intermediate-term sales, military-specific efforts may be aimed at
producing an environment capable of long-term support of a software
product.

BASE represents an early in-house corporate attempt at tool integration. The BASE effort be-
gan in 1983, when Boeing recognized the need for the integration of tools and the encoding
of the software development process (process integration) for large DoD projects. Reflecting
early tool and environment technology, BASE consists of a loose collection of tools from which
data is extracted in batch processing to provide data integration. BASE is unique in that it has
undergone major transformations during its lifetime, reflecting parallel transformations in the
computer industry from a primarily batch-oriented environment to a more interactive one.

Developed by General Research Corporation under Air Force contract, SLCSE [7] represents
a more recent attempt to integrate tools into a toolset useful for the development and mainte-

8 CMU/SEI-91-TR-13

nance of software subject to MIL-STD-2167A standards. SLCSE implements an entity rela-
tionship model of MIL-STD-2167A as a central storage mechanism for data integration.

VADS APSE (Verdix) is a current commercial attempt to wed an existing toolset Verdix Ada
Development Systems (or VADS) to a commercial environment framework (Atherton Software
Backplane). The VADS APSE effort involves integrating the VADS toolset with the Atherton
object-oriented database, configuration management capabilities, user interface, and commu-
nications mechanisms to provide data, presentation, and control integration. The VADS APSE
effort represents an interesting integration attempt with characteristics of both tool coalitions
and tool federations.

The Hewlett Packard SoftBench [8] environment framework represents a unique approach to
the integration of tools. Whereas other integration efforts have focused primarily on the inte-
gration of data from various tools, the SoftBench product attempts to provide mechanisms for
the control of tools working together. The SoftBench product is generating interest in both the
CAD (Computer Aided Design) and CASE worlds.

CMU/SEI-91-TR-13 9

4 Summary of Environments

4.1 BASE
The BASE system has undergone a series of changes in user interface, database, and oper-
ating system, as well as in goals and objectives. The original BASE effort was an attempt to
build a unique Boeing environment. Later, as the importance of flexibility in the toolset and the
environment platform became apparent, BASE builders aimed for portability of the environ-
ment between platforms, and plug compatibility of tools. The BASE environment has now en-
tered a maintenance mode. The expense of maintenance is considerable, due to the multiple
platforms supported, and the continued release of new versions of tools. As major systems
vendors enter the CASE integration market, BASE developers expect their role to become in-
creasingly one of transitioning new tools and environment technologies developed by these
vendors to users within the Boeing community.

BASE is a loose collection of commercial off-the-shelf (COTS) and in-house developed tools.
Tools in the BASE environment are responsible for maintaining their own data. Data integra-
tion is provided by batch processing that extracts data from individual tool databases for stor-
age in a relational database. A Boeing-developed interchange format (BIF) aids data extrac-
tion. Data stored in the relational database is later used by document generation and trace-
ability tools developed in-house. Due to Boeing’s market clout, vendors worked closely with
Boeing to define interfaces for access to vendor tool data.

BASE provides a standard user interface format for in-house and batch-oriented tools. Pro-
cess integration supporting a Boeing-designed software lifecycle (BSWS-1000) was originally
provided by the enforcement of corporate policies in the BASE user interface.

Tool plug compatibility and environment portability have been significant factors in BASE de-
sign and maintenance decisions. BASE developers have attempted to use industry standards
where they are available to simplify tool replacement. An SQL interface is used for access to
the BASE database to simplify replacement of the underlying DBMS. An X-Window/Motif-
based user interface has been adopted, replacing the original Boeing-developed system. As
BASE has migrated toward different operating environments (MS DOS, VMS, and Unix), a vir-
tual operating system layer was added to simplify porting.

The BASE project encompasses both environment construction and maintenance, and asso-
ciated transition support. Transition support accounts for a large but variable portion of the
BASE budget. The portion of the BASE budget devoted to transition has grown as the need
for transition support was recognized within Boeing. Much of the transition budget is devoted
toward methodological training for analysis and design techniques.

The pattern of use of the BASE environment varies from project to project. Some projects use
the complete BASE environment, while others use only selected portions of the environment.
BASE engineers are now involved in the planning of projects at very early stages, including
during the proposal stage.

10 CMU/SEI-91-TR-13

According to BASE project engineers and managers, the primary benefit of the BASE effort is
the enhanced understanding of the need for well-defined methods and tools. Even those
projects that do not adopt the BASE environment have gained from a growing knowledge base
of available tools and methods.

4.2 SLCSE
SLCSE comes closest among surveyed environments to an IPSE-like approach to tool inte-
gration, providing data-oriented tool integration and centralized process support. It consists of
a large collection of COTS, government-furnished equipment (GFE), public domain, and cus-
tom-built tools which vary in degree of independence from the SLCSE data model. Capabilities
of individual tools include editing, mail handling, project management, design, development
support (compilers, linkers, debuggers), testing support, configuration management, report
and document generation, and environment management. Tools provided within the SLCSE
environment are intended to support a variety of methodologies and languages throughout the
life cycle.

The SLCSE database is centered around an entity relationship implementation of the MIL-
STD-2167A life cycle which serves as a repository for project information, and as a medium
for inter-tool information exchange (data and process integration). The data model consists of
approximately 200 entities and 2500 relationships, derived from review of the MIL-STD-
2167A. A Schema Definition Language (SDL) is defined which provides for project-specific
modifications and integration of new tools with unique data requirements. For performance
reasons, the SLCSE entity relationship data model is constructed on top of commercial rela-
tional databases.

Most COTS and government-furnished software tools which have been integrated into the
SLCSE environment do not make extensive use of the SLCSE entity relationship database.
Tools developed as part of the SLCSE project are primarily responsible for populating and uti-
lizing the SLCSE database. These SLCSE-developed tools include document generators, re-
quirements tools, design tools (text-based), problem-tracking tools, static analysis tools, and
impact analysis tools.

The original SLCSE prototype operates in a VAX/VMS character-oriented terminal (VT100)
environment. It defines a user interface format which specifies screen and menu formats, as
well as navigation techniques. Tools are provided to simplify the integration of external (COTS
or government-furnished) tools with the SLCSE environment.

SLCSE is currently being upgraded to reflect more current technology, including an X-Window
user interface for bit-mapped displays.

CMU/SEI-91-TR-13 11

4.3 VADS APSE
The VADS APSE environment effort is a commercial effort aimed at integrating selected
COTS tools into the Atherton Software Backplane. The Atherton Software Backplane is an en-
vironment framework based on an object-oriented database supporting a single inheritance
model. The Atherton Software Backplane provides capabilities for the creation of objects in the
database, the definition of properties that distinguish between objects, messages to which ob-
jects can respond, and methods which define the response to a message. Relationships be-
tween objects are stored as a property of one (or more) of the objects. Messages and methods
may be used to create “prologues” and “epilogues” which are sequences of activities to be car-
ried out before and after an operation on an object.

In the VADS APSE integration, the objects defined in the Atherton Software Backplane data-
base for a tool represent (at least in the limited integrations completed so far) the file system
objects produced by the tool. The objects maintained in the Atherton Software Backplane for
the Verdix compiler might be the Ada source code, the object files produced for each compi-
lation unit, and the executable image generated by the linking phase.

The movement of objects (files) from the individual tools of VADS to the Atherton Software
Backplane database has been automated. Rather than relying on the capabilities of individual
tools, the Atherton Software Backplane provides multiuser support and version control.

In addition, strategic third-party tools, such as CADRE Teamwork and Frame Technology
FrameMaker, are integrated. Future plans include integrating additional software development
tools into the VADS APSE environment.

4.4 SoftBench
Hewlett Packard SoftBench provides control integration capabilities which are designed to
complement data integration. These control integration capabilities provide mechanisms for
tools to become active agents responding to service requests generated by other tools within
the environment. This paradigm allows for a separation between agents (tools) that use a ser-
vice, and those that provide a service. A similar paradigm is used in the X-Windows cli-
ent/server relationship, and could be applied to other services used by tools, such as version
control.

The Hewlett Packard approach to control integration focuses on the use of mechanisms called
agents or triggers into which process information can be encoded for process integration.
Agents or triggers are similar in concept to prologues and epilogues in the Atherton Software
Backplane. While the Atherton framework concentrates on the data integration provided by the
object base, Hewlett Packard aims to develop the use of agents and triggers to provide greater
levels of control integration. Hewlett Packard has developed the Broadcast Message Server
(BMS) to facilitate the intertool communication necessary for control integration. SoftBench
also provides the Encapsulator to facilitate the incorporation of external tools into a SoftBench
environment.

12 CMU/SEI-91-TR-13

The decision to concentrate on control integration capabilities was reached primarily due to
perceived difficulties in providing for true data integration. Hewlett Packard believes it has cho-
sen an integration mechanism which will provide significant benefits regardless of which data
integration gains market acceptance. In addition, Hewlett Packard is in the process of reimple-
menting Softbench using services provided by the European Portable Common Tool Environ-
ment (PCTE) to form an environment framework supporting tool federations.

Hewlett Packard is currently involved in cooperative efforts with tool vendors to build an inte-
grated environment on top of SoftBench. Of particular interest is the development of a “virtual”
versioning interface which has been used to integrate the various configuration management
tools.

CMU/SEI-91-TR-13 13

5 Observations on Tools and Environments

Sections 5.1 through 5.14 provide a summary of observations and trends noted based on sur-
veys of environment builders and contact with tool vendors at workshops. The observations
reported reflect the position of no particular vendor, but rather represent our perceptions of the
current state and trends in tools and tool integration.

5.1 Maturing Tools
The early BASE environment efforts were particularly disadvantaged due to the limited avail-
ability of tools, and the limited functionality and relative instability of those that were available.
The first available CASE tools around which the BASE environment was composed were char-
acterized by sophisticated graphical drawing capabilities with little or no page layout capabili-
ties, poor project management and software metrics support, limited code generation, and
poor methodological guidance.

BASE developers had little choice but to incorporate specific tools because they were the only
tools available on various Boeing development platforms. After suffering through frequent
changes in programmatic interfaces in these tools, BASE developers began to ignore such
volatile interfaces and chose to integrate early tools through a “least common denominator”
approach of direct access to ascii data files.

More recent integration efforts (including current BASE efforts) have benefited from greater
availability, increased functionality, and improved stability of tools. It is common for an envi-
ronment builder to plan integration efforts for more than one tool of a particular class, thereby
increasing environment flexibility and offering greater choice to the user. Through the natural
maturation of tools and the computing environment, many tools now appear to have stable and
robust programmatic interfaces and data formats, and offer adequate performance for small
to moderately-sized projects.

The maturing of stand-alone tools has been accompanied by a number of changes to the
scope and function of these tools. According to a number of the environment builders sur-
veyed, tools which compete directly in a shared marketplace, such as IDE Software through
Pictures and Cadre Teamwork have become increasingly similar by incorporating similar
methods and technologies. For example, a review of Software through Pictures and Team-
work product literature [9, 10, 11, and 12] indicates that both products claim support for struc-
tured methods, real-time software development, MIL-STD-2167A style documentation, re-
quirements traceability, entity relationship modeling, object-oriented design methodologies,
Ada, and code generation.

The increasing similarity of high-level tool functions is not unexpected among tools in direct
competition. Hewlett Packard engineers have also noted that the low level data objects and
services offered by competing tools have become increasingly similar. As a result, a number

14 CMU/SEI-91-TR-13

of the surveyed environment builders felt that data interchange between tools of the same
class is becoming increasingly possible.

Logically, the end result of providing tools of the same class with similar services is not to ex-
change data, but to make the individual tool plug compatible with similar tools in a SEE. The
similarity of services within most classes of CASE tools falls well short of what is needed for
plug compatibility. Plug compatibility will require additional agreements on what tools and ser-
vices are to be provided. Unfortunately, no such service model exists, except for those tools
falling into one of the service domains of the European Computer Manufacturers Association
(ECMA) reference model for software environments [13]. Hewlett Packard is currently making
use of the similarity in services offered by configuration management tools to develop a virtual
versioning interface within the SoftBench environment.

The increasing maturity of tools and tool users also means that it is no longer adequate for a
tool to be well engineered, stable, and provide similar services to other tools of its class. Tool
vendors that wish to remain competitive must claim an “open” architecture to allow easy ac-
cess to tool data and services. While Software through Pictures advertises “Visual Connec-
tions”, Teamwork advertises “Access” and Common Data Interchange Format (CDIF) compat-
ibility.

Unfortunately, vendors interpret “openness” differently. An open architecture has been
claimed based on providing modifiable data schemas, data access interfaces, externally visi-
ble data formats, programmatic interfaces, and customizable user interfaces, as well as
through support for interchange formats such as CDIF. Such divergence in mechanisms for
access of tools and tool data can only increase the complexity of integration efforts, and re-
duce the degree of integration possible.

5.2 Egocentric Relationships
Part of the legacy of the historical independence of stand-alone tools from environment tech-
nology is the egocentrism of the individual tools currently being integrated into tool coalitions.
In spite of tool vendor efforts aimed at establishing such coalitions, each tool tends to view the
tool universe as orbiting around itself. Due to marketing and performance realities, few tool
vendors in coalitions will be willing to relinquish independence from other tools. This continu-
ing tool egocentrism is characterized by the following:

• Each COTS graphical tool in an integrated environment maintains its
own user interface. There is little or no attempt to generate a completely
unified user interface. All environment builders noted that tool vendors are
increasingly choosing to use the same mechanism (X Window) and look and
feel guidelines (Motif). Vendors, however, have not agreed on conventions
regarding operations available and menu format.

CMU/SEI-91-TR-13 15

• When viewed as tools, environments maintain a similar egocentric
approach to the user interface. All studied environments provide a
common user interface format which allows certain tools (primarily batch or
in-house tools) to be integrated at the user interface level, even when the
environment was based clearly around a specific tool (such as VADS APSE).

• Tools, even when claiming to be tightly integrated, maintain
independent control of their own data and processing. Environments
tend to maintain separate, independent control of their own data and
processing.

• Each tool views itself as a “parent”, while other tools are viewed as
“children.” Invocations of tools occur primarily from parent to child.

• Tool makers hesitate to change the approaches used and interfaces
available within the tool at the behest of over tool vendors. The attitude
can be described as indifference.

• Where tool functions overlap, the common approach is for each tool to
continue to provide its own, often contradictory services.

Environment builders surveyed maintain that the egocentric view of the software development
environment maintained by many (if not most) tools is a major hurdle to more advanced levels
of tool integration. The egocentrism of tools appears to be particularly troublesome for envi-
ronments built on integration frameworks such as Atherton Software Backplane or Hewlett
Packard Softbench. Softbench engineers suggest that in order to minimize tool egocentrism,
tools should provide services such as modifiable user interfaces with extensible menus, mech-
anisms to specify where tool focus should be directed when the tool is invoked by another tool,
interfaces for batch as well as interactive processing, and greater separation of services such
as those specified in the ECMA model from individual tools. It is unclear whether tool vendors
will surrender their egocentric positions, but the philosophy of federated tool environments di-
rectly challenges many of those positions.

5.3 Conservative Integration of Tools into Coalitions
Many of the stand-alone tool vendors who attended workshops indicated that they are begin-
ning to offer coalition-style integration with complementary tools. In fact, this trend appears to
be becoming almost universal among CASE tools. For example two of the largest CASE anal-
ysis and design tool vendors, Interactive Development Environments (IDE) and Cadre Tech-
nologies have begun marketing integrated environments. IDE provides a development envi-
ronment composed of Software through Pictures, Sabre C, and Interleaf or FrameMaker. Cad-
re Technologies has announced integration agreements with Saber C and Pansophic, as well
as offering access to the Interleaf and FrameMaker documentation tools.

While some of the current agreements between vendors to create tool coalitions are primarily
marketing strategies, they do suggest that tool vendors now have increased confidence in the
quality and stability of their products and the products of others. In fact, tool vendors appear
to have solved many of the technical problems involved in building stand-alone tools and they

16 CMU/SEI-91-TR-13

indicate that market pressures are now forcing them to address the issues of long-lived, large-
scale software engineering that inspired the early attempts to develop IPSEs. The result ap-
pears to be the distinct migration toward tool coalitions.

Tool vendors who attended the CASE Adoption and Tool and Configuration Management
Workshops indicated that many of the current tool coalition integration efforts have taken rel-
atively cautious approaches taken toward integration partners and modifications to tools. The
types of tools and specific tools chosen for integration into coalition environments appear to
be determined primarily by tool market share, and the competitive advantage offered by coa-
lition-style integration. Thus, integration is becoming more common among tools with high
market share in their respective areas, while tools with lesser market share are finding it hard-
er to identify strategic partners for integration.

As a result, many of the tool coalition efforts focus on providing a programming environment
rather than a full life-cycle product. Current coalition efforts often include analysis and design,
documentation, and code generation tools. Tools which command more limited market niches,
such as testing and code metrics tools, are often excluded from tool coalitions. In addition,
tools useful in management of a project, but which require full life-cycle information, such as
planning, tracking, and cost estimation tools, are not integrated.

The conservative approach is also evident in the type of Information that is extracted from one
tool for use by another tool. Shared information is determined primarily by what is already
available in tool interfaces, rather than by what would provide the best degree of integration.
Changes to individual tools to support integration are either minimized, or performed only in
support of high-leverage partners. Few vendors are willing to open up tool architecture enough
to allow integration of other vendors with smaller market share.

Tool coalition integration efforts also make little attempt to identify and eliminate redundant
services offered by multiple integration partners, or to provide a service framework to simplify
the integration of additional tools. Thus, tools within tool coalitions may have conflicting devel-
opment models and offer incomplete or conflicting configuration management, version control,
and security services. Since individual tool vendors must compete as both stand-alone tools
and members of a coalition, they are often unwilling to make risky concessions to consolidate
services. Only in isolated cases where market consensus has developed, such as with win-
dowing systems, do vendors migrate to a common service, and in those cases many tools
within coalitions maintain an independent look and feel.

Due to the lack of standards and emphasis on “no change” policies, it can be expected that
tool coalition integration efforts will provide an immediate, but only a partial solution for tool
integration. Although CASE tool vendors are rapidly expanding into areas where tool support
is now lacking, it is unlikely that a unified life-cycle product will result in the near future. The
experience of environment builders suggests that such tool coalition integration efforts may be
quickly limited by a lack of shared services. In addition, the lack of a shared design philosophy
and shared services may also lead to inconsistency in the level of integration available in co-
alition toolsets.

CMU/SEI-91-TR-13 17

5.4 Virtual Interfaces
The early experience of environment builders suggested that multiple operating platforms and
substrate components were the rule rather than the exception for long-lived environments. For
example, BASE migrated to three different hardware platforms, four different operating sys-
tems, two user interface systems, and two database systems during the life of the project.

Through experience, the BASE developers learned that virtual interfaces to substrate compo-
nents could substantially aid in migration to different operating environments. The BASE de-
velopers designed and implemented a virtual operating system interface, which proved useful
in subsequent migrations. They also made extensive use of the existing SQL standard to pro-
vide a virtual interface to the underlying database system. BASE developers noted that even
with the SQL standard, the non-comprehensive nature of the standard made migration to a
new database system difficult. However, the developers felt that without the standard, migra-
tion would have been far more difficult.

Other environment builders have experienced similar problems with migration. SLCSE engi-
neers are now addressing a change in hardware (from a VAX to a Unix Workstation), operat-
ing system (VMS to UNIX) and user interface (character oriented to X-Window based). Fortu-
nately, there is increasing agreement on a number of virtual interfaces for environment com-
ponents. Environment builders surveyed either currently operate in a UNIX environment
(Berkeley or System V variant), or have discussed plans to migrate to such an environment.
With consensus building around POSIX compliance for UNIX and other systems (including
VMS), a clear virtual interface between applications and the underlying operating system is
possible. It is expected that such a virtual operating system interface will simplify porting of
tools and environments from system to system. While increasing numbers of vendors are an-
nouncing POSIX compliance, it remains only a proposed standard, and is currently at the sub-
committee level.

In providing a virtual versioning interface for configuration management systems, SoftBench
engineers are taking advantage of developing consistencies in tool functionality to explore
new areas for virtual interfaces. Such efforts, however, require significant cooperation on the
part of vendors as well as consistency in basic services.

5.5 Toward “Small Scale” Data Interchange Formats
With almost all environment and tool integration efforts to date, a primary means of data inte-
gration has been interfaces to access tool data. While providing access to stored data, such
interfaces normally convey little semantic content. They are also extremely unstable during
early years of CASE tool development. Due to the instability of these early data interfaces,
BASE environment builders chose to use ascii formats. As a result, they suffered from com-
plex tool interfaces with poor efficiency of data transfer. Later, Boeing developed the Boeing
Interchange Format (BIF) and used it to provide a common intermediate format for tool data.

18 CMU/SEI-91-TR-13

The specialization of BIF to the Boeing environment and process allowed for the encoding of
a limited degree of semantic information.

Currently, the CASE tool industry is focused on large-scale data interchange standards such
as the CASE Data Interchange Format (CDIF). However, since they continue to address only
the interchange of syntactic information, acceptance of such standards remains limited. With-
out a parallel transfer of semantic information, the benefits of CDIF are not clear to vendors.
Other lower-level, smaller-scale, and domain-specific data interchange formats have been ex-
tremely successful in providing data interchange within a limited class of tools. One such suc-
cessful standard is Postscript, which now is used almost universally by documentation sys-
tems. Another low-level standard generating interest is the Tagged Image File Format (TIFF),
developed by Microsoft to simplify the transition of raster graphics between tools.

While evidence suggests that small-scale standards are not a panacea, some organizations
currently building environment frameworks have expressed particular interest in them. They
feel that acceptance of such standards can provide the mechanisms necessary for higher lev-
els of integration, while circumventing some of the conflicting interests and limited benefits that
make standardization of large-scale data interchange very difficult.

5.6 Consensus on User Interfaces
The “early” environments, including BASE and SLCSE, had a particularly hard time providing
a common user interface across all tools in the environment due to the uneven maturation and
acceptance of workstations with bit mapped displays and windowing systems. BASE and
SLCSE were forced to operate in “mixed” environments with character-oriented and bit-
mapped display technology evident in both hardware and tool design. Thus, the VMS charac-
ter-oriented environment SLCSE was required to extract information from tools which ran on
bitmapped displays.

The subsequent, almost universal adoption of bitmapped displays and the X Window system
has simplified the problem of presentation integration for environment builders. Some environ-
ment and tool builders questioned indicated that the X Window System, along with the Motif
toolkit, provided an adequate level of presentation integration.

Even with universal adoption of X Windows and Motif, presentation inconsistencies between
tools are likely to persist. While Motif specifies the format of pulldown menus, it does not spec-
ify a standard for the contents of pull down menus or for the operations included in each menu.
Thus, it is likely that individual tools will utilize different, and at worst, conflicting menus, oper-
ations, and control sequences. For Apple Macintosh-like consistency of user interface, addi-
tional levels of standardization are clearly necessary.

5.7 Isolation of Services from Tools
In spite of numerous differences in technology and implementation, BASE and SLCSE share
a common view of the operating environment for tools. Both efforts reflect the more batch and

CMU/SEI-91-TR-13 19

character-oriented, less interconnected computing environments of the recent past. Both have
suffered at times from limitations imposed by proprietary operating systems.

In many ways, the environment in which BASE and SLCSE were developed contrasts sharply
with the current computing environment which is spawning a trend toward tool federations.
The open systems approach toward computer systems and networking that snowballed during
the late 1980s has led to general concurrence on an operating system (POSIX), mechanisms
allowing applications using different protocols to communicate (XTI), and windowing environ-
ments (X Window System).

Perhaps most significant about the development of such open standards is the model that their
adoption can provide to the tool community. Prior to the acceptance of X Windows, the provi-
sion of windowing services was often deeply embedded within, and unique to, each individual
tool. The X Window System removes the responsibilities of windowing from the tool, and in
doing so provides a classic example of the separation of the producer of a service from a con-
sumer of a service. The client-server model provided by the X Window System allows the ap-
plication to be executed on a device distinct from the device providing the windowing environ-
ment, leading to a form of application portability whereby a single application can be accessed
from different platforms and architectures.

The Atherton Software Backplane and Hewlett Packard SoftBench are both rooted in the cli-
ent-server approach to computing environments which has developed with open systems ar-
chitectures. Both frameworks attempt to remove integration services from the domain of indi-
vidual tools and instead provide such services as part of the framework. Atherton differs from
SoftBench primarily in the service orientation (data management vs. tool control), and in the
degree to which the client-server philosophy is adopted. Atherton attempts to provide both
data management and control integration in a single framework revolving around an object-
oriented database.

Unlike Atherton, Hewlett Packard chooses to isolate data management and control integration
facilities as individual services, providing for independent development and replacement of the
underlying database as technology matures. Hewlett Packard is further extending the service
concept by providing a virtual interface for version control. A conceptual model for many such
separate service domains is provided by [13].

5.8 Better Control Mechanisms
Control integration in the early environment BASE was provided by simple, script-driven
spawning of batch processes. These mechanisms were primarily used for the periodic collec-
tion of data from individual tool databases, and for generation of documents and reports. The
tools from which data was collected played at best a passive role in the process and in many
cases played no role at all. Tools did not notify other tools of their actions and were often ig-
norant of the presence of other tools.

20 CMU/SEI-91-TR-13

Surveyed environment builders and tool builders at workshops indicated that they have begun
to adopt mechanisms which provide for more direct coupling of tools in heterogenous comput-
ing environments. Two such mechanisms are remote procedure calls (RPC) and Active Links.

RPCs are essentially the combination of a call protocol and a common data format. They rep-
resent a mechanism of invoking tools services distributed across heterogenous networks. By
hiding the details of network computing, applications can tap into services provided by other
applications which were previously unavailable. Service calls across applications appear sim-
ilar to calling a local function. RPC mechanisms potentially allow the splitting of applications
into smaller independent services.

Unfortunately, tool and environment vendors indicated that individual tool support for RPCs
varies widely. Not only do tools differ in basic support for RPC (many tools offer no support),
but no conventions have been established for the type of processing which should be remotely
available. Environment and tool builders felt that such conventions will likely be specific to the
type of tool, but may also be specific to the domain of the application program built with the
environment (those domains which require MIL-STD-2167A compliance may enforce different
conventions than those that do not).

Active Links provides a mechanism by which a tool can exert control over another tool to cre-
ate the illusion of common data locality. They were originally conceived as a way of guaran-
teeing that the version of a picture or other insert in a document was the latest version avail-
able. Once an active link is established between an original document and the external source,
any changes to the external source are reflected automatically in the original document.

Competing active link technologies are currently available in the FrameMaker and Interleaf
documentation systems. FrameMaker’s Live Links allows straightforward creation of links be-
tween tools supporting the Frame Technology format. Interleaf’s Active Document format re-
quires no special support from external tools, but is more complex to implement, since embed-
ded programs are placed within the Interleaf document. With these programs, Interleaf docu-
ments can modify and format input data, protect themselves from unauthorized access,
provide user-dependent views, and distribute themselves to reviewers.

The first system-generalized application of Active Link technology may not appear in Unix en-
vironments at all, but rather on personal computers. Apple now offers capabilities that link
many Mac applications. In addition, Microsoft is developing a technology which will eventually
provide transparent Active Links between IBM and Apple products.

5.9 Support for Software Process
Early environment integration attempts, represented by BASE, provided only primitive support
for the software process. BASE encoded those portions of the Boeing BSWS-1000 process
model primarily concerned with document structure into a set of standardized interfaces for
tool invocation and into special integrating tools for producing documents and reports. The en-
vironment user interface rigidly enforced the original BASE process model.

CMU/SEI-91-TR-13 21

Boeing’s experience with this BASE encoding of the process model has not been entirely fa-
vorable. Because of the limited scope of the integrated environment (primarily oriented toward
documentation artifacts), large parts of the development process remained outside of the
BASE realm, thereby reducing the level of automation possible. In addition, orientation toward
project deliverable in the original BASE models led to significant data redundancies. BASE de-
velopers also found that, due to individual preferences, hardware and software environments
and special requirements of a funding agency, individual projects often required unique pro-
cess and document support. Due to user dissatisfaction, Boeing later remedied the problems
of data redundancy and a too-rigid process model by providing a stronger centralized data-
base mechanism and removing the rigid encoding of the process model from the BASE user
interface.

SLCSE, like BASE, has chosen to encode process information in the user interface and data-
base. SLCSE, however, uses a more sophisticated, information-driven data model and pro-
vides a greater degree of flexibility in process support. The SLCSE database contains hun-
dreds of object types, and thousands of relationship types derived from MIL-STD-2167A. An
information-driven approach, which models low-level entities specified in MIL-STD-2167A
rather than specific documents, was chosen to avoid data redundancy.

In SLCSE, multiple techniques are available to modify the encoded process model. The Win-
nie and Moo tools can be used to aid in the generation and modification of (character-oriented)
user interface menus. In addition, approximately 17 roles derived from the Software Technol-
ogy for Adaptable Reliable Systems (STARS) Operational Concept can be chosen to provide
unique access control characteristics. However, most significant is the separation of the envi-
ronment database into two separate databases for environment framework support and
project support.

The environment framework database is designed to be relatively stable, and contain informa-
tion about nodes, users, and tools common to all projects. The project database is designed
to contain information unique to a project, and is expected to be heavily tailored. The two da-
tabases are both logically and physically separate for conceptual consistency and perfor-
mance.

Unfortunately, since SLCSE has yet to be used in full-scale development, it is unclear how ef-
fective and well received the SLCSE process model will be. However, developers experienced
with the SLCSE database have noted that due to unexpected complexities in modifying exist-
ing database schemas, a very small environment schema should be developed, and a new
project schema should be built for each project.

VADS APSE, utilizing the Atherton Software Backplane, also provides process integration pri-
marily through the user interface and database schema. Unlike SLCSE, Atherton provides a
relatively well-developed mechanism to control the actions of individual tools through the en-
vironment object database. Relationships within the object base are used to encode the pro-
cess model by specifying processing that should occur before and after an event. The Verdix
designers have rejected the embedding of a specific process model such as MIL-STD-2167A.

22 CMU/SEI-91-TR-13

They intend to provide such specific process models as a value-added service built on top of
the core VADS APSE toolset.

HP SoftBench focuses on the control aspects of process integration. In addition to providing
user interface support for user-defined processes, it provides a mechanism to notify (and ini-
tiate, if necessary) other tools in the environment of user-specified events. It is unique among
the environments studied in that does not attempt to provide process integration through a
data model. SoftBench developers chose to ignore data encoding of a process model due to
the perception that environment database technology has not matured, and universally ac-
cepted data models have not been developed. Commitment to a specific data integration tech-
nology would be premature for these reasons.

5.10 Better Framework Support
Discussions with environment builders and workshop attendees indicate that tool integration
frameworks have become viable due to the maturation of individual tools and the development
of new database technologies. These new technologies, along with the booming tool market-
place, have encouraged large system integrators such as the Hewlett Packard, IBM, Digital
Equipment, and Texas Instruments to enter the integrated tool marketplace. Other tool ven-
dors, such as Verdix, have begun to integrate their tools and the tools of others with existing
commercial framework services. The presence of such large vendors may indicate that a mar-
ket shakeout has begun. In fact, engineers for the commercially-funded efforts surveyed
(Hewlett Packard SoftBench and Verdix VADS APSE) expect the tools market to coalesce
around a relatively few framework technologies.

Maturing database technology, as demonstrated in the SLCSE, VADS APSE, and also in
PCTE environment efforts, has made support for increasingly complex data models feasible.
The entity relationship data model supported by PCTE, along with the Object Oriented (OO)
model supported by Atherton, are providing new, but unproven, possibilities for environment
database management.

These advanced database technologies share a common characteristic of associating data
with relationships and operations. In doing so, advanced databases provide a mechanism to
establish relationships between tools. The database can become an intermediary in the envi-
ronment, and lessen the need for environment knowledge on the part of individual tools. Se-
mantic interpretation of information must remain in the domain of individual tools, however.

Both VADS APSE (Atherton) and SLCSE use advanced database interfaces. While VADS
APSE uses the Atherton database to encode relationships between the coarse-grained arti-
facts of tools, SLCSE extracts information from individual tool databases, and encodes rela-
tionships between finer-grained objects. VADS APSE also attempts to make extensive use of
the controlling capabilities of the database. The Atherton database underlying VADS APSE is
used to associate controlling actions with operations on data objects in the object base.
SLCSE uses an entity relationship database interface, built on top of a commercial relation da-

CMU/SEI-91-TR-13 23

tabase, primarily to associate data objects for traceability, impact analysis, and document gen-
eration.

Unfortunately, such database technology is only beginning to be used actual development
projects. Implementing a data model based on MIL-STD-2167A, SLCSE has generated great
interest, but is now only in a testing phase. The VADS APSE effort represents one of the first
commercial attempts to use the Atherton Software Backplane as an integrating framework for
a large-scale development environment. PCTE has been primarily used for small-scale
research-oriented projects in Europe, and is only now generating interest among U.S. based
environment developers, such as Hewlett Packard.

Hewlett Packard’s SoftBench product represents a different approach to providing an integra-
tion framework, in which the forms of integration primarily concerned with tool control are pro-
vided as services separate from the environment database. The separation of data integration
and control integration make SoftBench potentially compatible with a number of underlying da-
tabases. The decision to separate data and control services from the underlying database
technology is apparently motivated by concern about the immaturity of environment database
technology.

As with the Atherton Software Backplane, sequences of control actions can be specified in
SoftBench, and associated with other events. In the SoftBench scheme, however, tools play
a more active role in control integration. The SoftBench approach decidedly moves toward a
revised schema in which tools are active agents in the integration environment, and as such
are expected not only to send information about actions, but also to actively listen for informa-
tion and requests from other tools.

5.11 Improved Data Flow Mechanisms
The earliest environments, including BASE, rely on the manual movement of data into the cen-
tralized database. In BASE, movement of data into the centralized database is accomplished
by periodic execution of a batch process which extracts data from tool databases and stores
it for subsequent processing. Movement of data from individual databases to the centralized
database primarily occurs when the project is attempting to deliver a milestone document, or
when specific information about the project is required. Consistency of data in the central da-
tabase was maintained by the enforcement of policies for data updates. Such policies relied
on manually enforced processes, supported by processes encoded in the BASE user inter-
face. The central database provided little support for maintaining data consistency.

Migration of data to the SLCSE environment continues to be primarily accomplished through
manual check-in of data. Like BASE, there is little environment support to guarantee that all
data in the central database reflects the most current state of data in individual tools. Also like
BASE, the database is not intended to be used for interactive development, but rather to re-
flect snapshots of a system at specific points in time. Thus in BASE as in SLCSE, individual
tools continue to be the primary medium for designing and building a system in which data is

24 CMU/SEI-91-TR-13

collected into the central database to support special integrating tools such as document gen-
erators and impact analysis tools. However, SLCSE uses more advanced database technol-
ogy to provide for better consistency checking in central database data.

An advance on this simple data migration mechanism used by BASE is offered by the VADS
APSE environment. Rather than requiring manual migration of data from individual tools to the
central database, VADS APSE automates data movement. When data is migrated to the cen-
tral database from individual tools, other related data is marked for potential inconsistency, de-
pending on relationships established between the objects. The automated mechanism for
data migration potentially can make integration more seamless, and the presence of the cen-
tral database more transparent.

5.12 Toward Finer Granularity of Data
The products or objects produced by individual tools that are directly available for transport to
other tools have changed little over time. Both the earliest environment efforts, represented by
BASE, and the latest efforts, represented by VADS APSE and SoftBench, complain that the
available artifacts are primarily course-grained objects that reflect convenient units of informa-
tion for representation in the tool database. In many cases, the units of information available
are directly reflected in the physical organization of the tool database, e.g., one bubble in a
dataflow diagram is stored per data file. Unfortunately, such course-grained data may be in-
compatible with the intentions of integrators, who often wish to access data at a finer granu-
larity.

Faced with the problem of integrating coarse-grained data from individual tools into a unified
database useful for the processing of integration tools, environment builders appear to have
employed three approaches:

• Extract whole data objects from individual tool databases for incorporation
into the central database.

• Decompose course-grained objects into finer-grained objects for
incorporation into the central database.

• Incorporate complete data objects by reference in the central database.

SLCSE and BASE integrators extract and decompose data objects to support the data model
defined in the central database. This approach has been found to be limiting in two primary
ways: first, many critical aspects of tool data are maintained internally as conventions, or in
other formats that proved difficult to interpret, and second, each individual extraction required
intensive effort to implement and maintain. Often, when data is extracted, information is lost.
Even in those cases where individual tools are designed to ease data extraction, contextual
data is hard to maintain.

VADS APSE developers have chosen the approach of directly incorporating tool data objects
by reference into the central database. While this approach eliminates the need for individual
processing to support extraction, it does little to provide a finer level of granularity where it is

CMU/SEI-91-TR-13 25

needed. VADS APSE developers have indicated that where finer granularity is necessary, fil-
ters will be developed.

Some very recent advances have been made in providing fine- grained access to data items,
particularly among tools that claim to be constructed with “open architectures” such as Inter-
active Development Environment’s Software Through Pictures, and the Procase Smartsys-
tem. These tools have adopted strong programmatic interfaces that allow access to many of
the data objects available within the tool. Procase, by way of a strong object orientation, claims
to provide access to all objects and actions available within the tool. Unfortunately, fine
grained access is only available from within the Procase Smartsystem tool set.

5.13 Support for Programming-in-the-Large
Historically, support for programming-in-the-large, including configuration management sup-
port, partitioning schemes for tool data, and project management support, has been a function
of individual tools. Unfortunately, the support offered by individual tools appears to be inade-
quate. BASE developers maintain that they have on occasion exceeded the capabilities and
capacities of every tool in the BASE environment.

The BASE environment itself provided little or no configuration, database, and project man-
agement support to facilitate the development of large systems. Relying almost exclusively on
individual tool support, BASE developers found that tools must provide mechanisms to parti-
tion the tool database into multiple related databases on different devices. Unfortunately, few
tools provided such mechanisms. Operations on the unified (non-partitioned) databases of
tools proved impossible due to tool failure, or high cost of access time.

The consensus among tool vendors at SEI workshops generally supports the views of BASE
environment builders. Tool vendors similarly feel that individual tool mechanisms to support
programming-in-the-large are inadequate. They cite limitations within individual tools, variabil-
ity between tools, and a lack of agreement on a development model as major causes of failure
to scale up when tools are integrated.

More recent environment efforts often provide multilevel support for programming-in-the-
large. In SLCSE, the central database is logically and physically separated into two distinct
databases for conceptual consistency and improved performance. Configuration manage-
ment support is also provided, but only for data that has been copied into the SLCSE data-
base. A large majority of multiuser support, however, remains in the domain of the individual
tools within the environment. Individual tools continue to maintain their own databases, and
therefore the problems of scalability identified by BASE developers will continue to exist.

Integration frameworks such as Atherton Software Backplane are attempting to provide an ad-
ditional layer of support for programming-in-the-large on top of the support offered by individ-
ual tool vendors. According to VADS APSE developers, integration of tool configuration man-
agement support with framework support has been straightforward. In many cases, Verdix
chose to ignore the individual tool’s capabilities in favor of those provided by Atherton. It was

26 CMU/SEI-91-TR-13

not difficult, however, for Verdix developers to envision scenarios in which such integration
may not be simple, particularly when individual tools maintain strong control over configura-
tions and development models, or when they are tightly integrated with other tools providing
configuration management.

Hewlett Packard’s BMS system in Softbench is clearly designed to provide support for distrib-
uted tools, thus providing a useful mechanism for partitioning of tools and data. In keeping with
the design philosophy of separation of services, however, Softbench provides no internal con-
figuration management capability. Instead, Softbench offers integration with third-party tools
providing such support such as Softool. It is not clear whether tool vendors will be willing to
forego internal configuration management and partitioning mechanisms in favor of services
provided directly and indirectly by Softbench.

5.14 Difficult Transition Issues
According to all surveyed environment builders and Case tool vendors, it is difficult to help or-
ganizations adopt CASE environment technology. Not only is the actual technology extremely
costly, but it also requires a substantial modification to the manner in which the adopting or-
ganization does business. Some experts indicate that while the new technology is being
adopted, productivity in the adopting organization may actually decline.

Among the surveyed organizations, only Boeing has substantial, long-term experience in tran-
sitioning the environment to users. The cost of the transition effort at Boeing was initially gross-
ly underestimated, but now represents a large portion of the BASE budget. The BASE group
is now involved not only in training, but also in the early planning stages of projects which will
use the tool set.

Representatives for both the VADS APSE and HP SoftBench environment efforts expressed
a good understanding of the costs of tool and environment adoption, and the importance of
vendor participation in the adoption process. Both organizations offer or intend to offer consid-
erable training and consulting help. It can be expected that such help may be particularly im-
portant to customers of the HP SoftBench product, which attempts to provide control integra-
tion mechanisms. VADS APSE customers may experience less upheaval in day-to-day activ-
ity, as the core toolset revolves around the well-understood compile-link-debug cycle. Verdix
planners intend to function as integrators to provide more complete environment capabilities.
Interest in the integrator role is also expressed by vendors of traditional analysis and design
tools, such as IDE and Cadre Technologies.

CMU/SEI-91-TR-13 27

6 Discussion

6.1 Current Tool Standardization Efforts
There are a large number of tool interconnection standards efforts currently in progress, rang-
ing from extremely low-level standards to CASE-specific integration standards such as CDIF,
PCTE, CASE Integration Standard (CIS), and A Tool Integration Standard (ATIS). They in-
clude government-backed, industry, and ad hoc standards efforts aimed at data management,
tool portability, tool integration, and tool architecture. Among these efforts, no single standard
is likely to supercede all other standards and independently guarantee future environment in-
tegration. Lessons from previous tool and environment integration efforts indicate that even
old, low-level, and at first glance marginally relevant standards such as ASCII, Postscript, and
SQL can prove important in tool and environment integration (a list of useful or potentially use-
ful standards identified by the surveyed environment builders is provided in Appendix I). New
standardization efforts are also likely to provide useful but not all encompassing pieces of the
environment integration puzzle.

Unfortunately, the large number of standards efforts has confused tool vendors as well as tool
users. As a result, vendors either show unwillingness to support any specific standards effort,
or they choose to participate in several conflicting efforts in an attempt to “hedge their bets.”
This choice reduces the risk that the vendor will adopt the “wrong” standard and also enhanc-
es the possibility that existing tool interfaces will approximate the (yet to be agreed upon) stan-
dard. While enhancing the position of the individual vendor, this posture actually lessens the
probability of success for any specific standard effort by splitting the resources and commit-
ment of the vendor.

With the large number of ongoing standards efforts, it will be extremely difficult for any group
to participate in each one, or even to select which efforts among many others offer the greatest
probability of success. As a result, de facto standards, based primarily on market clout, will
likely emerge as major computer and tool vendors recognize the available market for integrat-
ed environments and become increasingly pessimistic about the chances for success of any
specific standards effort. These de facto standards will likely incorporate characteristics of one
or more of the proposed CASE standards.

The current and pending lack of homogeneity in environment integration standards will likely
mean that interoperability between differing technologies and frameworks will be critical. En-
vironment frameworks must be adaptable to a wide range of component technologies. For ex-
ample, a framework must be adequately flexible to utilize relational, entity relational, and OO
database technology, as well as multiple RPC and Active Link mechanisms.

If tool and environment users are to retain the gains made in the ongoing open systems move-
ment, interoperability must also be insured between the surviving multiple, corporate-backed
integrated environments and environment frameworks. At least one environment builder sur-

28 CMU/SEI-91-TR-13

veyed has already begun to consider integration between PCTE and Atherton-based stan-
dards.

6.2 Mechanisms vs. Process
The tool and environment vendors involved in various coalition- and federation-style integra-
tion efforts are clearly making significant progress in the development of mechanisms to sup-
port integration. This progress is readily apparent in coalition-style integrated environments,
in new technologies for environment frameworks, and in such technologies as RPC and Active
Links. While such technologies are necessary for integration, it is becoming increasingly ap-
parent to environment builders that they are not sufficient for the production of a useful SEE.

What has been elusive so far in integration efforts is a consensus on how best to support pro-
cess integration, and what processes are best to support. Surveyed environment builders re-
ported many problems with process integration and few solutions. For example, from BASE
and SLCSE efforts we can learn that the tightest level of process integration is available if the
domain is limited. For BASE, a limited domain based on the Boeing methodology meant that
more semantic information could be encoded in BIF, and subsequently made available for oth-
er tools. In addition, tight user interface enforcement of policy was possible. Unfortunately a
second lesson learned from BASE is that such tight enforcement of policy, particularly in the
user interface, is not well received.

Environment efforts which are providing advanced mechanisms for process integration, such
as VADS APSE and SoftBench, are also experiencing the same problems determining an ap-
propriate process to integrate. VADS APSE developers have chosen to ignore the more con-
tentious areas of process and focus on the relatively well understood development cycle.
Hewlett Packard engineers expressed concern about identifying a process or small set of pro-
cesses that would be acceptable to most software developers.

One clear focus for organizations wishing to provide a future SEE should obviously be clear
definition of a process or set of processes which form the core of engineering activities. In ad-
dition to identifying such processes, organizations could begin by restructuring in-house tools
to support process-providing environments. Among tool features that can support such encod-
ing of an organization’s software process are configurable menus, conventions for tool con-
struction such that tools are organized around a number of service provision centers, and sup-
port for new process-encoding mechanisms like RPC and Active Links.

An organization can perhaps exert greatest influence on the direction of de facto standards
efforts by influencing the direction of corporations currently involved in building environments,
rather than by building unique environments. Our survey of environment builders suggests
that support for software process is a foremost concern for both software organizations and
for environment builders. This confluence of interest offers a unique opportunity to insure that
the process concerns of the software industry are addressed in the products of environment
builders.

CMU/SEI-91-TR-13 29

6.3 The Cycle of Technology
The study of individual environment efforts has uncovered a phenomenon in which advance-
ments in one of the various forms of mechanistic integration (data, control, and presentation)
has led to a recognition of inadequacies, and subsequently new demands, on that same and
other forms of mechanistic integration. Thus, when BASE developers working with tool ven-
dors gained access to data within tools, it became apparent that the control and user interface
mechanisms available were inadequate for a sufficiently flexible encoding of the Boeing pro-
cess. In addition, access to the syntax of data pointed out the need for greater access to the
semantics of data, as well as the need for new mechanisms to insure the consistency of data.

Likewise, as new data models, such as OO model, and new control mechanisms such as RPC
and Active Links are becoming available, it is increasingly evident that the granularity of data
available from tools is inadequate, and thus the programmatic interfaces of tools must be en-
hanced. However, increasing the granularity of data will increase the performance require-
ments on databases.

As new control mechanisms become increasingly available, tool vendors will be pressured to
provide access to processing deeply embedded within the architecture of the tool. For exam-
ple, an integrator may wish to gain control from a tool between the point where the user enters
the command within the tool, and the corresponding action is carried out. A transfer of control
at this point would allow the integrator to check for consistency across related databases prior
to the tool performing the action. Unfortunately, few tools are currently structured to allow for
the intercepting of requests between the user interface and the tool functionality. Such sepa-
ration may be necessary for fine-grained control of the interactions between tools.

The increasing cycle of demands on integration mechanisms and individual tools may drive
tool vendors toward support for a federated approach. It is unlikely that individual vendors can
keep up with these increasing demands without reaching some consensus on services to be
provided by a framework. Framework support will insulate individual tools to some degree
from the implementation of underlying data, control, and presentation mechanisms, as well as
from the operating environment. The consensus that has developed around the X Window
System provides an early example of such framework support.

6.4 Tool Coalitions or Tool Federations?
Analysis of the integration efforts carried out by environment builders and tool vendors indi-
cates that they are trying to solve multiple problems, including the integration of tools, the de-
velopment of a supporting framework, identification of standards to provide for tool replace-
ment, and the provision of portability for the integrated environment. The primary differences
between IPSE approaches, tool coalition approaches, and tool federation approaches are
greatly determined by where emphasis is placed in solving these problems.

The IPSE approach focuses on the provision of services by the environment. Tools were per-
ceived as subservient to, and entirely dependent on the environment. By this separation of the

30 CMU/SEI-91-TR-13

tools from the underlying substrate, portability could be provided through porting of the IPSE
services. With tool coalition efforts, the emphasis is placed on providing a specific instance of
tool-to-tool integration. Sharing of services occurs based on the immediate needs of the tools
in the coalition, and not on any underlying philosophy of environment integration. Plug com-
patibility of tools within the coalition environment is not addressed; in fact, it may even be dis-
couraged. Portability depends on gathering a consensus around a common, low-level environ-
ment, including specific architectures, operating systems, and windowing systems. Tool Fed-
eration efforts focus on both tool-to-tool and tool-to-integration framework issues. They, like
tool coalitions, are benefiting from the consensus on low-level interfaces for operating sys-
tems, hardware architectures, and windowing systems. They are also benefitting from the
work done by individual tool vendors and tool coalition partners in providing tool services to
support integration. Tool federation vendors intend, however, to usurp some of the responsi-
bility for such support from individual tools and offer “value added” capabilities on top of other
services. Ultimately, tool federations promise to offer greater flexibility for tool users, as well
as support for plug compatibility. Unfortunately, tool federations are just beginning to develop.

In the short term, tool coalitions will likely provide a pragmatic link between the immediate de-
mand for tight integration and the desire for a more generalized and adaptable Tool Federation
solution [5]. Such coalitions, however, will likely be limited to supporting only well understood
processes within the life cycle, such as the generation of standard documentation, and the
analysis/design/implementation cycle. That part of the process supported by tool coalitions will
be tightly embedded within the tools in the coalition, and therefore relatively inflexible. It also
appears likely that many critical areas, such as project management and testing, will go with-
out even this inflexible support.

CMU/SEI-91-TR-13 31

7 Conclusion

Perhaps the primary lesson to be learned from the study of environment efforts is that no sin-
gle solution to any existing problem, and no single interface, is likely to “solve” the tool integra-
tion problem. The different environment efforts have emphasized different mechanisms over
time, yet the primary problems involved in providing flexible support for software engineering
remain. A potential reason for the difficulty in defining a universal solution may be found in the
general tension that is endemic to tool and environment integration. Builders of tools and en-
vironments must attempt to find a balance between a number of conflicting demands, includ-
ing:

• Process enforcement vs. flexibility

• Tool integration vs. replaceability

• Process, data, and presentation integration, and,

• New vs. proven technology.

The failure of the software engineering community to progress toward acceptable levels of in-
tegration can be contrasted with the apparent success of the CAD community in defining ap-
propriate standards for tool integration. While the software engineering community debates
languages, methodologies, standards, and even life-cycle models, the CAD community’s suc-
cess appears to be due in large part to a general agreement among CAD professionals on a
process to be supported. The lack of an accepted process for software engineering has forced
environment builders to attempt to choose between enforcing a process that lacks consensus
and providing little direct process support.

The resulting environment implementations can provide useful lessons. The early BASE ex-
perience with strict encoding of a process model indicates that such encoding proves too re-
strictive to be adapted in multiple situations. It is unclear whether the degree of process flexi-
bility supported by SLCSE is adequate. The SoftBench approach of providing control primi-
tives appears promising, but tools may not be sophisticated enough to take advantage of the
services offered.

The requirements for tight integration between tools and for replaceability of individual tools in
the environment appear to present a major design conflict for environment builders. Early ex-
perience with BASE indicated that, even with shared “standard” interfaces such as SQL, tools
could not be easily replaced. Currently, the primary mechanisms used to get tighter integration
between individual tools are vendor agreements to form tool coalitions. While this approach
does lead to more tightly-coupled tools, it effectively makes each tool an irreplaceable compo-
nent of the SEE. For tools to become both tightly integrated and replaceable, major agree-
ments must be reached not only on the role of each tool and on (near) identical interfaces
available within the tools, but agreements must be reached on the provision of framework ser-
vices to those tools. Groups deciding on standards must in effect balance conflicting needs:
to ensure a tightly integrated environment for the near- to medium-term future, and to be able

32 CMU/SEI-91-TR-13

to adapt such an environment to changing demands of the framework, changing technology,
and changing tools.

In attempting to formulate a strategy for a SEE, an organization must also attempt to balance
the control, data, and presentation technologies provided. This task is made essential by the
fact that not all parts of a SEE integrate in the same manner. For example, while compiling
and debugging can be integrated by use of shared data structures, traceability and design re-
quire integration through control mechanisms and data interchange. A successful SEE will be
one that provides a balance of flexible mechanisms to support control, data, and presentation
integration. Unfortunately, such balance between mechanisms is hard to achieve, as each
new technology has the potential to modify the demands on other technologies, as RPC tech-
nology has modified the demands placed on programmatic interfaces.

In addition, environment builders must select between support for the newest technology
available or for more proven technologies. For example, some very useful tools use older tech-
nology, including Domain Software Engineering Environment (DSEE) and SLCSE. At the
same time, we are attempting to incorporate two new models of database support, entity rela-
tionship, and OO. It is unclear at this time which technology will predominate or whether a new
and better technology will be discovered. For many such cases of unstable technology, the
most successful strategy may be to maintain adequate flexibility to adapt to any potential so-
lution.

In finding ways to balance the many conflicting demands of SEE planning, perhaps the prima-
ry goal must be to maintain flexibility. It can be expected that new tools, integration technolo-
gies, and processes will emerge to supplant current ones in the following years. A successful
SEE likely will be one that can adapt to these new tools, technologies and processes.

CMU/SEI-91-TR-13 33

Appendix A Identified Integration Standards
Framework Standards

• Portable Common Tools Environment (PCTE)

• A Tool Integration Standard (ATIS)

Operating Systems Standard

• POSIX

User Interface Standards

• X Window System

• Motif

• Open Look

Database Query Language Standard

• SQL

Data Interchange Standards

• CASE Data Interchange Format (CDIF)

• ASCII

Documentation Standards

• Postscript

New Standards and Conventions Necessary

• Tool Composition

• Configurable Menus

• “Degraded Mode” Processing (Information Missing)

• Program Start-up with Specific Focus

• Inverses to all Actions

• Event Notification

34 CMU/SEI-91-TR-13

CMU/SEI-91-TR-13 35

References

1 Dowson, M., “ISTAR - An Integrated Project Support Environment,” in Proceedings of the
2nd SIGSOFT/SIGPLAN Symposium on Practical Software Development Environ-
ments, pages 27-33, December 1986.

2 Thomas, Ian, “Tool Integration in the PACT Environment,” in Proceedings of the 11th Interna-
tional Conference on Software Engineering, pages 13-22, May 1989.

3 Archer, J.E. and Devlin, M.T., “Rational’s Experience Using Ada for Very Large Systems,” in
Proceedings of the First International Conference on Ada Programming Language
Applications for the NASA Space Station, NASA, June 1986.

4 Requirements for the Ada Programming Support Environment: Stoneman, Department of De-
fense, February 1980.

5 Wallnau, K., and Feiler, P.H., “Tool Integration and Environment Architectures,” SEI Techni-
cal Report CMU/SEI-91-TR-11, May 1991.

6 Wasserman, A., “Tool Integration in Software Engineering Environments,” in Lecture Notes
in Computer Science, #467, Springer-Verlag, Fred Long, ed., ISBN 3-540-53452-0.

7 Strelick, T., “The Software Life Cycle Support Environment (SLCSE): A Computer Based
Framework for Developing Software Systems,” in Proceedings of the ACM SIGSOFT/
SIGPLAN Software Engineering Symposium on Practical Software Development En-
vironments, Boston, Massachusetts, Nov 28-30, 1988.

8 Cagen, M.R., “The H.P. SoftBench Environment: An Architecture for a New Generation of
Software Tools,” Hewlett-Packard Journal, 41, 3, June 1990, pages 36-47.

9 Software through Pictures, Products and Services Overview, Interactive Development
Environments, 1988.

10 Software through Pictures, Ada Development Environment Product Announcement,
Interactive Development Environments, 1989.

11 Unified CASE, Cadre Technologies, 1989.

12 Product Overview, Cadre Technologies, 1989.

13 Earl, A., “A Reference Model for Computer Assisted Software Engineering Environment
Frameworks,” Proposed Technical Report, August 17, 1990, Version 4.0 ECMA/TC33/
TGRM/90/011.

36 CMU/SEI-91-TR-13

13a. TYPE OF REPORT

Final

UNCLASSIFIED/UNLIMITED SAME AS RPT DTIC USERS

2a. SECURITY CLASSIFICATION AUTHORITY
N/A

15. PAGE COUNT13b. TIME COVERED

FROM TO

14. DATE OF REPORT (Yr., Mo., Day)

11. TITLE (Include Security Classification)

1a. REPORT SECURITY CLASSIFICATION

Unclassified

5. MONITORING ORGANIZATION REPORT NUMBER(S)4. PERFORMING ORGANIZATION REPORT NUMBER(S

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

N/A

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for Public Release
Distribution Unlimited

1b. RESTRICTIVE MARKINGS

None

10. SOURCE OF FUNDING NOS.

6c. ADDRESS (City, State and ZIP Code)

Carnegie Mellon University
Pittsburgh PA 15213

7a. NAME OF MONITORING ORGANIZATION

SEI Joint Program Office
6b. OFFICE SYMBOL
(if applicable)

6a. NAME OF PERFORMING ORGANIZATION

Software Engineering Institute

7b. ADDRESS (City, State and ZIP Code)

ESD/AVS
Hanscom Air Force Base, MA 01731

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F1962890C0003
8b. OFFICE SYMBOL
(if applicable)

8a. NAME OFFUNDING/SPONSORING
 ORGANIZATION

SEI Joint Program Office

22a. NAME OF RESPONSIBLE INDIVIDUAL

John S. Herman, Capt, USAF

16. SUPPLEMENTARY NOTATION

12. PERSONAL AUTHOR(S)

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse of necessary and identify by block number)

PROGRAM
ELEMENT NO

PROJECT
NO.

TASK
NO

WORK UNIT
NO.

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

21. ABSTRACT SECURITY CLASSIFICATION

Unclassified, Unlimited Distribution

FIELD SUB. GR.GROUP

22c. OFFICE SYMBOL

ESD/AVS (SEI)
22b. TELEPHONE NUMBER (Include Area Code)

(412) 268-7631

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

SEI

ESD/AVS

REPORT DOCUMENTATION PAGE

UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

DD FORM 1473, 83 APR EDITION of 1 JAN 73 IS OBSOLETE UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS

63756E N/A N/A N/A

8c. ADDRESS (City, State and ZIP Code)

Carnegie Mellon University
Pittsburgh PA 15213

(please turn over)

CMU/SEI-91-TR-13 ESD-91-TR-13

Case Studies in Environment Integration

December 1991 36

CASE, environment integration, tool integration, environment
standards

Four environment builders and participants at two workshops were queried concerning the environ-
ment standards, implementations, and technology that prove useful in the integration of tools into
software engineering environments. Specific information was gathered about the software and hard-
ware environments in which tool integration occurred, the goals of integration, the tools integrated,
mechanisms used, and the standards applied. Observations concerning the current state of tool and
environment integration are provided, and trends in integration are identified.

Ed Morris, Peter Feiler, Dennis Smith

ABSTRACT —continued from page one, block 19

