
Technical Report
CMU/SEI-91-TR-002
ESD-TR-91-002

 1991 SEI Report on Graduate Software Engineering Education

Gary Ford

April 1991

Technical Report
CMU/SEI-91-TR-002

ESD-TR-91-002
April 1991

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

1991 SEI Report on Graduate
Software Engineering Education

___ ___ ___ ___ ___

Gary Ford
Software Engineering Curriculum Project

Unlimited distribution subject to the copyright

This report was prepared for the

SEI Joint Program Office
HQ ESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

FOR THE COMMANDER

(signature on file)

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1991 by Carnegie Mellon University.

Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative
works.

Requests for permission to reproduce this document or to prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRAN-
TIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTIBILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 52.227-7013.

This document is available through Research Access, Inc., 800 Vinial Street, Pittsburgh, PA 15212.
Phone: 1-800-685-6510. FAX: (412) 321-2994. RAI also maintains a World Wide Web home page. The URL is
http://www.rai.com

Copies of this document are available through the National Technical Information Service (NTIS). For informa-
tion on ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of
Commerce, Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides ac-
cess to and transfer of scientific and technical information for DoD personnel, DoD contractors and potential con-
tractors, and other U.S. Government agency personnel and their contractors. To obtain a copy, please contact
DTIC directly: Defense Technical Information Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-
6145. Phone: (703) 274-7633.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

CMU/SEI-91-TR-2 i

Table of Contents

1. Introduction 1

2. A Model Curriculum for a Master of Software Engineering Degree 3
2.1. Summary of Changes Since 1989 3
2.2. Objectives 4
2.3. Prerequisites 6
2.4. Core Curriculum Content 9
2.5. Core Curriculum Topic Index 17
2.6. Curriculum Design 21
2.7. Project Experience Component 21
2.8. Electives 25
2.9. Pedagogical Considerations 25
2.10. The Structure of the MSE Curriculum 26

3. The SEI Academic Series Videotape Courses 29
3.1. Software Systems Engineering 30
3.2. Specification of Software Systems 33
3.3. Principles and Applications of Software Design 50
3.4. Software Creation and Maintenance 69
3.5. Software Verification and Validation 120
3.6. Software Project Management 142

4. Survey of Graduate Degree Programs in Software Engineering 161

5. Survey of Comprehensive Software Engineering Textbooks 189

6. Survey of Software Engineering Research Journals 207
6.1. Archival Journals 207
6.2. Other Journals 212

Appendix 1. An Organizational Structure for Curriculum Content 217

Appendix 2. Bloom’s Taxonomy of Educational Objectives 225

Appendix 3. SEI Curriculum Modules and Other Publications 227

Appendix 4. History and Acknowledgements 237

Bibliography 239

CMU/SEI-91-TR-2 1

1991 SEI Report on
Graduate Software Engineering Education

Abstract: This report on graduate software engineering education pre-
sents a variety of information for university educators interested in
establishing a software engineering program. This includes a model cur-
riculum, an annotated bibliography of software engineering textbooks,
and descriptions of major software engineering research journals. It also
includes detailed descriptions of the the SEI Academic Series of videotape
courses, which constitute an example of an implementation of the model
curriculum. Twenty-three university graduate programs in software
engineering are surveyed. Software engineering textbooks and research
journals are also surveyed.

1. Introduction

An ongoing activity of the SEI Education Program is the development and support of
a model graduate curriculum in software engineering. In such a rapidly changing
discipline, it is important that the curriculum be reevaluated and revised frequently
to reflect the state of the art. This report describes our recent efforts toward that
end.

Section 2 of this report presents our current recommendations for the content of a
Master of Software Engineering degree program. An implementation of these rec-
ommendations, the SEI Academic Series, is described in Section 3. For comparison,
the graduate software engineering programs of more than 20 universities are sur-
veyed in Section 4.

In response to questions frequently asked of the SEI Education Program, this report
also includes two other surveys. Section 5 presents an annotated bibliography of
general software engineering textbooks, including comments from professors who
have used them. Section 6 lists the major software engineering journals.

Background material is presented in the appendices. Appendices 1 and 2 are taken
from [Ford87]; they present, respectively, an organizational structure for discussing
software engineering curriculum content and a summary of Bloom’s taxonomy of
educational objectives. Appendix 3 provides short descriptions of SEI publications
that support graduate education, and Appendix 4 describes the history of, and
acknowledges the numerous contributors to, the recommendations in this report.

2 CMU/SEI-91-TR-2

CMU/SEI-91-TR-2 3

2. A Model Curriculum for a Master of Software
Engineering Degree

The academic community distinguishes two master’s level technical degrees. The
Master of Science in Discipline is a research-oriented degree, and often leads to doc-
toral study. The Master of Discipline is a terminal professional degree intended for
a practitioner who will be able to rapidly assume a position of substantial responsi-
bility in an organization. The former degree often requires a thesis, while the latter
requires a project or practicum as a demonstration of the level of knowledge
acquired. The Master of Business Administration (MBA) degree is perhaps the most
widely recognized example of a terminal professional degree.

The SEI was chartered partly in response to the perceived need for a greatly
increased number of highly skilled software engineers. It is our belief that the SEI
can best address this need by encouraging and helping academic institutions to offer
a Master of Software Engineering (MSE) degree, or a program with similar content
under another title.

In this section we present our current recommendations for a model MSE curricu-
lum. The first subsection (2.0) summarizes the changes since last year’s recommen-
dations. The curriculum is then described in seven parts (subsections 2.2-2.8):
program objectives, prerequisites, core curriculum content, core topic index, curricu-
lum design for six core courses, the project experience component, and electives.
These are followed by short discussions of pedagogical concerns (2.9) and the overall
structure of the curriculum (2.10). These recommendations continue to evolve, and
we expect to publish updated versions annually.

2.1. Summary of Changes Since 1989

In general, the curriculum recommendations in this report are the same as those in
our previous report [Ardis89]. Two additions to the core content are notable.

First, statistical testing concepts and techniques have been added to the unit on
software testing. We believe that experiences such as those in [Musa90] indicate
both the importance and increased maturity of these techniques. Including these
topics in the curriculum will help students gain an appreciation for an engineering
approach to testing, rather than an ad hoc, heuristic approach.

Second, a new content unit has been added: Professional Issues. This unit includes
legal considerations and professional ethics for software engineers. A number of
interesting issues can be discussed with students during the presentation of these
topics, including the growing concerns regarding software safety, data security, net-
work security (such as the 1988 Internet worm incident), software piracy, software

4 CMU/SEI-91-TR-2

warranties and licenses, and copyright and patent law applied to programs, algo-
rithms, or user interfaces.

The designs of the six core courses presented in our previous report were developed
over a period of several weeks in 1988. Improving those designs would depend in
large part on the experiences gained by those who teach the courses. Several uni-
versities are now teaching courses based on the designs, but it is too soon to examine
their experiences systematically. Therefore, in this report we have neither reprinted
the original course designs nor presented improved ones. Instead, we have pre-
sented (in Section 3) an example implementation of the designs: the SEI Academic
Series. Five of the six courses have been taught, some more than once. Thus they
represent the best available example of continued development of the original core
course designs.

2.2. Objectives

The goal of the MSE degree program is to produce a software engineer who can
rapidly assume a position of substantial responsibility within an organization. To
achieve this goal, we propose a curriculum designed to give the student a body of
knowledge that includes balanced coverage of the software engineering process
activities, their aspects, and the products produced (see Appendix 1 for definitions of
the terms activity, aspect , and product as used here), along with sufficient experience
to bridge the gap between undergraduate programming and professional software
engineering.

Specific educational objectives are summarized below; they appear in greater detail
in the descriptions of individual curriculum units in Section 3.3. We describe them
using a taxonomy adapted from [Bloom56], which has six levels of objectives:
knowledge, comprehension, application, analysis, synthesis, and evaluation. (See
Appendix 2 for a brief description of this taxonomy.)

Knowledge: In addition to knowledge about all the material described in the sub-
sequent paragraphs, students should be aware of the existence of models, represen-
tations, methods, and tools other than those they learn to use in their own studies.
Students should be aware that there is always more to learn, and that they will
encounter more in their professional careers, whatever they may have learned in
school.

Comprehension: The students should understand:

• the software engineering process, both in the sense of abstract models and
in the various instances of the process as practiced in industry

• the activities and aspects of the process

• the issues (sometimes called the software crisis) that are motivating the
growth and evolution of the software engineering discipline

CMU/SEI-91-TR-2 5

• the differences between academic or personal programming and software
engineering; in particular, students should understand that software engi-
neering involves the production of software systems under the constraints
of control and management activities (See Appendix 1 for definitions of
these activities)

• a reasonable set of principles, models, representations, methods, and tools

• the role of analysis and evaluation in software engineering

• the existing design paradigms for well-understood systems

• the reasons for and the content of appropriate standards

• the fundamental economic, legal, and ethical issues of software engineering

Application: The students should be able to:

• apply fundamental principles in the performance of the various activities

• apply appropriate formal methods to achieve results

• use appropriate tools covering all activities of the software process

• collect appropriate data for project management purposes, and for analysis
and evaluation of both the process and the product

• execute a plan, such as a test plan, quality assurance plan, or configuration
management plan; this includes the performance of several kinds of soft-
ware tests

• apply documentation standards in the production of software engineering
documents

Analysis: The students should be able to:

• participate in technical reviews and inspections of various software work
products, including documents, plans, designs, and code

• analyze the needs of customers

Synthesis: The students should be able to:

• perform the activities leading to various software work products, including
requirements specifications, designs, code, and documentation

• develop plans, such as project plans, quality assurance plans, test plans,
and configuration management plans

• design data for and structures of software tests

• prepare oral presentations, and plan and lead software technical reviews
and inspections

Evaluation: The students should be able to:

• evaluate software work products for conformance to standards

• use appropriate qualitative and quantitative measures in evaluation of
software work products, as in the evaluation of requirements specifications
for consistency and completeness, or the measurement of performance

6 CMU/SEI-91-TR-2

• perform verification and validation of software; these activities should
consider all system requirements, not just functional and performance
requirements

• apply and validate predictive models, such as those for software reliability
or project cost estimation

• evaluate new technologies and tools to determine which are applicable to
their own work

The word appropriate occurs several times in the objectives above. The software
engineering discipline is new and changing, and there is not a consensus on the best
set of representations, methods, or tools to use. Each implementation of the MSE
curriculum must be structured to match the goals and resources of the school and its
students. In subsequent reports, the SEI will offer recommendations on the most
promising methods and technologies for many of the software engineering activities.

2.3. Prerequisites

Although an undergraduate degree in computer science is the “obvious” prerequisite
for the MSE degree, we cannot adopt such a simplistic approach to defining essential
prerequisites. We do not want to exclude experienced practitioners who do not have
such a degree but still wish to pursue the MSE degree. Furthermore, students with
bachelor’s degrees in computer science from different schools, or from the same
school but five years apart, are likely to have substantially different knowledge.
Thus the prerequisites for the MSE degree must be defined carefully, and must be
enforceable and enforced.

The primary prerequisite, therefore, is substantial knowledge of programming-in-
the-small. This includes a working knowledge of at least one modern, high-level
language (for example, Pascal, Modula-2, Ada) and at least one assembly language.
Also important is a knowledge of fundamental concepts of programming, including
control and data structures, modularity, data abstraction and information hiding,
and language implementations (runtime environments, procedure linkage, and
memory management). Students should also be familiar with the “tools of the
trade,” meaning a user’s knowledge (not a designer’s knowledge) of computer organi-
zation and architecture, operating systems, and typical software tools (such as an
editor, assembler, compiler, and linking loader). A basic knowledge of formal meth-
ods and models (and their application) is also essential, including analysis of algo-
rithms and the fundamentals of computability, automata, and formal languages.
Most or all of this material is likely to be found in the first three years of an under-
graduate computer science degree program.

Knowledge of one or more other major areas of computer science is highly desirable,
but not absolutely necessary. Examples are: functional and declarative languages,
numerical methods, database systems, compiler construction, computer graphics, or

CMU/SEI-91-TR-2 7

artificial intelligence. This material is usually found in senior-level electives in a
computer science degree program. Some schools may choose to allow advanced
computer science courses as electives in the MSE program. Knowledge of major
applications areas in the sciences and engineering may also be useful.

The mathematics prerequisites are those commonly required in an undergraduate
computer science degree: discrete mathematics and some calculus. Some software
engineering topics may require additional mathematical prerequisites, such as prob-
ability and statistics. A student planning a career in a particular application area
may want additional mathematics, such as linear algebra or differential equations,
but these are not essential prerequisites for any of the mainstream software engi-
neering courses.

Enforcing the prerequisites can be difficult. A lesson may be learned from experi-
ence with master’s degree programs in computer science. In the 1960s and 1970s,
these programs often served almost exclusively as retraining programs for students
with undergraduate degrees in other fields (notably mathematics and engineering)
rather than as advanced degree programs for students who already had an under-
graduate computer science degree. In several schools, undergraduate computer
science majors were not eligible for the master’s program because they had already
taken all or nearly all of the courses as undergraduates.

These programs existed because there was a clearly visible need for more program-
mers and computer scientists, and the applicants for these programs did not want a
second bachelor’s degree. There were not enough applicants who already had a
computer science degree to permit enforcement of substantial prerequisites.

For the proposed MSE program to achieve its goals, it must take students a great
distance beyond the undergraduate computer science degree. This, in turn, requires
that students entering the program have approximately that level of knowledge.
Because of the widely varying backgrounds of potential students, their level of
knowledge is very difficult to assess. Standardized examinations, such as the
Graduate Record Examination in Computer Science, provide only part of the
solution.

We recommend that schools wishing to establish the MSE program consider institut-
ing a leveling or immigration course to help establish prerequisite knowledge. Such
a course rarely fits into the normal school calendar. Rather, it is an intensive two to
four week course that is scheduled just before or just after the start of the school
year. (However, Texas Christian University has tried a full-semester leveling
course; see [Comer86]). Students receive up to 20 hours a week of lectures summa-
rizing all of the prerequisite material. The value of this course is not that the
students become proficient in all the material, but that they become aware of defi-
ciencies in their own preparation. Self-study in parallel with the first semester’s
courses can often remove most of these deficiencies.

8 CMU/SEI-91-TR-2

Another important part of the immigration course is the introduction of the school's
computing facilities, especially the available software tools. Ten to 20 hours each
week can be devoted to demonstrations and practice sessions. Because proficiency
with tools can greatly increase the productivity of the students in later courses, the
time spent in the immigration course can be of enormous value.

Finally, the immigration course can be used to help motivate the study of software
engineering. The faculty, and sometimes the students themselves, can present some
of their own or others’ experiences that led to improved understanding of some of the
significant problems of software engineering.

Another kind of prerequisite has been adopted by some MSE programs (including
the University of St. Thomas, Seattle University, and Texas Christian University).
All require the student to have at least one year of professional experience as a soft-
ware developer. This requirement has the benefit of giving the students increased
motivation for studying software engineering: professional experience exposes them
to the problems of developing systems that are much larger than those seen in the
university, and makes them aware of economic and technical constraints on the
software development process. On the negative side, schools cannot control the
quality of that experience, and students may acquire bad habits that must be
unlearned.

We have not found the arguments for an experience prerequisite sufficiently com-
pelling to recommend it for all MSE programs. Other engineering disciplines have
successful master’s level programs, and even undergraduate programs, without such
a prerequisite. Most graduate professional degrees in other disciplines do not
require it.

As a discipline grows and evolves, it is a common phenomenon in education for new
material to be taught in courses that are simply added onto an existing curriculum.
Over time, the new material is assimilated into the curriculum in a process called
curricular compression. Obsolete material is taken out of the curriculum, but much
of the compression is accomplished by reorganization of material to get the most
value in the given amount of time.

In a rapidly growing and changing discipline, new material is added faster than cur-
ricular compression can accommodate it. In some engineering disciplines, the
problem is acute. There is a growing sentiment that the educational requirement for
an entry-level position in engineering should be a master’s degree or a five-year
undergraduate degree [NRC85]. This is especially true for a computer science/ soft-
ware engineering career.

If this level of education is needed for a meaningful entry-level position, then we
question the value of sending students out with a bachelor’s degree, hoping they will
return sometime later for a software engineering degree. The professional experi-
ence achieved during that time will not necessarily be significant. Also, the percent-

CMU/SEI-91-TR-2 9

age of students intending to return to school who actually do return declines rapidly
as time since graduation increases. Therefore, we believe that an MSE curriculum
structured to follow immediately after a good undergraduate curriculum offers the
best chance of achieving the goals of rapid increases in the quality and quantity of
software engineers. Of course, such a program does not preclude admission of stu-
dents with professional experience.

We do recognize that work experience can be valuable. The experience component of
the MSE curriculum, which is discussed later in this report, might be structured to
include actual work experience. It may be that the overall educational experience is
significantly enhanced if the work component is a coordinated part of the program
rather than an interlude between undergraduate and graduate studies.

We also recognize that we must provide motivation for many of the activities in the
software engineering process. We see a great need to raise the level of awareness on
the part of both students and educators of the differences between undergraduate
programming and professional software engineering. The SEI Education Program is
working at the undergraduate level to help accomplish this.

2.4. Core Curriculum Content

Software engineering is a broad and diverse discipline. To facilitate discussions of
the content of software engineering curricula, we have found it helpful to develop an
organizational structure for the discipline; this is presented in Appendix 1. A brief
look at this structure is sufficient to conclude that all of software engineering cannot
be covered in any curriculum. Selecting a subset of that content appropriate for a
particular program and student population is the primary task of a curriculum
designer.

We use a broad view of software engineering when choosing the content of the
curriculum, and we include several topics that are not part of a typical engineering
curriculum. In this respect, we agree with this statement of the National Research
Council about engineering curricula [NRC85]:

…[T]o make the transition from high school graduate to a competent practic-
ing engineer requires more than just the acquisition of technical skills and
knowledge. It also requires a complex set of communication, group-
interaction, management, and work-orientation skills.

... For example, education for management of the engineering function (as
distinct from MBA-style management) is notably lacking in most curricula.
Essential nontechnical skills such as written and oral communication,
planning, and technical project management (including management of the
individual’s own work and career) are not sufficiently emphasized.

On the other hand, we have narrowed the curriculum by concentrating almost exclu-
sively on software engineering (but including some aspects of systems engineering)

10 CMU/SEI-91-TR-2

and omitting applications area knowledge. The two major reasons for this are
pragmatic: first, the body of knowledge known as software engineering is suffi-
ciently large to require all the available time in a typical master’s degree program
(and then some); and second, students cannot study all of the applications areas in
which they might eventually work. We believe that students at the graduate level
should have acquired the skills for self-education that will enable them to acquire
needed knowledge in an application area.

More important, however, is our strong belief that the variety of applications areas
and the level of sophistication of hardware and software systems in each of those
areas mandate a development team with a substantial range of knowledge and
skills. Some members of the team must understand the capabilities of hardware
and software components of a system in order to do the highest level specification,
while other members must have the skills to design and develop individual compo-
nents. Software engineers will have responsibility for software components just as
electrical, mechanical, or aeronautical engineers, for example, will have responsibil-
ity for the hardware components. Scientists, including computer scientists, will also
be needed on development teams; and all the scientists and engineers must be able
to work together toward a common goal.

The core content of the MSE curriculum is described in units, each covering a major
topic area, rather than in courses. There are three reasons for this. First, not every
topic area contains enough material for a typical university course. Second, combin-
ing units into courses can be accomplished in different ways for different organiza-
tions. Third, this structure more easily allows each unit to evolve to reflect the
changes in software engineering knowledge and practice while maintaining the
stability of the overall curriculum structure.

Because of strong relationships among topics and subtopics, we were unable to find
a consensus on an appropriate order of topics. We do, however, recommend a top-
down approach that begins with focus on the software engineering process; this
overall view is needed to put the individual activities in context. Software manage-
ment and control activities are presented next, followed by the development activi-
ties and product view topics.

Social and ethical issues are also important to the education and development of a
professional software engineer. Examples are privacy, data security, and software
safety. We do not recommend a course on these issues, but rather encourage
instructors to find opportunities to discuss them in appropriate contexts in all
courses and to set an example for students.

The curriculum topics are described below in units of unspecified size. Nearly all
have a software engineering activity as the focus. For each, we provide a short
description of the subtopics to be covered, the aspects of the activity that are most
important, and the educational objectives of the unit. (See Appendix 1 for defini-
tions of the terms activity and aspect as they are used here.)

CMU/SEI-91-TR-2 11

1. The Software Engineering Process

Topics The software engineering process and software products. All of the
software engineering activities. The concepts of software process model
and software product life cycle model.

Aspects All aspects, as appropriate for the various activities.

Objectives Knowledge of activities and aspects. Some comprehension of the issues,
especially the distinctions among the various classes of activities. The
students should begin to understand the substantial differences
between the programming they have done in an undergraduate program
and software engineering as it is practiced professionally.

2. Software Evolution

Topics The concept of a software product life cycle. The various forms of a
software product, from initial conception through development and
operation to retirement. Controlling activities and disciplines to
support evolution. Planned and unplanned events that affect software
evolution. The role of changing technology.

Aspects Models of software evolution, including development life cycle models
such as the waterfall, iterative enhancement, phased development, and
spiral models.

Objectives Knowledge and comprehension of the models. Knowledge and compre-
hension of the controlling activities.

3. Software Generation

Topics Various methods of software generation, including designing and coding
from scratch, use of program or application generators and very high
level languages, use of reusable components (such as mathematical
procedure libraries, packages designed specifically for reuse, Ada
generic program units, and program concatenation, as with pipes). Role
of prototyping. Factors affecting choice of a software generation
method. Effects of generation method on other software development
activities, such as testing and maintenance.

Aspects Models of software generation. Representations for software genera-
tion, including design and implementation languages, very high level
languages, and application generators. Tools to support generation
methods, including application generators.

Objectives Knowledge and comprehension of the various methods of software gen-
eration. Ability to apply each method when supported by appropriate

12 CMU/SEI-91-TR-2

tools. Ability to evaluate methods and choose the appropriate ones for
each project.

4. Software Maintenance

Topics Maintenance as a part of software evolution. Reasons for maintenance.
Kinds of maintenance (perfective, adaptive, corrective). Comparison of
development activities during initial product development and during
maintenance. Controlling activities and disciplines that affect mainte-
nance. Designing for maintainability. Techniques for maintenance,
including program reading and reverse engineering.

Aspects Models of maintenance. Current methods.

Objectives Knowledge and comprehension of the issues of software maintenance
and current maintenance practice. Ability to apply basic maintenance
techniques.

5. Technical Communication

Topics Fundamentals of technical communication. Oral and written communi-
cation. Preparing oral presentations and supporting materials.
Software project documentation of all kinds.

Aspects Principles of communication. Document preparation tools. Standards
for presentations and documents.

Objectives Knowledge of fundamentals of technical communication and of software
documentation. Application of fundamentals to oral and written com-
munications. Ability to analyze, synthesize, and evaluate technical
communications.

6. Software Configuration Management

Topics Concepts of configuration management. Its role in controlling software
evolution. Maintaining product integrity. Change control and version
control. Organizational structures for configuration management.

Aspects Fundamental principles. Tools. Documentation, including configura-
tion management plans.

Objectives Knowledge and comprehension of the issues. Ability to apply the
knowledge to develop a configuration management plan and to use
appropriate tools.

CMU/SEI-91-TR-2 13

7. Software Quality Issues

Topics Definitions of quality. Factors affecting software quality. Planning for
quality. Quality concerns in each phase of a software life cycle, with
special emphasis on the specification of the pervasive system attributes.
Quality measurement and standards. Software correctness assessment
principles and methods. The role of formal verification and the role of
testing. Concepts of reliability and reliability modeling. Fundamental
issues of software security.

Aspects Assessment of software quality, including identifying appropriate mea-
surements and metrics. Tools to help perform measurement.
Correctness assessment methods, including testing and formal verifica-
tion. Formal models of program verification.

Objectives Knowledge and comprehension of software quality issues and correct-
ness methods. Knowledge and comprehension of concepts of software
reliability modeling and software security. Ability to apply proof of
correctness methods.

8. Software Quality Assurance

Topics Software quality assurance as a controlling discipline. Organizational
structures for quality assurance. Independent verification and valida-
tion teams. Test and evaluation teams. Software technical reviews.
Software quality assurance plans.

Aspects Current industrial practice for quality assurance. Documents including
quality assurance plans, inspection reports, audits, and validation test
reports.

Objectives Knowledge and comprehension of quality assurance planning. Ability to
analyze and synthesize quality assurance plans. Ability to perform
technical reviews. Knowledge and comprehension of the fundamentals
of program verification and its role in quality assurance. Ability to
apply concepts of quality assurance as part of a quality assurance team.

9. Software Project Organizational and Management Issues

Topics Project planning: choice of process model, project scheduling and mile-
stones. Staffing: development team organizations, quality assurance
teams. Resource allocation.

Aspects Fundamental concepts and principles. Scheduling representations and
tools. Project documents.

14 CMU/SEI-91-TR-2

Objectives Knowledge and comprehension of concepts and issues. It is not expected
that a student, after studying this material, will be ready to manage a
software project immediately.

10. Software Project Economics

Topics Factors that affect cost. Cost estimation, cost/benefit analysis, risk
analysis for software projects.

Aspects Models of cost estimation. Current techniques and tools for cost
estimation.

Objectives Knowledge and comprehension of models and techniques. Ability to
apply the knowledge to tool use.

11. Software Operational Issues

Topics Organizational issues related to the use of a software system in an
organization. Training, system installation, system transition, opera-
tion, retirement. User documentation.

Aspects User documentation and training materials.

Objectives Knowledge and comprehension of the major issues.

12. Requirements Analysis

Topics The process of interacting with the customer to determine system
requirements. Defining software requirements. Identifying functional,
performance, and other requirements: the pervasive system require-
ments. Techniques to identify requirements, including prototyping,
modeling, and simulation.

Aspects Principles and models of requirements. Techniques of requirement
identification. Tools to support these techniques, if available. Assessing
requirements. Communicating with the customer.

Objectives Knowledge and comprehension of the concepts of requirements analysis
and the different classes of requirements. Knowledge of requirements
analysis techniques. Ability to apply techniques and analyze and syn-
thesize requirements for simple systems.

13. Specification

Topics Objectives of the specification process. Form, content, and users of
specifications documents. Specifying functional, performance, reliabil-
ity, and other requirements of systems. Formal models and representa-
tions of specifications. Specification standards.

CMU/SEI-91-TR-2 15

Aspects Formal models and representations. Specification techniques and tools
that support them, if available. Assessment of a specification for
attributes such as consistency and completeness. Specification
documents.

Objectives Knowledge and comprehension of the fundamental concepts of specifi-
cation. Knowledge of specification models, representations, and tech-
niques, and the ability to apply or use one or more. Ability to analyze
and synthesize a specification document for a simple system.

14. System Design

Topics The role of system design and software design. How design fits into a
life cycle. Software as a component of a system. Hardware versus soft-
ware tradeoffs for system performance and flexibility. Subsystem defi-
nition and design. Design of high-level interfaces, both hardware to
software and software to software.

Aspects System modeling techniques and representations. Methods for system
design, including object-oriented design, and tools to support those
methods. Iterative design techniques. Performance prediction.

Objectives Comprehension of the issues in system design, with emphasis on engi-
neering tradeoffs. Ability to use appropriate system design models,
methods, and tools, including those for specifying interfaces. Ability to
analyze and synthesize small systems.

15. Software Design

Topics Principles of design, including abstraction and information hiding,
modularity, reuse, prototyping. Levels of design. Design representa-
tions. Design practices and techniques. Examples of design paradigms
for well-understood systems.

Aspects Principles of software design. One or more design notations or lan-
guages. One or more widely used design methods and supporting tools,
if available. Assessment of the quality of a design. Design documenta-
tion.

Objectives Knowledge and comprehension of one or more design representations,
design methods, and supporting tools, if available. Ability to analyze
and synthesize designs for software systems. Ability to apply methods
and tools as part of a design team.

16 CMU/SEI-91-TR-2

16. Software Implementation

Topics Relationship of design and implementation. Features of modern proce-
dural languages related to design principles. Implementation issues,
including reusable components and application generators. Concepts of
programming support environment.

Aspects One or more modern implementation languages and supporting tools.
Assessment of implementations: coding standards and metrics.

Objectives Ability to analyze, synthesize, and evaluate the implementation of small
systems.

17. Software Testing

Topics The role of testing and its relationship to quality assurance. The nature
and limitations of testing. Levels of testing: unit, integration, accep-
tance, etc. Statistical testing methods. Detailed study of testing at the
unit level. Formal models of testing. Test planning. Black box and
white box testing. Building testing environments. Test case generation.
Test result analysis.

Aspects Testing principles and models. Tools to support specific kinds of tests.
Assessment of testing; testing standards. Test documentation.

Objectives Knowledge and comprehension of the role and limitations of testing.
Ability to apply test tools and techniques. Ability to analyze test plans
and test results. Ability to synthesize a test plan.

18. System Integration

Topics Testing at the software system level. Integration of software and hard-
ware components of a system. Uses of simulation for missing hardware
components. Strategies for gradual integration and testing.

Aspects Methods and supporting tools for system testing and system integration.
Assessment of test results and diagnosing system faults.
Documentation: integration plans, test results.

Objectives Comprehension of the issues and techniques of system integration.
Ability to apply the techniques to do system integration and testing.
Ability to develop system test and integration plans. Ability to interpret
test results and diagnose system faults.

19. Embedded Real-Time Systems

Topics Characteristics of embedded real-time systems. Existence of hard tim-
ing requirements. Concurrency in systems; representing concurrency in

CMU/SEI-91-TR-2 17

requirements specifications, designs, and code. Issues related to com-
plex interfaces between devices and between software and devices.
Criticality of embedded systems and issues of robustness, reliability,
and fault tolerance. Input and output considerations, including unusual
data representations required by devices. Issues related to the cog-
nizance of time. Issues related to the inability to test systems
adequately.

Objectives Comprehension of the significant problems in the analysis, design, and
construction of embedded real-time systems. Ability to produce small
systems that involve interrupt handling, low-level input and output,
concurrency, and hard timing requirements, preferably in a high-level
language.

20. Human Interfaces

Topics Software engineering factors: applying design techniques to human
interface problems, including concepts of device independence and vir-
tual terminals. Human factors: definition and effects of screen clutter,
assumptions about the class of users of a system, robustness and han-
dling of operator input errors, uses of color in displays.

Objectives Comprehension of the major issues. Ability to apply design techniques
to produce good human interfaces. Ability to design and conduct exper-
iments with interfaces, to analyze the results and use them to improve
the design.

21. Professional Issues

Topics Issues of professionalism in software engineering. Ethics. Legal issues
including intellectual property rights, warranties, and liability.

Objectives Comprehension of basic concepts and issues of professional behavior.
Comprehension of major ethical issues. Knowledge of the major legal
issues.

2.5. Core Curriculum Topic Index

The core curriculum topics presented in the previous section are organized into 21
content units, each containing many related topics. Because there are many more
topics than units, it is not always obvious in which unit a topic may be found.
Therefore, we have included here an alphabetical index of topics. The number after
each topic is the content unit in which that topic may be found.

18 CMU/SEI-91-TR-2

abstraction 15
application generator 3
application generators 16
assessment

design quality 15
implementation 16
of requirements 12
of software correctness 7
specification 13
test 17
test results 18

audits 8
code metrics 16
coding standards 16
cognizance of time 19
communication

oral 5
with a customer 12
written 5

completeness 13
complex interfaces 19
component 3
computer-human interfaces 20
concepts

programming support environments 16
project management 9

concurrency 19
conducting experiments with interfaces 20
configuration management 6

plan 6
tools 6

consistency 13
controlling activity 2, 4
controlling discipline 2, 4, 8
correctness of software 7
cost 10
cost estimation 10
cost/benefit analysis 10
design

documentation 15
for maintainability 4
in life cycle 14
language 3
levels 15
methods 15
object-oriented 14
paradigms 15
practices 15
principles 15
quality assessment 15
relationship to implementation 16
representations 15
software 14, 15
subsystem 14
system 14
techniques 15

design (continued)
techniques for human interfaces 20
tools 15

device independence 20
diagnosing system faults 18
documentation

configuration management plan 6
design 15
integration plans 18
principles 5
project management 9
specification 13
standards 5
test 17
test results 18
tools 5
user 11

embedded systems 19
environments

programming 16
testing 17

ethics 21
evolution 2
fault tolerance 19
formal models

program verification 7
specification 13
testing 17

formal verification 7
functional requirements 12
hard timing requirements 19
hardware-software tradeoffs 14
human factors 20
human interfaces 20
implementation 16
implementation language 3, 16
independent verification and validation 8
industrial practice for quality assurance 8
information hiding 15
input and output in real-time systems 19
inspection reports 8
integration of systems 18
intellectual property rights 21
interfaces

between devices 19
between devices and software 19
hardware-software 14
high-level 14
human 20
software-software 14

iterative design techniques 14
iterative enhancement model 2
languages

design 3, 15
implementation 3, 16
modern features 16

CMU/SEI-91-TR-2 19

languages (continued)
procedural 16
relationship to design principles 16
very high level 3

legal issues 21
liability 21
life cycle 2
life cycle model 1
maintenance 4
management issues 9
measurement of quality 7
methods

design 15
formal verification 7
maintenance 4
software correctness assessment 7
system design 14
system integration 18
system testing 18
testing 7

metrics
code 16
software quality 7

milestones 9
modeling 12
models

cost estimation 10
iterative enhancement 2
life cycle 1
maintenance 4
phased development 2
process 1
program verification 7
requirements 12
software generation 3
spiral 2
testing 17
waterfall 2

modularity 15
notations for design 15
object-oriented design 14
operational issues 11
organizational issues 9
organizational structure 6, 8, 9
paradigms of design 15
performance prediction 14
performance requirements 12
pervasive system attributes 7
pervasive system requirements 12
phased development model 2
planning

for quality 7
project 9

plans
configuration management 6
project 9

plans (continued)
quality assurance 8
software quality 7
test 17

presentation standards 5
presentations 5
principles

configuration management 6
design 15
documentation 5
project management 9
requirements 12
software correctness assessment 7
testing 17

process 1
process model 1, 9
product integrity 6
professionalism 21
program generator 3
program reading 4
programming support environments 16
project documents 9
project management 9
project planning 9
project scheduling 9
prototyping 3, 12, 15
quality

measurement 7
standards 7

quality assurance
documents 8
plans 8
teams 9

real-time systems 19
reliability

concepts 7
modeling 7
of embedded systems 19

reports
inspection 8
validation test 8

representations
design 15
scheduling 9
specification 13
system modeling 14

requirements
analysis 12
assessment 12
functional 12
hard timing in real-time systems 19
performance 12
system 12

retirement of systems 11
reusable components 16
reuse 3, 15, 16

20 CMU/SEI-91-TR-2

reverse engineering 4
risk analysis 10
robustness of embedded systems 19
scheduling 9
security 7
simulation

in requirements analysis 12
of missing hardware 18

software
as system component 14
correctness 7
design 14, 15
documentation 5
evolution 2, 4, 6
factors affecting quality 7
generation 3
implementation 16
maintenance 4
quality 7
security 7
specification 13
testing 17

software engineering process 1
software process 1
software product 2
software product life cycle 2
software project economics 10
specification

assessment 13
completeness 13
consistency 13
documents 13
formal models 13
objectives 13
of functional requirements 13
of performance requirements 13
of reliability requirements 13
pervasive system attributes 7
quality attributes 7
representations 13
standards 13
techniques 13
tools 13

spiral model 2
staffing 9
standards

coding 16
documentation 5
presentations 5
quality 7
specification 13
testing 17

subsystem
definition 14
design 14

system
design 14
design methods 14
design tools 14
flexibility 14
installation 11
integration 18
integration methods 18
modeling representations 14
modeling techniques 14
performance 14
requirements 12
testing methods 18
transition 11

team organizations 9
technical writing 5
techniques

cost estimation 10
design 15
iterative design 14
maintenance 4
program reading 4
requirements identification 12
reverse engineering 4
specification 13
system modeling 14

test
documentation 17
planning 17
result analysis 17

test and evaluation team 8
test case generation 17
test result assessment 18
testing

acceptance 17
assessment 17
black box and white box 17
environments 17
formal models 17
inadequacy for real-time systems 19
integration 17
levels 17
limitations of 17
models 17
nature of 17
principles 17
relationship to quality assurance 17
role in software quality 7
role of 17
standards 17
statistical methods 17
system level 18
tools 17
unit 17

CMU/SEI-91-TR-2 21

tools
configuration management 6
cost estimation 10
design 15
documentation 5
implementation 16
requirements identification 12
scheduling 9
software generation 3
software quality measurement 7
specification 13
system design 14
test 17

tradeoffs between hardware and software 14
training 11
training materials 11
user documentation 11
validation test reports 8
very high level language 3
virtual terminals 20
warranties 21
waterfall model 2
writing, technical 5

2.6. Curriculum Design

The 21 content units described in Section 2.4 can be considered a specification for
the core curriculum; a design, then, is a description of the courses that present the
core material in an appropriate, coherent way. At the 1988 SEI Curriculum Design
Workshop (described in [Ardis89]), participants developed six semester-length
courses as one such design. Forming the basis for the model MSE curriculum, these
courses are:

Software Systems Engineering
Specification of Software Systems
Principles and Applications of Software Design
Software Generation and Maintenance
Software Verification and Validation
Software Project Management

Detailed course descriptions may be found in a previous SEI report [Ardis89]. We
have not redesigned these courses since that report was published. Instead of
repeating those descriptions here, we have chosen to present an actual implementa-
tion of five of those courses (see Section 3 of this report). The sixth course is being
implemented and taught during the fall 1990 semester, and it will be described in a
later report.

2.7. Project Experience Component

In addition to coursework covering the units described in Section 2.4, the curriculum
should incorporate significant software engineering experience representing at least
30% of the student’s work. Universities have tried a number of approaches to give
students this experience; examples are summarized in Figure 2.1.

22 CMU/SEI-91-TR-2

School Approach Description

Seattle University,
Monmouth College,
Texas Christian
University

Capstone project
course

Students do a software development
project after completion of most
coursework

University of Southern
California

Continuing project Students participate in a project that
continues from year to year (the Software
Factory), building and enhancing software
engineering tools and environments

Arizona State
University

Multiple course
coordinated project

A single project is carried through four
courses (on software analysis, design,
testing, and maintenance); students may
take the courses in any order

University of Stirling Cooperative program
with industry

After one year of study, students spend
six months in industry on a professionally
managed software project, followed by a
semester of project or thesis work based
in part on the work experience

Imperial College Commercial software
company

Students participate in projects of a
commercial software company that has
been established by the college in
cooperation with local companies

Carnegie Mellon
University

Design studio Students work on a project under the
direction of an experienced software
designer, in a relationship similar to that
of an apprentice and master

Figure 2.1. Approaches to the experience component

One form of experience is a cooperative program with industry, which has been
common in undergraduate engineering curricula for many years. The University of
Stirling uses this form in their Master of Science in Software Engineering program
[Budgen86]. Students enter the program in the fall semester of a four-semester
program. Between the first and second semesters, they spend two or three weeks in
industry to learn about that company. They return to the company in July for a six-
month stay, during which time they participate in a professionally managed project.
The fourth semester is devoted to a thesis or project report, based in part on their
industrial experience.

Imperial College of Science and Technology has a similar industry experience as
part of a four-year program leading to a Master of Engineering degree [Lehman86].
For this purpose, the college has set up Imperial Software Technology, Ltd. (IST) in
partnership with the National Westminster Bank PLC, The Plessey Company PLC,

CMU/SEI-91-TR-2 23

and PA International. IST is an independent, technically and commercially success-
ful company that provides software technology products and services.

The more common form of experience, however, is one or more project courses as
part of the curriculum. Two forms are common: a project course as a capstone fol-
lowing all the lecture courses, and a project that is integrated with one or more of
the lecture courses.

The Wang Institute of Graduate Studies (before it closed in 1987), Texas Christian
University, and Seattle University have each offered a graduate software engineer-
ing degree for several years, and the University of St. Thomas has had a program for
six years. Each school incorporates a capstone project course into its curriculum.
The Wang Institute often chose projects related to software tools that could be useful
to future students. TCU takes the professional backgrounds of its students into
consideration when choosing projects. Seattle sometimes solicits real projects from
outside the university. The University of St. Thomas allows students to work on
projects for their employers, if the projects are outside their normal work assign-
ments.

It is worth noting that none of these institutions mention software maintenance in
their project course descriptions. Yet, educators and practitioners alike have long
recognized that maintenance requires the majority of resources in most large soft-
ware systems. The lack of coverage of maintenance in software engineering
curricula may be attributed to several factors. First, there does not appear to be a
coherent, teachable body of knowledge on software maintenance. Second, current
thinking on improving the maintenance process is primarily based on improving the
development process; this includes the capturing of development information for
maintenance purposes. Finally, giving students maintenance experience requires
that there already exists a significant software system with appropriate documenta-
tion and change requests, the preparation of which requires more time and effort
than an individual instructor can devote to course preparation. (The SEI has pub-
lished some materials to address this final problem [Engle89].)

The University of Southern California has built an infrastructure for student pro-
jects that continue beyond the boundaries of semesters and groups of students. The
System Factory Project [Scacchi86] has created an experimental organizational envi-
ronment for developing large software systems that allows students to encounter
many of the problems associated with professional software engineering and to begin
to find effective solutions to the problems. To date, more than 250 graduate stu-
dents have worked on the project and have developed a large collection of software
tools.

The University of Toronto has added the element of software economics to its project
course [Horning76, Wortman86]. The Software Hut (a small software house)
approach requires student teams to build modules of a larger system, to try to sell
their module to other teams (in competition with teams that have developed the

24 CMU/SEI-91-TR-2

same module), to evaluate and buy other modules to complete the system, and to
make changes in purchased modules. At the end of the course, systems are “sold” to
a “customer” at prices based on the system quality (as determined by the instructor’s
letter grade for the system). The instructor reports that this course has a very dif-
ferent character from previous project courses. The students’ attempts to maximize
their profits gave the course the flavor of a game and helped motivate students to
use many techniques for increasing software quality.

Arizona State University has built the project experience into a sequence of courses,
combining lectures with practice [Collofello82]. The courses–Software Analysis
(requirements and specifications), Software Design, Software Testing, and Software
Maintenance–were offered in sequence so that a single project could be continued
through all four. However, the students could take the courses in any order; and
although many students did take them in the normal (waterfall model) order, the
turnover in enrollment from one semester to the next gave a realistic experience.

Carnegie Mellon University has recently initiated an MSE degree program based in
part on the SEI curriculum described in this report. This program was originally
designed to include a year-long design studio approach to the project experience
component, in which students work closely with faculty on software development.
This approach is similar to the master-apprentice model common in the education of
engineers and craftsmen in the 19th century, and it is specifically modeled after the
studio courses now common in architecture and fine arts programs. After a proto-
type offering of the studio in the spring and summer of 1990, the course was
modified. Students now register for one hour of studio during the fall semester,
when they develop project requirements and specifications in conjunction with the
software systems engineering course; and they register for one hour in the spring
semester, when they develop a project plan as part of the project management
course. They then execute the plan during a summer-fall design studio course
sequence. This new approach is expected to make better use of the students’ time
and to integrate the project work with the core courses.

We do not believe that there is only one correct way to provide software engineering
experience. It can be argued that experience is the basis for understanding the
abstractions of processes that make up formal methods and that allow reasoning
about processes. Therefore, we should give the students experience first, with some
guidance, and then show them that the formalisms are abstractions of what they
have been doing. It can also be argued that we should teach “theory” and
formalisms first, and then let the students try them in capstone project courses.

No matter what form the experience component takes, it should provide as broad an
experience as possible. It is especially important for the students to experience, if
not perform, the control activities and management activities (as defined in
Appendix 1). Without these, the project can be little more than advanced
programming.

CMU/SEI-91-TR-2 25

2.8. Electives

Electives may comprise 20% to 40% of a curriculum. Although software engineering
is a young discipline, it is already sufficiently broad that students can choose
specializations (such as project management, systems engineering, or real-time
systems); there is no “one size fits all” MSE curriculum. The electives provide the
opportunity for that specialization.

In addition, there is a rather strong perception among industrial software engineers
that domain knowledge for their particular industry is essential to the development
of effective software systems. Therefore, we also suggest that an MSE curriculum
permit students to choose electives from the advanced courses in various application
domains. Software engineers with a basic knowledge of avionics, radar systems, or
robotics, for example, are likely to be in great demand. Furthermore, there is
increasing evidence that better software project management can significantly influ-
ence the cost of software, so electives in management topics are appropriate.

To summarize, there are five recommended categories of electives:

1. Software engineering subjects, such as software development environments

2. Computer science topics, such as database systems or expert systems

3. Systems engineering topics, especially topics at the boundary between
hardware and software

4. Application domain topics

5. Engineering management topics

2.9. Pedagogical Considerations

Software engineering is difficult to teach for a variety of reasons. First, it is a rela-
tively new and rapidly changing discipline, and it has aspects of an art and a craft as
well as a science and an engineering discipline. As a result, educators must develop
a variety of teaching techniques and materials in order to provide effective educa-
tion.

Secondly, psychologists distinguish declarative knowledge and procedural knowledge
[Norman88]. The former is easy to write down and easy to teach; the latter is nearly
impossible to write down and difficult to teach. Procedural knowledge is largely
subconscious, and it is best taught by demonstration and best learned through prac-
tice. It is because many of the processes of software engineering depend on procedu-
ral knowledge that we recommend such a significant amount of project experience
(see Section 2.7).

26 CMU/SEI-91-TR-2

Another aspect of experience that can be built into the curriculum involves “tricks of
the trade.” Software engineers, during the informal apprenticeship of their first
several years in the profession, are likely to be exposed to a large number of recur-
ring problems for which there are accepted solutions. These problems and solutions
will vary considerably from one application domain to another, but all software
engineers seem to accumulate them in their “bags of tricks.”

We believe that students would receive some of the benefits of their “apprenticeship”
period while still in school if these problems and solutions were included in the
curriculum. For this reason, we have included large course segments titled
“Paradigms” in the specification and design courses (see the original designs of these
courses in [Ardis89] and the course descriptions in Sections 3.3 and 3.4).

The principal definition of the word paradigm is “EXAMPLE, PATTERN; esp : an
outstandingly clear or typical example or archetype” [Webster83]. The word
archetype is defined in the same source as “the original pattern or model of which all
things of the same type are representations or copies : PROTOTYPE; also : a perfect
example.” We believe that these definitions capture the notion of a widely accepted
or demonstrably superior solution to a recurring problem.

Unfortunately, there is no ready source of appropriate paradigms. The paradigms
sections of the specification and design courses represent the current instructors’
best thinking on appropriate paradigms. We hope to continue to identify the most
important recurring problems in many application domains and to incorporate the
best paradigms into these courses.

2.10. The Structure of the MSE Curriculum

A typical master’s degree curriculum requires 30 to 36 semester hours† of credit.
The courses described in Section 3.4 require three hours each, totaling 18 semester
hours. This allows time for the project experience component and for some electives.

Because of the wide range of choices for electives, students can be well served by
creative course design. For example, several small units of material (roughly one
semester hour each) might be prepared by several different instructors. Three of
these could then be offered sequentially in one semester under the title “Topics in
Software Engineering,” with different units offered in different semesters.

†Note for readers not familiar with United States universities: A semester hour represents one contact
hour (usually lecture) and two to three hours of outside work by the student per week for a semester of
about fifteen weeks. A course covers a single subject area of a discipline; the class typically meets three
hours per week, and the student earns three semester hours of credit. A graduate student with
teaching or research responsibilities might take three courses (nine semester hours) each semester; a
student without such duties might take five courses.

CMU/SEI-91-TR-2 27

Figure 2.2 shows the structure of a curriculum based on the six recommended core
courses. This structure reflects the familiar spiral approach to education, in which
material is presented several times in increasing depth. This approach is essential
for a discipline such as software engineering, with many complex interrelationships
among topics; no simple linear ordering of the material is possible.

Students learn the basics of computer science and programming-in-the-small in the
undergraduate curriculum. The six core courses build on these basics by adding
depth, formal methods, and the programming-in-the-large concepts associated with
systems engineering and control and management activities. The electives and the
project experience component provide further depth and an opportunity for special-
ization.

Elective ElectiveElective

Specification
of Software
Systems

Software
Project

Management

Software
Generation

and
Maintenance

Software
Verification

and
Validation

Principles,
Applications
of Software

Design

Elective

Discrete
Mathematics

 Programming-in-the-Small

Undergraduate Degree

Software
Systems

Engineering

Communi-
cation
SkillsProgramming AlgorithmsData Structures

Project Experience
Component

(prerequisites may vary)

MSE Degree

Figure 2.2. MSE curriculum structure

28 CMU/SEI-91-TR-2

CMU/SEI-91-TR-2 29

3. The SEI Academic Series Videotape Courses

In 1988, the SEI Education Program began teaching a series of graduate-level soft-
ware engineering courses. Although Carnegie Mellon University students were able
to register for these courses, the primary purpose was to make the courses available
to other universities on videotape. These courses came to be known as the Academic
Series courses; other SEI videotape courses are the Continuing Education Series and
the Technology Series.

The instructors for the courses used the course designs developed at the 1988 SEI
Curriculum Design Workshop (see [Ardis89]). As might be expected, the process of
implementing the courses uncovered some rough areas in the designs. Some of the
courses have now been offered two or three times, and thus they represent a sub-
stantial refinement of the original designs. Some remaining problems are that a few
of the individual topics in the core curriculum content (see section 2.4 of this report)
are missing, and a few other topics show up in more than one course. Continued
development of these courses is expected in conjunction with Carnegie Mellon’s
recently established MSE program.

In this chapter, we describe in detail five of the six core courses. (The sixth course
was implemented and taught during the fall 1990 semester, and it will be described
in a later report.) Each description includes:

• short discussions of student prerequisites, course objectives, and the
instructor’s philosophy

• a syllabus giving the titles of lectures

• a summary of each lecture (based on the instructor’s classroom trans-
parencies), with reading assignments for the students

In some cases, the lecture summaries are quite short; this was necessary when the
lecture was primarily a detailed presentation of a particular example, when the
material covered was highly graphical or otherwise did not lend itself to a written
summary, and when detailed instructor’s notes were not available.

Special acknowledgement goes to the three SEI staff members who implemented
and taught these courses. Mark Ardis developed the courses Specification of
Software Systems and Software Verification and Validation. Robert Firth developed
the courses Principles and Applications of Software Design and Software Creation
and Maintenance. James Tomayko developed Software Project Management.

Our goal in presenting this material is to help other instructors design courses or
individual lectures in these areas. We are also investigating the feasibility of
making individual videotape lectures available to universities, so this material can
serve as a “catalog” of those tapes. For further information on the availability of
these tapes, please contact the leader of the Software Engineering Curriculum
Project at the SEI.

30 CMU/SEI-91-TR-2

3.1. Software Systems Engineering

A prototype version of this course was taught for the first time in the SEI Academic
Series videotape courses during the fall semester 1990. A detailed summary of the
lectures is not yet available. The information below is reprinted from the original
course design in [Ardis89].

Students’ Prerequisites

Students should have knowledge of software life cycle models, computer architec-
tures, and basic statistics.

Objectives

After completing this course, students should comprehend the alternative tech-
niques used to specify and design systems of software and hardware components.
They should be able to find the data and create a requirements document and to
develop a system specification. They should understand the concepts of simulation,
prototyping, and modeling. They should know what is needed to prepare a system
for delivery to the user and what makes a system usable.

Philosophy of the Course

This course exposes students to the development of software systems at the very
highest level. It introduces the system aspect of development and the related trade-
offs required when software and hardware are developed together, especially with
respect to user interfaces. It exposes students to requirements analysis and tech-
niques for developing a system from those requirements. System integration and
transition into use are also covered.

Syllabus

Wks Topics and Subtopics (Objective)

1 Introduction (Knowledge)

Students should see the “big picture” in this part of the course. The emphasis
should be on how software is only one component of a larger system.

Overview of topics

1 System Specification (Comprehension)

Contents

Standards

Global issues such as safety, reliability

CMU/SEI-91-TR-2 31

2 System Design (Comprehension)

Simulation

Queuing theory

Tradeoffs

Methods (levels, object-oriented, function-oriented)

3 Interfaces (Comprehension)

Both human interfaces and interfaces to hardware devices should be included.
These areas require different skills but are logically combined here to
emphasize the notion of encapsulation of software within larger systems.

Human factors

Guidelines

Experiments

Devices

1 System Integration (Comprehension)

Students should learn how to perform integration of entire systems, not just
software.

Simulation of missing components

System build

5 Requirements Analysis (Synthesis)

This is the largest part of the course. Students should learn the interpersonal
skills as well as the technical skills necessary to elicit requirements from
users. Expression and analysis of requirements are often performed with
CASE tools.

Objectives

Interview skills

Needs and task analysis

Prototypes

SADT, RSL (and other specific methods)

1 Operations Requirements (Comprehension)

Students should understand and know how to satisfy the other operations
requirements of systems, such as training and documentation.

Training

Online help

User documentation

32 CMU/SEI-91-TR-2

Pedagogical Concerns

Case studies should be available as assigned readings. A requirements analysis pro-
ject should be assigned to students, with topics in the lectures sequenced to match
the project schedule. A user interface prototype project should be assigned, includ-
ing an exercise in user documentation. The students should give a presentation on
their requirements study. An instructor of this course should have experience in
requirements analysis and system design.

Comments

We had a great deal of difficulty naming this course. Much of the work that stu-
dents will perform as exercises and projects deals with requirements analysis. On
the other hand, this course attempts to place software in perspective with other ele-
ments of systems. The theme of the course is not just requirements analysis, but
total systems engineering. We noted that universities often have courses titled
“systems engineering” that cover the same topics from an electrical engineering
perspective.

An important goal of this course is that students achieve an understanding of the
role of software engineering within the larger context of systems engineering. They
should understand, for example, that while ensuring that a software system satisfies
its specification is a software problem, getting the right specification is a systems
problem. If software does not give the right system behavior, it must be determined
whether the software fails to meet the specification or whether the specification does
not define the right system behavior. These distinctions are critical as students
leave the academic world, where the entire system is often a personal computer, and
enter the “real world” of embedded systems.

CMU/SEI-91-TR-2 33

3.2. Specification of Software Systems

Students’ Prerequisites

Students must have a reasonable level of knowledge of:
• set theory
• functions and relations
• predicate calculus
• axioms
• finite-state machines (transition mapping, nondeterminism)

Objectives

• Knowledge of major models of specification (sequential and concurrent systems)
• Knowledge of existing standards and practices
• Mastery of one method of describing functional behavior of simple sequential

systems
• Appreciation of advantages and disadvantages of formality

Philosophy of the Course

A comparative survey approach serves to emphasize similarities and significant
differences between languages and methods. For example, students specify the
same system with three or four different languages. Whenever possible, common
paradigms are translated into their language-specific idioms.

Students are expected to develop skills in reading formal specifications, reasoning
about formal descriptions, modelling “standard” paradigms, and translating models
into formal notations. The exercises and exams provide practice and feedback on
these skills, especially on small problems.

34 CMU/SEI-91-TR-2

Syllabus

The syllabus assumes 27 class meetings, including midterm and final examinations.
Each meeting is planned to include approximately 55 to 60 minutes of lecture and 20
minutes of class discussion.

1. Introduction
2. Readers and Writers
3. Standards
4. Algebraic Model
5. Larch
6. State-Machine
7. ASLAN
8. Abstract Models
9. VDM

10. Z
11. Industrial Use
12. Midterm Review
13. Midterm Examination
14. PAISLey 1
15. PAISLey 2
16. Concurrency Paradigms
17. Petri Nets: Concepts
18. Petri Nets: Modeling
19. Communicating Sequential Processes (CSP) 1
20. Communicating Sequential Processes (CSP) 2
21. Synchronous Calculus of Communicating Systems (SCCS) 1
22. Synchronous Calculus of Communicating Systems (SCCS) 2
23. Temporal Logic
24. Statecharts
25. Final Review
26. Final Examination

CMU/SEI-91-TR-2 35

Summaries of Lectures

1. Introduction

Reading: Cohen86, Chapter 1

The course will address these topics: what specifications are, the role of specification
in software development, the process of creating specifications, the process of using
specifications, and the advantages and disadvantages of various notations for
specifications.

Current industrial practice includes specifications that are formal or informal,
abstract or detailed, and standardized or ad hoc. Specifications may be written by
the client or by the developer, by the application specialist or the specification
specialist. They are read by all these people.

There are several models for specifications. Sequential models and languages
include algebraic (exemplified by Larch), state-machine (ASLAN), abstract models
(VDM, Z), and operational (Paisley). Concurrency models and languages include
communicating processes (Paisley, CSP, CCS), state-machines (Petri nets,
Statecharts), and predicate logic (temporal logic).

2. Readers and Writers

Reading: Parnas86

The IEEE Standard Glossary of Software Engineering Terminology defines
specification as “A document that prescribes, in a complete, precise, verifiable
manner, the requirements, design, behavior, or other characteristics of a system or
system component. See also design specification, formal specification, functional
specification, interface specification, performance specification, requirements
specification.”

Two kinds of specifications may be distinguished: customer-oriented specifications
(C-Specs) express requirements from the customer’s point of view; developer-
oriented specifications (D-Specs) express requirements from the developer’s point of
view. Some C-Spec issues include why the user wants the system, how the user
intends to use the system, and the expertise of people using the system. Some D-
Spec issues include the behavioral attributes of the system, a functional description,
and performance characteristics.

A specification may be viewed as a contract between the customer and the developer.
It should be unambiguous, complete, verifiable, consistent, modifiable, traceable,
and usable. Some common deficiencies are poor organization, boring prose,
confusing and inconsistent terminology, and “myopia” (working at too low a level).

Some types of specifications are function (what the system must do), interface (how
the system will be used by other components, including people), and performance
(how the system must perform, such as speed and accuracy). The organization of the
specification may be reference, historical, or ad hoc; the tone may be narrative or
declarative.

Many people have a role in the specification process; these include users, customers,
requirements analysts, designers, verification and validation staff, and maintainers.

36 CMU/SEI-91-TR-2

3. Standards

Reading: IEEE84, Jones89, Duce88, ANSI85

There are two important relationships between specifications and standards:
standards for writing specifications and the specification of a standard. Two
examples of standards for writing specifications are the IEEE Guide to Software
Requirements Specifications and the Department of Defense Military Standard
2167A.

The IEEE standard includes a discussion of specification issues and suggests an
outline for specification documents. Four different organizations are provided for
the section “Specific Requirements.” The first has separate subsections for
functional specifications, interface specifications, performance specifications, and
constraints. This approach has the advantage of avoiding duplication. The second
combines functional with interface specifications, but has separate subsections for
performance and constraints. This approach emphasizes how to use the system.
The third organization combines performance and constraints with each functional
requirement, and then combines performance and constraints with each interface
specification; this approach emphasizes the interface. The fourth organization
combines all the issues, addressing interface, performance, and constraint issues
individually for each functional requirements. This approach emphasizes the
independence of functional requirements from one another.

Some of the issues in specification are the relative sizes of the components of a
specification, the relative importance of the components, the ways in which the
specification will be read, and the ways in which it will be maintained.

Standards are different from systems in that: they describe systems; many systems
may satisfy the same standard; it is difficult to create a standard before there are
any systems; and a standard is an abstraction of a system. Standards should be
specified in a way that emphasizes the important abstractions and allows easy
verification of conformance.

[The lecture includes a detailed example: the GKS (graphics kernel system)
standard in its ANSI form (expressed in English) and in VDM form (as described in
Duce88).]

4. Algebraic Model

Reading: Cohen86, Chapters 2-4

The main issues are notations and foundations, how to write algebraic specifications,
and consistency and completeness. The algebraic view of specification is that all
operations are related to one another. Four basic idioms are: f undoes g, f is
independent of g, f ignores (part of) g, and f is (sometimes) the same as g.

The foundations include: a set of axioms defines a congruence relation—some
sequences of operations are equivalent to other sequences; any implementation that
is equivalent up to isomorphism (operations may be consistently renamed) is
considered correct; specified objects (types) may be used in other specifications; a
consistent set of axioms avoids contradictions of the form “true = false”; a complete
set of axioms provides enough information to uniquely determine the result of any
sequence of operations; those operations that return values in old types are behavior

CMU/SEI-91-TR-2 37

functions; those operations that return old values in the new type are modifier
functions; those operations that return new values in the new type are constructor
functions.

The components of an algebraic specification are the syntactic part (containing such
items as the names of domains or types, the names of operations, and the domains
and ranges of operations), and the semantic part (containing the meanings of
operations).

Current technology for working with algebraic specifications includes: Larch at MIT
(Guttag), CMU (Wing), and DEC SRC (Horning); Hope, Clear at Edinburgh
(Burstall); OBJ at UCLA and SRI (Goguen); and Project CIP at Munich (Bauer).

[The lecture includes detailed examples of the algebraic specification of stack, queue,
and symbol table data types; the examples illustrate Guttag’s sufficiently complete
method of writing axioms.]

5. Larch

Reading: Guttag85; Roberts88 optional

The Larch language uses a two-tiered approach to specifications. The specification
language is based on traits defined by axioms and on operators for combining traits.
The interface language provides links between specification names and program
names, plus additional constraints. Programs typically include objects such as
types, packages, modules and procedures, and functions.

Traits may be combined in a number of ways. The “assumes” operator refers to
components of another trait; “includes” creates a larger trait by inclusion. Other
combining operators include generation, partitioning, conversion, exemption,
substitution, and inclusion.

Interface languages are a mapping between a programming language and the Larch
Shared Language (LSL). For example, such a language mapping Pascal to LSL will
map Pascal types to LSL sorts , procedures and functions to operators, and abstract
data types to traits.

Assertions in Larch include “requires” for preconditions, “modifies” for side effects,
and “ensures” for postconditions. All assertions are written in predicate calculus,
with references to traits and to built-in predicates (from programming language
semantics).

Practical advice for using Larch is to begin by finding a canonical representation—a
sequence of operations that can be used to create any value of the type of interest.
Add behavior operators to simplify expressions; a condition that naturally arises
often in describing behavior should be captured in a behavior operator. Then look
for common right-hand sides. The four basic idioms: “nochange” indicates that
there is no simpler description; “ignores” indicates that some operations are
discarded; “commutes” indicates the order of operations is reversed; “undoes”
indicates that the effect of the last operation is undone.

38 CMU/SEI-91-TR-2

6. State-Machine

Reading: Parnas72

This method describes a data type as a state-machine inside a black box with push
buttons. Some of the buttons change the state of the machine and others display
information about the state. The objective of the method is to hide as much as
possible, while providing access to as much as needed. This includes providing all
needed information to the user, and no more; providing all needed information to
implementor, and no more; using a formal model, so that consistency and
completeness can be decided; and not inventing a new model.

State-changing operations are called O-functions; the description of each should
include exceptions (error cases) and new values of V-functions. The information-
displaying operations are called V-functions; the description of each includes
exceptions and initial values.

The advantages of the state machine method include: they are minimal and do not
bias the implementation; the basic idea of a state machine is already familiar to
most programmers; and completeness is easy to show. Disadvantages include: it
may require hidden functions; and the relationships between functions may be
obscure, thus causing difficulty with demonstrating consistency. Some problems
with the method include specification of delayed effects and asymmetry (implicit
operands).

[The lecture includes detailed examples of the specification of the stack data type
and the Pascal file type.]

7. ASLAN

Reading: Auernheimer84, Kemmerer85

ASLAN is a language for writing state-machine specifications. The O- and V-
functions of the state machine model can be translated to ASLAN. The O-functions
are called transitions and the V-functions are declared as variables (state
components). Initial values are collected together. Error cases for transitions are
called entry conditions and those for variables are called invariants. A specification
consists of declarations (types, constants, etc.), requirements (invariants, etc.), and
transitions.

Additional features of ASLAN include declarations (abstraction), implied “no
changes,” and a small programming language for added power of expression.

Correctness conjectures in ASLAN are addressed through invariants and
constraints,which express properties that should be true of the specified objects.
ASLAN generates a set of verification conditions from these predicates. Axioms may
be used to simplify the verification conditions.

To begin the process of writing ASLAN specifications, model the problem domain in
terms of a collection of state-machines, identifying types and transitions. Then
identify the state components, invariants, and constraints. Write the ASLAN
specification, and then run the ASLAN processor to generate the verification
conditions. Finally, prove the verification conditions, iterating where necessary.

CMU/SEI-91-TR-2 39

[The lecture includes a detailed discussion of an ASLAN specification of a stack data
type.]

8. Abstract Models

Reading: Cohen86, Chapter 5; Bjørner 78, Bjørner87, Lucas87 for background

The major mathematical concepts behind abstract models include sets, lists, records,
maps, and predicates. An abstract syntax is a system of functions for constructing
and decomposing composite objects.

[The lecture includes a detailed discussion of the grocer example from Bjørner87.]

9. VDM

VDM (Vienna Development Method) was created at the IBM Vienna laboratory. It
is being used in programming language definition for compilers, for database
specification, and in office automation applications.

The Meta-IV language includes elementary types (boolean, numbers, etc.), composite
types (sets, tuples, etc.), and combinators (states, blocks, etc.). Normal use adheres
to naming conventions. VDM specifications include semantic domains (abstract
model), invariants (well-foundedness), and functions (operations). A British variant
has operations described via pre- and post-conditions, significant components of the
“state” identified for each operation, and minor syntax variations.

The method of VDM is based on stepwise refinement (decomposition, reification) and
proof obligations: at each step of the refinement a retrieve function is defined, its
adequacy proved, and commutativity of operations with respect to the function are
proved.

[The lecture includes detailed discussions of VDM specifications of the stack and
queue data types, the bank example from Jones86, and a reification example.]

10. Z

Reading: Spivey89; Hayes87 and Spivey88 for background

Z (pronounced in the British manner as “zed”) is another model-theoretic method,
with incrementality via schema calculus. It is founded on set theory and other
mathematics (in a library), and on first-order predicate logic. Important features
include schema notations, naming conventions, mathematical library, ways of
combining schema (conjunction, disjunction, hiding, overriding, composition, and
piping).

The Z method is to introduce basic sets; define an abstract state in terms of sets,
relations, functions, sequences, etc.; specify the initial state; define the pre- and
post-conditions of operations; state and prove theorems; and refine toward the
concrete, incurring proof obligations. Current technology to support the method
includes text processing tools and consistency checkers; other tools are being
developed.

[The lecture includes a detailed discussion of the symbol table example from
Hayes87.]

40 CMU/SEI-91-TR-2

11. Industrial Use

Reading: Delisle89, Hayes85, Nix88, Ruggles88, Woodcock88

Four examples illustrate the use of Z in industry: the IBM CICS project, GKS
standardization, the GEC Telecom storage allocator, and the Tektronix oscilloscope
description.

The IBM project was maintenance of the Customer Information Control System
(CICS). Z was used to reverse engineer old code: the product was over 20 years old,
over 500,000 lines of code, had many users and many configurations. Restructuring
of the code was necessary before Z could be used; this was done independently of any
method. Then the Z specifications were derived from manuals, developers, and
existing code. Ultimately about half of CICS was described in Z (230,000 lines of
code), and modules were added or rewritten from the Z specifications. The normal
IBM development process was used, including design reviews, code inspections, and
testing. The normal IBM programming languages were used, plus a guarded
command language. It was necessary to retrain the staff in the use of Z; this
included existing IBM courses on discrete mathematics and a software engineering
workshop, augmented with Z courses. The final results were that more time was
spent in design, inspections required less preparation but took longer to conduct,
and more problems were found earlier in design and fewer problems found in
testing. The product has been shipped and the developers are awaiting customer
reaction.

The effort to standardize the graphics kernel system (GKS) via formal descriptions
has been under way for many years. The first GKS standard was released in 1985,
written in a procedural style. VDM and algebraic methods have been used to
describe parts of the standard in a more abstract form; Z is now being tried.
Originally VDM was the leading contender for the specification, but it was found to
be inadequate with respect to concurrency and modularity. A strong sense of
intuition is now developing that the main abstractions of GKS can best be described
algebraically, but progress has been hindered by the lack of a standard for VDM and
the lack of a consensus on which method to use.

The GEC Telecom project used VDM in the maintenance of the storage allocator for
the operating system of digital exchanges. The project involved 12 staff members for
1.5 years, producing 30,000 lines of code. Their process included training all staff in
VDM, using reviews but not proofs, using a “scouting” strategy (in which experts
looked ahead for trouble spots), and a consensus strategy (the description of state
was resolved before moving on to the next stage). GEC’s results included finding
that education was difficult, due to the lack of special courses on the variant of VDM
being used; the lack of standardization of VDM caused problems for the staff and
tools; reworking specifications was at least as hard as writing them (two-thirds of
the time was spent reviewing and reworking); changing requirements caused extra
work; the difficulty of project tasks was underestimated; newcomers to the project
were able to contribute quickly; many errors were discovered early; the resulting
design was simpler but similar to the original; and it was easier to implement from
the design.

Tektronix undertook a small (two-person) research project to explore the
specification of devices. Previous device descriptions had been operational. The
project team talked with engineers, tried to describe existing devices, and discussed

CMU/SEI-91-TR-2 41

the specifications with engineers. They found a useful abstraction that clarified the
role of hardware and software engineers, and the specifications yielded insight into
design tradeoffs for user interfaces, sampling methods, and hardware/software
partitioning. Lessons learned included: engineers in industry can understand
formal specifications; abstraction was useful in focussing attention on the right
problem; and specification was a process rather than a product.

Common themes in all four industry examples were: formal methods are more time-
consuming, at least during early stages of the life cycle; traditional development
processes may still be used; more errors are found earlier in development; and
modularity and standardization are important.

12. Midterm Review

13. Midterm Examination

14. PAISLey 1

Reading: Zave82, Horning73

Operational methods describe a system by a program or set of programs. They may
be formal if the programming language has a formal semantics; they may be
executable if the programming language has an interpreter or compiler.

PAISLey (process-oriented, applicative, and interpretable specification language)
allows writing an executable specification as a step between informal requirements
and code. It was designed for real-time and distributed systems and allows
specification of performance. Several tools are available, including a parser for
finding syntax errors, an interpreter for performing simulations, a cross-referencer,
and a consistency checker. It has been used for specification of a submarine
lightguide system and a finite-element adaptive research solver.

The process model views a system as a set of asynchronous processes. Each new
process cycles through a sequence of states described by a mapping from the old
state to the new state. Processes communicate by “exchange functions” that may or
may not involve waiting. Processes have internal synchronous concurrency via
components of tuples. Exchange functions need to model synchronizing and free-
running processes, and self-matching and competing processes.

The data model is based on types constructed from atomic values (such as integers,
reals, strings, or symbolic values) and set operations (such as union, cross-product,
and enumeration). Values may be either atomic or tuples.

The computational model is based on independently specified processes, with
exchange functions (in terms of mappings) for communication. The interpreter
selects a mapping to evaluate. Within a process this is done nondeterministically;
between processes a first-in, first-out strategy is used for xm-type exchanges. The
interpreter maintains a system-wide clock to be used in measuring performance.
Concurrent evaluation occurs between processes (except for exchanges) and within
tuple evaluation.

To specify performance requirements, timing constraints may be attached to
mappings. These may be upper bounds, lower bounds, or constant time. Uniformly
distributed random values are used when the evaluation time is not constant.

42 CMU/SEI-91-TR-2

During interpretation (simulation), timing constraints are checked; violations
generate error messages.

15. PAISLey 2

Reading: Zave85; Bruns86 and Zave86 for background

The transformational method of developing a specification requires that a correct
specification be developed at each level of abstraction. Each level is refined to move
closer to implementation and to optimize inefficient solutions. The most significant
issue is deciding which objects to refine at each level.

The JSD (Jackson System Development) method is based on entities that model
objects in the real world and actions that model events in the real world. A process
network is a set of communicating concurrent processes. Its specification is
developed by identifying entities, identifying processes, arranging them in time-
order, identifying inputs and outputs of processes, arranging them into a network,
refining the network with functions, and refining the data with tuples and
sequences.

The PAISLey method develops a specification by identifying entities, identifying
processes, describing them with a process model (cycle), identifying inputs and
outputs of processes, connecting them with exchange functions, refining processes
with functions, and refining data with tuples and sets.

Criteria for decomposing a system into processes include: each process corresponds
to a “meaningful activity” of the system; the system is decomposed so that data
items modified by a process are related; and each process contains activities with
similar cycle times. Criteria for defining process cycles include: there is maximal
use of parallelism in process steps; each process step corresponds to a “meaningful
cycle” of the activity; process cycles are time-bounded unless there is a good reason
for making an exception; bounded iteration is used to traverse homogeneous tuples.
Criteria for defining inter-process interactions include: exchange-function types and
channels for all interactions are identified so that processes can satisfy timing
constraints; exchange-function names are clear; and buffered message passing is not
introduced for performance reasons only. An important criterion for deciding the
level of abstraction in a specification is to avoid defining sets and mappings if they
are well-understood, available from a library, or better specified using another
formalism. Criteria to divide specifications into modules include: information-
hiding is used to partition the specification into files; abstract data types are
identified and placed in separate files; and the specification is partitioned into files
so that interesting, executable subsets can be run without manual intervention.

16. Concurrency Paradigms

Reading: Horning73, Andrews83

A process may be defined as a triple, consisting of a state space, a successor function,
and initial states. The state space is a set of (variable, value) pairs. The successor
function maps states into states, and it may be a deterministic function or a
nondeterministic relation. Combinations of processes are said to be disjoint if their
state spaces are disjoint, serial if only one process may be active at a time,
synchronous if each process takes one step at the same time, and asynchronous if
the processes operate at different rates. Interactions between processes are called

CMU/SEI-91-TR-2 43

cooperation if they are anticipated and desired; interference if they are
unanticipated or unacceptable; and competition if they are anticipated and
acceptable, but undesirable.

Shared variable paradigms of concurrency involve concepts of mutual exclusion,
busy waiting, semaphores, conditional critical regions, monitors, and path
expressions. Message passing paradigms involve concepts of channels, pipelines,
client/server relationships, ports, blocking, and buffering. Higher-level descriptions
involve concepts of remote procedure calls, rendezvous, and atomic transactions.

Two major properties of systems are important. Safety properties describe
something that should not happen or properties that hold over finite sequences of
events. Liveness properties describe something that must happen or properties that
hold over infinite sequences of events; three liveness properties are termination,
deadlock, and starvation. The termination property specifies that every process that
should terminate does. Deadlock is the condition in which all processes are blocked,
waiting for conditions that can only be changed by blocked processes. Starvation is
the condition in which some process never gets unblocked, even though the system is
not deadlocked.

17. Petri Nets: Concepts

Reading: Peterson77

A Petri net is a bipartite directed graph (P, T, E), where P is a set of places; T is a set
of transitions; and E is a set of directed edges from a place to a transition or from a
transition to a place. A marking M of a Petri net is a mapping from P to the natural
numbers; it assigns a number of tokens to places. Petri nets are often defined with
an initial marking. A transition may fire if it is enabled . It is enabled if each of its
input places has at least one token. Firing of a transition removes a token from each
input place and produces a token at each output place. The state space of a Petri net
is the set of all markings (a marking is a state). A marking m' is immediately
reachable from marking m if the firing of some enabled transition in m yields m'.
The reachable relation is the reflexive transitive closure of the immediately
reachable relation. The reachability set is the set of all reachable states.

Important properties of Petri nets include: they allow concurrent execution (firing of
transitions); they are nondeterministic; synchronization may be specified; resource
allocation may be modeled.

A Petri net is said to be a safe net if it has no more than one token at any place. It is
k-bounded if it has no more than k tokens at any place. It is bounded if it has no
more than k tokens at any place, but we don’t know the value of k. It is conservative
if the number of tokens in the net remains constant.

The liveness problem for Petri nets may be expressed as “are all transitions
potentially fireable?” The reachability problem is “is state m' reachable from state
m?” The coverability problem is “given states m and m', does there exist a marking
m" reachable from m, such that m" ≥ m'?” A reachability tree can be used to solve
safeness, boundedness, conservation, and coverability problems. The reachability
tree is a finite representation of a potentially infinite structure.

[The lecture includes detailed examples of specification of an elevator system, a
producer/consumer problem, and mutual exclusion via Petri nets.]

44 CMU/SEI-91-TR-2

18. Petri Nets: Modeling

Reading: Agerwala79

[This lecture consists of detailed examples of Petri net modeling methods, including
synchronization, shared resources, and semaphores.]

19. Communicating Sequential Processes (CSP) 1

Reading: Hoare78

Fundamental concepts of CSP include simple event sequences, recursively defined
sequences, and choice of events. Several improvements to CSP from the definition in
Hoare78 have been introduced in Hoare85, including: change of symbol to reuse
libraries, ports and channels, no assumption of automatic termination, traces-
language of events, and proof methods to use when showing that two levels of
specification are consistent.

[The lecture includes detailed examples of a vending machine, a producer/consumer
problem, and the dining philosophers problem.]

20. Communicating Sequential Processes (CSP) 2

Reading: Kallstrom88 and Wayman87 for background

Processes often interact. Processes are described by events. The set of all events of
a process is called its alphabet. If concurrent processes share alphabets, then they
must simultaneously participate in the events that they share.

There are algebraic laws that form a calculus for CSP. When trying to show that a
property (theorem) is true for a given specification, we can manipulate CSP
expressions with these laws. Specifications can be written in CSP. Other important
concepts are satisfaction, choice, communication, and livelock.

[The lecture includes detailed examples of interaction of processes using the vending
machine and dining philosophers problems; an example of CSP specification for the
vending machine problem; and a discussion of the bakery algorithm.]

21. Synchronous Calculus of Communicating Systems (SCCS) 1

Reading: Cohen86, Chapter 6; Milner83 and Diaz89 for background

CCS (calculus of communication systems) was invented first; afterward, Milner
realized that a generalization yielded explicit modeling of time, hence SCCS. A
surprise was the discovery that CCS was a subcalculus of SCCS. It emphasizes
interfaces between agents (the action set). Time is modeled discretely. Semantics
are operationally based. It has as few operators as possible.

The action of delay has no externally observable effect (except to use time). So
adding a delay does not change the behavior of a process. Similarly, the internal
communication between subprocesses yields only an externally visible delay. So, let
delay be represented by the identity element of the calculus (multiplication by 1),
and let internal communication be shown by simultaneous execution of inverses.

CMU/SEI-91-TR-2 45

Two machines are observationally equivalent if they allow the same experiments to
be performed and they produce the same externally visible behavior for any
experiment.

[The lecture includes a detailed comparison of examples of CSP and SCCS.]

22. Synchronous Calculus of Communicating Systems (SCCS) 2

Synchronous specifications are important, but many systems are asynchronous;
communications protocols and airline reservation systems are examples. Therefore
it is worth examining CCS; a knowledge of SCCS is assumed.

Fundamental definitions include synchrony : synchronistic occurrence, arrangement
or treatment; synchronous: happening, existing or arising at precisely the same
time; asynchrony: absence or lack of concurrence in time. Basic concepts include
event sequences; unbuffered communication on channels known as ports (although
the calculus is asynchronous, communication synchronizes the agents); fairness;
relabeling; restriction; summation and composition over a set; strong equivalence;
observational equivalence.

CCS may be derived from SCCS. A convincing argument is to derive each CCS
operator from SCCS operators. The key step is the introduction of a new SCCS
operator, delay . We conclude that rather than use two different calculi for
synchrony and asynchrony, the synchronous calculus alone is sufficient. It is also
simpler than the asynchronous calculus.

CCS has been used for protocol specification, and it forms the basis of LOTOS (an
ISO standard).

[The lecture includes detailed examples of a 1-place message buffer, a buffer with a
persistent state, a nondeterministic choice, mutual recursion, a fair buffer, and a 2-
place buffer.]

23. Temporal Logic

Reading: Barringer87, Lamport83, Pneuli85, Rescher71, and Wood89 for back-
ground

Temporal logic extends predicate logic through the introduction of temporal
operators, such as eventually, henceforth, until , next , and previous. It can be used to
reason about the behavior of systems through time.

An example application is the specification of the behavior of a simple elevator
system, including safety and liveness properties. The example demonstrates that
temporal logic can be the system specification; a finite state machine is the model of
operation; underspecification is easy to accomplish, difficult to determine, and
relatively easy to correct; the system is allowed any behavior not explicitly
forbidden; and that an implementation can be derived from either the specification
or from the model. Verification of the specification can be handcrafted or tool
supported, both with difficulty. The handcrafted verification is too tedious to be
done without error, and the existing tools are often too limited for any but the
smallest of specifications.

[The lecture includes a detailed discussion of the temporal logic specification of the
elevator system.]

46 CMU/SEI-91-TR-2

24. Statecharts

Reading: Harel87, Harel88

[This lecture provides a detailed introduction to the statechart notation and
concepts.]

25. Final Review

26. Final Examination

Bibliography

Agerwala79 Agerwala, Tilak. “Putting Petri Nets to Work.” Computer 12, 12
(Dec. 1979), 85-94.

Andrews83 Andrews, Gregory R. and Schneider, Fred B. “Concepts and
Notations for Concurrent Programming.” ACM Computing
Surveys 15, 1 (Mar. 1983), 3-43.

ANSI85 American National Standard for Information Systems —
Computer Graphics — Graphical Kernel System (GKS) Functional
Description. ANSI X3.124-1985, American National Standards
Institute, 1985.

Auernheimer84 Auernheimer, Brent and Kemmerer, Richard A. ASLAN User’s
Manual. Tech. Rep. TRCS84-10, Department of Computer
Science, University of California, Santa Barbara, Santa Barbara,
Calif., Aug. 1984.

Barringer87 Barringer, H. “Up and Down the Temporal Way.” Computer J.
30, 2 (Apr. 1987), 134-148.

Bjørner78 The Vienna Development Method: The Meta-Language. Dines
Bjørner; Cliff Jones, eds. Berlin: Springer-Verlag, 1978. Vol. 61,
Lecture Notes in Computer Science.

Bjørner87 VDM ’87: VDM—A Formal Method at Work. VDM-Europe
Symposium 1987. D. Bjørner; C. B. Jones; M.
Mac an Airchinnigh; E. J. Neuhold, eds. Berlin: Springer-Verlag,
1987. Vol. 252, Lecture Notes in Computer Science.

Bruns86 Bruns, Glenn R. Technology Assessment: PAISLEY. Tech. Rep.
MCC TR STP-296-86, MCC, Austin, Texas, Sept. 1986.

Cohen86 Cohen, B., Harwood, W. T., and Jackson, M. I. The Specification
of Complex Systems. Reading, Mass.: Addison-Wesley, 1986.
This book is now out of print.

Delisle89 Delisle, Norman and Garlan, David. “Formally Specifying
Electronic Instruments.” Proc. Fifth International Workshop on
Specification and Design. IEEE Computer Society, May 1989,
242-248. Also published as ACM Software Engineering Notes 14
(3).

CMU/SEI-91-TR-2 47

Diaz89 Diaz, M. and Vissers, C. “SEDOS: Designing Open Distributed
Systems.” IEEE Software 6, 6 (Nov. 1989), 24-33.

Duce88 Duce, D. A., Fielding, E. V. C., and Marshall, L. S. “Formal
Specification of a Small Example Based on GKS.” ACM
Transactions on Graphics 7, 7 (July 1988), 180-197.

Gehani86 Gehani, N. and McGettrick, A. Software Specification Techniques.
Reading, Mass.: Addison-Wesley, 1986.

Guttag78 Guttag, John V., Horowitz, Ellis, and Musser, David R. “Abstract
Data Types and Software Validation.” Comm. ACM 21, 12 (Dec.
1978), 1048-1064.

Guttag85 Guttag, John V., Horning, James J., and Wing, Jeanette M. “The
Larch Family of Specification Languages.” IEEE Software 2, 5
(Sept. 1985), 24-36.

Harel87 Harel, David. “Statecharts: A Visual Formalism for Complex
Systems.” Science of Computer Programming 8 (1987), 231-274.

Harel88 Harel, D., Lachover, H., Naamad, A, A. Pnueli, Politi, M.,
Sherman, R., and Shtul-Trauring, A. “Statemate: A Working
Environment for the Development of Complex Reactive Systems.”
10th International Conference on Software Engineering. IEEE,
1988, 396-406.

Hayes85 Hayes, I. J. “Applying Formal Specification to Software
Development in Industry.” IEEE Trans. Software Engineering
SE-11, 2 (Feb. 1985), 169-178.

Hayes87 Hayes, I. J. Specification Case Studies. Englewood Cliffs, N. J.:
Prentice-Hall International, 1987.

Hoare78 Hoare, C. A. R. “Communicating Sequential Processes.” Comm.
ACM 21, 8 (Aug. 1978), 666-677.

Hoare85 Hoare, C. A. R. Communicating Sequential Processes. London:
Prentice-Hall International, 1985.

Holzmann91 Holzmann, Gerard J. Design and Validation of Computer
Protocols. Englewood Cliffs, N. J.: Prentice-Hall, 1991.

Horning73 Horning, J. J. and Randell, B. “Process Structuring.” ACM
Computing Surveys 5, 1 (Mar. 1973), 5-30.

IEEE84 IEEE Guide to Software Requirements Specifications. Std. 830-
1984, IEEE, 1984.

Jones86 Jones, Cliff. Systematic Software Development Using VDM.
Englewood Cliffs, N. J.: Prentice-Hall International, 1986.

Jones89 Jones, Peggy. DASC Requirements Document. In Software
Maintenance Exercises for a Software Engineering Project Course,
CMU/SEI-89-EM-1, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, Pa., Feb. 1989.

48 CMU/SEI-91-TR-2

Kallstrom88 Kallstrom, Marta and Thakkar, Shreekant S. “Programming
Three Parallel Computers.” IEEE Software 5, 1 (Jan. 1988), 11-
22.

Kemmerer85 Kemmerer, Richard A. “Testing Formal Specifications to Detect
Design Errors.” IEEE Trans. Software Engineering SE-11, 1 (Jan.
1985), 32-43.

Lamport83 Lamport, Leslie. “What Good is Temporal Logic.” Information
Processing: Proceedings of the IFIP World Computer Congress.
New York: Elsevier, 1983, 657-668.

Lucas87 Lucas, Peter. “VDM: Origins, Hopes and Achievements.”
Proceedings of VDM-Europe Symposium ’87, Bjørner, Dines, et al,
ed. Berlin: Springer-Verlag, 1987. Vol. 252, Lecture Notes in
Computer Science.

Milner83 Milner, R. “Calculi for Synchrony and Asynchrony.” Theoretical
Computer Science 25 (Nov. 1983), 267-310.

Nix88 Nix, C. J. and Collins, B. P. “The Use of Software Engineering,
Including the Z Notation, in the Development of CICS.” Quality
Assurance 14, 3 (Sept. 1988).

Owicki82 Owicki, Susan and Lamport, Leslie. “Proving Liveness Properties
of Concurrent Programs.” ACM Trans. Programming Lang. and
Syst. 4, 3 (July 1982), 455-495.

Parnas72 Parnas, David L. “A Technique for Software Module Specification
with Examples.” Comm. ACM 15, 5 (May 1972), 330-336. Also in
Gehani86, p. 75-88.

Parnas86 Parnas, David L. and Clements, Paul C. “A Rational Design
Process: How and Why to Fake It.” IEEE Trans. Software
Engineering SE-12, 2 (Feb. 1986), 251-257.

Peterson77 Peterson, James L. “Petri Nets.” ACM Computing Surveys 9, 3
(Sept. 1977), 223-252.

Pneuli85 Pneuli, A. “Application of Temporal Logic to the Specification and
Verification of Reactive Systems: A Survey of Current Trends.”
Current Trends in Concurrency: Overviews and Tutorials.
deBakker, J. W., deRoever, W. P., and Rosenberg, G., eds. New
York: Springer-Verlag, 1985, 510-584. Vol. 224, Lecture Notes in
Computer Science.

Rescher71 Rescher, Nicholas and Urquart, Alasdair. Temporal Logic. New
York: Springer-Verlag, 1971.

Roberts88 Roberts, W. T. “A Formal Specification of the QMC Message
System.” Computer Journal 31, 4 (Aug. 1988), 313-324.

CMU/SEI-91-TR-2 49

Ruggles88 Ruggles, Clive. “Towards a Formal Definition of GKS and Other
Graphics Standards.” VDM ’88: VDM — The Way Ahead,
Bloomfield, R., Marshall, L., and Jones, R., eds. New York:
Springer-Verlag, 1988, 64-73. Vol. 328, Lecture Notes in
Computer Science.

Schwartz81 Schwartz, Richard L. and Melliar-Smith, P. M. “Temporal Logic
Specification of Distributed Systems.” Proc. 2nd Intl. Conf. on
Distributed Computing Syst. New York: IEEE, 1981, 446-454.

Spivey88 Spivey, J. M. The Z Notation: A Reference Manual. Englewood
Cliffs, N. J.: Prentice-Hall, 1988.

Spivey89 Spivey, J. M. “An Introduction to Z and Formal Specifications.”
Software Engineering Journal 4, 1 (Jan. 1989), 40-50.

Wayman87 Wayman, Russell. “OCCAM 2: An Overview from a Software
Engineering Perspective.” Microprocessors and Microsystems 11,
8 (Oct. 1987).

Wood89 Wood, William G. Temporal Logic Case Study. Tech. Rep.
CMU/SEI-89-TR-24, ADA219019, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, Pa., 1989.

Woodcock88 Woodcock, J. C. P. and Dickinson, B. “Using VDM with Rely and
Guarantee-Conditions.” VDM ’88: VDM — The Way Ahead,
Bloomfield, R., Marshall, L., and Jones, R., eds. New York:
Springer-Verlag, 1988, 449-455. Vol. 328, Lecture Notes in
Computer Science.

Zave82 Zave, Pamela. “An Operational Approach to Requirements
Specification for Embedded Systems.” IEEE Trans. Software
Engineering SE-8, 3 (May 1982), 250-269. Also in Gehani86, 131-
169.

Zave85 Zave, Pamela. “A Distributed Alternative to Finite-State-Machine
Specifications.” ACM Trans. Prog. Lang. and Systems 7, 1 (Jan.
1985), 10-36.

Zave86 Zave, Pamela and Schell, William. “Salient Features of an
Executable Specification Language and Its Environment.” IEEE
Trans. Software Engineering SE-12, 2 (Feb. 1986), 312-325.

50 CMU/SEI-91-TR-2

3.3. Principles and Applications of Software Design

Students’ Prerequisites

• computer science background
• reasonable knowledge of programming
• some experience of team software development
• some exposure to the software development process
• industrial experience is an advantage

Objectives

Help the student make the transition from programming-in-the-small to
programming-in-the-large:

• appreciate the software development process
• understand the role of design in that process
• become familiar with the major design methods
• be able to categorize and comprehend a new design method

Enable the student to undertake software design:
• select an appropriate method
• apply the method properly and intelligently
• understand the strengths and weaknesses of the method
• be aware of the major application domains and their appropriate design

paradigms

Enable the student to evaluate software design:
• appropriateness of method
• completeness and correctness of design
• traceability to requirements and code
• design quality
• formal verification of design

Philosophy of the Course

The overall philosophy is that software is a product of value that is built in response
to a need, that is to be maintained as long as the need persists, and that is to evolve
as circumstances change.

CMU/SEI-91-TR-2 51

Syllabus

The syllabus assumes 28 class meetings, including midterm and final examinations.
Each meeting is planned to include approximately 55 to 60 minutes of lecture and 20
minutes of class discussion.

1. The Software Development Process and the Role of Design
2. Classification of Design Methods
3. Basic Principles of Design Methods
4. Statecharts: Description
5. Statecharts: Worked Example
6. MASCOT: Description
7. MASCOT: Worked Example
8. Object-Oriented Design: Description
9. Object-Oriented Design: Worked Example

10. VDM: Description
11. VDM: Worked Example
12. Comparison and Critique of Design Methods
13. Team Exercise: Presentation
14. Team Exercise: Requirements Review
15. Midterm Review
16. Midterm Examination
17. Application Domains and Design Paradigms
18. Information Systems Design: Problems
19. Information Systems Design: Paradigms
20. Real-Time Systems Design: Problems
21. Real-Time Systems Design: Paradigms
22. Team Exercise: Design Reviews
23. Team Exercise: Design Reviews (Continued)
24. Software Development Environments
25. User Interface Design: Problems
26. User Interface Design: Paradigms
27. Final Review
28. Final Examination

52 CMU/SEI-91-TR-2

Summaries of Lectures

1. The Software Development Process and the Role of Design

Reading: none

The course is structured in two major parts: understanding design methods, and the
application of those methods. The first part covers the software process and the role
of design, and the classification, underlying principles, and verification techniques
for several methods. The second part covers assessment and comparison of methods,
their strengths weaknesses, their application domains, and paradigms for their use.

A software design is a description of a system that will meet the requirements. The
design should be as complete as possible, and it is often represented formally using
special notation. The process of design consists of taking a specification (a descrip-
tion of what is required) and converting it into a design (a description of what is to
be built). A good design is complete (it will build everything required), economical (it
will not build what is not required), constructive (it says how to build the product),
uniform (it uses the same building techniques throughout), and testable (it can be
shown to work).

The design activity is one part of a development process, and thus exhibits the char-
acteristics of all activities: it occurs at a particular stage, it takes inputs from the
previous stage, it performs a specific task, it generates outputs to the subsequent
stage, it yields feedback to earlier stages, it incorporates feedback from later stages,
and it is assessable both independently and within context.

A design can be assessed independently by asking questions such as these. Is it
clear what is to be built? Is it clear how it is to be built? Are the components mutu-
ally consistent? Are the building techniques mutually compatible? Most of these
questions look at the design representation—the object that embodies the design. A
design can also be assessed in the context of the process by asking questions such as
these. Does the design address every part of the requirement? Does the design meet
all constraints on the solution? Are specific design choices clearly recorded? Can the
design be effectively implemented? Is the design robust against small changes in
requirements? Most of these questions look at the design documentation—the
objects that accompany the design and explain it.

Traceability is the single most important concept in software development. From a
component of a design (or other) document, one should be able to determine why that
component is present, a corresponding component in another document, the history
of the component across versions, alternative forms of the component across configu-
rations, and the reasoning that created the component.

It is not possible mechanically to deduce a design from a requirement. Design is
therefore necessarily a human activity. It consists of the intelligent application of
expertise to the solution of problems and the realization of the solutions as software
artifacts. This intelligence can be guided by design methods and techniques, but it
cannot be replaced.

The development of large software systems, often called programming-in-the-large,
is an activity very different from programming-in-the-small. In the latter case, pro-
grammers write programs, but in the former, teams build software. This required
different ways of thinking, different ways of behaving, and different tools and tech-

CMU/SEI-91-TR-2 53

niques. Team development of software is characterized by the division of labor,
replacement of individuals, more thorough specification of components and inter-
faces, more (and more formal) record keeping and communication, clearer separation
of development stages, and much tighter control of feedback and consequent
changes.

When a team performs design, control is required to ensure consistent notation,
division of work without gaps or overlap, and consistency between components. The
overall design must remain within the solution envelope, which places limits on
complexity and on resource consumption.

2. Classification of Design Methods

Reading: Firth87

Classification of design methods is helpful as an aid to explanation of design
methods, a help in understanding how methods differ, and a guide to selection of
appropriate methods. Classification can use several kinds of criteria. Attributes of
the design object are the simplest criteria to apply. They include the kind of design
notation used (graphical, textual, mixed), degree of formalism (informal, such as
natural language or fuzzy blobs), semi-formal (such as stylized phrases, shapes, and
icons), or formal (logical propositions, directed graphs). Attributes of the structure of
the representation are another type of criteria. They include whether the design is
hierarchical (each level expands into more detail) or flat (there is one key level that
is unique), and whether it provides a single view of the design or multiple views of
the same design. Attributes of the design philosophy are perhaps the major guide to
classification.

Much of the philosophy of a design method hinges on the view it takes of the system
The basic view of the system taken by a design method, and hence captured by a
design based on that method, can be functional, structural, or behavioral. With the
functional view, the system is considered to be a collection of components, each
performing a specific function, and each function directly answering a part of the
requirement. The design describes each functional component and the manner of its
interaction with the other components. With the structural view, the system is
considered to be a collection of components, each of a specific type, each indepen-
dently buildable and testable, and able to be integrated into a working whole.
Ideally, each structural component is also a functional component. With the behav-
ioral view, the system is considered to be an active object exhibiting specific
behaviors, containing internal state, changing state in response to inputs, and gen-
erating effects as a result of state changes. This view is essentially dynamic rather
than static. This is the basis of the classification scheme in Firth87. Observe that it
can be applied to more than just the design stage.

Attributes of the design process are also useful in classifying methods.

A design method can be categorized also by the way in which it is used. The princi-
ple criterion is the manner in which the design object is supposed to be generated.
This incorporates the design method’s view of the design process and how it should
be carried out. Some criteria imply alternatives—either this or that. Some criteria
imply gradations—either more or less.

Design methods seem to have three views on how the design is to be generated. The
top-down approach is to create a single, high-level description of the system, then

54 CMU/SEI-91-TR-2

take each component in turn, elaborate its interfaces, and refine its internal details.
This process continues hierarchically from component to subcomponent. The
bottom-up approach is to design in detail the lowest-level components, define the
manner in which they can be composed, and then build higher-level components in
terms of the lower-level ones. This continues until the highest component—the
system—is reached. The left-right approach is to take a plausible scenario, define
the information objects that flow through the system from initial input to final
output, define the processing nodes through which the information will flow, and
define the data stores that will hold information between scenarios.

In addition, some methods encourage prototyping and reuse. Prototyping methods
provide tools and techniques for rapid creation of user interfaces; simulation of
unimplemented components; scenario generation, recording and analysis; and ani-
mation of designs. The advantages are that the designer gets user feedback at an
early stage, and the designer gets an assessment of how well the design fits within
the specification constraints. Reuse methods provide libraries of standard compo-
nents, ways to create new components and categorize them, ways to adapt or
customize components, standard ways of interfacing components, and standards for
data validation and error handling. This allows a designer to reduce implementa-
tion and testing costs.

There is some correlation between the design process and the view the method takes
of the system. A functional view suggests top-down design; a structural view sug-
gests bottom-up design; and a behavioral view suggests left-right design. There is
also some correlation with application domain, a topic for later discussion.

3. Basic Principles of Design Methods

Reading: none

Design principles help us understand design methods, apply design methods, grasp
the underlying nature of software design, and provide a framework with which to
analyze the design process. There are two basic types of design principle: static
concepts, which are things observable in design objects, and dynamic concepts,
which are things observable in the design process. A design object exhibits struc-
ture, modularity, abstraction, information hiding, and hierarchy. The evolution of a
design goes through three stages: derivation of a design object, examination of a
design object, and generalization and subsequent reuse of a design. Each system
component passes through all stages, but not all components are at the same stage
at the same time.

Derivation of design is the process of creating a design object. It employs the princi-
ples of partitioning, deferral, refinement, composition, and elaboration.

Partitioning is the division of a problem into components, each with conceptual
integrity, each simpler than the whole problem, each with a defined interface, and
capable of being combined into a solution. A proper partitioning yields a modular
design.

Deferral is conscious postponement of design issues: because they are global and
cannot be assigned to one partition; because they are irrelevant and have no effect
on this stage of design; or because a design choice requires more information.

CMU/SEI-91-TR-2 55

Refinement is adding more detail within an existing framework, with no extension
to prescribed functionality, and with no change in defined interface. This involves
making specific design choices: analyzing alternatives, selecting the most reason-
able, and documenting the result. Refinement usually creates a lower level of detail.

Composition is combining already-designed objects into an object at a higher level,
with consistency of interfaces, common understanding of data representations, and
cooperating functionality. Refinement and composition processes help build hierar-
chical structures.

Elaboration is adding extra functionality at a specific level (features previously
deferred or features newly required) while maintaining the integrity of the whole
(unchanged interface and original functionality undamaged).

Examination of design is the process of looking at a finished design object by verifi-
cation, analysis, animation, execution, and quality assessment.

Designs and design objects of wide applicability are created by generalization,
specialization, customization, enhancement. Such designs and design objects are
candidates for subsequent reuse.

4. Statecharts: Description

Reading: Harel87

Statecharts are a notation for capturing design. They exhibit a behavioral view, and
they are based on finite state machines. They use a graphical notation and display a
limited hierarchy. They are incorporated in the Statemate system development
environment supported by i-Logix Inc.

[The lecture includes a detailed description of statecharts.]

5. Statecharts: Worked Example

Reading: Bruns86

The problem for this example is the design of a simple elevator system. Inside the
elevator there is a floor visit button for each floor, whose purpose is to cause the ele-
vator to visit that floor. There are two elevator request buttons on each floor (up and
down), whose purpose is to cause the elevator to visit that floor and then move in the
appropriate direction. Requests are cancelled by appropriate visits. Of course, the
doors must be opened and closed appropriately.

System inputs are floor visit requests (entered by pressing the button Visit(f) for
floor f), elevator requests (entered by pressing Up(f) or Down(f) on floor f), and eleva-
tor location data (determined by an AtFloor(f) sensor near floor f). System actions
are specified for elevators (ascend, descend, stop), doors (open, close), and visit
buttons (cancel).

The system goal is to be able to cancel all buttons and go back to sleep. An imple-
mentation goal is to have a car reverse direction as infrequently as possible.

[The lecture develops the solution to this problem in detail.]

56 CMU/SEI-91-TR-2

6. MASCOT: Description

Reading: Jackson84

MASCOT is an acronym for Modular Approach to System Construction Operation
and Test. It was devised during 1971 to 1975, and is described in Official Definition
of MASCOT (MASCOT 1) 1978; The Official Handbook of MASCOT (MASCOT 2)
1983; The Official Handbook of MASCOT (MASCOT 3) 1983. MASCOT has been a
required UK MoD software design method since 1981.

The development of MASCOT has addressed these issues: the proper design philos-
ophy for real time systems; use of a clear and consistent standard design notation;
reuse of components of real-time systems; automatic generation of code from designs
and templates; and systematic testing and profiling of real-time components. It
exhibits a structural view of a system and is based on dataflow concepts. It uses a
graphical notation and precise naming conventions. The design can be translated
into code skeletons.

7. MASCOT: Worked Example

Reading: none

The problem for this example is the design of a message transfer system that is
circuit based, with connections made and broken dynamically, and that allows mes-
sages to be transferred between connected nodes. The design also should include the
data handling component: lines built up from input characters; lines broken down
into output characters; and line buffers recycled around the system.

[The lecture develops this example in detail.]

8. Object-Oriented Design: Description

Reading: none

Object Oriented Design (OOD) attempts to partition the requirement into compo-
nents, determine component relationships, classify the components, derive solution
components, and implement and integrate solution components. It uses a single
paradigm—the object. An object possesses some or all of state, behavior, and
attributes. It captures a concept or aspect of the requirements. It may be an
instance of a more general class, and it may perceive other objects in the system.

The approximate order of progress in the basic OOD method is inspect the require-
ments; identify the objects; identify the states, attributes and operations; identify
the object interconnections; classify the objects; specify the object interfaces; imple-
ment the objects; and build the solution.

9. Object-Oriented Design: Worked Example

Reading: none

The example is the document concordance problem from Booch83. The solution
method is to identify objects, identify operations, establish visibility, classify the
objects, and then establish the interfaces. At this point, the iconic graph can be
drawn.

CMU/SEI-91-TR-2 57

Identifying the objects begins with the simple step of underlining the nouns in the
requirement, resulting in: concordance (1 occurrence), document (4), entry (4), line
(4), occurrence (3), page (4), and word (5). This suggests that the four major objects
(and their subcomponents) are document, concordance (entry), word, and occurrence
(line, page).

The document is seen as an external file, so operations include open and close ; there
is a need to read it one word at a time, so other operations needed are at_eof and
get_next (note that the get_next operation must yield both a word and an occurrence,
which is a page and line number). The concordance is also an external file, so oper-
ations include open and close ; it is built by adding one entry at a time, requiring an
operation add_entry ; and because we may be required to print it out, a print opera-
tion is needed. We must create the concordance in alphabetic order, so we add an
operation “<” on words; in order to ensure each word appears only once, we also need
a “=” operation; to print the word, we need a print operation. We need to create a
list of occurrences in document order, so we need a “<” operation on occurrences; we
probably need to print the list, so we need a print operation.

Establishing the visibility of one object class by another is really done in parallel
with the previous step. Document sees word and occurrence; concordance sees word
and occurrence; word sees nothing; occurrence sees nothing. Finally, the require-
ment specifies a root component make_concordance that sees everything.

The design presented here diverges from the reference in that it adds ordering oper-
ations on words, uses occurrence as an abstract data type, and adds print operations
for concordance components. The proper set of operations is not obvious. Objects
cannot be elaborated in isolation—look especially at the operations on words.

Finding the objects in even this simple example is not automatic. Is “entry” (a word
related to a page and line) a top level object? Is “occurrence” an object, or should we
use page and line? Why isn’t “list” an object?

The solution has some defects or omissions: error conditions and error handling;
and identification of actual files to be opened. There are also some open issues: who
understands the lexis of a word; that is, what constitutes a word? Also, who is
responsible for formatting the output?

10. VDM: Description

Reading: Andrews87

The Vienna Development Method (VDM) was developed in the 1970s at the IBM
Vienna Research Laboratories. It was influenced by 1960s work that produced the
Vienna Definition Language (VDL). It has been applied in programming language
definition, database design, and office automation systems.

The formal specification language used in VDM is Meta-IV. It includes elementary
types (boolean, numeric, quotations, tokens), composite types (sets, lists, tuples,
maps, records), and combinators (clauses, statements, blocks). Naming conventions
are also followed. Fundamentals of Meta-IV specifications include semantic
domains, invariants, and functions.

58 CMU/SEI-91-TR-2

The VDM method is based on stepwise refinement (decomposition and reification)
and proof obligations (at each step of refinement, define a retrieve function, prove its
adequacy, and prove commutativity of operations with respect to it).

[The lecture includes examples of Meta-IV syntax, a Meta-IV specification of a stack,
and a reification example.]

11. VDM: Worked Example

Reading: none

An example of VDM is the design of a company’s security system. The system
should record the names of employees who enter and leave the building, doors have
badge readers connected to the computers, and the doors can be opened by the com-
puter. Basic operations include init() {building is empty}, enter(nm: Name) {name
read from card}, exit(nm: Name) {name read from card}, and is-present(nm: Name) r:
Bool {check on name}. The basic model defines Work-force = set of Name {those who
are in the building}, and Name = (* to be defined *).

Subsequently, new requirements are defined: to select a list of volunteers, and to
count how many employees are present. Data reification results in a new model
Work-force1 = seq of Name and revised basic operations. [The lecture develops the
example in detail.]

A summary of the method is (1) choose a more concrete data representation Rep; (2)
discover the retrieve function: retr: Rep → Abs; (3) prove adequacy; (4) rewrite the
operations; (5) prove that the invariant is preserved; and (6) prove acceptability and
commutativity. Some observations about the method: concrete representations
introduce too many values, but invariants kill off the excess values; invariants also
represent common knowledge about the state of the system; the method emphasizes
the ability to state requirements at each level of the design in rigorous, mathemati-
cal terms.

12. Comparison and Critique of Design Methods

Reading: Bergland81, Yau86

Common features of most design methods include some special design notation, pro-
cedures for looking at requirements, procedures for creating designs, ways to
analyze designs, and some possibility of tool support.

Design notations seem to evolve in the same way: a basic notation for aspects
considered primary, followed by elaboration to capture more information, and then
annotations to overcome defects in the basic notation. A tentative conclusion is that
no single notation is adequate.

Most design methods start from the requirements as given, they assume a certain
style of specification, expect design components to be extracted from it, and verify
design correctness against it. Two kinds of approach to analysis are component ori-
ented and scenario oriented. Some design methods expect to refine the requirement.

Design creation is usually incremental—composed of distinct stages. Design meth-
ods require differing degrees of component isolation and backtracking, and they
differ in how strictly they try to control this process.

CMU/SEI-91-TR-2 59

Design analysis serves different purposes: to verify proper design; to deduce proper-
ties about the system being designed; to determine implementation strategies; and
to determine implementation costs. Design methods provide different amounts of
help to the implementor.

Some design methods require tool support: the notation is impossible to maintain by
hand; numerous consistency checks must be repeated; or rapid prototyping requires
automation. Some design methods resist tool support: the notation is largely irrele-
vant to the design process; design properties can be assessed only informally; or the
behavior of a prototype cannot be deduced from the design.

There are several key differences in philosophy among design methods, including
terminology (domain based or method based); order of work (linear or spiral); and
reuse (by afterthought or by forethought). There are also differences in process that
arise from three causes: differences in philosophy, differences in view of the life
cycle, and differences in emphasis on design goals.

Philosophy can affect the process in these ways: special terminology forces early
abstraction; linear work order implies hierarchical design; and emphasis on reuse
encourages depth-first elaboration. The view of the life cycle can affect the process
in these ways: the waterfall model implies that requirements are taken as given
and complete, a complete design must precede implementation, and design verifica-
tion rarely addresses feasibility. The spiral model implies that requirements are
subject to refinement, a partial design should be prototyped or simulated, and design
feasibility can be tested on a prototype. Most design methods still use the waterfall
model. Design goals can affect the process because design methods presume diverse
goals: does the design criticize the requirement; should the design imply implemen-
tation strategies; will the design be reviewed by the user of the system? These
questions imply differences in how the design is done and what kind of design
objects are created.

Different views of design have different advantages. With a behavioral view, it is
easy to create scenarios for user criticism; capturing time and event-dependent
properties is easier; and exhaustive testing of required invariants is allowed. With a
structural view, it is possible to identify implementation components, distinguish
active from passive components, distinguish between persistent and dynamic data.
A structural view also encourages reuse and allows subcomponents to be prototyped
and tested. A functional view is easiest to verify against the requirement, uses
mostly domain-related terminology, and makes later enhancement simpler. A
formal view builds on a very secure foundation, resists introduction of arbitrary
assumptions, and proceeds by small and verifiable steps.

The strengths of design methods are that they generally help by introducing an
agreed notation and terminology, provide rules for creating designs, provide ways to
analyze designs, and act as a basis for tool support. The weaknesses of many design
methods are that they promise too much, do not capture reasons for design
decisions, try to force all problems into one framework, and fail to deal with holistic
properties of the system (such as response time or storage consumption).

General conclusions are that there is no way to automate fully the process of design.
Design methods are fundamentally a way for the designer to organize work, an aid
to accurate and appropriate thinking, and a way to capture design in a communica-

60 CMU/SEI-91-TR-2

ble form. Design methods should treat differently the creative and the mechanical
parts of the design activity.

13. Team Exercise: Presentation

Reading: Floyd86

The team exercise is to be done during the second half of the course, and it forms
part of the course assessment. It presents a problem in a major application domain
for which case studies already exist. It provides some practice in software design
and builds on previous study of design methods. Students work in teams of three or
four, and the final design is assessed as a whole and equal credit given to each team
member.

The team exercise is based on Floyd86. The case study requirement will be used as
the basis for a software design.

The exercise begins with a requirements presentation, and proceeds through a
requirements review, design consultation, formal design review, design revision, and
submission of finished design.

Goals of the exercise are that students will perform a simple software design by
selecting a design method, applying a design method, and documenting the process
and the result. They will practice team working, division of work, and integration of
work. They will also perform a software design review.

14. Team Exercise: Requirements Review

[This class is a requirements review for the team exercise. Its objectives are to clar-
ify the requirements, agree on terminology, and confirm team composition. It
ensures that all teams start with a common understanding of the requirement.
Discussion by the teams is emphasized, with the instructor stepping in as needed to
initiate discussion, and to raise and illustrate important issues. In the absence of a
real customer, the teams will decide on “reasonable” amplifications and clarifica-
tions.]

15. Mid-term Review

Reading: Balzer85, Brooks86, Gomaa88, Parnas86

16. Mid-term Examination

17. Application Domains and Design Paradigms

Reading: Hesse84

An application domain is a separate discipline with requirements that recur, involv-
ing a common set of objects or issues, and with its own technical expertise. For
example, within engineering, there is a separate domain of bridge building. Domain
specific problems are those that recur in the majority of systems requirements, seem
to be implied by the domain itself, and address fundamental issues in building solu-
tions. The problems in the domain can affect the design process or design method
used.

CMU/SEI-91-TR-2 61

The term paradigm means a standard solution or solution method applied to a
domain specific problem that can be independently taught and applied, and that
captures a major engineering insight.

The existence of paradigms influences design. First efforts at solving a new problem
are unorganized. Gradually, solutions begin to exhibit common factors, and even-
tually, some of these factors are isolated. A small number of standard solutions
becomes part of the engineering expertise. The common problem factor and its
standard solution then become a paradigm.

Once one knows a set of paradigms, one’s attitude to new problems changes. One
tries to relate the problem to one of the standard problems, in order to apply a
paradigm. This is very helpful if the problem is indeed another example of the
familiar type. But it can be a serious handicap if in fact the problem has genuinely
new aspects.

Paradigms can be explored and developed in isolation. They represent sets of solu-
tions to common problems. They can lead to reusable components applicable to new
problems in the same domain. The properties of the solutions can be assessed and
used to help select the right solution in each case. Access control mechanisms have
reached this stage.

The existence of paradigms influences the way requirements are analyzed and hence
the way the solutions are designed. The analysis tends to search for familiar
problem components, and the design tends to structure the solution around the key
components for which paradigms are available. For example, in the construction of
operating systems, one fundamental paradigm is that the function of the operating
system is to allocate system resources to user processes. Fundamental principles
include: resources represented by objects are allocated to processes, competition is
arbitrated by a single scheduler, and processes wait until resources are available.
The design of the operating system tends to focus on: the resources and their repre-
sentation, fair and efficient allocation mechanisms, robust control of resources, and
attributes of users or processes that affect their rights to resources.

18. Information Systems Design: Problems

Reading: none

Information systems manage data. Basic tasks include collection, validation, orga-
nization, processing, and retrieval. Fundamental concepts include data, represen-
tations, information, entities, attributes, and currency. Important problems are
data format, data validation, entities and attributes, data consistency, data
retrieval, and data presentation.

19. Information Systems Design: Paradigms

Reading: none

Each data type should be defined once, including name, explanation, language type,
representation, display form, and constraints. This definition is written in a data
definition language.

62 CMU/SEI-91-TR-2

There are three main issues for entity identification: by what attribute are entities
identified; how are attribute values assigned to new entities; and how is the
attribute of the current entity captured.

The attribute that uniquely identifies an entity to the system is called its key.
Attribute assignment, or determining to which entity an attribute belongs, is a fun-
damental question. In the examples of the relationship of car to owner’s address, or
of library book to borrower’s office, the attribute does not belong. The owner may
move and take the car, or the borrower may move and take the book.

There are two problems with maintaining current data: some data change sponta-
neously (an example is a person’s age), and some data are derived from other data
(an example is total sales). How can one ensure that all data remain current? The
update consistency problem arises when two or more data are related (such as in the
case of “spouse of,” “employee of,” or “employer of” relationships). An update must
leave both data in a consistent state. In particular, system failure must not cause
inconsistency.

Data retrieval usually follows the relational model, with operations select (choose a
subset of the set of entities); project (choose a subset of the set of attributes); join
(combine attributes of one entity with those of a related entity); prune (remove
duplicate information) count (determine cardinality of a subset); sum (total values of
an attribute across a subset); and sort (arrange the members of a subset in order).
Every enquiry is phrased in terms of these operations

Some effects on system design are a need for clear definition of data types, reuse of
standard types, careful identification of entities and attributes, and an awareness of
consistency and currency issues. Other important ideas are the use of scenarios
based on a transaction model, that robustness is an integral part of system opera-
tion, that retrieval operations are analyzed systematically, and that the system
must be tuned for most frequent operations.

20. Real-Time Systems Design: Problems

Reading: Gomaa86, Kelly87

Real-time systems exhibit requirements involving time, response to external events,
parallelism, and time-dependent behavior. Examples include: measure vehicle
position every 100 ms; reset all clocks on the hour; respond to a signal within 10 ms;
process signals at a peak rate of 100/sec. The magnitude of the time interval varies;
what matters is the importance of keeping to it.

Real-time systems typically interact closely with their environment; examples
include: whenever the telephone rings, answer it; whenever a button is pressed,
light it; whenever a key is pressed, read a character; whenever the vehicle orienta-
tion changes, update the heading data. The occurrence of these events is unpre-
dictable.

Fundamental concepts for real-time systems include time, events, processes, and
synchronization. Major problem are representation of time, representation of
events, implementation of parallelism, distribution of processing across processors,
robust guarantees for timely response, and testing of time-dependent systems.

CMU/SEI-91-TR-2 63

21. Real-Time Systems Design: Paradigms

Reading: none

Some issues and paradigms include time as the basis of design, events as the basis
of design, parallelism and synchronization, design for functional correctness, design
for trustworthy performance.

22. Team Exercise: Design Reviews

[This class period and the next are devoted design reviews for the student team
exercise.]

23. Team Exercise: Design Reviews (Continued)

24. Software Development Environments

Reading: Dart87

A software development environment (SDE) is an integrated set of methods, pro-
cesses, and tools for the orderly construction of software; usually there is substantial
automated support. An SDE serves several purposes: consistency, economy of
effort, speed of production, transition of product, productivity of staff,and manage-
ment of process.

The following features are usually found in an SDE: an object base, a command
interface, a tool set, training aids, and a component library.

The major advantages are clear: more efficient use of human effort; more robust,
better organized and better tested products; consistency within products and
between them; easier transition of products to an equipped site. There are some
corresponding disadvantages: expensive hardware and software support; SDE
usually tied to a single design method; hard to incorporate familiar or third-party
tools; reliance on one vendor for most tools; and the fact that the transition site must
buy in to SDE to maintain the product.

A software development environment can have several effects on the design process.
It usually mandates a specific design method. It allows larger projects to be orga-
nized and managed. It allows more exploratory design and prototyping, and
supports a growing base of reusable components. It smooths the transition between
development and maintenance.

25. User Interface Design: Problems

Reading: Myers89

[Guest lecturer: Brad Myers, Carnegie Mellon University]

A user interface is the end-user-visible parts of software: all inputs from the user to
the computer, and all outputs from the computer to the user.

What does it mean to be a good user interface? Some proposed definitions are : “I
like it,” “I always do it that way,” “That is the way the xxx system does it,” “It is easy
to implement.” Much better are definitions such as: it can be learned in less than
20 minutes; the error rate will be lower than 1 per 40 operations; tasks will be per-

64 CMU/SEI-91-TR-2

formed in 30% of the time it took before the system was used; users will have a high
satisfaction with the system as measured by a survey.

Some attributes of good user interfaces are that they are invisible, have minimal
training requirements, people begin doing real work quickly, high transfer of train-
ing, predictability, easy to recover from errors, people perform real tasks well,
experts operate efficiently, it is flexible, people like it.

Why are user interfaces hard to design? There are many different aspects to the
design that need to be taken into account: graphics (artistic design), human factors
principles, dialog control issues, implementation constraints, efficiency constraints,
standards, analysis of existing systems. It is very hard to “know the user,” and it
may take years to learn the application area. Problems with users include that they
don’t care about elegance, sophistication, or complexity of the design, only what it
can and can’t do for them; they come in various levels of sophistication and experi-
ence; they will do the unexpected; they will refuse at all costs to read the manuals;
they will fail to observe even prominent instructions; and they won’t ask for help
when they need it. Problems with the software designers include that they assume
too much about users; they assume users are just like them; they are sure that peo-
ple can learn to use anything; they get “attached” to hardware and software; they
may never use the system they design; and they are suspicious of “soft” sciences like
psychology and human factors.

Global problems for user interface designers include that standards are adopted
(and rejected) too quickly, and for political or economic reasons; economic incentives
often promote the status quo; and there is a tendency to use old techniques on new
technology. It is not sufficient just to use icons and windows. Graphics can some-
times be worse; some experiments show that there may be no significant improve-
ment with spatial (location) cues versus symbolic (name) cues on information
retrieval tasks; other experiments show that naive users performed more poorly
with iconic systems than with command or menu systems on filing tasks and that
users performed more slowly (but more accurately) in a windowed environment
compared to a non-windowed environment on editing tasks. It is not sufficient just
to use a standard look and feel; the standard does not usually address all issues
(such as insides of windows). Reasonable people can differ, so there is a need to test
real users. This usually implies a need for iterative design. Legal problems with
copying the “look and feel” of a user interface also exist.

User interfaces are hard to implement because of the need for iterative design; the
need for prototyping; the difficulty of getting the screen to look pretty; and asyn-
chronous inputs. Usually there is a need for multiprocessing to deal with user
typing, window refresh, and multiple input devices. There is a need for efficiency in
order to address requirements such as output 60 times a second, keeping up with
mouse tracking, or real-time programming. There is a need to handle prompts, feed-
back, errors, help, and aborting. User interfaces are often hard to modularize; the
distinction between what is user interface and what is application is not clear.
There is little language support; primitives in the programming language make bad
user interfaces.

There are several user interface styles, meaning the method for getting information
from the user, and the choice of style will have a big impact on the software design.
Some styles are question and answer, single character commands and/or function
keys, command language, menus, forms/dialog boxes/property sheets, editing

CMU/SEI-91-TR-2 65

paradigm, direct manipulation, WYSIWYG, gestures, and natural language.
Usually, interfaces provide more than one style, such as a command language for
experts with menus for novices, or menus plus single characters (Macintosh). The
appropriate style depends on the type of user and the task.

Major issues in user interface style include who has control, ease of use for novices,
speed of use (efficiency) once the users become proficient, generality/flexibility/power
(how much of the user interface will this technique cover?), ability to show defaults
and current values, and skill requirements required (such as touch typing).

[The lecture includes discussion of an in-class experiment in human factors that can
affect user interface design.]

26. User Interface Design: Paradigms

Reading: none

[Guest lecturer: Brad Myers, Carnegie Mellon University]

Components of user interface software normally include a window manager, a
graphics package, a user interface toolkit, and a user interface management system.

A window manager manages and controls multiple contexts by separating them into
different physical parts of the screen. It can be part of operating systems, a separate
program, or part of a program. It provides output graphics operations to draw
clipped to a window, and channels input from a mouse and keyboard to the appro-
priate window.

A graphics package provides the interface for doing graphics and getting input. It is
often standardized; it may be device independent; and it can exist in the window
manager, on top of the window manager, or instead of the window manager.

A user interface toolkit is a library of interaction techniques that can be called by
application programs; an interaction technique is a way of using a physical input
device to input a certain type of value. Toolkits contain procedures to do menus,
scroll bars, buttons, window decorations, dialog boxes, etc. Normally, no higher-
level or sequencing control is provided, so the toolkit can be hard to use.

A user interface management system (UIMS) helps the programmer create and
manage many aspects of the user interface. It may (or should) handle all input,
validate user inputs, handle user errors, handle aborts and undo, provide appropri-
ate feedback for input, provide help and prompts, help with screen layout and
graphic design, handle the updating of the screen when data changes, notify an
application when the user changes graphics, deal with scrolling and refresh, handle
the sequencing of operations, insulate the application from the window manager,
allow end-user customization of user interface, and automatically evaluate a user
interface and suggest improvements.

Window manager output models include a simple terminal model, a collection of
functions to be called, and a programming language. A major issue is device
independence.

Window manager input models include polling (which is inefficient, has no type-
ahead or “mouse-ahead”), but all modern systems use same technique: events. An

66 CMU/SEI-91-TR-2

event manager maintains a queue per window for all events (keystroke, mouse
action, etc.). This is currently the best technique known.

Toolkits (such as the Macintosh Toolbox, NeXTStep, and Xtk) may be object-oriented
or just a collection of procedures.

Components of user interface management systems include a toolkit; a design-time
component for the designer to specify the interface, such as some kind of compiler or
editor; and a run-time component to operate the interface at run-time (usually
libraries of routines that the code links to).

Interface aspects covered by a user interface management systems include the
design of graphical components: choosing the components that are in the interface,
graphical layout of existing components, sequencing of actions, “insides” of applica-
tion windows, and evaluation of the interface.

User interface management system styles include menu networks (simple trees or
graphs of menus), state transition networks (a picture of the sequence of actions),
grammars (only good for command language syntax), event languages (input tokens
are events that are sent to handlers, which then cause side effects and send new
events), declarative languages (that specify what should happen or what the con-
tents are, not how to do it), object-oriented languages (the system provides higher
level classes that the designer specializes), and direct graphical specification (define
an interface by placing objects on the screen showing what the end user will see).

A major design issue is communication: how the application and the user interface
exchange information. Solutions include the application calls the user interface pro-
cedures; the user interface calls application procedures; mixed control where both
allowed; and parallel control. A related issue is how often the application and user
interface exchange information.

A process for building a user interface is: learn the application; learn the users;
learn the hardware and environment constraints; evaluate user interfaces of similar
products and other products for the same environment; determine the support tools
available (toolkits, user interface management systems); plan for more than one user
interface in the schedule and budget; involve graphic artists, user interface profes-
sionals, and technical writers (for documentation); plan to incorporate undo, cancel,
and help from the beginning; try to make the user interface as “direct” as possible;
follow user interface guidelines in design; separate the user interface from the appli-
cation; design the application assuming the user interface will change; use object-
oriented architecture; and prototype and test with actual end users.

27. Final Review

28. Final Examination

CMU/SEI-91-TR-2 67

Bibliography

Andrews87 Andrews, Derek. “Data Reification and Program Decomposition.”
VDM ’87: VDM—A Formal Method at Work. VDM-Europe
Symposium 1987, Bjørner, D., Jones, C. B., Mac an Airchinnigh,
M., and Neuhold, E. J., eds. Berlin: Springer-Verlag, 1987, 389-
422.

Balzer85 Balzer, Robert. “A 15 Year Perspective on Automatic
Programming.” IEEE Trans. Software Engineering SE-11, 11
(Nov. 1985), 1257-1268.

Bergland81 Bergland, G. D. “A Guided Tour of Program Design
Methodologies.” IEEE Computer 14, 10 (Oct. 1981), 13-37.

Booch83 Booch, Grady. Software Engineering with Ada. Menlo Park,
Calif.: Benjamin/Cummings, 1983.

Brooks87 Brooks, Frederick P., Jr. “No Silver Bullet: Essence and
Accidents of Software Engineering.” Computer 20, 4 (Apr. 1987),
10-19. Originally published in Information Processing 86, H. J.
Kugler, ed. Elsevier.

Bruns86 Bruns, G. L., S. L. Gerhart, I. Foreman, M. Graf. Design
Technology Assessment: The Statecharts Approach. Tech. Rep.
STP-107-86, MCC, Austin, Texas, 1986.

Dart87 Dart, Susan A., Ellison, Robert J., Feiler, Peter H., and
Habermann, A. Nico. “Software Development Environments.”
Computer 20, 11 (Nov. 1987), 18-28.

Fairley85 Fairley, Richard. Software Engineering Concepts. New York:
McGraw-Hill, 1985.

Firth87 Firth, Robert, Wood, Bill, Pethia, Rich, Roberts, Lauren, Vicky
Mosley, and Dolce, Tom. A Classification Scheme for Software
Development Methods. Tech. Rep. CMU/SEI-87-TR-41,
ADA200606, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, Pa., 1987.

Floyd86 Floyd, Christiane. “A Comparative Evaluation of System
Development Methods.” Information Systems Design
Methodologies, Olle, T. W., Sol, H. G., and Verrijn-Stuart, A. A.,
eds. Elsevier, 1986, 19-54.

Gomaa86 Gomaa, Hassan. “Software Development of Real-Time Systems.”
Comm. ACM 29, 7 (July 1986), 657-668.

Gomaa88 Gomaa, Hassan. ADARTS — An Ada-based System Design
Approach for Real-Time Systems. Tech. Rep. SPC-TR-88-021,
Software Productivity Consortium, Reston, Va., Aug. 1988.

Harel87 Harel, David. “Statecharts: A Visual Formalism for Complex
Systems.” Science of Computer Programming 8 (1987), 231-274.

68 CMU/SEI-91-TR-2

Hesse84 Hesse, Wolfgang. “A Systematics of Software Engineering:
Structure, Terminology and Classification of Techniques.”
Program Transformation and Programming Environments,
Pepper, Peter, ed. Berlin: Springer-Verlag, 1984, 97-125.

Jackson84 Jackson, Ken. “MASCOT.” IEEE Colloquium on MASCOT. New
York: IEEE, Dec. 1984, 1/1-1/14.

Kelly87 Kelly, John C. “A Comparison of Four Design Methods for Real-
Time Systems.” Proc. 9th Intl. Conf. Software Engineering.
Washington, D.C.: IEEE Computer Society Press, 1987, 238-252.

Linger79 Linger, Richard C., Mills, Harlan D., and Witt, Bernard I.
Structured Programming: Theory and Practice. Reading, Mass.:
Addison-Wesley, 1979.

Myers89 Myers, Brad A. “User-Interface Tools: Introduction and Survey.”
IEEE Software 6, 1 (Jan. 1989), 15-23.

Parnas86 Parnas, David L. and Clements, Paul C. “A Rational Design
Process: How and Why to Fake It.” IEEE Trans. Software
Engineering SE-12, 2 (Feb. 1986), 251-257.

Pressman87 Pressman, Roger S. Software Engineering: A Practitioner’s
Approach, 2nd Ed. New York: McGraw-Hill, 1987.

Ward86 Ward, Paul and Mellor, Stephen. Structured Development for
Real-Time Systems, Vol. 3: Implementation Modeling Techniques.
New York: Yourdon Press, 1986.

Warnier76 Warnier, J. D. Logical Construction of Programs. New York:
Van Nostrand Reinhold, 1976.

Yau86 Yau, Stephen S. and Tsai, Jeffrey J.-P. “A Survey of Software
Design Techniques.” IEEE Trans. Software Engineering SE-12, 6
(June 1986), 713-721.

Yourdon79 Yourdon, Ed and Constantine, Larry L. Structured Design:
Fundamentals of a Discipline of Computer Program and Systems
Design. Englewood Cliffs, N. J.: Prentice-Hall, 1979.

CMU/SEI-91-TR-2 69

3.4. Software Creation and Maintenance

Students’ Prerequisites

Students are expected to have a computer science background, reasonable
knowledge of programming, some experience of team software development, and
some exposure to the software development process. Industrial experience is an
advantage.

Objectives

Help the student make the transition from programming for the short term to
programming for the long term. The student will:

• appreciate the software development process
• understand the role of creation and maintenance in that process
• understand how to analyze and implement a software design
• appreciate the need for software maintenance and evolution
• understand when and how to perform software maintenance
• learn how to plan for extended software life

Enable the student to create software from design. The student will learn to:
• analyze a design
• develop a “building plan” for the artifact described in the design
• develop a test plan and quality assurance plan for the artifact and its

components
• select and employ the appropriate software creation processes
• build, integrate, and test the artifact
• deploy the created artifact

Enable the student to manage software maintenance. The student will:
• understand the basic purpose of maintenance
• appreciate the need for good maintenance processes
• understand the reasons for software change
• learn to employ effective mechanisms to control software change
• learn to apply proactive software improvement principles

Philosophy of the Course

The overall philosophy is that software is a product of value that is built in response
to a need, that will be maintained as long as the need persists, and that will evolve
as circumstances change. The course stresses that software development must
follow a process from requirements to maintenance with proper quality assurance
and traceability throughout. It further takes the view that maintenance is an
integral part of the life cycle that must be considered during earlier stages, and that
it operates not on the code but on all relevant documents. It includes cost
considerations as a necessary driver of evolution.

70 CMU/SEI-91-TR-2

The key concepts of the philosophy, relative to software creation, are:
• a software artifact must be built against a design
• this process must follow a proper building plan
• testing and assessment is necessary at each stage
• the entire process must be documented

Software creation ends with the act of deployment; what follows is maintenance.
However, the entire design and creation history must be transferred to the
maintenance organization. The purpose of maintenance is to preserve the value of
the software over time. It is far more than mere error correction. It is driven largely
by estimates of costs and benefits. The course discusses three kinds of maintenance:
corrective, adaptive, and perfective. It also distinguishes between reactive and
proactive maintenance.

Syllabus

The syllabus assumes 31 class meetings, including midterm and final examinations.
Each meeting is planned to include approximately 55 to 60 minutes of lecture and 20
minutes of class discussion.

1. Introduction
2. Software Creation Overview
3. Analysis of Design Objects
4. Building Software Artifacts
5. Coding Styles and Standards
6. Software Reuse: Principles
7. Software Reuse: Practice
8. Automatic Software Generation
9. Software Prototyping Systems

10. Software Testing: Principles
11. Software Testing: Practice
12. Meeting Performance Constraints
13. Implementation Metrics and Costing
14. Midterm Review
15. Midterm Examination
16. Software Maintenance Overview
17. Causes of Software Evolution
18. Management of Software Evolution
19. Maintenance Tools and Environments
20. Dealing with Errors in Software
21. Requirements Evolution
22. Technology Evolution: Principles
23. Technology Evolution: Practice
24. Building Long-Lived Software
25. Software Quality Assessment
26. Reverse Engineering
27. Software Performance Improvement
28. Software Perfectability
29. Final Review (Part 1)
30. Final review (Part 2)
31. Final Examination

CMU/SEI-91-TR-2 71

Summaries of Lectures

1. Introduction

Reading: none

The objectives of the course are to help the student make the transition from
programming for the short term to programming for the long term; to understand
the role of software creation and maintenance; to appreciate the need for evolution of
software; to understand the need for cost-effective processes; and to learn how to
plan for extended software life.

In particular, the course will enable the student to create software from design,
which involves analyzing design, constructing software artifacts, assessing
alternatives to coding from scratch, and testing and assessing software. It will also
enable the student to manage software maintenance, including understanding the
need for good maintenance processes, the reasons for software change, effective
mechanisms for software change, and proactive software improvement.

The first part of the course addresses software creation, from design to deployment.
This includes writing new software, software reuse, automatic software generation,
software prototyping, testing performance assurance. and complexity and cost
estimation. The second part of the course addresses software maintenance process,
dealing with errors, requirements evolution, technology evolution, and preserving
software quality.

2. Software Creation Overview

Reading: none

During this part of the course, we shall explore the software creation process, why
that process seems so simple and yet is so hard, what are some effective ways to
create good software, how to manage software creation, and what tools can help us.
There will be some small exercises along the way.

The ideal process follows several steps: analysis of design, identification of
structural components, realization of abstractions, construction or acquisition of
components, testing of components, integration of components, testing of the system,
and deployment. The process actually followed is rarely ideal—there is often a
mismatch between function and structure, imperfect abstractions, pollution of
design by target machine details, components with excessive difficulty or risk, or
problems with ensuring “holistic” properties.

The goal in managing software creation is to be both effective and cost-effective,
where effective means build a quality artifact as specified, and cost-effective means
do so in a manner economical of people, time, and worry. A good software creation
process will identify risks and difficulties early, address them promptly, and resolve
them satisfactorily. It will use several technical and management tools, including
prototyping and risk tracking.

Unfortunately, it is very tempting to defer problems. This gives an illusion of rapid
progress, maintains cash flow, keeps morale high for a while, and keeps the
customer happy. The illusion is abetted by the fact that people tend to
underestimate the difficulty of problems not in their field.

72 CMU/SEI-91-TR-2

A good process requires a well-structured environment: effective support for work,
comprehensive capture of information, tools to help with technical work, tools to
help with clerical work, and painless enforcement of standards. In sum, it requires a
typical software development environment.

There are several ways of creating software. Design analysis identifies structural
components, and then each component must be realized in some way. The
conventional way is writing it from scratch. This is also the most expensive and
risky way. In an effective software creation environment, writing software from
scratch should be regarded as the last resort, not the first. There are many ways to
avoid writing code: reuse an existing component, revise a similar component,
generalize a similar component, generate the code automatically, or select or
parameterize a component automatically.

3. Analysis of Design Objects

Reading: Prell84

Design analysis is a prelude to implementation. It guides the implementation, test,
and build process. It involves specific decisions about how to build. The design
method should produce a buildable design. It will not necessarily have identified
structural components. However, it will have partitioned the requirements,
elaborated on the objects and attributes involved, identified major interfaces, and
specified resource constraints.

From inspection of the design, one should identify possible structural components,
possible implementation layers, boundary conditions and constraints, problem areas,
and test and integration strategies. Structural components include encapsulations
of application-level and low-level objects; resource allocators; input receivers,
transducers, routers, and output generators; algorithmic subroutines; and data
stores and managers. For example, as part of an information system, one finds
records and record types, queries, and consistency checks. As part of a real-time
system, one finds hardware devices and drivers, message queues, and message
types. For data processing applications, typical structural components are input
reader, input verifier, command decoder, message router, query processor, report
generator, output formatter, and output printer. Typical subroutines include
mathematical functions, binary/ASCII conversions, sort routines, dictionary
managers, statistical routines, curve fitting, and text justification. Typical data
stores include conversion tables, data dictionary, dialogue menus, transaction log,
and task schedule and time line.

One way to build a system is bottom-up: each layer is a level of abstraction; each
layer uses the features of the lower layer; the bottom layer is the target machine;
and the top layer is an abstract “application machine.” For example, a data base
may be structured in these layers: (1) hardware mass storage device, (2) physical
disc block IO, (3) disc storage allocator and reclaimer, (3a) disc
verifier/diagnostic/repair program, (4) data base “realm” allocator, (5a) data
dictionary manager, (5b) entity set manager. A graphical animator may be
structured in these layers: (1) bitmapped video terminal, (2) window manager, (3)
icon definitions; (3a) icon definition language/editor, (4) icon overlay manager, (5)
icon motion generator/smoother, and (6) scenario player.

CMU/SEI-91-TR-2 73

Boundary conditions represent the limits on the application objects, such as
maximum size, maximum number, limit of value range, attribute existence,
attribute uniqueness, relationship existence, temporal limits, and temporal ordering.
Size constraints imply the amount of hardware and the choice of allocation and
management algorithm. Existence and relationship constraints imply the structure
of input verifiers and details of data store managers. Temporal conditions imply the
use of active processes (daemons and alarms). Resource constraints represent the
limits on the implementation: machine power, memory size, mass storage size,
device latency time, and transaction response time. For example, the constraint of
too small a memory may imply the need for code paging or overlays, data store
paging, data queue paging, algorithms to have high locality, or queues to be accessed
linearly. A time constraint such as device interrupt urgency may imply a high
priority handler, special fast context switching, or minimal processing at the
interrupt level. A time constraint such as transaction response limits may imply
minimal data movement, pre-paging of code or data (very hard!), filtering of “easy”
events, or background processing of other tasks.

The design analysis can also identify problems such as resource limits, eccentric and
hard-to-abstract machine features, algorithms with variable performance,
components that are stress points, and components that are hard to test. As an
example, consider an “eccentric” device. Most output managers adopt the model
“send message (destination, message text).” You have a hardware terminal handler
that interrupts with “(line number of terminal now ready for next character).” It is
not easy to layer the familiar model on top of it. Another example is an unpre-
dictable algorithm. Many sort algorithms are have O(N log N) complexity. Some of
these exhibit very bad worst-case performance, such as O(N2) on reverse-ordered
input, and very good usual-case performance, such as O(N) on nearly-sorted input.
Are we building for predictability or throughput? A stress point is a component,
failure of which will destroy the system; examples are the garbage collector in
transaction-processing system, the clock handler in real-time system, and the file
server in distributed system. These components must be built very carefully.
Components may be hard to test because of many different inputs, many different
possible outputs from one input, output very dependent on past history, output time-
dependent or nondeterministic, or distribution of inputs largely unknown.

The design analysis helps define the test strategy for each component: test from
specification (black box), test from structure (white box), examine input and output,
examine internal state, or measure performance. For example, a lexical scanner
reads characters and emits tokens; it uses negligible internal memory, it has exact
specification of input and output, its input characteristics are highly predictable,
and the time taken is very predictable. A good test strategy is black box, from
specification, covering the full input domain—test with every possible pair of tokens.
As another example, consider a routine to compute the square root of a floating-point
number: it has a precise specification and a domain with sharp boundary conditions,
full test is impossible, and an accuracy constraint must be met. A good test strategy
is white box, stressing the boundaries of domain and all flow paths through the code.
It is also desirable to test sparsely over the entire range of input, paying attention to
values close to a power of the radix.

These are simple examples from a wide field. The key point is that the build
strategy of a component must include also a test strategy, which depends on the

74 CMU/SEI-91-TR-2

component, its role in the whole system, and the constraints under which it
functions.

The result of the analysis is a building plan that describes what the components are,
in what (partial) order they will be built, how each component will be tested,
problem areas to investigate immediately, and the outline resource budget for each
component. At this stage, one can investigate prototyping and reuse.

In summary, software creation begins with the software design. This design is
analyzed to determine a build strategy. The result is a building plan traceable back
to the design. Possible problem components have been identified. Resource
requirements and constraints have been clarified.

4. Building Software Artifacts

Reading: none

Building software requires a building plan and a building team. Major concepts are
the structure of the team, team management, code production and adaptation, tools
and scaffolding, and configuration building.

The building plan contains the results of the design analysis (what the components
are, in what (partial) order they will be built, how each component will be tested,
and the outline resource budget for each component), and the instructions to the
building team. The team must be organized to support several functions: product
and resource management, quality assurance, code production, and configuration
building. It must be managed efficiently and economically, and it must function
within an appropriate framework.

The team manager is responsible for the overall work of the team and performs
these duties: assigns resources, instructs in standards and procedures, monitors
progress and budget, resolves implementation problems, handles emergencies, and
keeps risks under control.

Quality assurance support is responsible for quality of product; it assesses
compliance with standards and procedures, checks that all documentation and
history are present, ensures that the established build and test plan is followed,
performs spot checks as necessary, and certifies each component to librarian.

Work groups are responsible for building and testing components: code production,
code adaptation, test set generation, internal checking of code quality, and internal
monitoring of progress and resources.

The librarian is responsible for building final configuration, maintains appropriate
information structures, accepts components when built and certified, ensures
integration only of consistent versions, controls access to released documents,
ensures proper revision procedures are followed, and maintains versions and
configurations.

The work is assigned to the work groups by considering the order defined in the
building plan, the skills of group members, the availability of resources, and the
tightness of the schedule. No initial assignment survives reality. Progress tracking
is essential. The order of work should be adaptable to adjust for unforeseen
difficulties, accommodate gaps in resource availability, allow reasonable slack after
each major activity, provide time for review and reconsideration, and have clear and

CMU/SEI-91-TR-2 75

unambiguous dependencies. It should allow the work groups to manage their own
time as much as possible.

There are three keys to executing a successful build: regular progress tracking,
rapid and effective response to emergencies, and continuous monitoring and re-
evaluation of risks. The ideal is never to be surprised. The next best is to be
equipped to deal with surprises.

Resources are the cost inputs to the process: people, equipment, and time.
Resources available must be checked against estimates. Resources consumed must
be checked against estimates. Major discrepancies must be resolved by reallocation.
Only objective monitoring will convince the manager of the need for reallocation.
Progress tracking measures the output value of the process: functioning
components, correct documentation and history, and complete configurations.
Progress made must be checked against estimates. Major discrepancies must be
resolved by rescheduling. Progress must be measured objectively and, preferably,
independently of the work groups.

Alerts and exceptions are unanticipated events that affect the process, such as people
problems, equipment failures, or customer interference. The response must try to
keep the process on track, and it might include reallocation of resources, adjustment
of schedules and work order, or reconsideration of priorities. The manager must
recognize failure of the process.

Risks are anticipated problems with the process, such as novel or difficult tasks, or
major uncertainties in cost or performance. Risk management attempts to keep the
process robust; it includes measurement and assessment of risk, strategies for
avoiding risk, and contingency planning against risk. The manager must recognize
and admit unavoidable risk.

An effective build process needs tool support, such as planning, budgeting and
scheduling tools, effective measurement of resources used, timely assessment of
progress made, support for manager and worker enquiries, and tracking of ongoing
tasks and prompting for action. Support first what people spend most time doing.

Code production is the main object of the process. The work teams perform three
types of task: code generation (creating new components); code adaptation
(converting one component into another); and code scaffolding (building temporary
structures). Component generation is the creation of new components according to a
specification, with the necessary properties, of satisfactory quality, by a documented
method. The same process should be followed, regardless of the method chosen to
create the component. The process must therefore support all methods. Code
adaptation is the revision of an existing component to create a similar component, to
create an alternative component, or to create a substitute component. The process
must capture and retain the properties of both the old and the new components. It
may be possible later to recombine them. Scaffolding is code built as part of the
process that is not part of the product. Examples are code components that create
input data, inspect output data, print internal data, set up internal state, monitor
state transitions, modify code dynamically, apply useful metrics, or make useful
measurements.

The major tasks in building data objects are mapping values onto representations,
mapping aggregates onto storage structures, and implementing verifiers and
consistency checkers. The key system resources to budget are storage space and

76 CMU/SEI-91-TR-2

access time. Scaffolding is needed for all the above. The major tasks in building
code objects are selecting and implementing the algorithms, verifying the inputs and
proving the outputs, and defining the persistent internal state. The key system
resources to budget are execution time and real time. Scaffolding is needed mainly
for resource budgeting.

A configuration is a complete set of consistent components adapted to a specific
target and implementing a specific requirement. The build process must recognize
that it will be called upon to build several configurations, identify common parts and
keep one version, identify similar parts and keep parallel versions, or highlight
unique parts and keep justification. It is best to plan in advance for the likely
configurations.

Integration is the combining of consistent versions of all components into
configurations, with each component tested and assured. The end result is the
product. There are several ways to perform integrations: bottom-up, left-right, and
top-down. Bottom-up integration is an effective way to build a layered system: the
lowest layer is tested and proven; the layer above is integrated and proven,
assuming correctness of lower layers but assuming nothing about higher layers. This
process continues layer by layer, and the final integration builds and proves the
system. Left-right integration is an effective way to build a transaction processing
system: the initial input is prepared accurately; the input acceptor is tested and
proven; the next downstream unit is integrated and proven, assuming correctness of
upstream producers but assuming nothing about downstream consumers. This
processes continues along the dataflow path, and integrating the final output
generator builds the system. Top-down integration is an effective way to build a
command driven system: the command scenarios are generated accurately; the top
level command interpreter is tested and proven assuming the lower levels exist but
do nothing; the next lower level is integrated and tested assuming it receives valid
commands from above. This process proceeds level by level, and integrating the
primitive action routines builds the system.

System acceptance is the final assurance process that certifies the product. It
determines that all components are of known provenance and quality, integration is
done from a controlled configuration base, compliance with requirements is demon-
strated, compliance with resource limits is proven, and the complete life history is
present and well organized. Of course, the user may still be unhappy with it.

5. Coding Styles and Standards

Reading: Kernighan78

A style is a characteristic and recognizable manner of writing. A standard a set of
rules that attempt to establish or enforce a specific style. The rules for a specific
coding style are usually given in a document called a style guide. Typical stylistic
features influence use of layout and white space, position and content of
commentary, use of mnemonic names, grouping of code fragments into units,
relationships between code units, use or avoidance of language features.

Layout is the intelligent use of white space, such as pagination between major
components, line breaks between minor components, indentation to show syntactic
nesting, vertical alignment of parallel constructions, logical division of lengthy
constructions, and appropriate treatment of commentary. Good layout is the best

CMU/SEI-91-TR-2 77

aid to readability. Commentary is narrative explanation of code interleaved with it.
There should be clear separation of code and comment and clear association of
comment with code. Good commentary enhances understanding of code in that it
explains its relation to other code, elucidates the purpose of code, explains
difficulties of an algorithm or representation, and alerts a maintainer to potential
problems. Good mnemonic names convey information such as the purpose of thing
named; distinction between types, objects, and values; distinction between objects,
attributes, and operations; distinction between formal and actual parameters;
distinction between global and local objects; and association of generic and specific
objects.

Related code fragments should be kept together; such fragments may represent
attributes of one type, operations on one data store, attributes of the target machine,
or parameters controlling alternative configurations. Relationships between units
should be coherent, such as specific derived from generic, implementation dependent
on specification, data transducers using data definitions, or higher layer using lower
layer. Complex dependency graphs are a cause of confusion.

Language features affect coding style. There may be special ways to introduce
mnemonic names, special ways to customize code, language-enforced grouping or
dependency rules, or language constructs with useful redundancy. Style guides
encourage use of such features. Language features also affect code clarity and
efficiency, such as counterintuitive or hard to parse constructs, data structures with
excessive space or time overhead, language primitives with unacceptable cost, or
dependency structures with hidden overhead. Style guides often deprecate such
features and mandate alternatives.

The overall purpose of style rules is to make the code better: more uniform, more
legible, more understandable, traceable to other documents, more robust, more
easily and safely modifiable, more portable, and more efficient. Uniformity is the
most important reason for imposing a style. Code written by one coder is readable
by another; code written this year is readable next year; units serving similar
purposes look similar. This simplifies training, resource allocation, maintenance,
porting, and much more. It implies that standards be consistent over time.

The structure of the code should be clear from its layout: what is imported, what is
defined, the interfaces of closed units, the overall flow of control and its branch
points, local objects and their purpose, and operations that change the values of
objects. The meaning of code should be clear from its style: the purpose of this unit,
the relation of this unit to other units, the types of all objects and values, the
significance of all attributes, the effect of all operations, the algorithms used to
perform computations, their domains, ranges and preconditions, and error situations
and their consequences.

Style rules can help improve traceability: each unit states its purpose, each unit
names what it imports and exports, each object states what entity it implements,
each procedure states what operation it implements, each function states what
attribute it implements, non-portable units state what configuration they support.
Changes in units are tracked by a history.

Good style helps avoid introducing errors. Good layout guards against errors in
control structures; naming conventions guard against type or role errors; use of
redundancy helps the compiler find errors; good code grouping avoids unwanted

78 CMU/SEI-91-TR-2

dependencies; and a clean dependency graph avoids initialization errors.
Experienced coders adopt robust coding styles.

Good style can make code easier to modify. It can isolate and explain configuration
parameters; flag and explain temporary features; make dependencies clean, simple,
and explicit; indicate where and how to enhance; and comment code with implicit
properties. Few style guides consider this issue.

Good style can help make code more portable. It can isolate system and machine
dependencies; specify clearly all abstract machines or layers; document limits of
portability; use simple and unassuming type and object definitions; and avoid
language constructs that impair portability.

Good style can help make code more efficient. It can avoid expensive language
features; specify accurate ranges for types and variables; encourage clean control
structures easily optimizable; avoid global dependencies, side effects, aliasing, etc.

Good style must be supported by a good process. The key is training of, and
commitment by, the coders. This can be reinforced by style imposition during code
creation, style checking before code release, and style improvement of existing or
imported code. Some tool support is feasible. The enforcement of correct style
during code creation can be accomplished with tools that allow only good code to be
written, tools that reject code in bad style, prompt “buddy check” of new code
fragments, style assessment by the quality assurance function or librarian, and style
certification as part of release protocol. The style assessment of existing code
requires reliance on code provenance or prior certification, tools that measure
compliance, spot checks of code by human assessors, or full checks of code by
designated sponsors.

Modification of existing code to improve style may include efforts to revise layout,
improve commentary, improve structure, remove ugly features (such as “magic
numbers”), regroup fragments into better units, simplify the dependency graph, and
abstract system or machine dependencies. This is much harder on a large scale than
on a small scale.

Several tools can impose or enforce code style, such as a language-sensitive editor,
style-sensitive compiler, dependency verifier, or code improver. A language-
sensitive editor is a tool for entering or modifying code that understands some of the
programming language. Most editors understand only syntax; a good editor must
understand also some semantics, such as the relation between declaration and use,
contents of imported units, and name overload resolution. Such editors make
certain errors impossible and can impose certain styles. A style-sensitive compiler is
one that can be set to reject legal but ugly code. It may enforce a ban on “magic
numbers,” enforce consistent use of letter case or number radix, require certain
proportion of commentary, require systematic use of approved alternatives (example:
named parameter association in Ada), or reject attempts to use deprecated features.
A dependency verifier is a tool that ensures the unit dependency graph is coherent:
no circular dependencies, no dependencies of “lower” on “higher,” dependencies on
target machine isolated, and dependencies on data representations confined to
relevant data processing algorithms. A code improver is a tool that can scan existing
code to detect style violations, recommend changes, make changes automatically, or
apply stylistic metrics such as complexity measures. Most such tools are still very
simple and do very little.

CMU/SEI-91-TR-2 79

6. Software Reuse: Principles

Reading: Wegner86

The main reasons for software reuse are saving time, saving cost, and being able to
depend on known quality and known performance. Note that even reused software
should be retested in its new environment. Saving time is the principal motivator
for reuse. All software projects fall under time pressure; time saved early in the
process is invaluable; an early choice to reuse saves time at every subsequent stage.
However, a mistaken choice to reuse is very expensive. Saving cost is really saving
expert effort. The skill that created the reusable component is repaid many times
over during reuse; the expert is better employed on reusable components than on
custom components; and the ultimate goal is to embed the expertise in the
components. Known quality is an important reason for reuse because a reusable
component has already been proven. This reduces the risk of developing that
component, and most quality attributes are preserved by reuse: documentation,
traceability, and design history. Performance is usually carried over but must be
retested specifically.

Reusable components may be identified at different stages: during requirements
analysis, after design, after component specification, or after component
implementation. Requirements analysis may uncover a typical feature that may
have one or more standard implementations; an existing implementation can be
selected directly, and it then becomes a constraint on the design that it incorporate
this specific component. As an example, consider a data management system
requirement that calls for recovery after a system crash. One standard way to
implement this is by regular checkpointing, transaction serialization, transaction
logging, and rollback and replay after error. This paradigm can be adopted
immediately in response to the requirement.

Reuse of design can occur when, during the design phase, a component is identified
that is a reasonable part of the final system, one for which a detailed design already
exists, possibly with a model implementation. The component design can be
incorporated immediately into the system design. As an example, consider an
application that calls for a dialogue-based user interface. A design already exists for
a menu-driven interface using a standard window manager driving a command
interpreter. This design can be assessed and adopted into the system. A prototype
implementation could be adapted to use the specific dialogues called for.

Reuse of specification can occur when, during interface and component specification,
the developer finds a specification very close to one that already exists for which
proven implementations exist that can be reused and reimplemented in this system
with minimal perturbation of other components. As an example, consider an
application that needs to control several output devices, the device interface
required is close to an existing one, and the existing interface is used in the system.
Existing implementations (devices) are used as models from which to build the new
implementations (devices).

Reuse of implementation is the lowest level of reuse. It can occur when, after
component specification, the developer finds a specified component already exists
that can be inserted into the system and will meet the requirements. As an
example, consider an application that needs to sort a set of records. The language or

80 CMU/SEI-91-TR-2

system support services already provide a sort routine that can be invoked directly
by the application. It will perform the sort according to the requirements.

Reuse occurs at several levels, and so reusability must be addressed at several
stages of development. The development process should recognize software reuse as
a useful practice, encourage reuse during system design and development, identify
new components that might be reusable, and use and maintain a library of reusable
components. The component library is an organized collection of reusable
components that contains many types of component, each certified as reusable, and
readily accessible during software development. Every development effort should
aim both to produce a product and to enrich the library. Approval to write new
software should be given only when reuse has been proved inappropriate.

The development process must provide guidelines for creating reusable components,
addressing issues such as the limits of application domains, appropriate
parameterizations, design and documentation standards, performance analysis
procedures, and certification procedures. An essential guideline is an interface
standard that states how the component must interact with others, including control
and data flow, visibility restrictions, and error detection and handling. A common
interface standard is increasingly a feature of advanced software environments.

Reusable components must possess certain properties: they must be usable,
applicable, findable, integrable, of adequate quality, and traceable. A key process
issue is how such components can be built. Software must be usable before it can be
reusable, so a reusable component must be fully documented, fully tested,
benchmarked in a typical situation, and proven in a real system. Only then is it
known to be of reusable quality. For this reason, it is very hard to build a reusable
first version of any component. Software must be not only usable but useful, so a
reusable component must perform useful work required by many applications in an
appropriate manner. A useful component implements a functional unit that is a
characteristic of the application domain. Findability is important because if you
cannot find it, it might as well not exist. Reusable components must be collected,
classified, indexed appropriately, and held in a component library. Looking for
reusable components should be a specific and simple part of the development
process. The component library is part of the development environment. A
component is more than a functional unit; it is a unit that can be integrated with
other units into a complete system. The interface of a reusable component must be
accurately described, appropriate for the context of use, consistent with the
neighboring components, and suitable for unit and integration testing. This is made
easier by a common component interface.

Quality is critically important; if it’s no good, who needs it? A reusable component
must be of adequate quality. Sometimes, quality or performance requirements are
so strict that a custom component is necessary. More often, the requirements are
reasonable but the component fails to meet them. This is often because the builder
of the component was not working to any standard of quality.

Traceability is also important; a software component must have a provenance:
authors, original requirements specification, original design, test and certification
procedures, and a history of relevant previous reuse attempts. The same
traceability is required for reused components as for new components.

[The lecture introduces a small case study for a student exercise.]

CMU/SEI-91-TR-2 81

7. Software Reuse: Practice

Reading: none

Software reuse in practice can be seen in four simple examples: a Fortran
mathematical library, an Ada mathematical library, the PostScript language, and a
queue manager described in the case study.

Several characteristics of the Fortran mathematical library have made it successful:
its specification is almost unchanged for 30 years; it is available in all language
implementations, it is controlled as part of the language standard, and it is
satisfactory to most users. The standard has some disadvantages: each data type
uses a different name (SIN, DSIN, CSIN), and there is only simplistic error
handling. But its advantages are greater: it is integrated with language, uses
typical language style, has concepts familiar to user, and has proven functionality.

In contrast, the Ada mathematical library has been under development for more
than 10 years; it is still a draft specification, it has no commercially available
implementation, and it is not yet a success. The main reasons for the contrast are
that the Ada library is not developed and maintained as part of language, there is no
quality assurance of implementations, and there has been no resolution of serious
interface issues, such as subtypes and exceptions.

PostScript is a page description language, an interface language for programs and
output devices. It was created by private venture, voluntarily adopted, supported by
a growing number of programs and devices, and it is the form in which many
documents are now distributed. It is likely to be a major success. Significant
features include a specification that met a clear need, commercial support, an initial
base of commercial products, a very clear and accurate specification suitable for
machine processing, and a simple text representation that can be sent as ASCII.

The queue manager is a generic package specified in Ada. It addresses a familiar
problem with standard solutions, it is designed using good object-oriented
techniques and implemented as specified, and it has a test suite constructed from
the specification. The component was abandoned in the second version of the
product, hence reuse was not a success. The problem was apparently overgenerality:
it included a complete set of operations not needed by any one user, a generalized
data structure supporting all operations, and operations that were expensive to
execute yet required in time-critical situations. There was no initial performance
requirement, budget, or test, and the implementation was not tailorable for
performance.

Reuse success seems to depend on the perceived value of the component, an accurate
perception of the context of use, good integration of the component with its
environment, and an initial quality product proving the component.

Lessons learned from hardware may apply to software reuse. Computer hardware is
typically used for many different applications without customization or modification,
and with reasonable success. This is a form of reuse. What features of hardware
design make this possible? Some principles can be elucidated: design against a
broad set of requirements; design from a set of guiding principles; implement simple,
fast and consistent primitives; avoid special-purpose features; do not let features
unused damage features used. Recognize that there will be one or more layers of
design above the reusable level provided.

82 CMU/SEI-91-TR-2

The reusable component should be recognizable by the application developer, occupy
an obvious place in the system, conform to the expected conventions, and be part of a
comprehensive set of components. A set of reusable components should be
individually simple and obvious, collectively comprehensive, individually usable as
required, and collectively consistent and integrable. A set of reusable components
must be at a common level: they should implement (most of) a layer of abstraction,
be capable of being composed into higher layers, and assume only standard lower
layers. A set of mathematical routines is an obvious example.

But consider the Ada mathematical library. It uses standard exceptions to signal
errors, requires a (missing) lower-level standard for error handling, and is not
composable into a robust higher layer. It uses unconstrained data types, and it is
not composable into a higher layer with constrained types. Because of the lack of
other agreed standards, the design has to solve problems at different levels.

An application domain has its own architecture: layers that represent conceptual
abstractions, interaction models that represent information transfers, objects that
are common structural components, and pervasive quality or performance
requirements. A domain analysis is an investigation of a domain. It requires study
of major working products in the domain to determine the key features of the
domain, identify common problems and solutions, and derive a domain architecture.
This analysis, if done in the proper way, can define an architecture to support
software reuse in the domain.

A paradigm is a common problem within a domain with a standard, proven set of
solutions that can be reused in successive products. The paradigm is therefore a
reuse opportunity. As an example paradigm, consider the timeout : two parallel
processes are coupled; one is blocked awaiting the other, but it dare not block
indefinitely. The paradigm solution is the timeout: the blocked process sets an
upper bound on blocking time, and a watchdog guarantees to unblock the process if
necessary. Design and implementation of the watchdog is a standard exercise for
which several solutions exist.

A standard solution to a problem is not enough. It must be embodied in a structural
component separately specifiable and buildable, independently testable and
assessable, and subject to separate configuration management. Reuse of the
solution then implies reuse of the component. As an example, consider a transaction
log. It solves a standard problem, is implementable by a single component with a
clear interface to the rest of the system, and is separately buildable and testable. As
a bad example, consider a garbage collector. It solves a standard problem, but
different applications impose incompatible constraints. The implementation
requires detailed knowledge of the rest of the application, and it is almost impossible
to generate realistic test scenarios. With luck, a high-level design may be reusable.

A component library is a set of reusable components of proven utility, under proper
configuration control, forming comprehensive sets of objects at appropriate levels of
abstraction. As an example, consider the X-windows specification. Practical
implementations exist, versions are clearly differentiated and controlled, the
specification provides adequate functionality for driving a large class of terminals,
the specification layers are clear and consistent (one layer of data structures, one
layer of routines), and the interface follows and builds on existing standards.

CMU/SEI-91-TR-2 83

8. Automatic Software Generation

Reading: Martin85; Ng90 for background

Very little software is written in machine code so, in a sense, almost all software is
automatically generated. The continuing goal of automatic software generation is to
raise the level of abstraction of the human input. At present, we are moving from
traditional programming languages to what are called fourth-generation languages.
The jargon term for them is “4GL.” The third-generation languages are procedural,
algorithmic higher level languages such as Pascal, C, and Ada. The next-generation
languages are one or more of non-procedural, not wholly textual, specification or
requirements oriented, or more formal and algebraic.

Programming languages may be implemented in three ways: compilation to machine
code (code generation), compilation to threaded code, and direct interpretation.
Each of these techniques is applicable to 4GL. For compiled implementations, the
intelligence is embedded in a compiler: the source program is converted to machine
code, the machine code is constructed afresh each time, and different source
programs compile to different object programs with little in common. For threaded
code implementations, the source program compiles to a sequence of subroutine
calls, every primitive operation in the source language is implemented by a
subroutine in a component library; this library is constructed once for each machine;
every subsequent program is implemented by selecting and combining the reusable
subroutines; and the sequence of calls is unique to that source program. For
interpreted implementations, the same component library is used as the basis. The
source program is executed directly by a single interpreter, there is no persistent
transformed version of the program, and the interpreter identifies each operation
and then immediately calls the corresponding subroutine.

All three techniques have these common features: an algorithmic source program,
an engine that analyzes the source for its operational meaning, a means by which
the target machine can perform the intended operations, and a way of ensuring the
machine operations are invoked appropriately. The same features are found in the
next generation of languages. The main differences are that the source input is at a
higher level of abstraction, the input is not algorithmic or operational, and the
analysis engine must be more sophisticated. But the result must still be
implemented by machine operations.

Five examples of higher languages are an input description language, an output
description language, a functional language, a knowledge-based language, and a
graphical application generator.

An input description language is a formal way of describing input data. From the
description, a data recognizer can be built to validate input, accept legal input,
transform it into appropriate internal form, and reject invalid input. An output
description language is a formal way of describing an output document (its format
and contents). From the description, a report generator can be built to extract the
required data, convert it to the required representation, and lay it out in the
required format. With a functional language, the source is a functional description
of the solution; that is, a mathematical formula with a defined value. An
appropriate engine can cause the formula to be evaluated, and the result is the
required output of the program. A knowledge-based language has source input that
is a set of rules that define necessary properties of input, invariant properties of

84 CMU/SEI-91-TR-2

persistent data, and required properties of output. The system must ensure the
rules are obeyed, thereby processing input, generating output, and preserving
information. An application generator has source in the form (input/process/output).
Input and output are separately defined, and the process is defined by decomposition
into subprocesses, ending with standard predefined primitives. This is converted
into an application program that will execute the top-level process.

One finds 4GL in domains with persistent data, highly stylized data processing, very
stable application needs, exact formulas defining output, exact rules describing
system behavior, and precise graphical analogues of system operations.

In domains with persistent data, the intelligence of the system is in the data
dictionary—the set of definitions of persistent objects. This is used by every
application; most applications perform standard operations on the persistent objects;
and the application can be generated automatically from a statement of what is to be
done to whom. In domains with highly stylized data processing, almost all
applications require similar operations: locate, extract, reformat, update. A small
set of operations can be implemented once, and an application can be generated
simply by composing the operations in the required order. Where the application
domain has a body of expertise that can be codified as rules or formulas (a number is
prime if ...; a book is on loan if ...), an application is simply a set of rules to be obeyed
or formulas to be evaluated. There is no machine code as such; the implementation
engine interprets the rules and derives operational means to satisfy them. In
domains with graphical analogues, the applications typically perform processes on
objects; objects and processes can be represented by icons; their association can be
represented by an arc on a graph; each icon can be further elaborated by an
appropriate 4GL.

Building a software generator is a difficult and costly task. We must analyze the
application domain; identify objects, operations and rules; implement primitive
operations as reusable components; define appropriate languages; build language
interpreters; integrate the result with suitable development tools; explain how the
object base or rule base is to be created; and create model object and rule bases. For
example, consider an information systems application generator. It will involve a
data definition language (structure of stored objects), an input definition language
(data entry and validation), an output definition language (report generation), data
manipulation primitives (allowed operations), a data manipulation language
(composition rules), an application builder (associate input, process, output), a test
generator, a model data generator, a scenario builder, etc. It needs a friendly user
interface and configuration control for all of the above.

Automatic software generation has its problems: very high initial cost; techniques
that are often domain specific; difficulty in estimating or guaranteeing performance;
difficulty in testing the application thoroughly; and basic assumptions deeply buried
in the system.

9. Software Prototyping Systems

Reading: Turner86

A prototype is an early version that will be discarded. A prototyping system is a
software development system for the construction of prototypes. A prototyping
language is a language in which prototypes are written, usually supported by a

CMU/SEI-91-TR-2 85

prototyping system. Prototyping is the technique of assisting software development
by the use of prototypes.

The purpose of a prototype is to answer a question. The developer lacks certain
information that is important to the development, and it can be obtained from a
prototype. Typical questions a prototype might answer are: is this really what the
user wants, how can we fit these components together, can we build this component,
how likely is it that the system will perform as required? Naturally, different
questions can imply different prototypes. A prototype can also be used for
requirements refinement: build a demonstration or working model, demonstrate it
to the user, and amend requirements in light of user feedback. Usually, the
prototype evolves during the interaction, and the revised requirement is then
reverse engineered.

As an example, consider a system in which the initial requirement calls for “a user-
oriented query interface.” The prototype demonstrates a “query by example” system
using a dummy data base. User feedback suggests, perhaps, better layout of forms
and a prompt facility to help fill in forms. The requirement can now be revised and
refined.

How can existing components be integrated? A prototype can explore integration
issues such as data type commonality, proper data flow, and appropriate invocation,
control, and error handling. For example, the requirement may call for “reuse of the
Ada mathlib.” The prototype builds a typical system component making use of
mathematical library, using application related data types, and implementing
required data validation and error handling. If this component works, it is probable
that the other components also will work; if not, the requirement must be
reconsidered.

Prototyping can help in feasibility analysis. Suppose the requirement calls for
something novel and hard, such as a new target machine, some other new hardware
component, a new programming language, or a new software development method.
The prototype demonstrates that it is feasible to introduce the novelty into the
system. For example, suppose the requirement specifies a new, difficult component:
“data communication shall use the new X-bus.” The prototype builds a pair of bus
drivers in order to verify the communication model, explore a range of protocols,
demonstrate data transmission over the bus, and assess performance. If the
prototype works, the component has been shown to be usable as required.

Prototyping can help in performance analysis. Suppose the requirement has strict
performance goals. The components crucial to meeting the goals can be identified
and isolated, prototypes of each are built, and their performance is measured using
realistic scenarios. This shows whether the goals are reasonable. For example,
suppose the requirement sets a bound on transaction time: “radar image must be
identified within 200 ms.” The prototype takes a set of typical radar images of
friendly and hostile vehicles, uses several image matching algorithms, and measures
the average and worst-case time of each. If one or more algorithms meets the
criterion, the prototype shows that the performance can be achieved.

These examples have an obvious common factor: there is a key problem whose
solution is crucial to the development, we are not sure of the solution to the problem,
and a prototype can increase our information and hence reduce the uncertainty.
Prototyping is hence a risk reduction process.

86 CMU/SEI-91-TR-2

A prototyping system is a software base for building useful prototypes. It includes a
prototyping language, component library, component simulator, scenario generator,
and metrics support. The component library is a set of standard components for
building prototypes. They are customizable and integrable, capable of being
measured for (simulated) performance, and may include alternative algorithms
where appropriate. These components are often domain-specific; the issues of
software reuse also apply at the prototyping stage. The component simulator is a
way to pretend components are there when they aren’t; it may include stubs,
“canned” value generators, input loggers, output prompters, or null transducers with
artificial delays. The fake component does whatever is necessary to keep the
scenario moving without loss of realism. Scenario generators simulate realistic
operating conditions; they generate appropriate sequences of data or events
corresponding to a probable history; they therefore allow reasonable overall behavior
and performance to be verified and measured. Systems that maintain extensive
history should be tested with lengthy scenarios.

It is often necessary to measure the performance of a prototype, so the system must
support the measuring process. This often includes data store sizes and activity,
queue lengths and arrival rates, and (simulated) time to perform transactions. The
system must permit non-intrusive monitoring. The measures obtained must be
scalable into estimates of target performance.

A prototyping language is the notation used to describe the prototype. It is written
by the prototype engineer and executed in some way by the system to give an
appropriate simulation of reality. A prototyping language has special features:
flexibility; support for rapid incremental change; support for partial integration
using novel, standard, and dummy components; and giving software artifacts that
are measurable overall and in detail. Example languages include Miranda (a pure
functional language with a formal bias), REFINE (a rule-based language with a
graphical interface), and Proto (a graphical language with advanced tool support).

Prototyping has obvious advantages; it can help to obtain crucial information early
in development, validate feasibility of key requirement, explore novel technology,
demonstrate a model to the user and obtain feedback, select the best algorithm for a
key component, and obtain timely performance estimates. Sometimes, only
prototyping can meet these needs. However, prototyping has certain difficulties,
including technical problems, process problems, and procurement problems. A
technical problem is the trustworthiness of a prototype. A prototyping language is
not an implementation language, the prototype components are not real components,
and simulated performance cannot be directly perceived. A good prototyping
technique must be quite clear about how the prototype resembles real life and how
the prototype differs from real life. Remember that a prototype tries to answer a
specific question. Some process problems are: the need to keep both prototype and
real versions; traceability between the prototype and the real product; parallel
development of requirements, design, and prototype; tension between the need for
fast evolution and the need to keep proper development history; and the question of
whether prototypes should be kept even during maintenance. Prototyping makes
hard assumptions about the process: the requirement is subject to further
negotiation, the user is available for lengthy and detailed interaction, adequate
domain knowledge and components exist, and, most important, enough time exists
for a prototyping cycle and the key risk issues can be identified and prototyped. It is

CMU/SEI-91-TR-2 87

sometimes hard to convince the customer of the need to spend time and effort on
prototypes.

10. Software Testing: Principles

Reading: Beizer84, Myers79, Bastani85

Testing is a specific part of the software development process and serves a specific
purpose. It is applied to each component, however created, to groups of components,
and to the system as a whole. Any software object must pass between two stages,
development and deployment. The transition between them requires acceptance of
the object. This acceptance implies a degree of confidence in the object being
accepted. The purpose of testing is to increase confidence in the object under test.
Every test should help build confidence. Testing is complete when a satisfactory
level of confidence has been built. A tested object is then deliverable by its developer
and acceptable to its customer. Note that both developer and customer must have
confidence in the object.

Testing is a necessary part of the process; it provides confidence about certain
properties of the object that cannot be otherwise provided. Good testing therefore
focuses on the properties that must be tested, the degree of confidence required, and
the most effective way to achieve it.

The test process spans a large part of the development: test against specification,
test against design, test of component interfaces, test of component function,
integration testing, and system testing. It runs in parallel with the main
development process. For each major test area, one must determine what is to be
tested, what it is to be tested for, how it is to be tested, who is to perform the tests,
what the actual tests are, and how to interpret and act upon their results.

Every test provides information; ideally, every possible result should provide
information: a positive result implies a possible error will not occur, and a negative
result implies a specific error has occurred. In either case, the test should isolate
what can now be assumed acceptable and what must now be repaired. All testing is
against some requirement, and these requirements are imposed at different stages.
For example, in specification: “the program shall accept only valid input,” in design:
“input will be validated by module IVM,” in the building plan: “module IVM will use
a finite state machine recognizer,” or in the implementation guide: “IVM will always
reset itself to state NULL before exit.” In each case, who delivers and to what
customer?

There are three main ways to test components: black box testing, white box testing,
stress testing. There are two main ways to test larger pieces: probable-case input,
and worst-case input.

In black box testing, the component is opaque to the tester, the tests are generated
from the specification, they are based on partitions of the input and output domain,
and each test verifies correctness of part of the mapping between these domains. It
is very hard so to test modules with internal state. In white box testing, the
component is transparent to the tester, the tests are generated after
implementation, they are based on control paths through the code, and each test
demonstrates successful traversal of a specific path. It is very hard to test modules
with “spaghetti code.” In stress testing, the tester is trying to break the component.
The tests emphasize probable hard cases: extremes of input and output domain,

88 CMU/SEI-91-TR-2

singular points or discontinuities, especially intricate control paths, and
unreasonable error input.

In probable-case testing, the system is tested with typical input. If it handles the
more likely cases, it will function correctly most of the time. The confidence level is
therefore based on the probability of a correct response. This is analogous to the
mean time between failures. In worst-case testing, the system is tested with critical
input (input for which failure would have disastrous results). If the system handles
the critical cases, its failure will not cause major damage. The level of confidence is
therefore based on the probable loss due to system failure.

The ideal test strategy combines all these approaches and has two driving
motivations: to minimize the number of tests (accomplished if each test excludes
largest remaining error class) and to minimize the risk of using the delivered
component (the product of failure probability and failure cost).

Testing can be performed by three groups: those building the deliverable, those
accepting the deliverable, or an independent test group. In practice, all three groups
should test. For example, a component might be tested thus: white box by builders,
to exercise the entire component; black box by customer, to prove full functionality;
and under stress by a separate group, to assure robustness. Independent testers,
and diverse test methods, build more confidence in the component.

Test interpretation is important. (If you can’t use the answer, don’t ask the
question.) A test can give several results, and the tester should decide in advance
what are the correct results and what to do with each incorrect result. Badly
designed tests elicit the familiar responses, “That’s not a bug, it’s a feature,” and
“Sorry, that’s not my bug.”

11. Software Testing: Practice

Reading: none

Testing must be considered at several stages in the development process, at several
levels of abstraction, as a process extended in time, and as a process involving many
different parties. The model of developer/customer is a unifying thread. Test
specifications descend the levels of abstraction (requirements, specification, design,
build plan, interface, code), while testing ascends the levels of abstraction (white box
component test, black box component test, integration test, system test, product test,
acceptance test). Each level of testing in some sense assures the entire development
process beneath it.

One can regard the testing activity in two ways: as a discrete, separate stage—a
threshold—or as something done in parallel with development. The latter leads to
the notion of incremental testing: test as soon as able, and retest only on modifica-
tion. Both approaches have their advantages. Staged testing has the following
advantages: a single consistent object is tested, the tests are a complete indepen-
dent check, test success is a milestone in the process, and the customer can view the
testing live. It is a necessary part of the acceptance process. Incremental testing
has other advantages: effort is spread over longer time, gives early feedback about
defects, allows regular progress tracking, and permits refinement of tests with
experience. However, earlier tests must not be invalidated by later component
development.

CMU/SEI-91-TR-2 89

Regression testing follows the rule “retest after change.” The purpose of a regression
test is to reassure us that the change has not damaged the object. Regular
regression testing is necessary during component evolution, and it is therefore an
essential part of incremental testing. (It is also an essential software maintenance
tool.)

Known defects can be tracked by specific tests: a test reminds us a defect is still
there, a test assures us a defect has been cured, a test warns us if a defect
reappears. Each test tracks a particular defect. Regular regression testing guards
against reappearance of known defects. A defect control process ensures that all
defects are tracked. The process steps are: from the error behavior determine the
cause (defect), design a test specifically to demonstrate the defect, include the test in
the test set at the appropriate level, generalize the test if appropriate to look for a
class of defects, and repair the defect. Do not repair until you have a test to prove
the repair works.

Tests are derived in three main ways: from specification, from component structure,
and as stress tests. In practice, each process uses certain rules of analysis. Testing
from specification uses functional partitioning, input domain partitioning, boundary
value analysis, and cause/effect analysis. Testing from structure uses control flow
analysis, basis path derivation, loop control determination, and data store transition
analysis. Testing for stress may use both specification and structural details to
identify domain extrema, determine singularities in target representations, identify
size or quantity boundaries (“fire walls”), exercise implicit control paths, or violate
assumptions or preconditions.

Tools support is very helpful in developing tests; for example, requirements or
specification analysis tools, domain analysis tools, and code analysis tools. They can
often generate the majority of the tests that are required in practice. Specification
analysis tools work from a formal specification of the product to identify functional
areas, determine inputs and outputs, generate test data and model results, and flag
areas of excessive complexity. This works best if the various functions can be
cleanly separated and described. Domain analysis tools work on a description of the
application domain (objects, attributes, transformations, invariants). They generate
tests to determine attributes are correct, transformations work, and invariants are
preserved. They are usually driven by a rule-based domain description. Code
analysis tools use the structure of the code to generate tests, build a flow graph,
generate basic path exercisers, generate loop iteration and termination tests, test
exceptions or other implicit control actions, and check coverage of input domain.
This analysis can generate proofs as well as tests.

Test-processing tools automate the process of testing: when to test, what to test,
what has been tested, and what are the results of the tests. For each object, the tool
maintains the current set of tests with provenance of each, a test versus
requirements map, a test coverage map, a test result set and appropriate actions,
and a current defect list. This is keyed to the object version and configuration. The
test harness performs the tests: select a test subset, execute tests and log the
results, compare the results with stored result sets, modify the defect list as
appropriate, and recognize anomalies and alert the appropriate manager.

90 CMU/SEI-91-TR-2

12. Meeting Performance Constraints

Reading: Graham77, Sha89

Performance requirements are normally expressed in three ways: response time,
throughput, and flexibility. They also give some indication of normal workload and
abnormal workload. Examples include response time: “not more than 10 ms”;
throughput: “at least 100 per second” (note that these are not equivalent);
flexibility: “must be able to handle 150% normal load for up to 2 seconds”; normal
workload: “not more than 100 per second”; abnormal workload: “up to 300 in 2
seconds.”

The software design will have defined paths followed by each transaction, resources
required by each transaction, arrival points of transactions, and internal buffers or
queues. The overall performance requirements can then be tied to specific
components or sequences of components. The simplest approach is to budget for
performance: each component is given a time budget and must be implemented
within that budget; the sum over the transaction path must be within the
requirement. If a component participates in many transactions, its budget is the
maximum allowable for the most urgent transaction.

A simple budget process has these uncertainties: length of time to perform the
operation, arrival times of transactions, length of time waiting in queue, and length
of time waiting for shared resources. The time to perform an operation is difficult to
determine because few algorithms can be timed exactly, and execution time is often
data-dependent. Analysis can determine the best case, normal case, and worst case.
Budgeting for worst case is usually too costly. The normal case is that most likely to
occur, but it is not the average case for several reasons: worst case can be very bad
(even infinite), one slow transaction can delay later ones, and worst case instances
come in clusters. The last problem is a common pitfall.

Transactions arrive from the outside world at random, but there is usually some
underlying distribution amenable to formal analysis, such as mean time between
arrivals and the probability of N simultaneous arrivals. There is a calculable trade-
off between processing time and probable waiting time. Transactions within the
system do not arrive at random, they cannot be generated faster than the producer
can run, and they will arrive in bursts when the producer flushes its queue. In
general, this rule applies: if consumers can keep up with producers, there will be no
internal delays. The system can then be treated as a black box with a single queue
at the front. If all transactions are identical, queueing time can be estimated
accurately. Several queue models exist with known properties: FIFO, round-robin
time sliced, and priority based. If transactions are different, the problem is more
complex.

Transactions may have to wait for resources, such as free buffers, access to shared
data structures, or specific hardware components. This is especially a problem with
common resources since any transaction may then block any other. Shortages can
be reduced by permanent allocation of resources to transaction types, preemption of
resources by priority transactions, adaptive monitoring of resource usage, and load
balancing. Usually, the difficulty is not in taking corrective action but in knowing
which resource is scarce. In some cases, it is possible to preallocate all resources,
including storage, processing components, and processing time. If arrival and
processing times are known, then overall performance can be guaranteed.

CMU/SEI-91-TR-2 91

An overload is a load in excess of design or estimate. There are two key problems:
handling a transient overload and returning to normal after an overload. There are
two alternative strategies: load shedding and load deferral. Each solves one
problem at the expense of the other.

There are several tools for estimating performance, including transaction cost and
frequency estimation, transaction cost summation, queueing theory, resource
estimation, and scheduling theory. Finally, performance can be estimated by
modelling and simulation.

Performance must always be measured to demonstrate to the user that the
requirement is met, to confirm prediction or estimation, or to provide data for
performance improvement. Typically, specific improvement action is needed to meet
reasonable performance goals. These measurements provide useful data:
transaction arrival times, transaction waiting times at each handover point,
transaction processing time (both overall and in detail, component by component),
queue lengths and length distribution over time, and recovery time after overload.
Measurement tools include instrumentation (special code inserted into components
to record data), monitors (special devices attached to the system that capture data),
and analyzers (code or devices that reduce data to useful information).

Performance improvement is usually based on the premise that most systems
exhibit hot spots (specific components that consume most of the time) and
bottlenecks (specific places where transactions wait in bunches). If these can be
found, a small and local change may yield a dramatic overall improvement in
performance. Code tuning is an iterative process: find the component taking the
most time, extract it for revision, tune it until satisfied with the new performance,
replace the tuned component, find the next hot spot. This is repeated until the
performance goal has been met or no further hot spots can be found. Bottleneck
deletion is also an iterative process: find the worst bottleneck, determine the reason
for the blockage (such as insufficiency of one resource, inadequate priority of
consumer, or inadequate performance of consumer), and repair as appropriate.
Repeat until no bottlenecks remain.

13. Implementation Metrics and Costing

Reading: Boehm81, McCabe76

A cost-effective build process must estimate costs at the start, allocate resources as
estimated, monitor actual costs and progress, detect potential problems, and take
corrective action. This requires good estimates, good monitoring, and sufficient
flexibility in the process.

A metric is a standard for measuring something, such as the size of a software
component or the complexity of a software product. A cost is a quantifiable input
needed to make something, such as time, staff, or money. A good metric allows one
to predict probable costs.

Various measures have been proposed for the size of a software product, but the one
that seems to yield the best metric is lines of code (LOC). This provides a standard
of comparison for products in the same application domain written in the same
language using the same style and process. Novelty in any of the above creates
uncertainty. The most common cost measure is man-months (MM). A given
organization can usually convert this into money. Over a narrow range, staff levels

92 CMU/SEI-91-TR-2

can be traded for time: we can estimate time to deliver with given staff level and
can estimate staff level needed for given schedule.

A cost equation explicitly relates an attribute of a product with the probable cost of
producing it. For example, if we measure size in thousand lines of code (KLOC) and
cost in man-months (MM), then a sample cost equation is MM = 3.0 * KLOC1.12

[Boehm, Ch. 8, table 8-1]. For example, suppose we estimate a product to be 100
KLOC. The basic cost equation tells us it will take us 3.0 * 1001.12 = 520 man-
months. This is unrealistic for two reasons: neither LOC nor MM is precisely
defined, and the equation takes no account of team skills, problem complexity,
availability of tool support, etc.

A cost driver is a quantifiable factor that affects cost, and may be an attribute of
software product, target platform, building team, or build process. Estimated values
of the attribute are converted into scaling factors by which the base cost is
multiplied. Product attributes are those that affect its cost, such as the required
reliability or perceived complexity. Target attributes are features of the target
machine, such as execution time constraints, memory constraints, or platform
volatility (likelihood target will change). Team skill cost drivers reflect the skills of
the team in the given domain and with the given development tools, including
domain experience, target machine experience, and language experience. Build
process attributes include use of managed process and use of tools.

For example, suppose the 100 KLOC product has the following features: very high
complexity (1.30 scale factor), interactive development system (0.87), team having
limited language experience (1.07), and only minimal software tools used (1.24).
These cost factors multiply to yield 1.50. The weighted estimate is therefore 50%
greater than nominal, or 780 man-months.

The basic size measure, lines of code, must be estimated before cost can be predicted.
It is usually hard to get a good estimate before detailed design and build plans have
been produced. Typically, large components are underestimated. Accordingly,
estimates grow as components are refined and subcomponents are identified. Early
estimates should be based on past projects.

The other cost drivers are also hard to estimate. Most of them imply the
organization has a body of past experience against which to compare this project.
The reference gives some guidelines how to estimate. Note that the final result is
very sensitive to some drivers, especially product complexity.

Since a cost estimate depends on many factors, those factors can be changed to
change the cost. Some of these factors may be under project control, such as the
skills of the implementation team, programming language, and implementation
platform.

Tracking costs implies knowing at any point how much have we spent and what
have we spent it on. Each cost must be charged to a process or product unit: “cost of
testing storage allocator is 2 MM to date.” The units to which costs are charged
must be the units by which progress is measured.

It is harder to measure progress than cost. The best way to get a quantitative
measure is to have a large number of units and have a firm yes/no criterion for each
unit: “storage allocator fully unit tested and installed in library.” Each unit

CMU/SEI-91-TR-2 93

represents one clear stage in the development of one definite component or
subcomponent. Costs are charged incrementally up the integration tree.

The first sign of a problem is a divergence between an estimate and actuality.
Accurate and prompt measurement is needed. A cost overrun implies a false
estimate ; the estimate must be revised to yield a new cost and any related estimates
must also be revised. It is not enough just to “eat” the cost and push on. Revising
estimates is done by determining the cost driver whose value is wrong, deciding on a
better value, examining other related components for which the same change might
be appropriate, rerunning the estimating process with new values, and examining
new cost estimates for sanity. This might require more than one iteration.

The test of a good process is its response to problems. Several kinds of response can
be taken: rebudget and press on regardless, apply more (or more skilled) effort,
reduce the scale of the product, or improve the technology base. Some responses are
short term, some are longer term. Stretching the schedule is almost an instinctive
response; the solution is to slip the schedule and keep working. However, this is
probably the worst response. The manager is under pressure to make the minimum
slip, and the consequences of the slip are also underestimated. The product delivery
date therefore recedes gradually into the future and the team become demoralized.
This is another instinctive response: the deadline is held by throwing effort at the
problem. This usually fails because adding new people degrades the skill level of the
team (a typical degradation in application experience and programmer skills
increases cost by 30%). Only more skilled people should ever be added to a team.
Reducing functionality is often considered a last resort response. In effect, parts of
the requirement are deferred. This is one of the better responses, since it is effective
and it will probably happen anyway. This of course requires negotiation with the
customer. Reducing constraints is the best short-term response. Negotiate away
expensive and irrelevant constraints, such as a complex and unfamiliar
programming language, inadequate and obsolete deployment platform, real-time
requirements unrelated to reality, or excessive volatility in requirements or
platform. These constraints are usually a result of overspecification. Unfortunately,
the procurement process often encourages this folly.

A longer term response to habitual failure is to improve the software development
process and its associated technology. This includes training people, evaluating and
installing good software development tools, improving the project management
process, and improving cost estimation and budget planning. Improve in this order:
processes, then people, then things.

Some projects prosper better than others. However, any organization has a base
level of competence. This is sometimes called the process maturity level. This level
can be determined by self-assessment and analysis of sample projects. An
organization can become more cost-effective by raising its maturity level. Each
maturity level has specific characteristics, such as use of advanced tools, defined and
imposed quality assurance as an independent process, and regular staff training
programs. An organization advances from one level to the next by instituting the
appropriate change in its process. It is important to avoid inappropriate change,
such as introducing tools without proper training or attempting cost control without
proper metrics.

94 CMU/SEI-91-TR-2

14. Midterm Review

15. Midterm Examination

16. Software Maintenance Overview

Reading: Glass81, Holbrook87

The purpose of software maintenance is to preserve the value of software over time.
Anything done to a deployed software artifact with that purpose is maintenance.
Maintenance ends only when the artifact is obsolete.

In order to preserve the value of software, we must know what gives software value,
what enhances its value, and what detracts from its value. Appropriate actions then
need to be taken, and appropriate processes instituted. Software is valuable because
it meets a genuine customer need, it is easy to understand and use, it makes
efficient use of resources, and it incorporates appropriate up-to-date technology.
Accordingly, software can enhance its value by expanding the customer base,
meeting additional requirements, becoming easier to use, becoming more efficient, or
employing newer technology. Factors that reduce the value of software include
errors, contraction of the customer base, changes in customer requirements,
problems with understanding and use, inefficiencies, and obsolescence of system
technology. Value reduction arises from several sources, including intrinsic errors,
unfriendliness, and inefficiency; changes over time in customer and technology; and
changes in our paradigms—our view of how software should behave.

Maintenance is considered to fall into three classes: corrective (repairing intrinsic
defects), adaptive (responding to changed circumstances), and perfective (improving
working software). Pressman estimates that 50% of all maintenance is perfective,
25% adaptive, and only 21% corrective. (Other miscellaneous reasons account for
the last 4%.)

Effective software maintenance is difficult. It requires gathering information that
identifies a need to change, deciding what changes to make, and deciding when to
make a change. Maintenance must preserve software quality under change. It is
also difficult to deploy maintenance resources effectively and to propagate changes
through the installed base.

Information implying a need for change has many sources: existing customers,
potential customers, market research, competitors’ products, or technical strategic
planning. The organization must often actively seek such information. There are
three factors driving change planning: technical issues (what changes should be
made), marketing issues (when to make changes), and budgeting issues (what
changes are affordable). Any changes must be feasible, cost-effective, and timely.
The organization should instigate changes for planned, timely introduction.
Software changes are normally incorporated in versions (new releases that replace
old ones), configurations (additional releases alongside old ones), and patches (small
changes to installed versions). In an ideal world, all configurations exist in the same
version and there are no patches.

Managing software change involves these principles: keep an accurate history of
each artifact, introduce new versions effectively, plan new configurations
appropriately, preserve all necessary expertise in-house, track the cost of each

CMU/SEI-91-TR-2 95

release and the income it yields, recognize a market opportunity and respond to it,
and know when to retire a version, configuration, or product.

The cost of maintenance depends critically on how well the artifact has been built,
the number of initial defects, the seriousness of defects, the degree of independence
of components, the degree of abstraction from specific target features, the adapt-
ability of the system to incremental requirements change, and the extent to which
new technology can be accommodated. There are specific techniques for achieving
these goals. Unfortunately, many organizations maintain software they did not
build and over which they had no control of initial quality. They have no real
awareness of customer requirements and have insufficient in-house expertise. The
software may have an incomplete or missing development history and inadequate
supporting documentation. The maintenance process must address these problems.

Tool support for maintenance is almost essential, including a well-organized
information base; support for version and configuration control; support for testing
and quality assurance processes, tracking costs and benefits, tracking persistent
defects, and recording and estimating market size and demand.

A successful product resembles a successful life form in that it exhibits initial
novelty, a small initial population, increasing complexity, increasing ability to
compete, a dispersal into diverse environments, adaptation to new circumstances,
radiation into many related species, and gradual change into unrecognizable forms.
This analogy is captured by the term software evolution . In the world where
software is built for profit, a product will evolve until the marginal cost of change
exceeds the marginal benefit, a product will expand into new environments as long
as the new customer base will pay for the new configuration, and a product will
persist until a decisively better product displaces it. Effective maintenance
recognizes these pressures and supports products for long life and wide distribution.

Maintenance costs gradually increase over time as the product eventually reaches
its limit of adaptability and its old environment gradually erodes. The end result is
analogous to extinction. There is an optimal time to replace an old product, and a
good maintenance process will estimate that time. The organization should then
plan such a replacement.

17. Causes of Software Evolution

Reading: Boehm88

Almost all deployed software changes over time, and the changes all have
underlying reasons. Some change is in response to direct motivators; other change
is a consequence of earlier change. Good management accepts change as necessary
and plans for it.

Evolution is an accumulation of small changes, such as changes to individual
components or subcomponents, addition or removal of components, or regrouping of
components. Sometimes the small changes are part of a larger design, and
sometimes they are made in direct response to events. For example, consider a plan
to port a product to a new platform. This is a larger design that generates many
small changes; when all the changes are done, the port is done. Consider now a
corrected version of a product. This is simply an accumulation of small changes, and
each change is in response to a separate event.

96 CMU/SEI-91-TR-2

Behind every change there is some key reason, such as cost that can be avoided,
benefit that will be incurred, or an identifiable source of cost or benefit. This key
reason is the change motivation. It usually has both economic and technical
components. Changes in software can reduce the cost of demonstrating or
marketing, the cost of selling and installing, the cost of customer dissatisfaction/bad
reputation, the cost of defect correction, the cost of enhancing, and the cost of
porting. Costs can be divided into three types: cost to customer, cost of marketing,
and cost of maintenance. Accurate estimation of these costs requires good feedback
mechanisms, both internal and external.

Change can reap these benefits: customer satisfaction and repeat business,
increased market opportunities, increased market penetration, and opportunities to
sell other products.

Any specific change can be considered corrective, adaptive, or perfective. However,
often one change creates the need for another, and changes typically come in
sequences because the product enters a period of instability that ends when all
consequential changes are done.

Most major changes in a product are planned, because market research finds an
opportunity, a technical study demonstrates feasibility, the business group finds the
cost/benefit ratio satisfactory, and management agrees to implement the change.
The product then enters a new evolutionary stage. Some key reasons to plan a
major product change are to meet an evolved customer requirement, to make use of
novel technology, or to invade and capture a new market. As always, the estimated
benefit must exceed the cost.

Evolution because of changed requirements usually has these stages: determine
new or changed requirements (consult), construct a revised specification (analyze),
generate a revised design (modify), determine which components need not change
(salvage), implement new components (build), reintegrate, retest, reassure quality
and performance (tune), and deliver to the customer. Evolution because of new
technology has these stages: investigate promising new hardware (assess),
determine how components can make use of it (redesign), demonstrate feasibility of
a new subsystem (prototype), implement new components (build), reintegrate the
product, retest, assure quality, etc. (tune), prepare demonstration and sales material
(package), and release the product (announce). Evolution to capture a new market
has these stages: adapt to a new platform (port), adapt to new customer
expectations (enhance), maintain robustness and overall quality (restructure),
ensure adequate performance (tune), provide appropriate demonstrations and
publicity (package), and release the product (announce).

Most small changes to a product are unplanned: the customer encounters a
problem, the technical support group finds solution, implementing the solution
requires a change or patch, the sales support group insists a rapid fix is vital, and
management approves implementation and release. The product now has an
unplanned interim version. Unplanned changes are disruptive because they damage
development schedules, generate unwanted versions, and probably reduce overall
quality. These changes should always be reconsidered later, both the reason for the
change and the change made. The result is either to formally accept the change into
the product and propagate, or to reject the change and plan a new solution for next
version. In any event, the unplanned version should be retired.

CMU/SEI-91-TR-2 97

18. Management of Software Evolution

Reading: none

If most software products change over time, that change should be planned
beforehand, controlled while in progress, and understood afterwards. Change
management requires appropriate structures, processes, and strategies. Managers
must appreciate reasons for change, key motivators, costs and benefits, change
planning to maximize benefit, and timely introduction of change. Change must be
tightly controlled to keep costs within limits, change only what needs to be changed,
minimize unwanted consequences of change, and ensure changed products return to
stability. Past experience is a guide to management; this includes the life cycle
history of products, evolution of components and versions, growth and decline of
markets, trends and fashions, and symptoms of specific problems.

Adequate management of software evolution requires an extensive base of
information, an overall strategy, periodic consideration of tactical options, an
effective means of implementation, and systematic collection of feedback. This
requires support structures and processes. The management must have structures
to organize information about software objects; resources, costs and benefits;
products; and customers, present and prospective. Maintaining this information is
simple but costly; making effective use of it is difficult.

Components, versions, and configurations are the basic units of software about
which information is kept, including the life cycle of each object, use of components
by products, relationships between parallel configurations, and differences between
successive versions. The goal is full traceability from any important fact to the basic
reason for that fact.

The information base collects historical information—specific data about components
and products. This can be consolidated into statistical information—summaries,
averages, and correlations. One can then generate predictive information—trends,
projections, and extrapolations. Information is maintained in the support
structures; it is gathered from customers and market research, assigned to the
appropriate software object, and analyzed for its implications. Plans are drawn up
in response for products that need special action or opportunities that need
consideration. This also helps identify products that should be left alone.

There are effective ways of using the information base for managing versions and
configurations, tracking and improving components, tracking and changing
products, and estimating consequences of possible actions. These processes are the
tactics of software marketing.

Version control is one process for managing software change. Anything a customer
has, the organization has; the organization knows what each customer has; all
differences between versions are documented; and there is a clear upgrade path from
any installed version to the latest version. The ideal is that there should be only one
installed version and that it should change infrequently and smoothly.

Configuration planning requires that every configuration targets a known
environment, every specific component has a compelling rationale, common
components exist in (ideally) one version, costs and benefits are maintained for each
configuration, and new environments can be targeted appropriately. The ideal is

98 CMU/SEI-91-TR-2

that every new configuration should yield more net benefit than any feasible
alternative.

Component tracking is an incremental route to quality and profit. Information is
kept about each component: extent of use, maintenance cost, defect rate, and
estimated replacement cost. The worst components are targeted for replacement,
and the best components are targeted for reuse. Appropriate lessons are drawn
about the software process.

Product tracking is one basic guide to product development tactics. The
organization maintains, for each product: historical costs and benefits, projected
costs and benefits, market penetration, common positive and negative comments,
and present and projected “product differentiation” features. This allows one to plan
development of existing products and introduction of new ones.

In summary, these are the basic principles for software maintenance management:
software products are built for profit, change is needed to preserve their
profitability, any change must serve a useful purpose, changes must preserve
software quality and utility, and decisions must be based on adequate information.

The evolution of software products must be guided by an overall strategy based on
organizational objectives and marketing objectives. Two observations are relevant:
an organization is defined by its current products, and an organization defines itself
by its future products. An organization may decide to change for several reasons: to
become expert in a new domain, to lead in the use of new technology, to introduce
software into new markets, and to become standard bearers of new paradigms. New
and revised products are a way both to implement the change and to fund it. Most
organizations seek to expand, to find new markets and to increase penetration of
existing markets. This implies evolutionary change to adapt products to a new
environment, improve existing products, or increase product differentiation. The
choice of which path to pursue is a strategic decision.

19. Maintenance Tools and Environments

Reading: Grady87, Ince85

A maintenance environment is a collection of integrated tools and organized
information to support software after its deployment. It is similar to a software
development environment; ideally the same environment should be used for both
development and maintenance. The maintenance environment has the basic
purpose to facilitate all maintenance of the product during its life. To do this, it
must collect information, organize information, control versions and configurations,
support version evolution, and support configuration planning and evolution.

The environment must gather technical information (new versions and
configurations, changes in all documents, change requests and the responses) and
management information (resource utilization and consumption, sales and profits,
and data on customers, markets, and competitors). The information collected must
be organized: associated with the appropriate version and configuration, associated
with the appropriate stage of life cycle, and tagged with importance or urgency. All
consequent actions must be documented and a proper record appended. When a
product reaches stability again, a complete set of data can be finally checked and
closed.

CMU/SEI-91-TR-2 99

Naturally, the environment must provide version and configuration control: every
entity must belong to some version and configuration, version and configuration
information must be known for all customers, established change processes must be
enforced, and external preconditions of all versions and configurations must be
maintained. The environment must recognize that versions evolve and therefore
must track change requests and defect reports, identify what should or should not be
changed, and maintain change rates and costs for all components. It must ensure
that the proper process is followed: that schedules are set and maintained, all
relevant documents are upgraded, testing and quality assurance are accomplished
prior to release, and superseded versions are replaced in a timely manner. The
environment must also support configuration planning: maintain common
components properly, identify and maintain configuration-specific components,
maintain the rationale for all differences in configurations, isolate or propagate
defect reports as appropriate, and maintain correct cost and sales information.

The environment clearly needs good general tools, including a data base, data
capture or entry tools, a data manipulation language, spreadsheets and financial
tools, and statistical analysis tools. It also needs tools specific to its task, including
technical tools that assist the process of maintenance and management tools that
assist control and planning. Examples include tools to find and maintain
information, such as browsers and annotators, and tools to identify where changes
should be made, such as defect locators, requirements tracers, change isolators,
change propagators, and consistency checkers.

A browser allows one to navigate the information base: to move from module to
related module, go back from code to design to requirement, access and review
rejected design alternatives, find changes from previous version and their reasons,
and cross to the corresponding module in a related configuration. The maintainer
should be able to find all relevant information using the browser. An annotator
allows one to augment the information base. Regular data collection adds new
complete entities; annotation adds new information to existing entities. It is
intended to capture anything important that occurs during the maintenance
processes.

A defect locator finds where a defect probably is. This can be done positively
(construct a test that shows the defect and then find the components used by that
test) or negatively (successively eliminate components that cannot be the cause of
the defect). A requirements tracer helps implement a requirements change by
determining which components are affected. This can be done forwards by tracing
from requirement through design to code, but it is often more easily done backwards
by determining which behavior should change, finding all tests that demonstrate
that behavior, and determining which components are used by those tests. A change
isolator determines the limits of any change; it identifies components that will
remain unaffected and associated documents that will not change. The method is to
determine the nature of the change, the primary affected entity, and all associated
entities that might be affected by a change of that kind. This determines the
maximum extent of the change. A change propagator ensures that a change in one
version and configuration is correctly propagated to other versions and
configurations. Changes in common modules cause it to generate associated change
requests in other configurations, rebuild and retest, and prompt the manager for a
release schedule. Changes in configuration-specific modules prompt the support
group to check for similar defects. A consistency checker ensures that each version

100 CMU/SEI-91-TR-2

or configuration is consistent: that all documents have the correct version and
configuration number, all change requests are closed or deferred, and all costs are
computed and billed. They can go some way to ensuring the contents of the various
documents are in accord. However, the only practical way to do this is to generate
the documents from a single source.

The environment can preserve sanity by providing easy and effective capture of new
data, effortless browsing and annotation of existing data, trustworthy prompting for
needed data or actions, a single reference version of any significant information, and
automatic generation of as much as possible.

Management tools include those to determine the need for change, such as defect
trackers and change request trackers, and those to allow one to plan change, such as
cost, resource and sales analyzers, scenario analyzers, and trend identifiers and
anomaly finders.

A defect tracker computes the defect rate of components, versions and
configurations. They allow one to identify abnormally bad components, abnormally
troublesome versions, or exceptionally difficult configurations. This permits
selective remedial action. Note that management should also be interested in
abnormally defect-free entities! A change request tracker measures the stability of
the software components: which ones change most frequently in response to users
and which ones remain unchanged over many versions. They also measure which
kinds of change are costly: those that involve many components or generate many
defects, and those that require market research or prototyping. This information
allows one to plan software restructuring. Cost and sales analyzers compute the
profitability of each product: the cost to build and maintain, the gross and net profit
from sales, the change in profitability between versions, and the comparative
profitability across configurations. This allows management to determine which
products to retire and which products to market more intensively. Scenario
analyzers simulate products that do not exist in order to determine predicted costs
to build and market, the rate of market penetration, the expected defect rate and
cost to maintain, and the expected change request rate and version frequency. They
use historical data to estimate future data. They help management make an
informed choice of tactical options. Trend analyzers determine trends in temporal
data and anomalous departures from the trend. This alerts management to the
need to reconsider current plans in the light of changed circumstances.

The key to keeping management control is to collect and analyze all information
automatically, filter all irrelevant information, prompt managers only with
information requiring action, and prompt them only when it is the appropriate time
for action. This is called management by exception.

20. Dealing with Errors in Software

Reading: none

Management must expect defects and plan to deal with them adequately; it must
minimize customer cost and irritation, minimize repair and reissue cost, schedule
repairs in a timely manner, and be prepared for emergencies. The organization
should be able to respond promptly to customers, locate defects rapidly, decide
quickly what repair action to take, and cope with the consequences of defects and
repairs.

CMU/SEI-91-TR-2 101

Good defect processing requires a standard way for the customer to communicate the
fact of a defect and all necessary information, an in-house copy of the product by
means of which the defect can be replicated or simulated, a standard way of
incorporating corrections into scheduled releases, and a means of performing and
issuing emergency repairs or patches. For every product, there must be a
maintenance cell that retains all product history and documentation, keeps accurate
records of releases and customers, has access to all necessary human expertise, and
interacts with product and version planners. This cell is the main agent in repairing
the product. Its cost is part of the ongoing cost of the product.

As well as dealing with individual defects, management should have defect control
procedures for tracking the number and cost of defects, reducing abnormal defect
rates, reducing average defect repair costs, and making important products more
robust. This is part of longer-term perfective maintenance.

There are four key stages to correcting a defect: understanding the defect, locating
the defect, implementing the correction, and reverifying the corrected objects. A
symptom of a defect is that a software product has behaved in a way the user did not
expect, under a specific set of circumstances. The maintainer must understand two
things: what actually occurred, and what ought to have occurred. The first step is
to replicate the defective behavior: determine which product is involved, determine
the behavior observed by the user, reproduce all relevant conditions, and execute the
product and observe the same behavior. If the maintenance organization cannot
replicate the behavior, it should at least try to simulate it. As a last resort, some
execution trace can be used (‘“software flight recorder”). The second step is to decide
what should happen: what behavior did the user expect, and what behavior does the
documentation lead one to expect. In any event, there is some error, either a
genuine defect in the product or a defect in the explanation of the product.

In general, a defect will appear in several related places; for example, an error in a
module specification affects the specification document, module definition code,
module implementation code, module unit tests, and documentation of much of the
above. The maintainer must find all these places and then identify the primary
occurrence. There are three steps: finding the first evidence of the defect’s cause,
finding all related evidence, and determining the primary cause. The first is by far
the hardest and is all that is commonly understood as “bug finding.” The other steps
depend on good traceability . Bug finding has been documented at great length; the
essential principles are finding suspect components, eliminating innocent
components, isolating the culprit, and reconstructing the crime. The process usually
forms hypotheses about the probable causes, tests them, and eliminates them.
Reconstructing the defect is a key step too often omitted. To locate a defect, one
must find an error, determine that correcting the error will repair the defect, and
prove that the error caused exactly the defect observed. Only after this last step can
one be confident that the repair will be a complete one.

Implementing a correction is a lengthy but straightforward process: repair the
primary cause of the defect, construct a test that demonstrates the repair, derive the
consequent changes in other objects, derive appropriate tests for each of them, and
rebuild and retest upward from the changed objects. Finally, rerun the original
demonstration tests and show that the defective behavior has been corrected. Most
defects have an identifiable primary cause, which is usually the erroneous object
furthest upstream; earlier objects are correct and errors in later objects are effects,
not causes. The primary object must be corrected so as to be consistent with the

102 CMU/SEI-91-TR-2

upstream objects. It must be demonstrated that the correction is a repair by means
of a specific test. All other erroneous objects must be changed. Ideally, this change
is implemented by rederiving the new object from a corrected upstream object. If
necessary, an object can be directly repaired. A proper consistency check is then
essential to determine that this change is consistent with the primary change and
this change can be traced back to the primary change. Similarly, new tests should
be derived or created. Reverifying the product proves two things: that all necessary
repair has been done, and that the repair has not caused accidental damage. The
two processes that prove this are consistency checking and regression testing. It is
here again that good traceability is a great help.

Any product evolves naturally as circumstances change, which leads to a succession
of scheduled versions. Ideally, defect repair should be a part of this process, where
each version is issued as scheduled and each version repairs all known defects. This
allows both maintainers and customers to plan appropriately. In anticipation of a
coming release, it is desirable to set a cutoff date for defect reports, consolidate
defect reports, decide on component replacements (if any), consolidate repairs,
integrate defect tests into product tests, and ensure that the version guide mentions
all corrected defects.

Often, many repairs have touched one object, so it is desirable to review all these
repairs together to look for possible underlying causes, ensure the repairs have not
affected each other, and ensure that the repair has maintained overall quality. In
bad cases, the component should be rewritten.

A patch is a repair issued in a special release of the product as a response to an
emergency—a defect whose prompt repair is vital to the user. Ideally, patches never
occur. If there are too many of them, the product is insufficiently robust and should
be revised. The steps in the patching process are to determine that there is an
emergency, authorize emergency repair, repair and retest as fast as possible, issue a
release to complaining customer, notify all other customers with the defective
product, and schedule a normal repair of the same defect. All patches must
eventually become proper repairs. Patches should also be tracked against
components, customers, and types of defect. This is useful data for product
improvement. Note that the need for patches can be reduced by reducing either
defect rate or user cost.

The key concept of robust software is to minimize the cost to the user of any defect.
This implies two things: anticipate that defects will be present, and take
precautions against their consequences. These precautions are then built into the
product. We are familiar with hardware robustness: error detection logic, error
correction codes, and redundancy; similar techniques apply in software:
postcondition checks, invariant checks, data redundancy, and recovery blocks.

21. Requirements Evolution

Reading: Poole77

A software product is designed to a requirement . However, requirements change
over time. If the product is to remain of value, it must change along with the
requirement. This change is a part of product maintenance. It might be planned or
unplanned. Often, we know that change will occur, but we don’t know exactly what
changes.

CMU/SEI-91-TR-2 103

The customer is motivated to change. This creates a changed requirement, and we
must identify the change, analyze the change, determine the impact on the product,
plan the appropriate product change, implement the change, and deploy the
upgraded product. There are many reasons a requirement might change: a change
in external circumstances, a change in internal procedures, a change of scale or
scope, a change in the role of the computer system, or evolution of a new paradigm
for computer use. The consequential product changes are diverse.

If a software product is to work in the real world, it must accurately reflect part of
that world. Hence, a change in real-world circumstances forces a change in the user
requirements. This change must be propagated into the product. In an extreme
case, the product loses all value until the change can be implemented. Procedural
changes in an organization can also create new requirements. The overall function
of the organization is the same, and external circumstances have not changed, but
the way the organization works has changed. This implies a change in the way the
product supports the organization. Accordingly, the product must evolve. In other
situations, the overall requirements of the organization are the same, but that part
of the requirement met by the software product has changed. What usually happens
is that a computer system, once installed, is called upon to do more and more things.
This causes continuous elaboration of its requirements.

Sometimes, requirements remain functionally the same but the scale changes. Over
time, the system processes more information, keeps a larger data base, or requires
answers more quickly. However, a change of scale in the requirement may imply a
major change in software. In other cases, a change in requirement is a consequence
of a change in the way we view the system. The functional requirement is the same,
but the way the requirement is met has changed, such as a new view of how the
system should work or a new concept of how user and system interact. The result is
a change in the behavior of the system.

The first stage in implementing a change is to determine its impact, or analyzing the
change for its effect on the software product. Typically, one finds three types of
impact: evolutionary and planned, evolutionary but unplanned, and revolutionary.
With evolutionary change, the fundamental design remains unchanged, the basic
partitioning of the system remains sound, details of some modules need to be
revised, and possibly new modules need to be added. But they are very similar to
existing modules and use the same data and control interfaces. With revolutionary
change, the change in requirement might be quite small, but it implies a
fundamental change in any of the basic system design, functional partitioning, the
system external interface, or internal data or control interfaces. In consequence, the
system will need to be substantially revised or rewritten.

The key issues in implementing change are recognizing revolutionary change and
implementing evolutionary change. A revolutionary change requires system
redesign, and code can perhaps be salvaged later. Evolutionary change requires
system upgrade—change occurs within existing structures.

Upgrade planning should try to maintain a balance of upgrade costs and benefits:
set limits on the rate of product change, control costs of implementing change, and
prioritize changes by cost/benefit ratio. Note that advance planning can reduce
upgrade costs. In practice, products tend to change at the maximum affordable rate
(but the market always wants more change). There are some strategies that make
change easier; for example, if several changes affect each other, do them together.

104 CMU/SEI-91-TR-2

Software design can anticipate change: expect objects to become richer over time,
expect the command set to evolve, design against anticipated future size or scale,
and identify and parameterize volatile features. Good design also documents the
expected limits of change. There is a limit to the flexibility of any design: basic
necessary assumptions that must be fixed, maximum size or scale that the system
can handle, and the fundamental paradigm of work and user interaction. There is
also a limit to the justifiable cost of flexibility—the simpler and less flexible system
is a lot cheaper.

22. Technology Evolution: Principles

Reading: none

Rapid technological change is a feature of this field. These changes affect the way
people use computers, the size of the problem a computer can solve, the cost of a
computer system, and the way software interacts with the machine. A product must
be prepared to cope with these changes. There are at least three important types of
change: increase in machine power, introduction of new machines, and changes in
interface technology.

Increase in machine power has two consequences: a machine of the same price
becomes much faster, and a machine with the same speed becomes much cheaper.
Software for the machine must evolve to take advantage of the speed increase and to
take advantage of the new market for a cheaper machine. Increased speed creates a
need for software revision; for example, a batch program becomes fast enough for
online use, the processor can cope with a more advanced terminal, or processor
power is available for background tasks. The user probably wants more than “the
same but faster.” A decrease in cost can open up a different market, such as
individual workstations for all staff, personal computers for the home, and small
computers in schools. The software may again need revision so that the new
potential customers are happy with it.

The product developer should anticipate an increase in machine power. Planning
includes deciding what software or hardware component determines the overall
speed of the product, whether the product can take advantage of an improved
machine, whether some components need to be revised, or what the product would
do differently if it were faster. Adaptive maintenance is needed to cope with the
problem.

New types of machine are introduced quite frequently, and these represent new
market opportunities. The software must be revised to run on the new machine; this
is traditionally called porting. Software that is easy to move is called portable.
Software depends totally on the machine beneath it. Nevertheless, it can be made
portable—less dependent on a specific machine, insensitive to changes in machine
components, and structured to make revision easy. There is a body of design and
implementation techniques to do this.

Some important portability techniques are based on these principles: the software
reflects applications, not implementations; the software assumes machine functions,
not features; the design uses logical properties, not physical ones; and the
components know only what they need to know. One overall philosophy is that of
the abstract machine. Some examples of the philosophy are: define data types in
terms of the application, define data structures appropriate to the information,

CMU/SEI-91-TR-2 105

distinguish conceptual values from representations, and decouple functional
components.

In planning for portability, a good working principle is to expect machines to change
faster than applications. Features of a product that are essential to its function can
be presumed stable (for example, a data base will always have an enquiry function);
features of a product that reflect a specific machine can be presumed unstable (for
example, a data base will not always use 2 kilobyte blocks).

[The lecture also discusses an extended example of the design for a portable object
base manager.]

23. Technology Evolution: Practice

Reading: none

Two types of change are the introduction of new machines and operating systems,
and changes in interface technology. These are examined through two examples.

The first example is the development of a portable IO library that is part of a
systems implementation language (BCPL), embodies a philosophy of simple input
and output, has evolved through several versions, and illustrates how portability
evolves. This history had some influence on other languages, such as C and Ada.
The basic concepts discussed are how files are named, how data are transferred to
and from files, and special treatment of online user interactions.

Originally, files were identified by channel numbers, as in findinput(6). The
actual files were specified by the job-control language, which is useful for batch
running but not for online running. So later, files were identified by strings, as in
findinput ("SOURCE.DAT"). This names the file according to the host operating
system conventions. However, online programs frequently need to inquire which file
to open, so the following convention evolved: findinput("?Give name of input
file "). The string is a prompt; the user reply is the file name. On one system,
mode information was included in the string: findoutput ("RESULTS.DAT/PR"),
where the suffix /PR meant print after closing. Ada split name and mode into two
string parameters.

The basic design views a file as a stream of characters, with individual characters
are all treated identically. For formatting, some characters were given special
meanings, such as *N for new line and *P for new page. The language
implementation created an abstract terminal and printer, with the return key
always causing the program to read *N and *N on output always causing “carriage
return line feed.” On record-oriented file systems, each line became a record: output
routines interpreted *N as end of record and input routines generated *N after end of
record. On systems with a maximum record size, an escape was sometimes used to
indicate that the line is continued in the next record, and to suppress automatic
generation of *N. The effect was to build a stream abstraction on an underlying
record-based IO system.

Originally, the user terminal was unbuffered, so a key pressed was available to the
program immediately and a character written to the terminal appeared
immediately. Later, the terminal was line buffered; the input was buffered until a
carriage return and output was buffered until *N. This causes a problem with user
dialogue such as >Give number of turtles: 4. Language systems have

106 CMU/SEI-91-TR-2

provided several solutions, such as disallowing dialogue with the question and
answer on same line, a routine call to force pending output: forceout(), or a
special character to force output: ...turtles : *F. The solution usually adopted
was called an interlock, with reading from the keyboard automatically forcing screen
output. This preserved the abstraction of synchronous IO.

The evolution of this IO system shows these features: conservatism (make small
changes for preference; add new features within existing framework), abstraction
(preserve higher-level concepts and make lower levels conform to them), and
implementation hiding (do not burden the user with details of the behavior of the
lower levels).

Change in interface technology also provides an example. Recently, there has been a
paradigm shift in our view of the user interface from a command-based view to a
model-based view. The paradigm shift had a technological cause, the development
of large, fast, bitmapped displays; and it had also an intellectual cause, the
exploration of icons as representations of entities. The change in technology made
possible cost-effective prototypes embodying the new philosophy. The consequential
evolution of the software involves new ways the user inputs commands, new ways
the system displays responses, and different techniques for designing user
interactions.

The older method is based on commands and parameters: the user types a given
command, which is followed by parameters naming the objects on which the
command is to operate. For example, to delete a file, one might type DELETE
RESULTS.DAT. The newer method has the user model the operation: point at the
object to be affected and perform an operation simulating the required effect. For
example, to delete a file, one might move the cursor to the file icon, click to highlight
the file, type %D to invoke the delete operation, or alternatively drag the file icon to
the trash icon.

The principles illustrated include object-oriented (the object affected is indicated
first, then the operation to be performed), iconic (objects are not named, they are
pointed at), window-based (the various objects are represented by icons distributed
in a visible abstract space), and mimetic (the user does not give an imperative
command, but rather performs an action for the machine to mimic).

A command-based system usually gives a written response, such as OK or Error
22: you do not have delete access to this file. The response is part of a
dialogue between user and machine. This dialogue is composed of discrete
command/response transactions in linear sequence. The user inputs the whole
command, and awaits the complete response when the command is done. In a
model-based system, the response is different. The relevant system state is visible
to the user, and this visible state changes to reflect the new situation; for example,
the file icon disappears. Moreover, the state changes continuously as the command
is input; the file icon moves along with the cursor to the trash can. Errors are
handled by a separate mechanism, such as audible signals.

Command dialogue is often highly modal, in that a major command sets a system
mode and each mode recognizes several minor commands. There is a tree structure
of commands and subcommands, and commands are explained by a separate facility.
Model-based systems should be modeless, in that all commands are always available
and a command is always invoked in the same way. Any temporary state should be

CMU/SEI-91-TR-2 107

visible, such as when selected objects are highlighted. Complex commands are
issued via menus, and a help facility is integrated with command input.

There are several implementation issues or principles. The software must build or
use specific abstractions; for example, each object has a name, icon, command set,
and response set, and the object space holds icons in geometrical relationships. The
command interface must be richer to understand objects and operations, support
abstract operations with diverse implementations, and provide continuous feedback
during command entry. The system must maintain a visible model of the processing
being done by any program. There are some new quality and performance issues
that the implementation must address: all important states must be visible (a
highlighted object must never be hidden), the visible model must change smoothly
and synchronously (cursor cannot lag behind mouse), and the user must be
reassured that the program is still running (long commands must show wait icon or
“% done” bar). The last is the hardest to retrofit to an existing product.

Various techniques are used to cope with these issues: object specification tools and
techniques, menu and command design tools, and a window manager separate from
programs. In general, these lead to a clear separation of abstract objects and
operations used by program from the visible icons and manipulations displayed to a
user.

[The lecture also introduces a student exercise, the adaptation of a text editor user
interface.]

24. Building Long-Lived Software

Reading: Lehman85, Clapp81, Parnas79

Ideally, a software product should remain deployed as long as it is useful, adapt to
changing requirements, adapt to changing technology, and remain error free and
efficient. This requires continuous corrective and adaptive maintenance.
Unfortunately, software often does not endure that long. The reason is that, while it
remains useful, it becomes uneconomic, the cost of adaptation increases,
maintenance costs increase, and the defect rate rises and efficiency falls.
Eventually, the software becomes unmaintainable.

For a typical product, maintenance costs show clear trends: they are initially high
as defects are shaken out, declining to a plateau as the product becomes mature,
then gradually rising again as the product evolves and loses structure, and
eventually reaching the point where cost exceeds benefit. It is this gradual rise in
cost that must be delayed or halted. The root cause of this cost increase is
degradation of product quality and structure, which can be reduced by planning for
longer life, adaptive maintenance techniques, and perfective maintenance
techniques.

There must be a good process supporting maintenance, including defect tracking,
component stability tracking, and cost tracking. Resources must be budgeted for
component replacement, system restructuring, and port analysis. Products should
undergo regular perfective maintenance.

To plan for longer life, the planning and design stages are the most important. We
must plan for evolution of requirements, plan for changes in technology, plan for
regular product revision to improve quality, and design the product to be readily

108 CMU/SEI-91-TR-2

adaptable. There are specific design techniques that help. Most of these have been
discussed before: design against a reasonable superset of requirement, specify and
document limits of adaptability, hide details of specific or changeable technology,
build abstract machines that perform logical functions, and have components know
only what they need to know.

For example, consider a product that was designed to sell in several countries and
needed to be multilingual. The design called for two special modules, a command
decoder and an error message writer. Only these modules knew which language was
in use. Each configuration linked the correct pair of modules. As a bad example,
consider another product that was developed in one country and later sold in
another. Its error reporting code looked rather like this:

IF file_not_found THEN
#ifdef English

Write('I cannot find ', filename);
#endif
#ifdef German

Write('Ich kann ', filename, ' nicht finden');
#endif

END IF;

The previous example illustrates two errors: first, the original design was at fault in
embedding literal text throughout the code, because one can expect error messages
to change over time in response to user feedback. Secondly, the adaptation made a
disastrous mistake; the code should first have been restructured to isolate the error
messages.

Adaptive maintenance tends to make products more complex, with an increased
number of options or parameters, more complicated case analyses and logic,
additional features, and wider and more complex interfaces. However, there are
techniques that fight this trend.

For example, consider a product that was ported from a PDP-11 to a PE3200. After
the first integration, a number of errors were found with the same root cause: some
components assumed they knew the order of bytes in a machine word. Naturally,
the byte ordering was different on the two machines. Two obvious solutions are to
write alternative components for the new machine (each alternative appropriate to
one byte order), and to parameterize the component with a byte ordering flag (the
value may be compiled in or set at runtime). Both these solutions are initially
cheap, but they increase the product’s complexity and hence all subsequent
maintenance costs. The solution actually implemented was to rewrite the affected
components so that they no longer have to assume byte order. It involved three
components and one interface. This was initially more costly, but it simplified all
subsequent maintenance and every later port. (This product has been ported to four
more machines.)

Consider also an example of a host/target compiler. The code was compiled on the
host and downloaded to several targets. The downloaded binary code was
sometimes corrupted, and the root cause was that the data link treated some bit
patterns (such as #XFFFF and #XFF00) as special and would not transmit them.
One solution was to sanitize the binary data: look for any bit patterns that might
cause trouble, replace them with safe alternatives, and flag the replacements with a

CMU/SEI-91-TR-2 109

special prefix. The downloader program could then modify the data before
transmission and reconstruct it after reception. Again, this seemed a cheap solution
but at a cost of complicating subsequent maintenance and complicating adaptation
to a new communication link. The solution actually implemented was to convert to
ASCII—the binary data was encoded into printable characters, with the result that
16 bits became three characters and the amount of data transmitted increased 50%.
This required two new modules—encoder and decoder. However, it was robust
against almost any future change in the communications link, since almost any link
can cope with printable ASCII characters.

One of the principles illustrated by these examples is that where possible, you
should choose a solution that simplifies the structure of code, subsequent
maintenance and testing, and subsequent adaptations or ports. One approach is to
reduce the assumptions made by a component and the special knowledge it requires
to operate.

Perfective maintenance is proactive change; it is initiated specifically to improve a
product. In practice, product quality can be maintained only by regular perfective
maintenance. Otherwise, the product degrades and adaptive maintenance increases
at the expense of perfective. Several techniques reverse degradation. For example,
consider a product that had a large set of user commands. The command set was
gradually increasing over time, and the cost of changing or adding a command
gradually rose. The root cause was that the command interpreter top level was a
CASE statement, with commands considered simple implemented inline, but
commands considered complex invoked by subroutines. Accordingly, any scenario
followed a complex path. The solution ultimately implemented was to restructure
the top levels: all commands invoked subroutines, every arm of the CASE statement
had the same pattern, system state was grouped into packages, each subroutine
imported only the packages it needed, and transient information was passed as
parameters. The result was a substantial decrease in maintenance costs. (The
process also uncovered a dozen or so bugs.)

As another example, consider an IO library that was written in a high-level
language, but using the same data structures as the underlying operating system
(file control block, record descriptor block, device characteristics record). The
product was to be ported to another operating system. Virtually every line in the IO
library was affected, and the attempt to port was abandoned after three months.
The solution ultimately implemented was to split the IO library into two
components: a lower level, implementing an abstract IO machine, written in
assembler code and interfacing to the operating system; and a higher level, using the
abstract machine, written in the high-level language and independent of the
operating system. The interface design took one week, and the three new
components were written by two people in six weeks. The operating system
dependencies had been isolated to 25% of the code.

Consider also the example of a program that was interactive and menu driven, in
which the menus were frequently enhanced. For ease of maintenance, they were
stored in an editable ASCII text file. However, interpreting this file at run time was
costly, and as the menu file grew, the program became more and more sluggish. The
solution tried was to define a binary, indexed menu file format; at startup, read the
menu text file and build the binary file; and then run the user dialogue from the
binary file. This greatly improved program response time, but program startup time
was 2 to 3 minutes. The users did not regard this as an improvement. The answer

110 CMU/SEI-91-TR-2

was to split the program into two programs: the builder , which creates the binary
file and is run in batch whenever menus are changed; and the driver, which uses the
binary file for the dialogue and is the program invoked by the end user. This
combines fast response with rapid startup. Moreover, testing a revision built the
binary file “for free”.

The first and key principle illustrated by these examples is to keep track of
maintenance costs and their causes. Other points are to allow time for proactive
revision of products, restructure to simplify and regroup components, and follow up
any major change with a review.

25. Software Quality Assessment

Reading: Collofello87, Green76, Tsichritzis77

Software when deployed should be of good quality, and maintenance must not
reduce its overall quality: it must preserve good quality and actively improve poor
quality. To do this, we need to know what is software quality, how can it be
measured, and how can it be preserved and improved.

Good software has these features: it conforms to all requirements and constraints, it
has been created using proper documented standards, and it possesses all implicit
qualities of professional software. The last is rather a circular definition! In
practice, quality must be measured, and this requires software quality metrics.
They must be applicable to products and components.

One can construct a list of features that evidence quality in terms of current utility
(efficiency, reliability, and usefulness) and future utility (testability, maintainability,
modifiability, portability, and reusability). Similarly, one can list the factors that
control the features: documentation, component defect rate, component stability,
currency against requirement, currency against technology, structural integrity, and
complexity. The main underlying factors that affect overall software quality are
documentation quality, product complexity, component functional independence, and
component environment independence. All of these can be measured and hence
assessed.

The main routine quality improvement tasks are improving quantity and structure
of documentation, reducing unwanted complexity at all levels, and removing
unnecessary dependencies. There are also some important specific actions,
recreating missing documentation and performance and efficiency improvement.

The key to understanding a product is its documentation, including what (the
function the product is to perform), why (the requirement it is to meet), how (the
way it implements its function), with what (the platform it needs in order to run),
and where (the market it is intended to serve). Subsequent maintenance depends on
this understanding. Document quality can be assessed by existence tests (whether a
particular component is explained, the source of an algorithm is referenced, or the
format of a command is documented) and by traceability tests (whether we can find
all users of this interface, find all modules used by this command, or list all defects
found in this component). Document quality can be improved and maintained by
recreating missing pieces (reverse engineering), revising data capture procedures,
adding relations to the information base, determining the provenance of “orphan”
data, and replacing untraceable components. A good environment enforces most of
this.

CMU/SEI-91-TR-2 111

There are many kinds of software complexity: overall structural complexity, overall
behavioral complexity, interface complexity, module static complexity, and module
dynamic complexity. Each can be assessed and reduced. Structural complexity is
measured by the number of relations between components, the depth of the import
or dependency graph, the width of the dependency graph, and the existence of
tangled cross-dependencies. It may be reduced by regrouping definition modules,
hiding lower levels of abstraction better, and revising imperfect abstractions.
Behavioral complexity is measured by the number of modules used by one
transaction, the amount of each module executed by one transaction, the number of
data representation changes, and the number of error messages elicited by one
transaction. It can be reduced by shortening the transaction thread length,
regrouping transaction processing code, redesigning internal data formats, and
rethinking pre- and postconditions. Interface complexity is measured by the number
of parameters to procedures, the number of different parameter types, the use
pattern of parameter values, and the number of exceptions that can be raised. It can
be reduced by using a common form for analogous operations, using common
definitions for analogous attributes, and removing or defaulting little-used options.
Module static complexity is the infamous “spaghetti code,” the number of control
structures and average size, the number of branch and merge points, the number of
loop exit points, and the number of function return points. It can be reduced by
judicious use of state variables, unnesting of control structures and repetition of
code, use of auxiliary functions, and redesign of persistently bad modules. Module
dynamic complexity is shown by a lot of persistent internal state, functions with
“pernicious” side effects, the need to call several routines in a specific order, and the
need to perform initialization and finalization. It can be reduced by exporting visible
state objects, using weak preconditions where possible, defining types with
automatic initialization and finalization, and replacing error returns with
exceptions.

Functional independence is a major factor in the adaptability of software.
Components with different functions should interact only when necessary. Changes
in one component should not affect others, and changes in shared objects should be
upward-compatible. Function interaction can be measured by functions that invoke
others at the same level, functions that rely on state set by others, and functions
that leave state to be dealt with by others. It can be reduced by defining appropriate
functional levels, revising pre- and postconditions, and making objects self-
organizing. Component interaction can be measured by correlations between
internal states of components, components that repeat tests performed by others,
and components that detect errors but pass them downstream. Unwanted
interactions can be reduced by resetting component state after all transactions,
splitting components by transaction type, and using filters to remove and handle
erroneous data.

Defects in object abstraction are shown by operations that must see irrelevant
attributes, invariant relations that are hard to preserve, and inaccessible internal
state with visible effects. They can be corrected only by better abstraction: proper
use of analogy to generalize operations and proper specification of pre- and
postconditions. This usually requires substantial revision of the object before the
code using it can be improved.

Environment independence is a key factor in the portability of software. One can
directly measure portability after a port, and one can estimate portability from

112 CMU/SEI-91-TR-2

representation independence, implementation independence, and sensitivity to
resource availability. The portability measure of interest to management may be
computed as 1 - cost-of-port/cost-of-rewrite. This is governed by the number of
interfaces that change, the number of modules that change, and the size and
complexity of changed modules. It can be improved by reducing these numbers (or
by creating reusable templates for specific modules).

Representation independence is achieved if operations on an object do not depend on
representation. Examples of representation dependencies include the length of a
machine word, byte ordering, and order of components in a record. They may be
reduced by defining types to reflect application constraints and by accessing data
using object-oriented abstractions. Implementation independence is achieved if the
effect of an operation does not depend on the algorithm. Examples of
implementation dependencies include stable versus unstable sorting, buffered
versus unbuffered IO, and rounded versus unrounded floating-point operations.
Implementation dependence may be reduced by using weakest preconditions and
invariants, tightening of functional requirements, and exact specification of abstract
machines. Examples of resource sensitivity include buffers or tables with hardwired
maxima, arbitrary limits on the size or quantity of an object, and assumptions that
transactions will (or will not) execute in parallel. Sensitivity may be reduced by
allowing dynamic growth of all objects or data stores (subject to some overall limit)
and by using explicit synchronization where necessary.

26. Reverse Engineering

Reading: Britcher86

Reverse engineering is, essentially, the recreation of upstream objects from
downstream ones. The object at hand had a history that is now partly missing. We
need to create a plausible reconstruction. The motivation is straightforward: it is
necessary to maintain this product.

Maintenance requires a comprehensive product description and history, and if we do
not have the history, we must fabricate it. This is all part of the cost of taking on the
product. The overall goal is to integrate this product into our development and
maintenance system. We must create documents appropriate to our own system,
complete and with full traceability, that, if part of true history, would have led to
what we see. For example, if a company has been given a product to maintain and
there is no accompanying design document, it is necessary to reconstruct the design.
The goal should be to recreate a design object that comes as close as possible in
content to the original but with a style and notation that reflects our practices, not
those of the author.

There are other things we may wish to recreate, such as source code from object
code, building plan from product structure, requirements from behavior, test sets
from behavior, or change requests or bug reports from change logs. However, in
most cases, we are starting with source code. Such reverse engineering has severe
limitations: rejected designs cannot be recreated, most design rationale is lost
forever, and errors in the product will generate erroneous design. In addition, our
design notation may be inappropriate—there is no way it could ever generate the
code we see.

CMU/SEI-91-TR-2 113

There are several useful principles, among them analysis, transformation,
archaeology, and historical investigation. Code analysis is the process of looking at
code to determine the purpose of each component and the reason for its structure.
From that analysis, one obtains basic functions, underlying concepts, and a building
plan. Code transformation is the conversion of a code object into another object; for
example, a design object, “black box” test set, or dependency graph fragment. Many
of these conversions can be partly automated. This gives us a missing object and a
traceability arc. Software archaeology involves looking at successive versions of the
code to determine changes over time and to reconstruct reasons for changes. It can
also help us understand mature code, because earlier versions may be simpler,
earlier versions better reflect original design, earlier functionality is probably more
important, and unstable fragments can reveal design problems. Historical
investigation tries to reconstruct history from external sources, such as interviews
with the authors, interviews with the customers or users, published articles, related
products, and minutes of reviews and discussions. The pieces of information are
fitted together into a picture of the missing object.

Before beginning the maintenance task, we should determine what comes with the
product and find out what is needed but missing. Then we can determine the
feasibility of reverse engineering, estimate the cost of reverse engineering, estimate
the quality of existing and recreated objects, and decide whether some restructuring
or rewriting is needed. It is not always easy to estimate these costs. The cost can be
significantly reduced by tool support, such as browsers and annotators, version
differencers, transformation tools (especially code into design), and test set
generators. However, a lot of human detective work is necessary also.

27. Software Performance Improvement

Reading: none

The objective of performance maintenance is to maintain the efficiency of the
product. Efficiency is not just absolute performance; it is performance relative to
application and technology. The customer expects performance to remain constant
over time for constant technology and to improve as technology evolves.
Maintenance must address these expectations.

These are ways of measuring performance, including the size of the information base
supported, the number of transactions per second, the time to perform a transaction,
and the latency before system response to an event. The appropriate metrics are the
ones the customer cares about. The required values depend on application context.
Also, the average case or the worst case might matter more.

These are the system features that govern performance: IO bandwidth, the rapidity
of access to the information base, memory size, processing power, and interrupt or
task latency. It is necessary to determine which drivers are important. Some
applications are compute bound, so processor speed is the sole performance driver;
other applications are IO bound, so IO bandwidth is the driver. Usually, the issue is
not so clear cut.

Maintenance should be able to cope with these changes: gradual increase in the size
of the information base, gradual rise in the transaction number or rate, gradual
increase in the number of simultaneous transactions, stepwise speed and capacity
increases in components, and abrupt changes in performance characteristics. This

114 CMU/SEI-91-TR-2

usually requires advance planning and specific responses to major changes. Overall,
one might expect that an increase in traffic reduces performance, and an increase in
capacity improves performance. This is broadly true, but, unfortunately, the
detailed relationship is critical to the behavior of the product. An increase in traffic
(transaction rate, message size, etc.) may have various effects on performance:
almost no effect, gradual decrease, proportionate decrease, disproportionate
decrease, or abrupt collapse at a critical threshold. To avoid a crisis, it is necessary
to predict the effect before the product becomes overloaded. Similarly, an increase in
system capacity can have little effect or none, proportionate increase in performance,
disproportionate increase, or critical increase as a threshold is crossed. Again, one
must analyze the effect of changing each major system component.

Software maintenance must first maintain performance of the system as deployed
and used. It must allow for gradual growth in traffic, know the effect of growth on
key performance drivers, ensure that projected growth stays below critical
thresholds, compare actual growth with projected growth, and plan for timely
revision before growth limits are met. For example, what growth should a file store
system expect? A rapid growth in physical disc size might lead to rapid growth in
directory size or abrupt increases in maximum file size. A moderate growth in the
number of users may lead to moderate growth in files-per-user and moderate growth
in transaction parallelism. Appropriate maintenance actions might be to implement
size-insensitive directory algorithms, check against simulated growth, and collect
statistics of actual usage; plan for higher parallelism by making most components
reentrant, minimizing the time the directory is locked, and requiring multi-accessed
files to be specially marked; and anticipate a critical threshold as parallelism grows
and plan to revise the product well in advance.

Maintenance must next try to maintain efficiency as capacity changes yield
performance changes. This again implies knowing the key performance drivers,
recommending upgrades in critical components, maintaining the system in overall
balance, and delaying insertion of new technology that is not needed. One should
try to anticipate major innovations. For example, consider maintaining a file store
as technology evolves: a rapid fall in cost of memory means buffers and caches can
get bigger, CPU speed increases faster than IO speed so that IO bound programs
will become more so and CPU bound programs will suddenly hit IO limit. The
obvious action is to improve IO caching with larger caches, and with better and more
adaptive algorithms. Implementation involves user customization of cache size and
algorithms, IO system self-monitoring and self-adapting, and usage statistics
collected on IO performance. Also, track product performance to anticipate when
another product might hit the IO bottleneck.

Maintenance should then try to improve efficiency, yielding better performance with
existing capacity. This is simply performance tuning after deployment, and the key
principle is the same as before: find the bottleneck, fix it, find the next bottleneck.
However, one has the advantage of actual usage data. For example, consider a
compiler that reused a general-purpose storage allocator and garbage collector. It
was very slow, and profiling showed that the product spent over 40% of its time
doing storage allocation and deallocation. This was a clear candidate for perfective
maintenance. The actions were based on actual usage patterns. The compiler
assumed all allocated storage contained garbage; the change was to remove
elaborate default initialization of objects. 90% of objects had one of three fixed sizes;
the change was to replace a generalized “buddy algorithm” with FIFO free lists.

CMU/SEI-91-TR-2 115

80% of deallocations occurred at the end of a major phase; the change was to replace
garbage collection with block deallocation. The result was a new storage allocator
about 20 times as fast and about one-fiftieth the size.

28. Software Perfectability

Reading: none

It is possible to improve code quality after deployment. This requires proactive
maintenance by dedicated people. It should focus on the most defective components,
the major causes of defects, and the most beneficial remedial actions. The realistic
goal is a constant high level of quality with an affordable use of resources. The key
rule is always to take the most effective action. We would like to maximize benefit
and minimize cost. What are the limits of the achievable?

One major goal of perfective maintenance is to reduce subsequent maintenance
costs. Rather than correct defects, reduce the propensity for defects; rather than
continually adapt code, increase its generality; rather than create new
configurations, improve portability. Good perfective maintenance involves deciding
what attribute to change, selecting a metric to measure change, collecting
appropriate data, selecting the target for change, implementing the change, and
tracking the result of the change.

One should change attributes that affect cost or benefit, such as defect propensity,
portability, adaptability, and scalability. The attribute chosen depends on product
and marketing plans.

Before trying to change something, quantify it: determine what the unit of
measurement is, how to take a measurement, what its present value is, what value
we seek to achieve, and what the equation is relating cost or benefit to this value.
Data must be collected, or measurements made according to the metric for the
product in question in sufficient detail to isolate targets for change. In practice, this
means that each datum should be tied to a specific component, a specific part of the
life cycle, and a specific part of the requirement.

Target selection is the critical part of the process: deciding what to change to effect
the improvement. There are several guidelines that help, including Pareto analysis,
cause/effect analysis, and leverage analysis. Pareto analysis is based on the
principle that a few of the X exhibit most of the Y; for example, “20% of the modules
contain 80% of the bugs.” If it costs the same to rewrite any module, then we should
rewrite that 20%. The analysis assigns defects to components and selects those with
the highest number of defects. Cause/effect analysis determines the root cause of
each instance. It relies on the theory that some few causes are responsible for most
of the effects; for example, “Half the bugs are caused by uninitialized variables.”
The most prolific causes are identified and dealt with (note that in the quoted
example the bugs will be scattered through many components). Leverage analysis is
based on the principle that small changes can have large consequences. For each
defect, a possible corrective change is identified. Because some changes will correct
more than one defect, the change to perform first is the one that corrects most.

Change will usually involve some rewriting or restructuring of the product. It
should be performed as part of the normal version development process, and the
revised product is reissued as a new version. Data should be collected for the new
version to demonstrate that the change has worked.

116 CMU/SEI-91-TR-2

Unfortunately, there are other forces that set limits to software perfectibility, such
as diminishing returns, benefit tradeoffs, and opportunity costs. Diminishing
returns is the downside of the Pareto principle. For example, revise 20 modules and
fix 80 bugs, revise 16 more modules and fix 16 more bugs, revise 13 more modules
and fix 3 bugs. At some point, cost will exceed benefit. But if several techniques are
applied, the level where further improvement is unreasonable is very low. Benefit
tradeoffs are required because some qualities can be improved only at the expense of
others. Consider the tradeoff between portability and efficiency. Machine code can
be 100% efficient and 0% portable. Typically <10% machine code can yield >80%
efficiency. Fully portable code might be very inefficient. Unfortunately, this
tradeoff is a hard one, because the benefits accrue to different parties. In practice,
maintenance resources are scarce and every use of them therefore has an
opportunity cost—the cost of not doing the other things that need doing. Resources
are deployed on one product only until it becomes more profitable to redeploy them.
This will happen even though there is still beneficial work to do.

What is achievable at reasonable cost? Consider two ideal situations: zero defect
rate (code that is completely bug free) and total portability (code that can move
without change to a new machine).

Here are some historical data, in defects per million lines of code:
Defects/MLOC Development method

60,000 code developed normally and untested
10,000 code developed normally and tested
1,000 the above plus code and design inspections
300 the above plus formal design and verification
100 the above plus “defect cause removal”
40 software “cleanroom” experiment
4 claimed limit of feasibility

Unfortunately, maintenance is too late for some of this. Some recommended
techniques we can adopt are comprehensive acceptance testing, regression testing,
operational simulations, inspection of all revisions, some defect cause removal,
introduction of formalism in data specifications, and statistical quality control. This
should improve about tenfold both defect detection and the rate of introduction of
new defects.

Here are some estimates from the history of a compiler for costs in man-days and
efficiency of product.

Efficiency Cost Development or maintenance effort
100% 400 original compiler
100% 120 new code generator for new machine
70% 60 adapting code generator from template
10% 20 writing machine-code interpreter
3% 4 porting interpreter written in existing language

Realistically, code written in standard languages can be 100% portable, so this is the
best route to good portability. However, this assumes a target environment that has
already been built up to a certain level of abstraction. Other products must build
their own abstractions. A pessimistic estimate is that each layer of abstraction

CMU/SEI-91-TR-2 117

supports about five times its cost in portable code. Few products can afford the
efficiency cost of many layers.

29. Final Review (Part 1)

[This lecture reviews software creation (planning, cost, and schedule; and
techniques), software testing (correctness, performance, quality), and software
deployment.]

30. Final review (Part 2)

[This lecture reviews software maintenance (procedures, types of maintenance, and
techniques), and building long-lived software (technical issues and quality issues).]

31. Final Examination

Bibliography

Arthur88 Arthur, L. J. Software Evolution. New York: John Wiley & Sons,
1988. Required textbook for course.

Bastani85 Bastani, Farokh B. “On the Uncertainty in the Correctness of
Computer Programs.” IEEE Trans. Software Engineering SE-11,
9 (Sept. 1985), 857-864.

Beizer84 Beizer, Boris. Software System Testing and Quality Assurance.
New York: Van Nostrand Reinhold, 1984.

Boehm81 Boehm, Barry W. Software Engineering Economics. Englewood
Cliffs, N. J.: Prentice-Hall, 1981.

Boehm88 Boehm, Barry W. “A Spiral Model of Software Development and
Enhancement.” Computer 21, 5 (May 1988), 61-72.

Britcher86 Britcher, Robert N. and Craig, James J. “Using Modern Design
Practices to Upgrade Aging Software Systems.” IEEE Software 3,
3 (May 1986), 16-24.

Clapp81 Clapp, Judith A. “Designing Software for Maintainability.”
Computer Design 20 (Sept. 1981), 197-204.

Collofello87 Collofello, James S. and Buck, Jeffrey J. “Software Quality
Assurance for Maintenance.” IEEE Software 4, 9 (Sept. 1987), 46-
51.

Glass81 Glass, Robert and Noiseux, R. A. Software Maintenance
Guidebook. Englewood Cliffs, N. J.: Prentice-Hall, 1981.

Grady87 Grady, Robert B. “Measuring and Managing Software
Maintenance.” IEEE Software 4, 9 (Sept. 1987), 35-45.

Graham77 Graham, R. M. “Performance Prediction.” Software Engineering,
An Advanced Course, Bauer, F. L., ed. New York: Springer-
Verlag, 1977, 396-463.

118 CMU/SEI-91-TR-2

Green76 Green, T. F., Schneidewind, N. F., Howard, G. T., and Pariseau,
R. J. “Program Structures, Complexity and Error
Characteristics.” Proc. Symp. Computer Software Engineering.
New York: Polytechnic Press, Apr. 1976, 139-154.

Holbrook87 Holbrook, H. B. and Thebaut, S. M. A Survey of Software
Maintenance Tools That Enhance Program Understanding. Tech.
Rep. SERC-TR-9-F, Software Engineering Research Center,
University of Florida, Gainesville, Fla., Sept. 1987.

Ince85 Ince, D. C. “A Program Design Language Based Software
Maintenance Tool.” Software—Practice and Experience 15, 6
(June 1985), 83-94.

Kernighan78 Kernighan, Brian and Plauger, P. J. The Elements of
Programming Style. New York: McGraw-Hill, 1978.

Lehman85 Lehman, Manny M. Program Evolution: Processes of Software
Change. Academic Press, 1985.

Martin83 Martin, James and McClure, Carma. Software Maintenance: The
Problem and its Solutions. Englewood Cliffs, N. J.: Prentice-Hall,
1983. Required textbook for course.

Martin85 Martin, James and Leben, J. Fourth Generation Languages.
Englewood Cliffs, N. J.: Prentice-Hall, 1985. Published as two
volumes; second volume published in 1986.

McCabe76 McCabe, Thomas J. “A Complexity Measure.” IEEE Trans.
Software Engineering SE-2, 4 (Dec. 1976), 308-320.

Myers79 Myers, Glenford J. The Art of Software Testing. New York: John
Wiley & Sons, 1979.

Ng90 Modern Software Engineering; Foundations and Current
Perspectives. Ng, P. A. and Yeh, Raymond T., eds. New York:
Van Nostrand Reinhold, 1990.

Parnas79 Parnas, David L. “Designing Software for Ease of Extension and
Contraction.” IEEE Trans. Software Engineering SE-5, 2 (Mar.
1979), 128-137.

Poole77 Poole, P. C. and Waite, W. M. “Portability and Adaptability.”
Software Engineering, An Advanced Course, Bauer, F. L., ed.
New York: Springer-Verlag, 1977, 183-277.

Prell84 Prell, Edward M. and Sheng, Alan P. “Building Quality and
Productivity into a Large Software System.” IEEE Software 1, 3
(July 1984), 47-54.

Pressman87 Pressman, Roger S. Software Engineering: A Practitioner’s
Approach, 2nd Ed. New York: McGraw-Hill, 1987. Required
textbook for course.

CMU/SEI-91-TR-2 119

Sha89 Sha, Lui and Goodenough, John B. Real-Time Scheduling Theory
and Ada. Tech. Rep. CMU/SEI-89-TR-14, ADA211397, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh,
Pa., Apr. 1989.

Tsichritzis77 Tsichritzis, D. “Reliability.” Software Engineering, An Advanced
Course, Bauer, F. L., ed. New York: Springer-Verlag, 1977, 319-
373.

Turner86 Turner, David. “An Overview of Miranda.” SIGPLAN Notices 21,
12 (Dec. 1986), 158-166.

Wegner84 Wegner, Peter. “Capital-Intensive Software Technology.” IEEE
Software 1, 3 (July 1984), 7-45.

120 CMU/SEI-91-TR-2

3.5. Software Verification and Validation

Students’ Prerequisites

Students should have familiarity with programming-in-the-small in block-structured
languages (such as Ada, C, or Pascal). They should be able to read and write first
order predicate calculus formulae and know how to prove simple theorems, such as
DeMorgan’s Laws.

Objectives

Students will learn how to evaluate software for correctness, efficiency, performance,
and reliability. Specific skills they will master include program proving, code
inspection, unit-level testing, and system-level analysis. In addition, students will
gain an appreciation for the difficulty and cost of some types of analysis and the
need for automation of tedious tasks.

Philosophy of the Course

This course stresses problem-solving skills, especially in analysis of code. Students
practice several different kinds of analysis, including proofs, testing, and inspec-
tions. One main example is used throughout the course so that students can see the
difference in methods applied to the same subject. Part of the course deals with atti-
tudes in industry toward reliability and performance.

CMU/SEI-91-TR-2 121

Syllabus

The syllabus assumes 30 class meetings, including midterm and final examinations.
Each meeting is planned to include approximately 55 to 60 minutes of lecture and 20
minutes of class discussion.

1. Introduction
2. Reviews: Walkthroughs
3. Reviews: In-Class Review
4. Reviews: Inspections
5. Reviews: In-Class Inspection
6. Reviews: Cleanroom
7. Proofs: Natural Deduction
8. Proofs: Invariant Assertions
9. Proofs: Arrays

10. Proofs: Procedures
11. Proofs: Weakest Preconditions
12. Proofs: Symbolic Evaluation
13. Proofs: Program Development
14. Midterm Review
15. Midterm Examination
16. Unit Testing: Overview
17. Unit Testing: Structural
18. Unit Testing: Dataflow Analysis
19. Unit Testing: Partition Analysis
20. Unit Testing: Coverage
21. Unit Testing: Limitations
22. System Testing: Integration and System Testing
23. System Testing: Performance Analysis
24. System Testing: Regression
25. System Testing: Performance Testing
26. System Testing: Environments and Tools
27. System Testing: Safety
28. System Testing: Metrics and Reliability
29. Final Review
30. Final Examination

122 CMU/SEI-91-TR-2

Summaries of Lectures

1. Introduction

Reading: Beizer84, Chapters 1-2

Quality of a software product manifests itself in many dimensions. In the operations
dimension, we can consider correctness (does it do what I want?), reliability (does it
do it accurately all of the time?), efficiency (will it run on my hardware as well as it
can?), integrity (is it secure?), and usability (can I run it?). In the transition dimen-
sion, we can consider portability (will I be able to use it on another machine?),
reusability (will I be able to reuse some of the software?), interoperability (will I be
able to interface it with another system?). In the revision dimension, we can con-
sider maintainability (can I fix it?), flexibility (can I change it?), and testability (can
I test it?).

Quality exists throughout a product, not just in the source code. This includes the
requirements specification, the functional specification, the design, the implementa-
tion, the test plan, and the documentation.

Validation is the process of determining that a product fulfills its requirements. (Is
it the right product?) Verification is the process of determining that a product
agrees with its specification. (Was it done right?) Verification can be formal (based
on mathematics, including logic; validity of statements can be mechanically checked)
or rigorous (strictly following rules; compliance can be audited).

2. Reviews: Walkthroughs

Reading: Weinberg84

Software technical reviews come in many forms and should be conducted for several
reasons. Proofs of correctness are too hard, and testing is not sufficient. Some
objects, such as requirements, cannot be proved correct or tested. Reviews provide
feedback about the development process, and they are educational.

The most common review types or methods include: walkthroughs, which focus on
objects; inspections, which focus on aspects; audits, which are a solitary exercise
focusing on defects; round-robins, which cycle through participants; and informal.
The objects reviewed include requirements (to assess comprehension and complete-
ness), specifications (to assess consistency and completeness), designs (to assess
integrity), code (to assess accuracy), documentation (to assess accuracy and clarity),
and other work products.

A review is formal if its results are reported in written form, it is a public event, and
all participants are responsible for the quality of the review. The advantages of for-
mal reviews include that its reports serve as milestones for the project, the publicity
encourages preparation, and personality conflicts can be addressed openly. The dis-
advantages are the perception that too much reviewing leaves little time for “real
work,” and that formal meetings are sometimes too impersonal.

The preparation for conducting a walkthrough begins with selection of the partici-
pants. These should include a review leader (or coordinator or moderator), a
recorder (or secretary or scribe), a presenter (or producer), other producers, and pos-

CMU/SEI-91-TR-2 123

sibly user representatives, external reviewers, and others. Then the walkthrough is
scheduled, an agenda prepared, and the materials are studied.

The review leader is responsible for scheduling the review, conducting the review
(especially maintaining order, keeping the focus on the review, and assuring that all
items are covered), preparing the report, and following up on any action items. The
recorder is responsible for recording items of interest (especially defects and anoma-
lies discovered and any action items discovered), and assisting the leader in prepar-
ing the report. The presenter is responsible for preparing carefully for the review,
being objective, and being accountable.

The report of the review should include a management summary, typically one page
that describes what was reviewed, who participated (with signatures), and results of
the review (as acceptance or rejection of the product). The main part of the report
addresses technical issues: it lists all defects and anomalies and records action
items. A related issues section may be used as a minority report; to remove
contentious items from the technical issues section; and to address problems not
solvable by action items.

3. Reviews: In-Class Review

[This class period is used to conduct a review, rather than a lecture. The first part of
the next class period is used as a debriefing to discuss what happened in the review,
why, and what should have happened.]

4. Reviews: Inspections

Reading: Fagan76

A well-managed software process has identifiable stages. Exit criteria are used to
recognize passage between stages; inspections are used to ensure satisfaction of exit
criteria. Walkthroughs and inspections differ in that a walkthrough is a developer’s
method, the focus is on the object, and the objective is understanding; whereas an
inspection is a manager’s method, the focus is on aspects of the product, and the
objective is detection of defects. Audits and inspections differ in that inspections are
conducted early in the process, they collect data to measure the process, and the
objective is defect detection and removal; whereas audits are conducted late in the
process, they use data from the inspections, and the objective is monitoring.

The inspection process includes planning, presenting an overview of the product,
preparation, the inspection itself, rework, and follow-up. The overview may be
conducted by the producer, and its object is education. One overview may be suffi-
cient for several subsequent inspections. The preparation includes studying
distributed materials, studying previous inspections, studying checklists for finding
defects, identifying some defects and anomalies, and noting these or other trouble-
some areas in a preparation log. The inspection consists of an introduction, reading
the material, recording defects, reviewing the defect list, and completing the reports.
Rework removes defects or resolves them in some other way. The follow-up assures
that all defects and issues have been resolved.

The roles of the participants are similar to those for a walkthrough. The review
leader schedules the review, conducts it (maintains order, makes rulings on defect
classification, keeps the focus on the review, and assures that all items are covered),
prepares reports, and follows up on defects and action items. The recorder records

124 CMU/SEI-91-TR-2

all items of interest, including defects and anomalies discovered and action items
generated, and assists in the preparation of reports. The reader presents materials
during the review, usually a paraphrasing of low-level detail. The reviewers must
prepare carefully for the review, be objective, and be accountable. Managers do not
attend inspections, so the discussion can be candid.

The report consists of the preparation log (which lists potential defects, troublesome
areas, and other information such as the amount of time spent), a management
summary (usually one page describing what was reviewed, a list of participants, and
a description of the results of the review as acceptance or rejection of the product), a
defect list (including a classification of each), a summary of defects (totals by type;
useful to management to measure the processes of development and inspection).

5. Reviews: In-Class Inspection

[This class period is used to conduct an inspection, rather than a lecture. The first
part of the next class period is used as a debriefing to discuss what happened in the
review, why, and what should have happened.]

6. Reviews: Cleanroom

Reading: Dyer87, Selby87; Linger88 and Mills86 for background

The cleanroom approach to software quality has its foundations in structured
programming (a restricted set of primitive control structures and stepwise refine-
ment), functional correctness, and statistical sampling theory. The method uses
incremental development, an approach derived from stepwise refinement; it requires
that specifications be structured; it insures that the unit of verification is relatively
small; and it allows for overlap of development and testing. Formal methods are
used in specification and design. Functional verification is used instead of debug-
ging: each language element has a verification rule (functional description), verifi-
cation is composed of function compositions, and it is goal-directed and mostly
bounded. After coding, statistically-based independent testing is used rather than
unit testing by the developers. The method is based on sampling of users’ frequency
of operations; additional tests are added to ensure coverage of all functionality;
testing is performed by an independent group, a target “mean time to failure”
(MTTF) rate is chosen as the criterion for completion of testing.

Comparison of cleanroom with other methods shows that it substitutes formal verifi-
cation for debugging and unit-level testing; it emphasizes the importance of
frequency of users’ operations; and the role of testing is to increase confidence by
statistical means. A University of Maryland study of 10 cleanroom teams vs. 5 non-
cleanroom teams showed that the former delivered more product and made all
intermediate deliverables, used a smaller subset of the programming language, and
passed more tests. An IBM effort to build a COBOL restructuring tool reported
significantly fewer defects in the delivered product. A 1980 census software system
of 25,000 lines of code developed with this method “...ran throughout the production
of the census (almost a year) with no errors detected.”

CMU/SEI-91-TR-2 125

7. Proofs: Natural Deduction

Reading: Gries81, Chapters 0-4

Some of the basic definitions include axioms , a recursive set of valid wffs (well-
formed formula); rules , a finite set of mappings from valid wffs to valid wffs; and
proof, a sequence of wffs, in which each wff is an axiom or is derived from wffs by
rules. The last wff is said to be deduced or proven . A fundamental theorem is that
every deducible wff is valid. These definitions may apply to systems (collections of
wffs). A model is an interpretation that makes all wffs of a system true. That a wff
is valid is equivalent to its negation being unsatisfiable. Theorem provers try to
demonstrate validity of an assertion by showing the unsatisfiability of its negation;
natural deduction systems try to show the validity of the assertion directly.

Gries has introduced a variation of this approach in which there are no axioms;
there are 10 rules (an introduction rule and an elimination rule for each operator);
premises may appear as wffs in a proof; and premises and derived wffs may only be
used if they are on a previous line in the same scope or on a previous line in an
enclosing scope.

There are several important solvability and decidability results. Validity of wffs in
propositional calculus is decidable. Validity of wffs in first-order predicate calculus
is undecidable, but partially solvable. Validity of wffs in second-order predicate
calculus is undecidable. First-order predicate calculus has a complete deduction
system, but second-order does not. Validity is decidable if a Turing machine can
decide if a wff is valid; validity is partially solvable if a Turing machine will
(eventually) output “yes” to every valid wff. A complete deduction system is one that
can be used to prove every valid wff.

Another important proof method is mathematical induction.

[The lecture includes a detailed discussion of inference rules and examples from
Gries81.]

8. Proofs: Invariant Assertions

Reading: Hoare69

Program verification (and its foundations) is a very old idea; it was addressed by
Aristotle and Euclid, by Ada Lovelace in the 1840s, and by Turing in the 1940s. It
can be approached in various ways, including invariant assertion (Hoare), weakest
precondition (Dijkstra), and functional (Mills). Some basic definitions include asser-
tion, a valid wff that is interpreted relative to its location within a program; precon-
dition , an assertion before a statement or program component; and postcondition, an
assertion after a statement or program component. A program proof is a program
annotated with assertions such that each assertion is justified by one of the follow-
ing: it is a precondition of the program; it follows from the previous assertion by
logical consequence (using first-order predicate calculus); or it follows from the
previous program statement by application of a program inference rule. Partial cor-
rectness is defined to mean that if the program terminates, then it is correct; stated
another way, if the precondition is true and the program terminates, then the post-
condition will be true. Total correctness is defined as partial correctness and termi-
nation is proven.

126 CMU/SEI-91-TR-2

Proof of termination of a loop is based on the idea of defining a function from the
product of the data types of variables used in the loop to the natural numbers, and
then showing that the function is strictly decreasing and bounded below.

[The lecture includes discussions of many detailed examples of definitions; of infer-
ence rules including the rule of composition, rules of consequence, assignment
axiom, condition rule, and iteration rule; and examples of verification of multiplica-
tion and square root programs.]

9. Proofs: Arrays

Reading: Gries81, Chapters 5-6

Proofs involving programs with arrays require some new and additional rules.
Quantifiers for arrays include a universal quantifier with notation (Ai: R: E), mean-
ing for all i satisfying R, expression E is true; an existential quantifier with notation
(Ei: R: E), meaning there exists an i satisfying R, such that expression E is true; and
a counting quantifier with notation (Ni: R: E), meaning the number of i satisfying R,
such that expression E is true. A section of an array is a statement of the form
X[a:b], meaning (Ai: a ≤ i ≤ b: X[i]). When b < a, X[a:b] is empty; anything can be
asserted about the empty section.

[The lecture includes a detailed example of proofs involving arrays, using a sorting
program.]

10. Proofs: Procedures

Reading: Gries81, Chapter 12

Proofs involving procedures require the introduction of several new rules, including
rules for nonrecursive procedures, a rule for local declarations, and a rule for recur-
sive procedures. These include rules for procedure with no parameters, procedures
with actual parameters the same as the formal parameters, the rule of substitution,
the rule of declaration, the rule of substitution and restrictions on it, and the rule of
adaptation and restrictions on it.

[The lecture includes detailed discussions of the proof rules and their notations. It
also includes detailed examples of proofs involving a nonrecursive procedure and a
recursive procedure.]

11. Proofs: Weakest Preconditions

Reading: Gries81, Chapters 7-11

The weakest precondition approach to correctness proofs requires the introduction of
new notation, including the conditional boolean operators cand and cor ; the domain,
which is the set of all states where an expression is defined; the empty statement
skip ; multiple assignment notation; case statement notation; and while loops and
guards. A new concept is the implementation concept of evaluation. The proof rules
for weakest preconditions include assignment, conditional, iteration, composition,
and consequence.

[The lecture includes a detailed discussion of an example of a multiplication
program.]

CMU/SEI-91-TR-2 127

12. Proofs: Symbolic Evaluation

Reading: Hantler76, Kemmerer85

Symbolic execution uses a standard mathematical technique of letting symbols rep-
resent arbitrary program inputs. What we need is a machine that performs
algebraic manipulation on the symbolic expressions. Inputs are represented symbol-
ically. The program state includes the values of variables, the program counter, and
the path condition P.

A rule is defined for each statement in the language. For example, for the assign-
ment statement X := E, the rule is to replace all variables in the expression E with
their current values. The resulting expression becomes the new value of variable X.
The program counter is set to the next instruction and path condition is unchanged.

The Unisex tool is a verification condition generator. It supports symbolic evalua-
tion by automating path condition propagation.

For a statement of the form “assume (<boolean expression>)” the rule is that vari-
ables in the boolean expression are replaced by their current symbolic values. Let B
represent the resulting expression. Then the new path expression is defined by
Pnew = Pold & B.

For a statement of the form “prove (<boolean expression>)” the rule is to let B repre-
sent the symbolic expression that results from replacing all the variables in the
boolean expression with their current values. Then if P ⇒ B, the expression is veri-
fied; otherwise it is not.

It is common to use a tree structure to represent the symbolic execution, where each
node represents a statement in the program and each branch point corresponds to a
forking IF statement.

For a statement of the form “WHILE <boolean expression> DO <statement>” the
rule is to let B represent the evaluated boolean expression. If P ⇒ B then execute
the statement list followed by the same WHILE statement; if P ⇒ ~B then execute
the statement following the WHILE construct. If P ⇒ B and P ⇒ ~B then two cases
must be considered. In the first case, where B is true, Pnew = Pold & B and then
execute the statement list followed by the same WHILE statement. In the second
case, where B is false, Pnew = Pold & B and then execute the statement following the
WHILE construct.

For every statement in the language we must define its effect on the state (the effect
on the variables, program counter, and path condition).

13. Proofs: Program Development

Reading: Gries81, Chapters 13-17

[Guest lecturer: David Gries, Cornell University]

Algorithms and programs can be developed simultaneously with proofs of their cor-
rectness. The algorithm must first be specified rigorously.

The loop invariant is an important concept for developing correct loops in programs.
At least an approximation for the loop invariant should be developed before the loop.

128 CMU/SEI-91-TR-2

Two heuristics for finding the invariant are replacing an expression in the postcon-
dition by a fresh variable and deleting a conjunct of the postcondition.

In the notation { Q } do B → S od { R }, Q is the precondition, B the guard, S the
loop body statement(s), and R the postcondition. Let P be the loop invariant for such
a loop. Find the guard B by solving for it in P ∧ ¬B ⇒ R. The first step in develop-
ing the body S is to determine how to make progress. Given do B → ___ progress
od , precede “progress” by a statement S' satisfying { P ∧ B } S' { wp(progress, P) }.
If the body of the loop is too inefficient, try to strengthen the loop invariant so that
the body can be improved.

To prove { Q } do B → S od { R } using invariant P and bound function t, prove: (0)
Q ⇒ P; (1) { P ∧ B } S { P }; (2) P ∧ ¬B ⇒ R; and (3) the loop terminates, meaning
that execution of S decreases t and P ∧ B ⇒ t > 0.

[The lecture includes examples of application of these ideas to the development of
some simple algorithms and programs.]

14. Mid-term Review

15. Mid-term Examination

16. Unit Testing: Overview

Reading: Beizer84 chapters 3-4; Beizer83 and Myers79 for background

Software testing is conducted at many phases of the development process. Unit test-
ing is the lowest level, and it is conducted relatively soon after implementation of a
module or unit. Integration testing follows successful unit testing; system testing is
performed on the entire, integrated system; and acceptance testing is conducted by
the user just prior to taking delivery of the system. Regression testing is conducted
during maintenance.

Some of the methods of unit testing are classified as black-box or white-box, or as
top-down or bottom-up. Top-down testing simulates unwritten pieces with stubs
and replaces stubs with real pieces as they become available. Bottom-up testing
simulates unwritten pieces with drivers and replaces drivers with real pieces as they
become available. Black-box or functional testing is based on the assumption that
the inner details of a unit are unknown, and the tests are chosen in terms of specifi-
cations of the unit. White-box or structural testing is based on the assumption that
the inner details of the unit are known, and the tests are chosen in terms of the
structure of the unit.

Some black-box testing methods are equivalence partitioning (divide the input into
equivalence classes; each test point in a class tests the same properties of the sys-
tem, so select only one test point from each class); boundary-value analysis (select
test points at boundaries of input data equivalence classes—on either side and right
on the boundary, and do the same for output classes); syntax testing (describe the
input in terms of a language, create artificial test points from boundary values of
grammar); logic-based testing (create decision tables from the specification, and
choose test points to ensure coverage of the table); cause-effect graphing (similar to
decision tables, but uses a graph instead to show combinations of decisions); and
error guessing (try to second-guess the developer of the code and generate test cases
for likely errors).

CMU/SEI-91-TR-2 129

Some white-box testing methods are symbolic execution (assign initial symbolic
values to variables and inputs, execute the program by assigning symbolic values
instead of evaluating expressions, keep track of possible paths and try each seg-
ment); statement coverage or branch testing (execute each statement in the code,
identify unreachable code); path testing (execute each path in the code, some paths
may be infeasible); transaction flows (invent a higher-level unit of control flow based
on the logical transaction of the system, execute each path in the higher-level
description); and state-transition testing (construct a state-machine description of
the system and execute each path through the transition graph of the state
machine).

Test plans are an important part of testing. They should describe the responsibili-
ties and strategies, and they should integrate with the project management plans. A
test plan typically includes a section on objectives (what is accomplished by testing)
that may be different for each phase; completion criteria (when testing can stop, if
errors are still present, what else must be done); schedules (when the testing will be
done, and the dependencies on other project activities); responsibilities for designing
tests, running tests, evaluating results, and responding to errors found; strategies
(testing method, integration strategy); version control; and the tests themselves
(descriptions, test inputs, expected results, and actual results).

[The lecture also includes a detailed discussion of the triangle example from
Myers79 and a multiplication example.]

17. Unit Testing: Structural

Reading: Howden76

One form of structural testing is based on the concept of a path , which is a sequence
of statements that correspond to some flow of control. If there is no input that can
cause a path to be executed, then the path is infeasible . The subset Di of the input
domain D that causes a particular path Pi to be executed is called the path domain
of Pi. The sequence of computations i = (Pi) performed on a path Pi is called the
path computation . Two computations i and j are equivalent (i = j) if i and j are
defined over the same subset D' of D, and i(x) = j(x) for all x in D'.

Program correctness can be defined in terms of path computations. Suppose that P*
is a correct version of program P, and that there is an isomorphism between the
paths of P and the paths of P*, such that ∀ i [D(Pi) = D(P*i) ∧ (Pi) = (P*i)]. Then P
is correct. Incorrect programs can exhibit several types of errors. A computation
error exists if some computation is incorrect. A domain error exists if some input
causes execution of the wrong path. A subcase error exists if some path is missing.

P-Testing is a form of structural testing. Suppose that it were possible to identify all
of the paths (a potentially infinite set), and that it were possible to find input data to
execute each of these paths. Selecting one input value for each path is called P-
testing. For computation errors, P-testing is reliable only if computations on a path
are either correct for all input or incorrect for all input. For domain errors and
subcase errors, P-testing is reliable only if the domains of incorrect paths are com-
pletely disjoint from the paths of correct programs.

In summary, P-testing is impossible because it is not possible to determine if the
program terminates, and the number of tests may be infinite. P-testing is not
reliable.

130 CMU/SEI-91-TR-2

[The lecture also includes detailed examples of a program, its path domains, its path
computations, the error types, how errors of each type may be found.]

18. Unit Testing: Dataflow Analysis

Reading: Rapps85

Dataflow analysis is a useful approach to structural testing. Dataflow anomalies
may reveal errors. Path testing is impossible because of the potentially infinite
number of paths. In enumerating paths, some paths are infeasible, but that cannot
always be determined. Dataflow analysis may discover the more “interesting” paths.

A fundamental concept is “def/use” (definition and use). A basic block contains no
transfer of control statements; it is represented by a single node in a program graph;
and definitions and uses within the block (local) are hidden. Def/use concepts for
variables include: an input statement “read V” defines V; an assignment statement
“V := X” defines V and uses X; an output statement “print V” uses V; a conditional
statement “if p(V) then goto m” uses V. Def/use concepts for paths include: a path
containing no def’s of a variable V is a def-clear path with respect to V; the existence
of a def-clear path before the first use of a variable may be an error; and two def’s of
the same variable without an intervening use is probably an error. A du-path is a
path from a definition to a use.

Several criteria and sets of criteria for testing have been proposed. The simplest
include: all-nodes (every node is executed; same as statement coverage); all-edges
(every edge is executed; same as branch testing); all-defs (every definition is exe-
cuted and later used); all-uses (for each definition, for each use of that definition
there is a path tested); and all-du-paths (for each definition, for each du-path from
that definition there is a path tested).

Variables may be used in predicates or computationally. An example of p-use is in
the conditional statement “if p(V) then goto m”, which uses V in a predicate.
Examples of c-use include the assignment statement “V := X” and the output state-
ment “print X”, both of which use X computationally. A dpu set, denoted dpu(x,i), is
the set of all (j,k) edges such that x is an element of p-use(j,k) and there exists a def-
clear path with respect to x from i to j. A dcu set, denoted dcu(x,i), is the set of j
nodes such that x is an element of c-use(j) and there exists a def-clear path with
respect to x from i to j.

Additional testing criteria include: all-p-uses (for each definition, for each dpu there
is a path tested); all-p-uses/some-c-uses (for each def, for each dpu there is a path
tested; if for some def there is no dpu, choose some dcu); and all-c-uses/some-p-uses
(for each def, for each dcu there is a path tested; if for some def there is no dcu,
choose some dpu). The Rapps/Weyuker hierarchy of the relative power of the crite-
ria is: all-nodes, all-edges, all-defs; all-uses, all-du-paths; all-p-uses; all-p-uses/some-
c-uses; all-c-uses/some-p-uses.

All these testing criteria are interrelated, in that some imply others. For example,
all-paths implies all-du-paths. A program graph may contain an infinite number of
paths (if it contains a loop), but even graphs with loops contain a finite number of
du-paths.

CMU/SEI-91-TR-2 131

In summary, dataflow analysis may discover “interesting paths” to test, and reduce
the cost of path testing. Dataflow analysis cannot guarantee better reliability than
path testing.

19. Unit Testing: Partition Analysis

Reading: Richardson85, Hamlet88

[Guest lecturer: Debra Richardson, University of California, Irvine]

Partition analysis is an analysis method based on the specification as well as the
implementation, and involving both static and dynamic analysis. The basic idea is
to divide the input into a set of partitions, each of which might be studied exhaus-
tively. The method partitions the input domain by analyzing the structure of both
representations (specification and implementation). It produces the smallest
domains that can be analyzed independently; testing and verification can be applied
to each subdomain.

Symbolic evaluation provides common representations of specification and imple-
mentation. Procedures can be partitioned in two ways: the specification partitions
the domain into subsets of input data that should be processed uniformly; the
implementation partitions the domain into subsets that actually are processed
uniformly.

Partition analysis testing provides a demonstration of the dynamic consistency
between the specification and the implementation. For each procedure subdomain,
test data is selected by computation testing criteria and domain testing criteria. The
procedure partition decomposes structural and functional testing.

An experiment to evaluate the partition analysis method versus mutation analysis
looked at 34 mutants of the same program. All known errors were found, all seeded
errors (through mutation analysis) were found, and equivalence was demonstrated
for most correct procedures (mutants that were semantically equivalent).

Some advantages of the method are that it can be applied to several different types
of specification languages, it can be applied throughout the life cycle, it combines the
benefits of testing and verification, and it results in tests based on both the specifi-
cation and the implementation (and so addresses missing path errors and not just
domain and computation errors).

[The lecture includes a detailed example of partitioning a prime number predicate
function.]

20. Unit Testing: Coverage

Reading: DeMillo78, Hamlet77

[Guest lecturer: Dick Hamlet, Portland State University]

The deficiency in all variants of path testing is that although a path is traversed, the
data used does not explore the possible state space for that path. Just as an untried
path could harbor an arbitrary defect, so a path tried only with a few values could
harbor an almost arbitrary defect. People (and symbolic-execution systems) often
choose nonrepresentative data.

132 CMU/SEI-91-TR-2

The idea of data coverage and mutation testing is, given a program P and a set of test
data T, the test is (mutation or data coverage) adequate if and only if (1) T succeeds,
so P is not shown to be incorrect, and (2) no change to P could be made without alter-
ing at least one test result. If any part of P can be changed without T detecting it, T
is inadequate, because it fails to properly cover that part.

Each expression in a program is textually altered to form a number of complete pro-
gram mutants , each arising from one change to one expression. All mutants and the
original are executed on given test data. Any mutant whose output differs from the
original is said to be killed. If at the end of testing any mutants remain alive, the
changed expressions they contain correspond to expressions of the original program
that have not been adequately covered.

Mutation can replace path analysis, but in practice it is easier to first cover paths,
then alter expressions. Mutation is expensive, because even severely limited
changes produce far too many alternatives. Some mutations fail to halt, and must
remain alive or be arbitrarily eliminated. Equivalent programs may be difficult or
impossible to detect.

[The lecture includes detailed examples of implementation of mutation testing, one
due to Hamlet and one to DeMillo and Budd.]

21. Unit Testing: Limitations

Reading: Weyuker88

[Guest lecturer: Elaine Weyuker, Courant Institute, New York University]

Two significant problems concerning testing are that we don’t use adequacy criteria
for tests, and we don’t know whether an adequacy criterion is any good.
Axiomatization is an approach to solving these problems, because it provides a basis
for the definition of new program-based adequacy criteria.

Fundamental questions to consider are the role of an adequacy criterion and the
relationship between an adequately tested program and a correct program. A
program may be correct and it may be adequately tested, but neither condition nec-
essarily implies the other. The correctness condition is the requirement that P(t) =
S(t) for every t in T, which means that the program computes the same function as
the specification for all elements of the input domain.

Concepts of the axiomatic treatment of adequacy criteria include applicability (for
every program there exists an adequate test set; for every program there exists a
finite adequate test set), non-exhaustive applicability (there is a program P and a
test set T such that P is adequately tested by T and T is not an exhaustive test set);
monotonicity, inadequate empty set, antiextensionality, programs of the same
shape, antidecomposition, Gödel numbering of programs, renaming, Gödel-class
number, canonical form, and complexity of a test set.

[The lecture also includes a comparison of several popular testing criteria (black-box,
path testing, etc.) in terms of the axioms discussed.]

CMU/SEI-91-TR-2 133

22. System Testing: Integration and System Testing

Reading: Beizer84, Chapters 5-6

Some conclusions about unit testing are that no single method is universally suc-
cessful, the cost of testing is an implicit constraint, and reliability is not the same as
correctness. Other kinds of testing are also important. Integration testing assumes
that unit testing was successful, and it focuses attention on interfaces among units.
Interface problems include incorrect invocation syntax, incompatible types, and
incorrect or incomplete specifications.

Integration strategies include top-down (test the higher level units first, incremen-
tally integrating lower levels), bottom-up (inverse of top-down), and big-bang (test
everything at once). The advantages of top-down integration are that it is based on
stepwise refinement and it exposes control flow errors early; its disadvantages are
that it requires stubs and that there may not be a clear “top.” The advantages of
bottom-up integration are that it allows more parallel activity of the testing team
and it allows reuse more easily; its disadvantages are that it requires drivers and
that system architecture flaws are discovered late. The advantage of big-bang inte-
gration is that it avoids problems that never arise; its disadvantage is that it avoids
problems until it is too late.

Integration procedures must specify who corrects defects found during integration
testing and how much retesting must be performed after each such correction.

System testing looks at the whole systems, not just the software. It includes system-
level functionality testing, performance testing, and acceptance testing. The accep-
tance testing phase may include alpha testing (in-house) and beta testing (by
customers).

Test plans are critical to the effectiveness of testing. An IEEE standard for test
plans describes these major sections of the plan: test-plan identifier, introduction,
test items, features to be tested, features not to be tested, approach, item pass/fail
criteria, suspension criteria and resumption requirements, test deliverables (test
design specification, test case specification, test procedure specification), testing
tasks, environmental needs, responsibilities, staffing and training needs, schedule,
risks and contingencies, and approvals.

A test design specification includes these sections: purpose, outline, test-design
specification identifier, features to be tested, approach refinements, test identifica-
tion, and feature pass/fail criteria. A test case specification includes these sections:
purpose, outline, test-case specification identifier, test items, input specifications,
output specifications, environmental needs, special procedural requirements, and
intercase dependencies. A test procedure specification includes these sections:
purpose, outline, test-procedure specification identifier, purpose (of this procedure),
special requirements, log, execution, and contingencies.

23. System Testing: Performance Analysis

Reading: Bentley84, Bentley87

A “back of the envelope” analysis is sometimes useful to get a feel for a particular
value. For example, when does overnight mail beat direct transmission? Assuming
24-hour delivery for overnight mail and 1200 baud direct transmission, a computa-

134 CMU/SEI-91-TR-2

tion yields direct transmission is limited to 12,960,000 bytes per day. Larger items
can be sent faster by overnight mail.

Analysis of algorithms can be used to identify expensive code, identify significant
constants, and predict best and worst cases.

[The lecture includes discussion of heuristics for identifying best and worst cases
from programming idioms. Sorting algorithms are used for examples.]

24. System Testing: Regression

Reading: Leung89, Beizer84, Chapter 8

[Guest lecturer: Liz Gensheimer, CONVEX Computer Corporation]

What is regression testing? The dictionary definition state: to regress is to return to
a worse or more primitive state or condition. In the world of software, a regression
represents a perceived loss of functionality between evolutionary versions of the
same product. This view of regression has its roots in the assumption that all
directed evolutionary changes in a software product are positive; they are enhance-
ments or improvements. Any change not in a positive direction is therefore a
regression.

Regression testing is the testing phase of the software life cycle and includes the
following tasks: unit testing (the individual components are tested in isolation);
integration testing (the individual components are put together to form the complete
product); feature testing (major functional components are tested in isolation within
the framework of the complete product); system testing (feature interactions are
tested); performance testing (the product is tested against certain benchmarks, or
performance criteria); regression testing (the product is tested against a known
baseline).

The purpose of regression testing is to verify that the new version of a software
product is no less correct than the previous version. The dependency of regression
testing on the existence of at least one previous version of the product sets it apart
from other testing tasks.

There are two basic regression methodologies currently used in industry. These
methodologies differ in the composition of the tests that make up the regression test
suite. Although both methodologies test for continued functional correctness, the
type of the test used can reflect different attitudes toward product development. The
two methodologies are positive regression testing and negative regression testing.

The regression test suite is derived from the complete functional test suite. Only
test cases that are known to pass are included. The regression suite becomes a
baseline for validating that future releases are functionally equivalent. Because the
tests selected represent historically validated, defect-free, functionality, this method
is termed “positive regression testing.” The purpose of positive regression testing is
to prove that the evolutionary version of the software product is at least as correct as
any previous version. Positive regression testing makes no direct statement regard-
ing any defects that may have been removed except to show that the corrective
measures did not adversely affect the basic functionality of the product. It is not a
requirement that only test cases representing defect-free functionality be included in
a positive regression suite. Good testing practice would suggest that test cases that

CMU/SEI-91-TR-2 135

currently fail or that test suspected weakness in the product be included as well
(this practice acknowledges that software products are generally not guaranteed to
be defect-free).

A positive regression test suit is characterized by an emphasis on systemic testing
(the product is tested as a complete entity rather than each feature being tested in
isolation); tests represent commonly used paths; tests are pre-existing—they are
derived from functional test suites (typically 20% of the available tests are used to
test 80% of the code).

Some advantages of positive regression testing are the tests cover a majority of the
commonly used paths; failures represent true defects (assuming that individual test
cases are correct)—there should be no user bias; the product as a whole is tested
rather than testing features in isolation. Some disadvantages are the test suite
requires constant updating to include new functionality; the breadth of the test is
limited by intimacy with the development effort; the tests do not cover all possible
paths—the ones omitted are the least commonly used paths, which are in general
also the less well test paths.

Many times a regression test suite will be constructed of test cases that represent
failures reported by end users of the software product. Because each test case repre-
sents a true or perceived defect in the product, the use of such a suite is termed
“negative regression testing.” The purpose of negative regression testing is to verify
that defects found in previous versions of the product have been removed. Negative
regression testing does not verify that new defects have not been introduced during
the defect removal.

A negative regression test suite is characterized by a wide variety of test cases
representing a relatively small percentage of the code (defects tend to cluster rather
than be evenly distributed); these are “real world” scenarios (failures occurring in
user environments rather than artificial test environments). There are two types of
tests in a negative regression test suite: tests that historically fail and tests that
failed sometime in the past but now pass. A test case making a transition from fail
to pass indicates that the defect has been removed.

Some advantages of negative regression testing are the tests provide evidence that
defects have been corrected; the tests are additions to the existing functional test
suite—this make the entire suite more complete. Some disadvantages are the tests
represent failures only; uncommon, or least used, paths are tested rather than
commonly used paths; user bias is introduced into the defect analysis. A very real
danger in using a negative regression test suite is that failures are initially identi-
fied by end users All user reported failures should be carefully screened to reject
instances of user error. Because the test suit is based on user reported failures, it
will still be biased towards the users’ perception of the product functionality.

25. System Testing: Performance Testing

Reading: Dongarra87

[Guest lecturer: Nelson Weiderman, Software Engineering Institute]

Software testing normally includes testing for functionality (does it do what it is
supposed to do?), reliability (does it have bugs?), usability (does it behave in a
friendly manner during installation, operation, and maintenance?), and performance

136 CMU/SEI-91-TR-2

(does it perform its function fast enough, and predictably?). Performance testing can
be applied to processors, operating systems, applications programs, compilers,
peripheral devices, networks, busses, memory hierarchies, and systems. Some mea-
sures of performance are throughput (work per unit time), response time (time per
unit of work), determinism (regularity of response), and the static and dynamic size
of the product. Software performance must be measured in the context of a system;
the performance of the product is influenced by the hardware/software system envi-
ronment, the development tools (compiler, linker, operating system), the algorithms
used, and the coding techniques.

Benchmarks are used to measure both absolute performance and relative perfor-
mance (relative to previous versions or to competing products). Performance should
be measured at each level of abstraction; Dongarra’s hierarchy of performance tests
is: computer operations at the machine level, program kernels, basic routines or
building blocks for applications, stripped-down programs, full-scale programs, and
experimental techniques. Measurement tools include a stopwatch, software timers
(provided by the programming language or the operating system), hardware timers,
logic analyzers, and link maps.

The principles of benchmarking are to be sure you are measuring what you think
you are measuring, assess the costs and benefits of benchmarking, and carefully con-
trol for sources of variation.

Sources of variation include systematic errors (effects that introduce a constant
source of bias independent of the number of repetitions of the measurement); and
statistical (random) errors (effects that introduce a variable source of bias depending
on environmental influences). Characteristics of statistical errors include that they
may occur frequently or rarely; they may have a large or small effect; and the fre-
quency and magnitude are from known distributions or completely random. Note
that measurements may have both systematic and random errors.

Examples of systematic sources of variation are fast or slow system clocks, incorrect
“overhead” adjustments, memory alignment problems, memory hierarchies, and
pipelined architectures. Good benchmarking technique must try to eliminate or
compensate for such sources of variation. Examples of statistical sources of varia-
tion are clocks with poor resolution, interrupts from clocks, daemons, or user actions;
and the sharing of resources in a multiprogramming or timesharing environment.
Statistical techniques can be used to compensate for these effects; measurements are
repeated until the statistical mean is within a given tolerance of the population
mean.

Performance data must be analyzed to compare machines, compilers, etc. It is often
desired to have one number representing relative system performance, such as mips ,
kwips, mflops, etc. The data analysis requires some statistical sophistication. It is
necessary to draw attention to exceptional results, to provide a profile of a multi-
faceted resource (strengths and weaknesses), and to produce meaningful numbers
(such as knowing to use the geometric mean rather than the arithmetic mean to
average normalized numbers).

Some performance issues for compilers are compile time vs. link time vs. run time;
time vs. space; micro vs. macro language features; generated code vs. runtime
system code; performance at different levels of stress; thwarting the optimizers; and
performance of subsidiary components (debugger, program library system). Some

CMU/SEI-91-TR-2 137

“games” that compiler vendors play include modifying the benchmark, optimizing
the benchmark program, suppressing checks, reporting selectively, tuning the
configuration, tuning the compiler to the benchmark, judicious choices of compiler
options, and judicious choices of operating system generation options.

In summary, performance testing is not for amateurs. The major issues are what to
measure, how to measure, identifying and controlling sources of variation, and
organizing and reporting results.

[The lecture also includes several examples of benchmarks.]

26. System Testing: Environments and Tools

Reading: Craddock87, Brown89

Several kinds of system testing activities can be supported by tools. Program
proving activities include writing specifications, massaging assertions, creating
assertions, and proving implications. Review activities include creating review
materials, presenting, reviewing, recording, and reporting. Testing activities
include generating tests, analyzing specifications, analyzing implementations,
executing tests, comparing and analyzing results of tests.

Tools to assist program proving include verification condition generators, theorem
provers, symbolic executors, and assertion annotation support. Review tools include
document preparation systems, electronic mail, version control and configuration
management tools, and demonstration equipment. Testing tools include static
analyzers (such as syntax checkers, semantics checkers, and dataflow analyzers),
dynamic analyzers (such as profilers, monitors, simulators, and debuggers), test
data generators, file comparators, and execution script support.

Some examples of environments for some of these activities include the Cornell
Program Synthesizer and Turbo Pascal for debugging support; Apollo’s DSEE for
support for versions and update procedures; and DEC’s VAXset for support for
regression test suite management.

Current research is aimed at developing more specification languages and more
powerful theorem provers to assist in program proving, and systems to support
mutation and coverage testing, random testing, and hybrid testing methods.

27. System Testing: Safety

Reading: Leveson86

Software safety issues can be exemplified by the case of the Therac-25 therapeutic
radiation machine. The machine evolved from earlier designs, with hardware func-
tion being replaced by software. Software faults contributed to accidents resulting
in at least 2 deaths.

Contributions to software safety can be made throughout the development of a
product, including requirements analysis, specification and design, implementation,
verification and validation, and operation and maintenance. A method is hazard
analysis, which includes a preliminary risk assessment; identification of potential
subsystem hazards as the design evolves, especially those related to component fail-
ure; detailed analysis of the design of the system, especially considering interfaces

138 CMU/SEI-91-TR-2

and total system failure; and an analysis of procedures for operating and supporting
the system.

Hazard analysis techniques include fault tree analysis (a search for causes of
hazards), event tree analysis (examination of the consequences of events), and simu-
lation (using models to predict behavior). Fault tree analysis is performed after
preliminary hazard analysis has identified the important hazards. It is a backward
trace through the system to find all conditions that ultimately cause a hazard. It
often is a mix of software fault tree analysis and hardware fault tree analysis. It is
effective when hazards are clearly identified, and it may be used to identify critical
components. The system may be repaired to prevent hazardous conditions.

Safety and reliability are not the same. Reliability is freedom from failure, and can
be measured as the number of faults per unit time. Safety is freedom from mishaps,
where the risk is less than some “magic number” that is a function of hazard prob-
ability and hazard criticality.

Time Petri net analysis can be conducted after preliminary hazard analysis and
preliminary system design. It is a reachability analysis of a Petri net model to dis-
cover hazardous states.

Some fundamental concepts of software safety are fault-tolerant (the system contin-
ues to provide full functionality and performance in spite of faults), fail-soft (the sys-
tem continues to operate, but at reduced performance and/or functionality), and fail-
safe (damage is limited, but no guarantees of operations). Two locking concepts are
interlock (force the correct sequence of events by preventing an event from happen-
ing too early) and critical section (prevent an event from occurring while a condition
holds). Recovery possibilities include backward (return to a previous state and try
again), forward (repair the current state and continue), and shutdown (abort the
current process).

Procedures and regulations related to safety include licensing, which is regulation of
operation of software systems, and standards, which address regulation of creation.
For example, British Ministry of Defence draft standards MOD 00-55 and 00-56
address procedures for safety-critical software. They require the use of formal
methods in software creation, and they forbid some “unsafe” practices including
floating point arithmetic, recursion, assembly level programming languages, and
interrupts. They require testing legal values (such as with boundary value analysis)
and illegal values and the use of randomly generated test cases.

Software safety is difficult because safety is a total system problem (including
people), there are multiple causes of hazards, and risk assessment involves personal
values.

28. System Testing: Metrics and Reliability

Reading: Goel85, Beizer84, Chapters 9-10

[Guest lecturer: John Musa, AT&T Bell Labs]

Fundamental terminology for discussions of reliability includes the following. A
failure is a departure of program operation from the user requirements (customer
needs); it is a customer-oriented concept. An example of a failure metric is 3
failures/1000 CPU hour. A fault is a defect in a program that causes failure; it is a

CMU/SEI-91-TR-2 139

developer-oriented concept. An example of a fault metric is 6 faults/1000 source
lines. Failure intensity is the number of failures in a time period; an example of a
failure intensity metric is 25 failures/1000 CPU hr. Reliability is the probability of
failure-free operation for specified time; for example, 0.82 for 8 CPU hour day.

Software reliability is affected by fault introduction, fault removal, and the opera-
tional profile of the software. Reliability models focus on fault removal, and they
assume that decreasing failure intensity is essentially a random process. Execution
time models may be based on actual execution time or on calendar time. Decreasing
failure intensity can be modeled with a basic distribution or a logarithmic Poisson
distribution. The models use a level parameter and a decay rate parameter.

An advantage of the models is their predictive capability; a model allows prediction
of the amount of additional execution time required to reach a particular failure
intensity objective. The calendar time to execution time ratio is determined, based
on resource limitations that affect the pace of operations. Resource limitations
might include failure correction personnel, failure identification personnel, and
computer time. The current quality status of the software can be determined by
recording the execution times of failures, and then running a reliability estimation
program based on the reliability model. Given a failure intensity objective, this
program can the predict when the software is of a quality satisfactory for release.

Reliability models can be used in other ways, such as evaluating the effect of new
software engineering technologies. It is useful to answer questions such as, with the
failure intensity objective and other variables constant, how much does the new
technique decrease the amount of testing required? One experiment showed that
design inspections reduced testing by 17%. The models can also assist in getting the
needed software quality level, and in maintaining service standards while providing
new features. They can help increase software productivity by helping to define
customer needs precisely, giving managers more quantitative information for mak-
ing decisions, and for controlling development with earlier identification of problems.

29. Final Review

30. Final Examination

Bibliography

Beizer83 Beizer, Boris. Software Testing Techniques. New York: Van
Nostrand Reinhold, 1983. Second edition published 1990.

Beizer84 Beizer, Boris. Software System Testing and Quality Assurance.
New York: Van Nostrand Reinhold, 1984.

Bentley84 Bentley, Jon. “Programming Pearls: Back of the Envelope.”
Comm. ACM 27, 3 (Mar. 1984), 180-184.

Bentley87 Bentley, Jon. “Programming Pearls: Profilers.” Comm. ACM 30,
7 (July 1987), 587-592.

Brown89 Brown, John M. and Gilg, Thomas J. “Sharing Testing
Responsibilities in the Starbase/X11 Merge System.” Hewlett-
Packard Journal (Dec. 1989), 42-46.

140 CMU/SEI-91-TR-2

Craddock87 Craddock, Linda L. “Automating a Software Development
Environment.” Proc. Digital Equipment Corporation Users
Society. DECUS, Dec. 1987, 147-153.

DeMillo78 DeMillo, Richard A., Lipton, Richard J., and Sayward, Frederick
G. “Hints on Test Data Selection: Help for the Practicing
Programmer.” IEEE Computer 11, 4 (Apr. 1978), 321-328.

Dongarra87 Dongarra, Jack, Martin, Joanne L., and Worlton, Jack.
“Computer Benchmarking: Paths and Pitfalls.” IEEE Spectrum
24, 7 (July 1987), 38-43.

Dyer87 Dyer, Michael. “A Formal Approach to Software Error Removal.”
J. Systems and Software 7, 2 (June 1987), 109-114.

Fagan76 Fagan, M. E. “Design and Code Inspections to Reduce Errors in
Program Development.” IBM Systems Journal 15, 3 (1976), 182-
211.

Goel85 Goel, Amrit L. “Software Reliability Models: Assumptions,
Limitations, and Applicability.” IEEE Trans. Software
Engineering SE-11, 12 (Dec. 1985), 1411-1423.

Gries81 Gries, David. The Science of Programming. New York: Springer-
Verlag, 1981.

Hamlet77 Hamlet, Richard G. “Testing Programs with the Aid of a
Compiler.” IEEE Trans. Software Engineering SE-3, 4 (July
1977), 279-290.

Hamlet88 Hamlet, Richard G. and Taylor, Ross. “Partition Testing Does Not
Inspire Confidence.” Second Workshop on Software Testing,
Verification, and Analysis. IEEE Computer Society Press, July
1988, 206-215.

Hantler76 Hantler, Sidney L. and King, James C. “An Introduction to
Proving the Correctness of Programs.” ACM Computing Surveys
8, 3 (Sept. 1976), 331-353.

Hoare69 Hoare, C. A. R. “An Axiomatic Basis for Computer
Programming.” Comm. ACM 12, 10 (Oct. 1969), 576-583.

Howden76 Howden, William E. “Reliability of the Path Analysis Testing
Strategy.” IEEE Trans. Software Engineering SE-2, 3 (Sept.
1976), 37-44.

Kemmerer85 Kemmerer, Richard A. and Eckmann, Steven T. “UNISEX: A
UNIx-based Symbolic EXecutor for Pascal.” Software—Practice
and Experience 15, 6 (May 1985), 439-458.

Leung89 Leung, Hareton K. N. and White, Lee. “A Study of Regression
Testing.” Sixth International Conference on Software Testing.
U.S. Professional Development Institute, 1989.

CMU/SEI-91-TR-2 141

Leveson86 Leveson, Nancy G. “Software Safety: What Why, and How.”
ACM Computing Surveys 18, 2 (June 1986), 125-163.

Linger88 Linger, R. and Mills, Harlan D. “A Case Study in Cleanroom
Software Engineering: The IBM COBOL Structuring Facility.”
Proc. OMPSA 88. IEEE, 1988, 10-17.

Mills86 Mills, Harlan D. “Structured Programming: Retrospect and
Prospect.” IEEE Software 3, 6 (Nov. 1986), 58-66.

Myers79 Myers, Glenford J. The Art of Software Testing. New York: John
Wiley & Sons, 1979.

Rapps85 Rapps, Sandra and Weyuker, Elaine J. “Selecting Software Test
Data Using Data Flow Information.” IEEE Trans. Software
Engineering SE-11, 4 (Apr. 1985), 367-375.

Richardson85 Richardson, Debra J. and Clarke, Lori A. “Partition Analysis: A
Method Combining Testing and Verification.” IEEE Trans.
Software Engineering SE-11, 12 (Dec. 1985), 1477-1490.

Selby87 Selby, Richard W., Basili, Victor R., and Baker, F. Terry.
“Cleanroom Software Development: An Empirical Evaluation.”
IEEE Trans. Software Engineering SE-13, 9 (Sept. 1987), 1027-
1037.

Weyuker88 Weyuker, E. J. “The Evaluation of Program-Based Software Test
Data Adequacy Criteria.” Comm. ACM 31, 6 (June 1988), 668-
675.

Wienberg84 Wienberg, Gerald M. and Freedman, Daniel P. “Reviews,
Walkthroughs, and Inspections.” IEEE Trans. Software
Engineering SE-10, 1 (Jan. 1984), 68-72.

142 CMU/SEI-91-TR-2

3.6. Software Project Management

Students’ Prerequisites

• computer science background
• reasonable knowledge of programming
• some experience of team software development
• some exposure to the software development process
• industrial experience is an advantage

Objectives

• The student will understand the requirements for the content of a project
management plan.

• The student will be able to write a plan for a small project according to an
established standard.

• The student will understand the role of the manager in each phase of the
software development life cycle.

• The student will appreciate the key roles managers play in software
development efforts.

• The student will appreciate economic and customer-driven factors and their role
in the eventual form of the software product.

Philosophy of the Course

Software project management remains different from project management in other,
more established fields for a number of reasons: software is a brain product only,
unconstrained by the laws of physics or by the limits of manufacturing processes. It
is difficult to detect and prevent defects in software. Software can be highly
complex. Finally, as a discipline, software development is so young that measurable,
effective techniques are not yet available, and those that are available are not well-
calibrated. Despite these difficulties, there is an increasing body of knowledge about
software project management. This course presents that knowledge and also points
to promising new conceptual material.

Because of the level of experience of typical graduate students and their probable
career paths, the course emphasizes methods, tools, and techniques sufficient to run
small projects of 15 persons or fewer. Students may eventually run larger groups,
consisting of teams of such teams, so some discussion of scaling up is included. Also,
information about assessing the efficacy of the software development process is
presented.

Software project management should be part of software engineering programs
because the technology of developing software is so closely tied to the techniques of
management. What is taught here is first-line management; product management
and higher levels of management are the domains of schools of business. Some of

CMU/SEI-91-TR-2 143

the material discussed in the course, such as scheduling tools like PERT and con-
cepts like tracking progress, is also part of project management courses offered by
business schools; but the point of this course is to consider such tools and concepts in
the context of software development.

Syllabus

The syllabus assumes 29 class meetings, including midterm and final examinations.
Each meeting is planned to accommodate both lecture and class discussion. In
addition, two special lectures are included in the videotape package and may be used
at the instructor’s discretion.

The course has four major segments:
• Estimating (What does it take to do the job?): classes 2-6
• Planning (How will the job be done?): classes 7-13
• Process Management (Executing the plan): classes 15-22
• Special Topics and Circumstances: classes 23-28

1. The Nature of Software Production
2. What Needs to be Estimated
3. Understanding Software Costs
4. Estimation Models I: COCOMO
5. Estimation Models II: Function Points
6. Risk Determination: Fallacies in Estimations
7. Work Products; Using Standards
8. Determining and Using Objectives and Milestones
9. Risk Management: The Use of Prototypes

10. Team and Subteam Organization
11. Resource Acquisition, Allocation, Training
12. Contents of a Project Plan
13. Discussion of Results of Estimation Exercise
14. Midterm Examination
15. The Role of Configuration Management
16. Implementing Configuration Management
17. The Role of Quality Assurance
18. Implementing Quality Assurance
19. Tracking, Reviewing, Adjusting Goals, Reporting
20. People Management I: Managing Yourself
21. People Management II: Analysts, Designers, and Programmers
22. People Management III: Testers, Support Staff, Customers
23. Assessment
24. Managing Sustaining Engineering
25. Legal Issues I: Patentability and Copyright
26. Legal Issues II: Liability and Warranty
27. Special Cases
28. Assessing the Organization’s Ability to do the Process
29. Final Examination
Special Lecture 1. Causal Analysis: A Defect Prevention Process
Special Lecture 2. Enhancing Professionalism

144 CMU/SEI-91-TR-2

Summaries of Lectures

1. The Nature of Software Production

The development of software products is different from the development of other
kinds of products, especially with respect to manufacturing differences and item vol-
ume. Understanding the differences is important to software engineers. A critical
aspect of software engineering is management. Software engineering management
is sufficiently different from other kinds of management, including other engineer-
ing management, to warrant detailed study by software engineers. The manager
has a key role in decreasing cost and improving productivity. Natural talent is a
factor in management performance.

The course is organized as four major areas: estimating, planning, managing, and
special topics. The issues in software estimating are determining what needs to be
estimated, understanding the factors that affect software costs, estimation models,
and fallacies in estimation. Planning issues are identifying work products, stan-
dards, objectives, milestones, risk management, team organization, resource acqui-
sition, resource allocation, training, and documenting the project plan. Issues in
process management are configuration management, quality assurance, tracking,
reviewing, adjusting goals, reporting, and people management. Special topics
include assessment; managing sustaining engineering (software maintenance); legal
issues such as copyright, liability, and warrantees; taking over a project already
underway; recovering when the project is failing; and evaluating the software
production organization.

Students are assigned the task of writing a short essay on the question, “What
makes it difficult to tell how long it will take to make a software product?” The essay
not only sets the stage for the next class, but gives the instructor feedback on the
students’ writing ability.

2. What Needs to be Estimated

Reading: Brooks75, Chapters 1, 8, 9

Software cost estimation is difficult for many reasons: software products are often
unlike any that the development team has ever built before; the project usually
starts with incomplete specifications; the specifications change throughout the
development effort; skills and talents of individuals affect their contribution but are
difficult to predict; and the relationship between the size and the complexity of the
code is hard to establish.

The behavior of the development team is an especially difficult thing to predict.
Studies have shown that two individuals with similar education and experience may
have a 7 to 1 ratio of productivity. Small teams may be more productive than large
teams, due in part to the reduced number of communication paths and the ability of
the team’s “stars” to be more dominant. Software development has exacting
demands that reduce productivity.

The major factors affecting software cost are product size, production time, complex-
ity, effort, and resources. A software manager must develop an ability to estimate
each of these.

CMU/SEI-91-TR-2 145

3. Understanding Software Costs

Reading: Boehm87

The effects of software backlogs are that programs are rushed to completion due to
pressure to “get on to the next job.” The backlog in the data processing industry is
about five years.

Two categories of ways to understand software costs are influence-function (black
box) approaches and cost-distribution (glass box) approaches. The former include
tools and methods, people quality, hardware, and the software process; the latter
includes experience vs. new hires, upgrading the environment, labor vs. capital, and
code vs. documents. Essentially the black-box approaches assume that software
costs can be managed by concentrating on the structure of the development process.
Glass-box approaches balance the set of opposing factors listed to manage costs.

Factors that affect productivity include volatility of requirements, the degree of reli-
ability required in the product, the use of modern programming practices, the com-
plexity of the product, and the capability of the personnel and the team. Managers
need to understand the degree to which each of these factors can affect productivity;
experience has shown that the five factors above are listed in order of increasing
importance.

Productivity improvement opportunities include making people more effective,
making development steps more efficient, eliminating steps, eliminating rework,
building simpler products, and reusing previously built components.

4. Estimation Models I: COCOMO

Reading: Boehm81

COCOMO (COnstructive COst MOdel) is a cost estimation model developed by
Boehm at TRW in the 1970s. The model can be used at three levels of detail: basic,
intermediate, and detailed. It can be applied for three different kinds of product:
organic, semi-detached, embedded, where organic is primarily for internal use in a
company, semi-detached is a product developed according to some standard, and
embedded is usually a real-time system. The model assumes that the software
requirements are relatively stable (low volatility), that the organization uses good
software engineering practice, and that the development team is well managed.

The model is used to predict effort measured in person-months as an exponential
function of the number of delivered source instructions (a term subject to many
interpretations). In the basic model, the exponent in the function varies from 1.05 to
1.20 depending on the product. The model also is used to predict development time
as an exponential function of the effort; the exponent ranges from 0.32 to 0.38
depending on the product.

The model was developed by fitting a curve (the function) to data collected over a
number of projects. The coefficients and exponents were further validated with
other project data. Different organizations with different development environments
will need to modify these values based on their own past experiences. In particular,
development in Ada is being studied to further refine the model.

The estimate of the size of the software product is the critical factor in the model.
Size estimation can be done in a variety of ways, including by analogy with similar

146 CMU/SEI-91-TR-2

systems, wideband Delphi techniques, Putnam’s model, linguistic models, and
function points.

5. Estimation Models II: Function Points

Reading: Albrecht83, Symon88

The wideband Delphi technique is used to achieve some consensus of the developers
on the estimated size of the software product. It consists of the initial steps of
having developers examine the requirements, discuss the requirements as a group,
and then independently and anonymously estimate the size of the product. Then the
following steps are repeated until some degree of convergence is achieved: the mean
of the estimates is computed and compared to the individual estimates, the results
are discussed, and new anonymous estimates are made.

Putnam’s model tries to temper estimates by adding four times the best guess of
lines of code to the highest and lowest imaginable estimates, then dividing by six.

Function points are computed as the sum of several functional factors times a term
involving weighting factors. The functional factors are the number of user inputs,
the number of user outputs, the number of user inquiries, the number of files, and
the number of external interfaces. The weighting factors include whether or not the
system requires reliable backup and recovery capability; data communications is
required; there are distributed processing functions; performance is critical; the sys-
tem will run in an existing heavily utilized operational environment; the system will
require on-line data entry; on-line data entry requires input transactions to be built
over multiple screens or operations; the master files are updated on-line; the inputs,
outputs, files, or inquiries are complex; the internal processing is complex; the code
is designed to be reusable; conversion and installation are included in the design;
the system is designed for multiple installations in different organizations; the
application is designed to facilitate change and ease of use. Other function point
metrics are productivity, quality, cost, and documentation size. Studies have shown
a relationship between function points and lines of source code in various languages
(examples: Ada 72, Fortran 105, C 128).

Advantages of effort estimation schemes include: aiding schedule generation,
reasonableness, and simplicity. Disadvantages include they are too believable, too
dependent on one variable, and subjective. The advantages of function points are
that they are based on a deeper understanding of software complexity, involve more
than one variable, include looking at requirements, and can involve the user. The
disadvantages are that function point analysis is more complex, subjective, and
biased toward data processing applications.

[The lecture also introduces a student assignment: For the ITRAC (a software
system for which the students are supplied a requirements document), calculate
function points, size, person-months, time of development, number of full time per-
sonnel, and person loading at 1/3 and 2/3 of the way through development.]

6. Risk Determination: Fallacies in Estimations

Reading: Brooks75, Chapter 2, Abdel-Hamid86, Kemerer87

Estimation techniques are far from perfect. Software managers must understand
the risks associated with poor estimates. Studies indicate that requirements

CMU/SEI-91-TR-2 147

changes account for 85% of cost increases, while poor estimates account for only
15%. Choosing a software contractor on the basis of cost estimates is risky.
Estimates fail because of undue optimism, confusion between effort and progress,
gutless estimating, poor progress monitoring, and adding staff late in a project.

Rules of thumb for distribution effort include Brooks’: 1/3 planning, 1/6 coding, 1/4
unit test and early integration test, 1/4 integration test. Tomayko’s rule of thumb
for Ada development: 1/2 planning, 1/12 coding, 1/4 unit test and early system test,
1/6 integration test.

Which development phase is the most dangerous to underestimate? Testing,
because it is too late to accommodate schedule adjustments.

Different estimates make different projects: Abdel-Hamid has found some estimates
to be self-fulfilling prophecies.

Kemerer has surveyed several projects to attempt to validate the COCOMO and
function point models. He found 600% overestimates of effort using the COCOMO
model and 38% low estimates of software size using function points. The conclusion
is that current estimation methods can not be applied blindly, and that fine-tuning
to a particular company and development environment is necessary.

7. Work Products; Using Standards

Reading: DoD88

Typical work products in a poorly managed software project include only require-
ments, and code. Standards, which suggest other documentation and their contents,
may be external (2167, NASA, IEEE), internal (such as the Boeing Embedded
System Standard), or project. Standards may specify process criteria and documen-
tation criteria. Standards affect development in many ways, including improving
communication. The developers must allow time for producing the deliverables
required by the standard. Tools can help. Some standards are overkill for some
kinds of projects. This can often be overcome with appropriate tailoring.

Examples of unique work products from in-house software tool development are
specifications, source code, user manual, tests, maintenance guide, and porting
information. Examples from a commercial batch-type system are an installation
guide and site dependencies. Examples from an embedded system delivered to the
government are memory maps and interface control documents.

8. Determining and Using Objectives and Milestones

Reading: Cori85

Reducing costs by not planning results in cost increases. Effective schedules have
many characteristics, such as being understandable, detailed, clear as to critical
tasks, flexible, reliable, cognizant of resources, compatible with competing plans.

Seven steps to planning are: define requirements, create the work breakdown struc-
ture, define the sequence of activities, estimate the length of activities, adjust the
schedule to the time constraints, adjust the schedule to the resource constraints, and
then review the plan.

148 CMU/SEI-91-TR-2

Milestones are used to create intermediate review points with specific documents
associated with them.

Milestone tracking can be aided by graphical representations. Gantt charts are good
for showing concurrent activities and time for each activity. They are useful for
projects with a small number of activities, and they can be derived from activity
networks. PERT charts are activity networks that help identify dependencies. The
critical path is the longest path through the network in terms of the total duration of
tasks. In complicated projects many “near-critical” tasks and paths may exist.
Delays in a non-critical path task may result in a new critical path. Lengthening
the critical path lengthens the project. Critical path analysis can help determine the
minimum elapsed time to complete the project, which tasks determine whether the
project is completed in the minimum time, and the latest time a particular activity
can be begun without changing the overall project completion time.

[Student assignment: Prepare a PERT chart and derived Gantt chart for the ITRAC
project using estimates developed during the previous assignment.]

9. Risk Management: The Use of Prototypes

Reading: Brooks75, Chapter 11, Boehm84, Boehm88

Risk reduction is part of a product life cycle; risk management is part of software
project management. Product risk reduction activities include system test, reviews,
and inspections. Another important way to reduce risks is through prototypes. This
can allow early user feedback on interfaces or usability, test technical concepts, and
clarify requirements. A prototype can also be a sales tool. Boehm’s prototyping
experiment suggests that prototyping leads to less effort and code, higher user satis-
faction, and more maintainable products.

The spiral or “risk-driven” life cycle is an iterative process. At each stage, it is nec-
essary to identify objectives, examine alternative implementations, and determine
constraints on those alternatives. The model defers elaboration of low-risk
elements, allows prototyping at any stage, and accommodates rework. Its major
advantages include the facts that it focuses on reuse, allows for change, eliminates
errors early, uses only appropriate resources, and approaches development and
maintenance similarly. Its disadvantages are that it relies on risk assessment
expertise and that it is not easily adapted to a project that requires compliance with
military standard 2167A.

A risk management plan should be developed for a software project. The project
manager should identify the top ten risk items, develop a plan to deal with each,
review the list of risks monthly, highlight the status of risk items in overall project
reviews, and take corrective action where necessary.

10. Team and Subteam Organization

Reading: Brooks75, Chapters 3 and 7, Mills83

A software manager must build appropriate teams. Issues include division of labor
and specialization of function. Large organizational structures can be functional,
project-oriented, or a matrix. Some software team structures include democratic,
chief programmer, and “surgical.” A democratic team works by consensus; team
members are equals and vote on decisions. A chief programmer team has a chief, an

CMU/SEI-91-TR-2 149

assistant programmer, and a librarian. The surgical team is actually a scaling up of
Harlan Mills’ three-person chief programmer team. The surgical team has members
with very different and clearly defined roles, with the basic objective of letting the
chief programmer do the main design work, with the supporting cast filling in the
other roles. Successful organizations are designed around the people available; this
is the challenge to the manager.

11. Resource Acquisition, Allocation, Training

Reading: Dart87, Brooks75, Chapter 12, Cupello88

The resources needed for software projects come in several categories. Software
tools include compilers or translators, editors, document processors, debuggers,
specification and design tools, estimation tools, configuration management tools,
system builders, and communications tools such as electronic mail.

Environments come in categories such as language-centered (Lisp machines,
Rational Ada environments), method centered (Cadre’s Teamwork), and toolkit
(Unix).

Training issues include deciding when to provide it, how much to provide, and its
structure.

12. Contents of a Project Plan

Reading: Brooks75, Chapter 10, Fairley 86, NASA86a

Brooks identifies these key documents as part of the project plan: objectives, specifi-
cation, schedule, budget, organization chart, space allocation, and estimate-forecast-
price (the balance that determines the eventual profit margin).

Fairley suggests a structure for a project plan with five components. The introduc-
tion includes a project overview, list of project deliverables, evolution of the plan, list
of reference materials, and definitions and acronyms. The project organization
section includes the process model, the organizational structure, the organizational
interfaces, and the project responsibilities. The managerial process section describes
management objectives and priorities; assumptions, dependencies, and constraints;
risk management plan; monitoring and controlling mechanisms; and staffing plan.
The technical process describes methods, tools, and techniques; software documen-
tation; and project support functions. The section on work elements, schedule, and
budget includes work packages, dependencies, resource requirements, budget and
resource allocation, and a detailed schedule.

NASA has published a standard for a software project plan organized as ten parts.
The introduction includes sections for identification, scope, purpose, organization,
objectives, program constraints, program software schedules, and program controls.
An applicable documents section lists reference documents, information documents,
and parent documentation. The resources and organization section describes project
resources (contractor facilities; government-furnished equipment, software, and
services; and personnel), responsibilities, panels (review and advisory), and software
development (organizational structure, personnel, resources, tools, techniques,
methodologies, and the software environment). The life cycle management section
includes concept and project definition, initiation, requirements definition, prelimi-
nary design, detailed design, implementation, software and system integration and

150 CMU/SEI-91-TR-2

testing, acceptance testing, and sustaining engineering. Management controls
includes engineering master schedules and risk management (activities, activity
network), reviews and reporting policies, risk management (high risk areas, technol-
ogy risks, and disaster risks and recovery), and status and problem reports. The
software support environment section addresses software development, software
acquisition, software integration, operation and maintenance, and software tools.
The software product assurance section describes configuration management, inde-
pendent verification and validation, security, product assurance, interface definition
and control, and waivers to policies and procedures (permanent, temporary, tool and
testbed). The plan concludes with notes, appendices, and a glossary.

[Student assignment: Project Plan Assignment: Using either the appropriate
DoD2167A DID, the NASA DID, or Fairley’s outline, prepare a Project Management
Plan for the ITRAC development.]

13. Discussion of Results of Estimation Exercise

Results of the estimation exercise from previous offerings of the course show consid-
erable variation among students. Function points are made consistent by consis-
tently interpreting the rules as stated by Albrecht. COCOMO is not very accurate
for a project as small as the example (ITRAC). Wideband Delphi technique should
have a moderator. Putnam’s model strengthens estimation by analogy.

14. Midterm Examination

15. The Role of Configuration Management

Reading: Bersoff84

Software product integrity depends on the combined effects of three categories of
disciplines: development, management, and control. The development disciplines
include the common life cycle activities of specification, design, implementation, and
testing. Management disciplines include the usual activities of planning, estimat-
ing, tracking, team-building, etc. The controlling disciplines are software quality
assurance, software configuration management, and independent verification and
validation. A commitment to configuration management by the entire organization
is the key to its success.

Configuration management is responsible for maintaining the integrity of configu-
ration items, evaluating and controlling changes, and making the product visible.
Typical configuration items are: requirements, specifications, design documents,
source code, object code, load modules, memory maps, tools, system descriptions, test
plans, test suites, user manuals, maintenance manuals, and interface control docu-
ments. Two major types of changes reports are discrepancy reports (requirements
errors, development errors, violations of standards) and change requests
(unimplementable requirements, enhancements). The functions of the configuration
management library are software part naming, configuration item maintenance and
archiving, version control, and preparation of a product for release.

CMU/SEI-91-TR-2 151

16. Implementing Configuration Management

Reading: Harvey86

A major part of the configuration management organization is the configuration
control board (CCB). The principles guiding the CCB are the principle of authority,
the principle of solitary responsibility, and the principle of specificity. Factors
determining the CCB characteristics include hierarchical structures (having several
boards for major subsystems of the overall system), scope, and composition.

Key factors considered by the CCB in evaluating proposed changes to the product
include: size, complexity, CPU and memory impact, cost, test requirements, date
needed, criticality of the area involved, resources available (skills, hardware, sys-
tem), impact on current and subsequent work, approved changes already in
progress, and politics (customer or marketing desires). An overriding consideration
for all proposed changes is “is there an alternative?”

A typical process for evaluating a discrepancy report is: submit the report; log it;
conduct a CCB evaluation of the report; if approved, then the development group
makes the change; all affected configuration items are updated; the change closure is
audited and logged. The CCB may also grant a waiver (allowing the discrepancy to
remain), which is also audited and logged. A typical process for evaluating a change
request is: submit the request; log it; conduct a CCB evaluation of the request; if
authorized, the development group makes the change; all affected configuration
items are updated, and the change closure is audited and logged. If the request is
not authorized, that also constitutes change closure to be audited and logged.

Configuration management helps solve the “simultaneous update” problem, in which
two or more developers work simultaneously on independent changes; both start
from the same version of the code but the last one to save changes overwrites the
changes saved earlier by others.

Version control is the management of the various releases of the product and the
intermediate developmental versions between releases. These are often displayed
graphically as a version tree. Tools for version control include sccs and rcs on UNIX
systems, CMS, CCC, and DOMAIN. System descriptions identify which versions of
which components constitute a particular version of a system. Tools for system
description include simple text files, make, MSS, and DOMAIN.

A configuration management organization is responsible for developing, maintain-
ing, and executing a written configuration management plan. Standards for such
plans include: ANSI/IEEE 828-1983 and Department of Defense standards MIL-
STD-483A (Air Force) and DoD-STD-2167A. A trend analysis of previous projects
can assist in configuration management planning; typical trends are a decreasing
number of change requests during the months following a release, but a number of
discrepancy reports that starts low, increases for several months, and then declines.

[Note: The amount of material in this lecture was sufficiently large that some of it
was actually presented at the start of the class period for lecture 17.]

152 CMU/SEI-91-TR-2

17. The Role of Quality Assurance

Reading: Buckley84

How is quality exemplified in “hard” products? How is quality embodied in “hard”
products? How is quality exemplified in software? How is quality embodied in
software?

Software quality assurance grows out of quality assurance in other engineering
disciplines, borrowing the body of experience, staffing, and tools.

18. Implementing Quality Assurance

Reading: Weinberg84; Basili87; Brooks75, Chapters 4, 5, 13

Software quality assurance is both a function performed in a software development
organization and a separate body within that organization. The separation is neces-
sary because engineers often lack the ability to distance themselves from develop-
ment so as to observe possible discrepancies. A separate quality assurance (QA)
organization is more likely to find errors and report poor engineering practice.

Management receives a variety of information from both inside and outside the
development process; results of tests, inspections, and reviews come from the devel-
opers, while information on staff turnover, schedule slippages, and product failures
come from outside. Models of software quality assurance include “full service”
(which treats the product the way an ignorant customer would , and also partici-
pates fully in the process), “lip service” (which merely signs off on existing testing
done by developers), consulting, and project-specific. Techniques include technical
reviews, walkthroughs, and inspections of all the configuration items.
Walkthroughs can often reveal the lack of “problems solved,” high-level logic errors,
and dependency errors; they often fail to reveal missed details or missing
requirements, due to the relative informality in how they are conducted. Inspections
reveal details, but they can be too low level, so that some of the larger issues such as
the architecture of the overall system are not reviewable.

Recent trends are toward quality-based software development processes. An exam-
ple is the “cleanroom” technique. Its key elements are the use of formal methods for
specification and design, implementors that do not execute their code, and statisti-
cally-based independent testing. The statistical approach to testing is to develop
“normal” test cases, choose a random subset of the cases, test the code on these
cases, and then inform the implementors that the tests passed or failed but not what
errors were found. This approach overcomes the problem of prejudiced results when
implementors tested their own code. The cleanroom approach has resulted in sub-
stantially fewer defects in delivered code.

19. Tracking, Reviewing, Adjusting Goals, Reporting

Reading: Brooks75, Chapters 6, 7, 14; Bernstein81; Crawford85

Software projects rarely fail because of large disasters, but because of a continuing
series of small problems and schedule slippages. It is important to solve small prob-
lems before they become large ones. Project managers must maintain visibility of
the process through written status reports, regularly scheduled review meetings, use
of review boards, and use of audits. Status reports describe work accomplished since

CMU/SEI-91-TR-2 153

the previous report and estimates of the percentage of the work completed. Review
meetings concentrate on status vs. action; in the reviews, problems are identified,
not solved on the spot. Independent audits can involve project managers and tech-
nical staff to examine the development process, staff, products, quality assurance,
and configuration management. Audits are not negative; they should be scheduled
even if a project is not in trouble.

Project communication is a critical factor in tracking. Methods include “the man-
ual,” which is Brooks’ concept of a comprehensive document such as the System 360
Principles of Operation, which guides the entire development, telephone logs, elec-
tronic mail and bulletin boards.

20. People Management I: Managing Yourself

Reading: Metzger87, Chapter 1

The manager must set the tone for the project: fear vs. leadership, don’t hog credit,
praise in public but criticize in private, stay technically competent, invite criticism
and comment, fix your mistakes immediately, reward technical people the same as
managers, instill the idea of service. The manager has a role as teacher for new staff
members and for himself or herself. The manager should help project staff move
ahead in their careers. The manager is a communicator: writing job descriptions,
conducting project meetings, and effectively using the telephone, memos, and letters.
The manager is a “historian” and should learn from mistakes and successes. The
manager be able to address issues of performance evaluations and salary determina-
tion. The manager must pay attention to sources of potential conflict.

21. People Management II: Analysts, Designers, and Programmers

Reading: Metzger87, Chapters 2-4

What is the analyst’s job? How do analysts come to understand the customer’s
problem? It is important to write down not only what is to be in the product but also
what is not to be in the product. Risk reduction with analysts is improved by getting
incremental approval, using analysts with “people” skills, and using teams.

Designers are the bridge between analysts and programmers. Design quality is dif-
ficult to judge, especially judging when a design is “good enough.”

Avoid the programmers that act like prima donnas. Make an orientation schedule
for new hires that is meaningful and helps them reach the point that they are
making a contribution to the company.

22. People Management III: Testers, Support Staff, and Customers

Reading: Metzger87, Chapters 5-8

What are the personal characteristics of good testers? Managers can make testing
better: review unit test plans—even if the reviews are informal; never drop
acceptance-type tests; treat user documents as testable items; keep problems in per-
spective; accept necessary restarts.

What sort of support staff are needed and where are they likely to come from. To get
the most out of support staff, the manager should recognize their contributions and
retrain them as needed for additional or new responsibilities.

154 CMU/SEI-91-TR-2

The manager should ensure that the organization is faithful to the customer. Don’t
lie to the customer and don’t move on before the first product is finished.

23. Assessment

Reading: NASA86b

How are post-mortems, histories, lessons-learned documents, etc. useful? What
makes an organization reluctant to share lessons learned?

A lessons-learned document typically contains: reference documents, parent docu-
mentation, project description (including organization and delivered items), assess-
ments, and project evaluations. The project description includes the structure, key
personnel, actual milestones reached, effort totals, and work products delivered.
The assessments cover methods, practices and standards; unique concepts used;
effectiveness of the development plan; specification quality (measured against such
things as frequency of change requests and discrepancy reports); design, code, and
test quality; personnel adequacy and effectiveness; and unusual problems and solu-
tions. The project evaluation describes what worked and did not work in the actual
product; what worked and did not work in the process; what can be done again; and
what should never be done again.

24. Managing Sustaining Engineering

Reading: Collofello87

A variety of terms have been used to describe this part of the software process:
maintenance, post-deployment software support, sustaining engineering, and soft-
ware evolution. Some characteristics of software maintenance are that software is
usually poorly designed for change; software degrades under maintenance, hardware
does not; hardware has idiosyncratic errors, software has mass propagation of
errors. The manager should prepare for maintenance during the development.

Studies of maintenance efforts have shown that most software defects after mainte-
nance are caused by new features inducing defects in existing features, followed by
defects in the new features themselves, defects remaining from before the mainte-
nance effort, and defects induced by corrective changes. The most common type of
defect is incorrect program logic, followed by missing logic, documentation defects,
interface defects, and extra-logic defects. An awareness of these tendencies helps the
manager plan for maintenance.

Managing maintenance involves reverse engineering, modifying existing items
where safe, and making the task of doing maintenance clearly a valued one, so that
people will not be turned off by an assignment to a maintainer’s team.

25. Legal Issues I: Patentability and Copyright

Reading: Chisum86, Newell86

Software technology has given rise to a number of new legal questions. Should
software be treated as goods or services under commercial law? What are the tax
consequences? How should software be protected under intellectual property law:
copyright, trade secret, patent, or a new form?

CMU/SEI-91-TR-2 155

Intellectual property law provides a framework for allocating rights in innovative
technology, provides incentives for investing resources, and may limit rights to
reuse, rehost, retarget, translate, or otherwise modify software. The systems of
intellectual property protection have developed independently but possess common
elements, and they can profoundly affect the software development process at in all
phases. An intellectual property system has a structure consisting of subject matter;
a set of requisites; a set of exclusive rights; a set of limitations on exclusive rights;
and infringement standards, process, and remedies. The copyright law assigns five
rights to the creator of an intellectual property: the right to reproduce copies,
prepare derivative works, distribute copies, perform publicly, and display publicly.

An item is not protected by an intellectual property system if it has been placed in
the public domain (not the same as publishing). Such an item is usable by the
public, but ineligible for further protection (except for improvements).

Intellectual property protection for software should create an incentive for innova-
tive developments. It might have been based on patent law, copyright law, or sui
generis (technology-specific) legislation. Congress chose copyright law as the basis.
Courts now accept copyrightability of computer programs, including machine-read-
able versions. Some unanswered questions involve the right to reverse engineer
software, to reuse, enhance, or modify software. Also unanswered are the implica-
tions of simultaneous copyright and trade secret protection.

In older cases software was never patentable, but courts have recently become more
receptive to software patents. For example, certain types of algorithms have been
held to be patentable. Data processing methodology has also been found to be
patentable. To be patentable, a property must exhibit utility, novelty, and non-obvi-
ousness. Excluded from patentability are business systems, printed matter, and
mental steps.

Chisum’s definition of an algorithm: it is finite, definite, has specified inputs and
outputs, and it is effective. An important current legal question is whether algo-
rithms should be patentable.

26. Legal Issues II: Liability and Warranty

Reading: Holmes82, Friedman87, Cottrell86

What is the difference between “express” and “implied” warranty? How can we
differentiate between goods and services? Forms of protection from liability include
limited warranty, disclaimers, and limit of remedy. Fraud can be based on misrep-
resentation of a capability, using the user as a beta test site, misrepresentation of
suitability or fitness, misrepresentation of time or management savings.

27. Special Cases

Reading: unpublished manuscript by the guest lecturer

[Guest lecturer: Harvey Hallman, Software Engineering Institute]

Special cases in project management include what to do when a project is failing and
taking over a project already in progress.

There are three perspectives of a failing project: the team is failing, the team of
teams is failing, the personal project is failing. We assume that the basic project

156 CMU/SEI-91-TR-2

management structures exist: a build process is in place, an error tracking system is
in place, there is a design change request and review process, inspection processes
are in place, configuration management is under control, and a test plan is in place.

The manager should look for symptoms of trouble ahead, determine why the project
is failing, identify the reason for the failure, don’t keep it a secret, and be prepared
to reassign responsibilities. The manager should concentrate on the build process,
find the area with the highest error rates, and selectively reduce the functionality of
the product (saving full functionality for a later release).

Symptoms of trouble ahead include: the first missed schedule, confusing technical
presentations, daily acceptance of requirements changes, a high level of design
change requests, a high level of inspection and test problems, several reinspections
of the same module, low morale, high employee overtime rate, build size growing
faster than planned, and regression testing taking longer than planned.

Determining why the project is failing may uncover bad schedules, bad technology,
or bad people. To identify the reason for failure, conduct an in-depth technical
review and a detailed schedule review (to identify areas behind schedule and ahead
of schedule).

Concentrating on the build process requires weekly meetings of representatives of
each team for the purpose of reviewing the previous meeting’s action items, the
status of all activities in the current build path (code, error fixes, design changes,
testing progress, and build bottlenecks), the progress on future activities. A result is
to assign action items on each critical path item.

When your own personal project is failing: determine why is it failing; examine the
possibility of overtime; work at home to gain perspective; set intermediate check-
points for possible recovery of the schedule; identify functions to be delayed; let your
boss know that you are not going to meet schedules.

When taking over a project already in progress, the most important step is to under-
stand the project quickly: the architecture, terminology, the project plan and how
well progress tracks to the plan, and what the project staff intend to do to get the job
finished. The manager should determine if the project is in trouble, identify missing
practices, determine the worry factor, identify the supporters and non-supporters,
and search for depth of thought. The manager should act upon training and beliefs:
don’t compromise. Obtain buy-in from the staff, convert the non-supporters, and put
the missing plans in place. Establish checkpoints, monitor the plans and check-
points, shift people to reduce problem areas, and start recruiting immediately.
Before taking over a project in mid-stream, understand why the job is available.
The manager must believe in the project and believe that the team can be made suc-
cessful. Be sure there is enough time to recover, not just enough time to take the
blame for the failure.

28. Assessing the Organization’s Ability to do the Process

Reading: Humphrey88

The software process is a major opportunity area for software organizations. The
SEI has developed an approach to characterizing and assessing the software process.
SEI software process assessments are an effective means for examining software
processes and provide committed organizations a framework for action. The three

CMU/SEI-91-TR-2 157

leverage points are process, people, and technology; these are the determinants of
software cost, schedule, and quality performance. The fundamental process man-
agement premise is: “The quality of a software system is governed by the quality of
the process used to develop and evolve it.”

The definition of a software process is: a set of activities, methods, and practices
which guide people (with their software tools) in the production of software. The
elements of process management are statistical control, process definition, process
and product certification, and process support. The approach to the development of
a better process is examine the characteristics of successful software groups;
consider other technical fields; develop a hierarchy of software process management
capability; produce an evaluation method; and apply and refine the method. An
immature process is ad hoc and poorly controlled, highly dependent on current prac-
titioners, and has unpredictable performance on cost, schedule, and quality. A
mature process is defined and documented, well controlled, measured, focused on
process improvement, and supported by technology. The benefits of a mature
process are a more appropriate match between human skills and manual activities,
increased likelihood of successful introduction of appropriate technology, and
sustained orderly improvement of software production capabilities.

The SEI uses a five-level process maturity model; the levels are initial, repeatable,
defined, managed, and optimizing. Each has recognizable characteristics and key
problems; process improvement should be aimed at solving the problems at the
current level. A result of the improvement process is a steady reduction of risk and
steady growth of productivity and quality. Major changes in the process must start
at the top of an organization; the process is a management responsibility.

Management must set challenging goals, provide the necessary resources, monitor
the progress, and insist on performance. The goal is to fix the process, not the
people: avoid the tendency to search for the guilty when something goes wrong and
recognize that people, by nature, desire to do good work. A focus on people causes
resistance to change.

An effective change program requires understanding of the current status. From
that point, change is continuous: reactive changes generally make things worse,
every defect is an improvement opportunity, and crisis prevention is more important
than crisis recovery. Improvement requires investment: to improve the process,
someone must work on it. Unplanned process improvement is wishful thinking.
Improvements should be made in small steps. Training is expensive—but not nearly
as expensive as not training.

The general improvement paradigm is: understand the current status, develop a
vision of the desired state, establish a list of improvement actions in priority order,
produce a plan to accomplish these actions, and commit the resources needed to
execute the plan. Understanding the current status can begin with a process
assessment. Its objectives are to understand an organization’s current software
engineering practices, identify key areas for process improvement, and facilitate the
initiation of improvement actions by providing a framework for action and helping to
obtain support for action. The benefits of an assessment include understanding an
organization’s software engineering capability with respect to the rest of the indus-
try, preparing for potential contractor evaluations, providing an organization with a
structured framework for periodic examination of status and needs, and helping to
focus improvement efforts.

158 CMU/SEI-91-TR-2

Assessment principles include involvement by senior management, a basis of process
framework, confidentiality, collaboration, and action orientation. Some risks include
morale problems if the assessment is not followed by action, inappropriate findings if
the assessment is conducted as an audit, and failure of the action plan if the organi-
zation is not ready for change. The golden rule of assessment is, “Be prepared to
take action or don’t assess.”

29. Final Examination

Bibliography

Abdel-Hamid86 Abdel-Hamid, Tarek K. and Madnick, Stuart E. “Impact of
Schedule Estimation on Software Project Behavior.” IEEE
Software 3, 4 (July 1986), 70-75.

Albrecht83 Albrecht, Allan J. and Gaffney, John E., Jr. “Software Function,
Source Lines of Code, and Development Effort Prediction: A
Software Science Validation.” IEEE Trans. Software Eng. SE-9,
6 (Nov. 1983), 639-648.

Basili87 Basili, Victor R., Selby, Richard W., and Baker, F. Terry.
“Cleanroom Software Development: An Empirical Evaluation.”
IEEE Trans. Software Eng. SE-13, 9 (Sept. 1987), 1027-1037.

Bernstein81 Bernstein, L. “Software Project Management Audits.” J. Syst.
and Software 2, 4 (Dec. 1981), 281-287.

Bersoff84 Bersoff, Edward H. “Elements of Software Configuration
Management.” IEEE Trans. Software Eng. SE-10, 1 (Jan. 1984),
79-87.

Boehm81 Boehm, Barry W. Software Engineering Economics. Englewood
Cliffs, N. J.: Prentice-Hall, 1981.

Boehm84 Boehm, Barry W. “Software Engineering Economics.” IEEE
Trans. Software Eng. SE-10, 1 (Jan. 1984), 4-21.

Boehm87 Boehm, Barry W. “Improving Software Productivity.” Computer
20, 9 (Sept. 1987), 43-57.

Boehm88 Boehm, Barry W. “A Spiral Model of Software Development and
Enhancement.” Computer 21, 5 (May 1988), 61-72.

Brooks75 Brooks, Frederick P., Jr. The Mythical Man-Month: Essays on
Software Engineering. Reading, Mass.: Addison-Wesley, 1975.
The book was “reprinted with corrections” in January 1982.

Buckley84 Buckley, Fletcher J. and Poston, Robert. “Software Quality
Assurance.” IEEE Trans. Software Eng. SE-10, 1 (Jan. 1984),
36-41.

Chisum86 Chisum, Donald S. “The Patentability of Algorithms.” U. of
Pittsburgh Law Review 47, 4 (Summer 1986), 959-1022.

CMU/SEI-91-TR-2 159

Collofello87 Collofello, James S. and Buck, Jeffrey J. “Software Quality
Assurance for Maintenance.” IEEE Software 4, 9 (Sept. 1987),
46-51.

Cori85 Cori, Kent A. “Fundamentals of Master Scheduling for the
Project Manager.” Project Management J. 16, 2 (June 1985), 78-
89.

Cottrell86 Cottrell, Paul and Maron, James. “Professional Liability for
Computer Design.” The Computer Lawyer 3, 8 (Aug. 1986), 14-
20.

Crawford85 Crawford, Stewart G. and Fallah, M. Hosein. “Software
Development Process Audits—A General Procedure.” Proc. 8th
Intl. Conf. on Software Engineering. Washington, D. C.: IEEE
Computer Society Press, 1985, 137-141.

Cupello88 Cupello, James M. and Mishelevich, David J. “Managing
Prototype Knowledge/Expert System Projects.” Comm. ACM 31,
5 (May 1988), 534-541.

Dart87 Dart, Susan A., Ellison, Robert J., Feiler, Peter H., and
Habermann, Nico. “Software Development Environments.”
Computer 20, 11 (Nov. 1987), 18-28.

DoD88 Military Standard for Defense System Software Development.
DOD-STD-2167A, U. S. Department of Defense, Washington,
D. C., Feb. 1988.

Fagan76 Fagan, Michael. “Design and Code Inspections to Reduce Errors
in Program Development.” IBM Systems J. 15, 3 (1976), 182-211.

Friedman87 Friedman, Marc S. and Hildebrand, Mary J. “Computer
Litigation: A Buyer’s Theories of Liability.” The Computer
Lawyer 4, 12 (Dec. 1987), 34-38.

Harvey86 Harvey, Katherine E. Summary of the SEI Workshop on
Software Configuration Management. Tech. Rep. CMU/SEI-86-
TR-5, ADA200085, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, Pa., Dec. 1986.

Holmes82 Holmes, Robert A. “Application of Article Two of the Uniform
Commercial Code to Computer System Acquisitions.” Rutgers
Computer and Technology Law J. 9, 1 (1982), 1-26.

Humphrey88 Humphrey, Watts S. “Characterizing the Software Process: A
Maturity Framework.” IEEE Software 5, 3 (Mar. 1988), 73-79.

Kemerer87 Kemerer, Chris F. “An Empirical Validation of Software Cost
Estimation Models.” Comm. ACM 30, 5 (May 1987), 416-429.

Metzger87 Metzger, Philip W. Managing Programming People: A Personal
View. Englewood Cliffs, N. J.: Prentice-Hall, 1987.

160 CMU/SEI-91-TR-2

Mills83 Mills, Harlan D. Software Productivity. Boston, Mass.: Little,
Brown, 1983. Reprinted by Dorset House in 1988.

NASA86a Software Management Plan Data Item Description. NASA-Sfw-
DID-02-ADA, National Aeronautics and Space Administration,
Office of Safety, Reliability, Maintainability, and Quality
Assurance, Washington, D. C., 1986.

NASA86b Lessons-Learned Document Data Item Description. NASA-Sfw-
DID-41, National Aeronautics and Space Administration, Office
of Safety, Reliability, Maintainability, and Quality Assurance,
Washington, D. C., 1986.

Newell86 Newell, Allen. “Response: The Models Are Broken, the Models
Are Broken!” U. of Pittsburgh Law Review 47, 4 (Summer 1986),
1023-1035.

Symons88 Symons, Charles R. “Function Point Analysis: Difficulties and
Improvements.” IEEE Trans. Software Eng. SE-14, 1 (Jan.
1988), 2-11.

Weinberg84 Weinberg, Gerald M. and Freedman, Daniel P. “Reviews,
Walkthroughs, and Inspections.” IEEE Trans. Software Eng.
SE-10, 1 (Jan. 1984), 68-72.

CMU/SEI-91-TR-2 161

4. Survey of Graduate Degree Programs in Software
Engineering

Graduate degree programs first appeared in the late 1970s at Texas Christian
University, Seattle University, and the Wang Institute of Graduate Studies. All
three programs responded to needs of local industry in the Dallas/Fort Worth,
Seattle, and Boston areas, respectively. In 1985, three additional programs were
started: at the College of St. Thomas in St. Paul, Minnesota (now the University of
St. Thomas), at Imperial College of Science and Technology in London, and at the
University of Stirling in Scotland. The last five years have seen a significant
increase in the development of and interest in such programs. We know of at least a
dozen programs that either have been initiated or are under development.

In this section, we survey the programs for which we were able to obtain informa-
tion. Readers will note substantial variation among the more established programs.
This can be attributed to a number of factors:

• Most of the programs were developed in the absence of any recognized
model curriculum.

• Each school had a number of existing courses, mostly in computer science,
that were incorporated into the new programs; and these courses differed
greatly among schools.

• Software engineering is a new discipline, and the developers of these
programs had differing perceptions of the scope of the discipline, and its
principles and practices.

• Each school was responding to perceived needs that varied from one
community to another.

On the other hand, nine of the programs acknowledge being influenced by the SEI
model curriculum, either directly or through the courses in the Academic Series. We
hope that these schools’ experiences will suggest improvements in the model
curriculum.

Another notable point of variation among these programs is the program title (see
Figure 4.1). Many of the programs were unable to use the word engineering in their
titles because of legal or administrative restrictions. In one way, it is unfortunate
that the term software engineering is so nearly universally accepted as an informal
name for the discipline: an inordinate amount of time and energy has been devoted
to arguing semantic issues of whether software engineering is really engineering,
rather than to defining what constitutes an appropriate body of knowledge for
professionals to learn.

We believe it is valuable for a school considering the development of a graduate
program in software engineering to examine not only the SEI recommendations but
also these existing programs. Therefore we have sketched the requirements for each
program below.

162 CMU/SEI-91-TR-2

Degree Title University

Master of Software Engineering Carnegie Mellon University
Seattle University
[Wang Institute of Graduate Studies]

Master of Science in Software Engineering Andrews University
Georgia Institute of Technology
Monmouth College
National University
University of Houston-Clear Lake
University of Pittsburgh
University of Scranton
University of Stirling

Master of Science in
Software Systems Engineering

Boston University
George Mason University

Master of Software Design and Development Texas Christian University
University of St. Thomas

Master of Science in
Software Development and Management

Rochester Institute of Technology

Master of Computer Science,
Software Engineering Option

Florida Atlantic University
The Wichita State University

Master of Science in Computer Science,
Software Engineering Option

University of West Florida

Master of Science (Computer Science) Air Force Institute of Technology

Master of Science (Computer Systems) Air Force Institute of Technology

Master of Systems Analysis Miami University

Master of Science in
Software Systems Management

Air Force Institute of Technology

Master of Science in Computational Systems
Engineering, Software Engineering Option

Instituto Tecnológico y de Estudios
Superiores de Monterrey

Master of Engineering Imperial College of Science and Technology

Software Engineering Curriculum Master Polytechnic University of Madrid

Figure 4.1. Titles of software engineering degree programs

CMU/SEI-91-TR-2 163

Air Force Institute of Technology

Location Wright Patterson Air Force Base, Ohio

Degree title Master of Science (Computer Science)
Master of Science (Computer Systems)

Degree requirements Twelve required courses, one elective course in the theory area, and
a thesis. The requirements are structured as six courses in
systems, two in theory, two in an application sequence (see below),
and one each in mathematics and technical communication.

Required courses Systems and Software Analysis
Software Design
Software Generation and Maintenance
Software Project Management
Operating Systems
Computer Architecture
Principles of Embedded Software
Formal-Based Methods in Software Engineering
Advanced Information Structures
Automata and Formal Language Theory
Probability and Statistics for Computer Science
Technical Reports and Thesis

Program initiation See below.

Contact Major Paul D. Bailor
Department of Electrical and Computer Engineering
Air Force Institute of Technology
Wright Patterson Air Force Base, OH 45433

Source This information was reported to the SEI by AFIT in August 1990.

The objective of the graduate programs in computer systems and computer engineer-
ing is the development of a broad competence in the application of the concepts and
techniques of computer systems, computer science, and computer engineering,
emphasizing specialized areas of interest to the Air Force. Each student is required
to take a set of six systems courses (four of which are software engineering courses),
a set of three theory courses, an application sequence, a graduate-level mathematics
course, a technical writing and speaking course, and an independent study that
leads to the preparation and completion of a master’s thesis. Currently, seven appli-
cation sequences are offered: software engineering, computer graphics, database
systems, computer architecture, VLSI design, information systems, and artificial
intelligence. The breadth of the systems and theory courses and the specialized
application sequence courses prepare the students for a variety of Air Force assign-
ments involving research, development, and program management in the career
areas of computer systems, computer science, and computer engineering.

Courses in software engineering were introduced into the curriculum in the late
1970s. The application sequence in software engineering was developed in mid-
1980s.

164 CMU/SEI-91-TR-2

Air Force Institute of Technology

Location Wright Patterson Air Force Base, Ohio

Degree title Master of Science in Software Systems Management

Degree requirements Seventeen required courses and a thesis. The requirements are
structured as four technically-oriented software engineering
courses, four management-oriented software engineering courses,
one course in computer systems concepts, and eight courses in
management and quantitative/qualitative analysis.

Required courses Systems and Software Analysis
Software Design
Software Generation and Maintenance
Principles of Embedded Systems
Software Quality Assurance
Software Cost and Schedule Estimation
Software Configuration Management
Seminar in Software Systems Management
Computer Systems Concepts
Managerial Economics
Managerial Statistics I and II
Theory and Practice of Professional Communications
Introduction to Management Science
Organization and Management Theory
Organizational Behavior
Federal Financial Management
Contracting and Acquisition Management

Program initiation June 1990

Contact Major Chris Arnold
Department of System Acquisition Management
Air Force Institute of Technology
Wright Patterson Air Force Base, OH 45433

Source This information was reported to the SEI by AFIT in August 1990.

The objective of the graduate program in software systems management is to pro-
vide military and civilian software managers with the concepts, analytical skills,
and methods of software systems management so that its graduates are prepared to
handle the acquisition and management of large software systems, including
embedded software systems. Each student is required to take a set of four
technically-oriented software engineering courses, a set of management-based soft-
ware engineering courses, a computer systems concepts course, additional courses in
management and quantitative/qualitative analysis, and an independent study that
leads to the preparation and completion of a master’s thesis.

CMU/SEI-91-TR-2 165

Andrews University

Location Berrien Springs, Michigan

Degree title Master of Science in Software Engineering

Degree requirements 48 quarter credits (typically 4 credits per course): 8 credits of
projects, 16 credits core courses, 0-20 credits foundation courses, 4-
24 credits electives.

Foundation courses Data Structures
Data Base Systems
Systems Analysis I
Systems Analysis II
Operating Systems

Core courses Computer Architecture
Software Engineering I
Software Engineering II
Programming Project Management

Program initiation [unknown]

Contact Daniel R. Bidwell
Computer Information Science Dept.
Andrews University
Berrien Springs, MI 49104

Source This information was reported to the SEI by Andrews University in
April 1989.

166 CMU/SEI-91-TR-2

Boston University

Location Boston, Massachusetts

Degree title Master of Science in Software Systems Engineering

Degree requirements Nine courses of four credits each: seven required courses (including
a project course) and two electives. Two of the required courses
differ depending on whether the student’s background is in
hardware or software.

Required courses Applications of Formal Methods
Software Project Management
Software System Design
Computer as System Component
Software Engineering Project
Advanced Data Structures (hardware background)
Operating Systems (hardware background)
Switching Theory and Logic Design (software background)
Computer Architecture (software background)

Program initiation Fall 1988 (The program has existed as a software engineering
option in the Master of Science in Systems Engineering since
spring 1980; the current curriculum was adopted in January 1988.)

Contact [unknown]

Source This information was taken from [Brackett88].

Boston University absorbed the Wang Institute’s facilities in 1987 and was the bene-
ficiary of some of the experience of the Wang Institute. This program incorporates
the best features of the MSE curriculum of Wang and the MS in Systems
Engineering from Boston University. The program emphasizes the understanding of
both hardware and software issues in the design and implementation of software
systems. Special emphasis is placed on the software engineering of two important
classes of computer systems: embedded systems and networked systems.

Both full-time and part-time programs are available, and most of the program is
available through the Boston University Corporate Classroom interactive television
system. The program can be completed in twelve months by full-time students.

The university also has a doctoral program leading to the PhD in Engineering, with
research specialization in software engineering.

CMU/SEI-91-TR-2 167

Carnegie Mellon University

Location Pittsburgh, Pennsylvania

Degree title Master of Software Engineering

Degree requirements Fifteen courses: six required courses, three electives, a theory
course, a business course, two software engineering seminars, and
a four-semester master’s project.

Required courses Software Systems Engineering
Formal Methods in Software Engineering
Advanced System Design Principles
Software Creation and Maintenance
Software Analysis
Software Project Management

Electives Graduate courses in computer science and business

Prerequisite note Prospective students must have at least two years of experience
working in a sizable software project.

Program initiation September 1989

Contact Mark Ardis
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

Source This information was reported to the SEI by CMU in July 1990.

The objective of Carnegie Mellon University’s MSE program is to produce a small
number of highly skilled experts in software system development. It is designed to
elevate the expertise of practicing professional software designers. The emphasis is
on practical application of technical results from computer science; the nature of
these technical results dictates a rigorous, often formal, orientation. The engineer-
ing setting requires responsiveness to the needs of end users in a variety of applica-
tion settings, so the program covers resolution of conflicting requirements, careful
analysis of tradeoffs, and evaluation of the resulting products. Since most software
is now produced by teams in a competitive setting, the program also addresses
project organization, scheduling and estimation, and the legal and economic issues of
software products.

168 CMU/SEI-91-TR-2

Florida Atlantic University

Location Boca Raton, Florida

Degree title Master of Computer Science, Software Engineering Option

Degree requirements 33 semester hours, including three regular FAU courses, five of the
six FAU/SEI videotape courses, and CASE tools material (may or
may not be a separate course).

Required FAU
courses

Compiler Writing
Computability and Complexity
Artificial Intelligence

FAU/SEI videotape
courses

Software Project Management
Software Systems Engineering
Specification of Software Systems
Principles and Applications of Software Design
Software Generation and Maintenance
Software Verification and Validation

Admissions note The software engineering option is available only to students
participating in the FAU/SEI videotape courses offered in
cooperation with specific south Florida companies.

Program initiation September 1989

Contact Neal Coulter
Department of Computer Science
Florida Atlantic University
PO Box 3091
Boca Raton, FL 33431-0991

Source This information was reported to the SEI by Florida Atlantic
University in December 1989.

CMU/SEI-91-TR-2 169

George Mason University

Location Fairfax, Virginia

Degree title Master of Science in Software Systems Engineering

Degree requirements 30 hours of course work in the School of Information Technology
and Engineering, including six required courses.

Required courses Software Construction
Software Requirements and Prototyping
Software Design
Formal Methods and Models in Software Engineering
Software Project Management
Software Project Laboratory

Electives Four courses, or two courses and 6 semester hours of master’s
thesis.

Program initiation Fall 1989 (core courses offered beginning Fall 1988)

Contact Hassan Gomaa
School of Information Technology
George Mason University
4400 University Drive
Fairfax, VA 22030

Source This information was reported to the SEI by George Mason
University in August 1990.

The program for the degree of Master of Science in Software Systems Engineering is
concerned with engineering technology for developing and modifying software com-
ponents in systems that incorporate digital computers. The program is concerned
with both technical and managerial issues, but primary emphasis is placed on the
technical aspects of building and modifying software systems.

In addition to the degree program, the university offers a Graduate Certificate
Program in software systems engineering. The program is designed to provide
knowledge, tools, and techniques to those who are working in, or plan to work in, the
field of software systems engineering, but do not desire to complete all of the
requirements for a master’s degree. Students in the certificate program must
already hold or be pursuing a master’s degree in a science or engineering discipline.
To receive the certificate students must complete the six required courses listed
above.

170 CMU/SEI-91-TR-2

Georgia Institute of Technology

Location Atlanta, Georgia

Degree title Master of Science in Software Engineering

Degree requirements 50 quarter hours of coursework, including nine required courses,
four electives, and a three-quarter software engineering project
sequence.

Required courses Introduction to Software Engineering
Foundations of Software Engineering
Programming Language Design
Human Computer Interface
Requirements Analysis and Prototyping
Specification of Software Systems
Project Management
Principles and Applications of Software Design
Software Generation, Test, and Maintenance
Software Engineering Project I, II, III

Admissions note Entering students must have an appropriate undergraduate degree
(typically in computer science) and at least two years of full-time
software development experience.

Program initiation This program has been proposed; it has not yet been approved.

Contact Not yet designated

Source This information was reported to the SEI by the Georgia Institute
of Technology in November 1990.

Georgia Tech has recently created a College of Computing in recognition of the
importance of the computing-related disciplines. The college recognizes the need
within the computer industry for professionals able to provide technical and man-
agerial leadership in the area of software engineering.

The curriculum most appropriate to the traditions and capabilities of the Institute
and of the College of Computing falls between the extremes of very theoretical and
completely practical. The program should emphasize practical skills that will equip
graduates to play leadership roles in the software industry. At the same time, they
should develop a sufficient fundamental understanding of software engineering to
enable them to keep up with changes in a rapidly growing and evolving field. The
best way to characterize this dual emphasis is to say that the curriculum leads to a
“professional” degree.

CMU/SEI-91-TR-2 171

Imperial College of Science and Technology

Location London, England

Degree title Master of Engineering

University structure British universities normally have three-year bachelor’s degree
programs; the master of engineering is a four-year first degree
program. In its first two years the program is the same as the
(three-year) bachelor of science program in computer science.

Degree requirements Third and fourth year coursework includes compulsory courses
totaling three modules and optional courses totaling six modules
(each module represents 22 hours of lecture). During the third
year, students spend approximately six months in industry; during
the fourth year they must complete an individual project.

Compulsory courses (these courses total six modules)
Software Engineering Process
Calculus of Software Development
Database Technology
Introduction to Macro Economics and Financial Management
Introduction to Management
Methodology of Software Development
Language Definition and Design
Programming Support Environments
Standards, Ethical and Legal Considerations

Optional courses
(third year)

(one module each)
Functional Programming Technology I
Artificial Intelligence Technology
Compiler Technology
Computer Networks
Object Oriented Architecture
Interface and Microprocessor Technology
Performance Analysis of Computer Systems
Graphics
Silicon Compilation
Applied Mathematics
Industrial Sociology
Government Law and Industry
Humanities

172 CMU/SEI-91-TR-2

Optional courses
(fourth year)

(one module each)
Advanced Logic
Theorem Proving
Concurrent Computation
Human-Computer Interaction
Expert Systems Technology
Functional Programming Technology II
Advanced Operation Systems
Parallel Architecture
Distributed Systems
VLSI
Robotics
Computing in Engineering
Natural Language Processing
Micro-Economic Concepts
Industrial Relations
Innovation and Technical Change
Humanities

Program initiation Fall 1985

Contact [unknown]

Source This information was taken from [Lehman86].

Since British students normally must commit to either a three-year (bachelor’s
degree) or a four-year (master’s degree) program at the end of secondary school (the
student cannot complete the bachelor’s degree and then decide to continue for the
master’s), the latter programs tend to attract the better students. Entrance
requirements are generally more stringent for the master’s programs, and the grad-
uates are expected to advance rapidly once they enter industry.

The industry component of this program has been described earlier in this report
(Section 2.7). This component is perceived to be somewhat analogous to the role of
teaching hospitals in the education of medical students.

CMU/SEI-91-TR-2 173

Instituto Tecnológico y de Estudios Superiores de Monterrey
(Technological and Higher Learning Institute of Monterrey)

Location Monterrey, Nuevo León, Mexico

Degree title Master of Science in Computational Systems Engineering. Software
Engineering Option

Degree requirements Fourteen courses totalling 150 units: six core courses (72 units),
three elective courses (36 units), two personal development
workshops (12 units), research methods seminar (6 units), and
thesis (24 units).

Core courses Discrete Mathematics
Analysis of Algorithms
Theory of Computation
Software Design and Development
Software Analysis, Design and Specification
Software Generation, Verification, and Maintenance

Program initiation 1990

Contact Prof. Carlos Scheel Mayenberger
Programa de Graduados en Informatica
Instituto Tecnologico y de Estudios Superiores de Monterrey
Sucursal de Correos “J”
C.P. 64849 Monterrey, N. L.
México

Source This information was reported to the SEI by ITESM in October
1990.

The software engineering option of the program is structured for completion in four
semesters, or three semesters and two summers. The program also has options in
distributed systems and artificial intelligence.

174 CMU/SEI-91-TR-2

Miami University

Location Oxford, Ohio

Degree title Master of Systems Analysis

Degree requirements 30 semester hours: twelve hours of core courses, twelve hours of
systems electives, and six hours of graduate research.

Core courses Analysis of Information Systems
plus any three of:
Structured Design and Implementation
Data Structures and Data Base Systems
Operations Research II
Simulation
Artificial Intelligence

Systems electives Advanced Software Engineering
Advanced Data Base Systems
Data Communication Networks & Distributed Process
Expert Systems
Operating Systems Concepts
Advanced Simulation
Analysis of Inventory Systems
Analysis of Forecasting Systems
Analysis of Manufacturing Systems
Regression Analysis
An Introduction to Applied Probability
Seminar in Systems Analysis

Prerequisite note Students with little formal education or experience in systems
analysis or related disciplines may be required to complete up to 13
semester hours of additional foundation courses.

Program initiation Fall 1990

Contact Mufit Ozden
Department of Systems Analysis
Miami University
Oxford, Ohio 45056

Source This information was reported to the SEI by Miami University in
January 1990.

The aim of the program is to graduate a systems analyst who has a sound grasp of
systems development and the mathematical models frequently needed in industrial
information systems. It differs from computer science programs through its strong
focus on the practical aspects of systems development and mathematical models. It
differs from MIS programs offered by schools of business through its technical
emphasis on systems development built on a solid foundation of computer science
and mathematics.

CMU/SEI-91-TR-2 175

Monmouth College

Location West Long Branch, New Jersey

Degree title Master of Science in Software Engineering

Degree requirements 30 credit hours, consisting of six core and four elective courses.

Core courses Mathematical Foundations of Software Engineering I
Software Engineering
Project Management
Formal Methods in Programming
Software Systems Design
System Project Implementation (Laboratory Practicum)

Elective courses Mathematical Foundations of Computer Science II
Computer Communications
Programming Languages
Database Systems
Security Aspects of Systems Design
System Development Environment Technology
AI Technology for Software Engineers
Software Quality

Program initiation 1986

Contact Richard Kuntz
Monmouth College
West Long Branch, New Jersey 07764

Source This information was taken from [Amoroso88] and from
information reported to the SEI by Monmouth College in July 1990.

The program is offered through the departments of computer science and electrical
engineering. The current enrollment is more than 100, and to date 50 students have
completed the degree requirements.

176 CMU/SEI-91-TR-2

National University

Location San Diego, California

Degree title Master of Science in Software Engineering

Degree requirements 60 quarter units, of which at least 45 units (including the software
engineering project courses) must be completed in residence.

Required courses Principles of Software Engineering
Advanced Software Engineering
Verification and Validation Techniques
Principles of Hardware and Software Integration
Systems Software
Networked Computing Systems
Data Base Management I, II
Expert Systems
Software Engineering Project I, II, III

Prerequisite note Programming ability in Ada is a prerequisite.

Program initiation April 1985

Contact [unknown]

Source This information was reported to the SEI by National University in
December 1989.

National University is the third largest private university in California, with more
than 10,000 students currently enrolled. It has over 100 students in the MSSE pro-
gram at campuses in San Diego, San Jose, Sacramento, Irvine, Los Angeles, and
Vista. As of December 1989, more than 400 students have graduated from the
MSSE program.

Graduate classes meet for 40 hours over a four week period, primarily in the evening
in order to accommodate the schedules of working adults. Approximately 85% of the
students in the MSSE program are currently software practitioners.

Most instructors in the program are adjunct faculty who work for local companies
and who are recognized experts in their fields.

CMU/SEI-91-TR-2 177

Polytechnic University of Madrid

Location Madrid, Spain

Degree title Software Engineering Curriculum Master

University structure The Spanish university system organizes its programs differently
from United States universities, so this program cannot be
described in terms of courses. For each of the subject areas
described below, the amount of time devoted to the area is given in
units. Each unit represents a 75-minute class meeting. The
program totals approximately 500 units.

Degree requirements Introduction to Software Engineering (3)
Models of Computation (76)
Computing Machinery (6)
Software Production Technology and Methodology

Information Systems
Introduction to Requirements Analysis (15)
Formal Specification Techniques (25)
Design (55)
Implementation (85)
Tools Evaluation (2)
Software Engineering and Artificial Intelligence (11)

Product and Process Control
System Construction Management (20)
Quality Control
Project Management (20)
Documentation Process (25)

Software Product (8)
Information Protection (14)
Software Safety (8)
Legal Aspects (6)
Case Study (12)

Program initiation 1988

Contact [unknown]

Source This information was reported to the SEI by Polytechnic University
in May 1989.

The Polytechnic University of Madrid is the largest (well over 100,000 students) and
most prestigious of the Spanish technical universities. It has large, well-established
schools of engineering and informatics (computer science). The university is an aca-
demic affiliate of the SEI and has incorporated a number of SEI recommendations
into its initial curriculum.

178 CMU/SEI-91-TR-2

Rochester Institute of Technology

Location Rochester, New York

Degree title Master of Science in Software Development and Management

Degree requirements 48 credits (quarter system; typical course is four credits).

Required courses Principles of Software Design
Principles of Distributed Systems
Principles of Data Management
Software and System Engineering
Project Management
Organizational Behavior
Analysis and Design Techniques, or
Analysis & Design of Embedded Systems
Software Verification and Validation
Software Project Management
Technology Management
Software Tools Laboratory
Software Engineering Project

Program initiation Fall 1987

Contact Jeffrey A. Lasky
Graduate Department of Computer Science
Rochester Institute of Technology
PO Box 9887
Rochester, NY 14623-0887

Source This information was reported to the SEI by RIT in April 1989.

The program has approximately 100 students at the RIT campus and 15 students at
Griffiss Air Force Base in Rome, New York. Approximately 90% of the students
attend part-time.

CMU/SEI-91-TR-2 179

Seattle University

Location Seattle, Washington

Degree title Master of Software Engineering

Degree requirements 45 credits (quarter system), including eight required core courses,
four elective courses, and a project sequence extending over three
quarters.

Required courses Technical Communication Software Quality Assurance
Software Systems Analysis Software Metrics
System Design Methodology Software Project Management
Programming Methodology Formal Methods

Elective courses System Procurement Contract Acquisition and Administration
Database Systems
Distributed Computing
Artificial Intelligence
Human Factors in Computing
Data Security and Privacy
Computer Graphics
Real Time Systems
Organization Behavior
Organization Structure and Theory
Decision Theory
(other electives may be selected from the MBA program)

Prerequisite note Prospective students must have at least two years of professional
software experience.

Program initiation 1979

Contact Everald E. Mills
Software Engineering Department
Seattle University
900 Broadway Avenue
Seattle, WA 98122

Source This information was taken from [Mills86], with additional
information reported to the SEI by Seattle University in July 1990.

Seattle University is an independent urban university committed to the concept of
providing rigorous professional educational programs within a sound liberal arts
background. In 1977 the university initiated a series of discussions with represen-
tatives from local business and industry, during which software engineering
emerged as a critical area of need for specialized educational programs. Leading
software professionals were invited to assist in the development of such a program,
which was initiated the following year.

Normally, classes are held in the evenings and students are employed full-time in
addition to their studies. The first graduates of the program received MSE degrees
in 1982.

180 CMU/SEI-91-TR-2

Texas Christian University

Location Fort Worth, Texas

Degree title Master of Software Design and Development

Degree requirements 36 semester hours, including nine required courses and three
electives; submission of a technical paper to a journal for
publication.

Required courses Introduction to Software Design and Development
Modern Software Requirements and Design Techniques
Applied Design, Programming, and Testing Techniques
Management of Software Development
Economics of Software Development
Computer Systems Architecture
Database and Information Management Systems
Software Implementation Project I
Software Implementation Project II

Program initiation Fall 1978

Contact James R. Comer
Computer Science Department
Texas Christian University
Ft. Worth, TX 76129

Source This information was taken from [Comer86] and reconfirmed by
Texas Christian in July 1990.

The university established a graduate degree program in software engineering in
1978. Due to external pressure, prompted by the absence of an engineering college
at TCU, the program was given its current name in 1980.

The program offers most of its courses in the evening, and all 50 students in the pro-
gram are employed full-time in the Dallas/Fort Worth area.

CMU/SEI-91-TR-2 181

University of Houston-Clear Lake

Location Houston, Texas

Degree title Master of Science in Software Engineering

Degree requirements 36 credit hours, including 30 hours of required courses and 6 hours
of electives.

Required courses Specification of Software Systems
Principles and Applications of Software Design
Software Generation and Maintenance
Software Validation and Verification
Software Project Management
Master’s Thesis Research
Advanced Operating Systems
Theory of Information and Coding
Synthesis of Computer Networks

Elective courses Must be chosen from courses in software engineering, computer
science, computer systems design, or mathematical sciences.

Program initiation September 1990

Contact Dean E. T. Dickerson
Office of the Dean
University of Houston-Clear Lake
Houston, TX 77058-1057

Source This information was reported to the SEI by the University of
Houston-Clear Lake in July 1990.

Five of the required courses in this degree program are based on SEI recommenda-
tions.

182 CMU/SEI-91-TR-2

University of Pittsburgh

Location Pittsburgh, Pennsylvania

Degree title Master of Science in Software Engineering

Degree requirements 33 credits: four required software engineering courses; additional
required and optional courses in computer science.

Required courses Software Engineering: Specification and Design
Software Engineering: Implementation and Testing
Information Processing Systems
Master’s Directed Project
Either of:
Theory of Computation I
Design and Analysis of Algorithms I
Any two of:
Language Design
Advanced Computer Operating Systems I
Computer Architecture

Elective courses Three graduate-level courses including two of:
Modeling and Simulation
Principles of Database Systems
Interface Design and Evaluation
Knowledge Representation

Program initiation 1989

Contact [unknown]

Source This information was reported to the SEI by the University of
Pittsburgh in the fall of 1990.

This program is project-oriented, emphasizes a methodological approach to software
development, and provides a more focused education than the traditional Master of
Science in Computer Science. Applicants with professional experience may be given
special consideration for admission, although such experience is not required. All
students’ programs are individually designed with the help of a faculty advisor.
There is no thesis requirement.

CMU/SEI-91-TR-2 183

University of Scranton

Location Scranton, Pennsylvania

Degree title Master of Science in Software Engineering

Degree requirements 36 graduate credits: six required courses and four electives (3
credits each), and a thesis (6 credits)

Required courses Introduction to Software Engineering
Advanced Data Structures and Algorithms
Formal Methods and Models
Requirements Analysis and Software Specification
Principles and Applications of Software Design
Software Project Management

Electives Software Generation and Maintenance
Engineering of Software Systems
Database Systems
Cost Collection and Analysis Metrics
Real-time and Embedded Systems
CASE Tools
Legal Aspects and Ethics

Program initiation Fall 1990

Contact Dr. J. Fernando Naveda
Director, Master of Science in Software Engineering
Department of the Computing Sciences
University of Scranton
Scranton, PA 18510-4664

Source This information was reported to the SEI by the University of
Scranton in August 1990.

The program expects 15 part-time students during the first year, with full-time
students beginning in the second year.

The student body is expected to be composed of software practitioners, most of whom
will not have a recent computer science degree or a strong background in some of the
more formal methods of computer science. With this in mind, the program begins
with two bridge courses, Introduction to Software Engineering and Advanced Data
Structures and Algorithms. The goals of these courses are to give the students the
mathematics needed in subsequent courses, an overview of what software engineer-
ing is (the “big picture”), and knowledge of data structures in Ada.

The university does not offer a graduate degree in computer science.

184 CMU/SEI-91-TR-2

University of Stirling

Location Stirling, Scotland

Degree title Master of Science in Software Engineering

Degree requirements Semester 1 (September-December)
Programming Methods
Language Concepts
Introduction to Software Engineering
Computing Science Structures and Techniques

Initial industrial placement visits (January)
Semester 2 (February-July)

Methods for Formal Specification
Concurrency (half semester)
Databases (half semester)
Networks and Communications
Elective: Expert Systems or Language Implementation

Industrial project (July-December)
Dissertation (January-March)

Program initiation 1985

Contact [unknown]

Source This information was reported to the SEI by the University of
Stirling in April 1989.

The MSc in Software Engineering is a “specialist conversion course” intended to
train graduates with a scientific background in the methods of software engineering.
The students spend twelve months at the University of Stirling and six months at an
industrial research and development center. Through this approach students are
given an understanding of both the current engineering technology and its applica-
tion in an industrial context.

The six-month placement in industry enables each candidate to participate in a pro-
ject and be responsible for a particular investigation. Where practical, this may
form the basis of the individual project that is undertaken during a final three-
month period and then written up in the dissertation.

CMU/SEI-91-TR-2 185

University of St. Thomas

Location St. Paul, Minnesota

Degree title Master of Software Design and Development

Degree requirements Ten required courses, including a two-semester project course
sequence, and four elective courses. All courses are three semester
credits.

Required courses Technical Communications
Software Engineering Methodologies
DBMS and Design
Systems Analysis and Design I
Software Productivity Tools I
Software Project Management
Software Quality Assurance/Quality Control
Legal Issues in Technology

Program initiation February 1985

Contact Bernice M. Folz, Dean
Department of Quantitative Methods and Computer Science
University of St. Thomas
2115 Summit Avenue
St. Paul, MN 55105-1096

Source This information was reported to the SEI by the University of St.
Thomas in July 1990.

This program was developed through an advisory committee made up of technical
managers from Twin Cities companies such as Honeywell, IBM, Sperry, 3M, NCR-
Comten, and Control Data. Elective courses are added to the curriculum on the
basis of need as expressed by technical managers in local industry or by students in
the program.

The program is applied rather than research-oriented. Most instructors are from
industry (14 of 23 in the spring 1990 semester). Instead of a thesis, students
complete a two-semester software project in a local company; in many cases this
company is their employer, but the project must not be part of their normal work
responsibilities.

Classes are offered evenings, and 98% of students work full-time in addition to their
studies. Students normally require three years to complete the degree. The
program enrolled 290 students in spring 1990.

Prior to September 1, 1990, the school’s name was the College of St. Thomas.

186 CMU/SEI-91-TR-2

University of West Florida

Location Pensacola, Florida

Degree title Master of Science in Computer Science,
Software Engineering Option

Degree requirements 33 semester hours of approved course work; at least 18 hours at
6000 (advanced) level; up to six hours of related course work; thesis
optional.

Required courses Advanced Operations Research
Software Engineering Project
Software Engineering Economics
Software Engineering Management
Computer Aided Software Engineering
Computer Systems Performance Analysis
Embedded Programming in Ada
Advanced Database Systems

Prerequisites In addition to the expected undergraduate computer science
prerequisites, the program requires a two-semester sequence in
software engineering, two semesters of economics, and one each of
technical writing, management, operations research, and statistics.

Program initiation 1989

Contact Theodore F. Elbert
Professor and Division Head
Division of Computer Science
University of West Florida
11000 University Parkway
Pensacola, Florida 32514-2542

Source This information was reported to the SEI by the University of West
Florida in July 1990.

The University offers three substantially different options within its Master of
Science in Computer Science program, the other two being the Systems and Control
Engineering option and an option simply referred to as the MSCS. The Software
Engineering option provides instruction in advanced concepts of software engineer-
ing, database methodologies, and computer performance analysis. The Systems and
Control Engineering option provides advanced course work in mathematics, modern
control theory concepts, computer architecture, and software engineering as it
applies to real-time embedded systems. The MSCS option provides advanced
instruction in concepts of computer science, with concentration in the areas of artifi-
cial intelligence, knowledge-based systems, data classification, and image process-
ing.

The requirements for the Software Engineering option will be revised during the
1990-91 academic year.

CMU/SEI-91-TR-2 187

Wang Institute of Graduate Studies

Location Tyngsboro, Massachusetts

Degree title Master of Software Engineering

Degree requirements Eleven courses: eight required courses (including two project
courses) and three electives.

Required courses Formal Methods
Programming Methods
Management Concepts
Computing Systems Architecture or Operating Systems
Software Project Management
Software Engineering Methods
Project I, II

Elective courses Database Management Systems
User Interface Design, Implementation and Evaluation
Survey of Programming Languages
Expert System Technology
Translator Implementation
Computing Systems Architecture
Operating Systems
Principles of Computer Networks
Programming Environments

Prerequisite notes Admission requirements included at least one year of full-time
software development work experience. Also required was
submission of a three to four page essay on a software development
or maintenance project in which the applicant had participated, an
expository survey of a technical subject, or a report on a particular
software tool or method.

Program initiation 1979

Contact None

Source This information was taken from [Wang86].

The Wang Institute of Graduate Studies closed in the summer of 1987. Its facilities
were donated to Boston University, and its last few students were permitted to com-
plete their degrees at BU. During its existence, the Wang program was generally
considered to be the premier program of its kind. Schools considering development
of an MSE program would be well advised to examine the Wang program as a model.

Wang Institute was also a pioneer in the development of a very high quality faculty
with renewable fixed-term contracts rather than a tenure system. For a rapidly
evolving discipline such as software engineering, where the faculty’s professional
experience may be at least as valuable as its academic credentials, this model for
faculty evaluation and retention may be worthy of consideration by other schools as
well.

188 CMU/SEI-91-TR-2

The Wichita State University

Location Wichita, Kansas

Degree title Master of Computer Science, Software Engineering Option

Degree requirements 30 credit hours total: two required courses, six credit hours of
software engineering electives, additional electives in software
engineering or computer science, and practicum (3 hours) or thesis
(6 hours) on a software engineering topic.

Required courses Software Requirements, Specification and Design
Software Testing and Validation

Elective courses Software Project Management
Ada and Software Engineering
Systems Analysis
Topics in Software Engineering (recent offerings have included
Configuration Management, Formal Methods, Quality Assurance,
Software Metrics, and Formal Verification of Software)

Program initiation Fall 1988

Contact Mary Edgington, Chair
Computer Science Department
The Wichita State University
Wichita, Kansas 67208

Source This information was reported to the SEI by Wichita State in July
1990.

The Wichita State University Department of Computer Science has created a set of
courses than can lead to a specialization in software engineering within the existing
Master of Computer Science degree program. These courses are taught in coopera-
tion with the Software Engineering Institute’s Software Engineering Curriculum
Project.

CMU/SEI-91-TR-2 189

5. Survey of Comprehensive Software Engineering
Textbooks

The growth of software engineering education has stimulated the writing and publi-
cation of many software engineering textbooks over the last few years. In response
to many requests, the SEI Software Engineering Curriculum Project has begun
developing an annotated bibliography of these books. The bibliography includes not
only the usual information, but also the comments of professors who have used the
books in their courses. From time to time we will publish the bibliography, or
selected subsets of it, to aid other educators who wish to select appropriate texts for
their courses.

The bibliography that follows contains comprehensive software engineering text-
books, meaning those that present the broadest view of all aspects of software engi-
neering. These books are suitable for a one- or two-semester course in software
engineering. More specialized books, such as those covering only requirements
analysis or only testing, will be presented in future reports.

Software engineering educators are invited to suggest other books to be included in
future bibliographies, and to submit comments or reviews of textbooks. These may
be addressed to the Software Engineering Curriculum Project at the SEI; electronic
mail may be sent to education@sei.cmu.edu on the Internet.

Russell J. Abbott. An Integrated Approach to Software Development

New York: John Wiley & Sons Inc., 1986. ISBN 0-471-82646-4. 334 pages. $36.95.
Includes exercises.

Table of Contents

1. Introduction
Part 1 Requirements

2. Requirements Discussion
3. Requirements Document Outline

Part 2 System Specification
4. Discussion
5. Behavioral Specification Outline
6. Procedures Manual
7. Administrative Manual

Part 3 Design
8. Design Discussion
9. System Design Documentation

10. Component Documentation: Specification and Design
Appendix Abstraction and Specification

11. Abstraction and Specification

190 CMU/SEI-91-TR-2

Doug Bell, Ian Morrey, and John Pugh. Software Engineering—A
Programming Approach

Englewood Cliffs, N. J.: Prentice-Hall International, 1987. 250 pages.

Table of Contents

1. Goals and Problems
2. Structured Programming
3. Modularity
4. Functional Decomposition
5. The Michael Jackson Method
6. Data Flow Analysis
7. The Programming Language
8. Object-Oriented Programming
9. Functional Programming

10. Logic Programming
11. Software Tools
12. Testing and Implementation
13. Software Fault Tolerance
14. Structured Walkthroughs
15. Chief Programmer Teams and Project Support Libraries
16. Review

Frederick P. Brooks, Jr. The Mythical Man-Month: Essays on Software
Engineering

Reading, Mass.: Addison-Wesley, 1975. ISBN 0-201-00650-2. 195 pages. $20.50.

Table of Contents

1. The Tar Pit
2. The Mythical Man-Month
3. The Surgical Team
4. Aristocracy, Democracy, and System Design
5. The Second-System Effect
6. Passing the Word
7. Why Did the Tower of Babel Fail?
8. Calling the Shot
9. Ten Pounds in a Five-Pound Sack

10. The Documentary Hypothesis
11. Plan to Throw One Away
12. Sharp Tools
13. The Whole and the Parts
14. Hatching a Catastrophe
15. The Other Face

Comment from the publisher

An eminent computer expert, Brooks has written a collection of thought-provoking
essays on the management of computer programming projects. These essays draw
from his own experience as project manager for the IBM System/360 and for OS/360,
its operating system.

CMU/SEI-91-TR-2 191

In the essays, the author blends facts on software engineering with his own personal
opinions and the opinions of others involved in building complex computer systems.
He not only gives the reader the benefit of the lessons he has learned from the
OS/360 experience, but he writes about them in an extremely readable and entertain-
ing way.

Although formulated as separate essays, the book expresses a central argument.
Brooks believes that large programming projects suffer management problems differ-
ent in kind from small ones due to the division of labor. For this reason he feels that
the critical need is for conceptual integrity of the product itself, and in essay form he
explores both the difficulties of achieving this unity and the methods for achieving it.

Comment by Professor Jim Tomayko, The Wichita State University

This is the single most useful text for sparking discussion. It should be used as a
supplement in conjunction with more comprehensive texts, and cannot stand alone in
most courses.

Richard Fairley. Software Engineering Concepts

New York: McGraw-Hill, 1985. ISBN 0-07-019902-7. 364 pages. $49.95. Includes
exercises and suggested project ideas.

Reviewed in Computing Reviews, June 1987 and February 1989; Software
Engineering Journal, July 1989.

Table of Contents

1. Introduction to Software Engineering
2. Planning a Software Project
3. Software Cost Estimation
4. Software Requirements Definition
5. Software Design
6. Implementation Issues
7. Modern Programming Language Features
8. Verification and Validation Techniques
9. Software Maintenance

10. Summary

Review by Professor Richard Hamlet, Portland State University

This book on general software engineering makes an adequate text for an under-
graduate or survey course. Its primary weakness is a lack of depth, more important
at the graduate level. However, since its organization is close to comprehensive, it
can be supplemented with current papers to provide detail. It is also stronger on
common-sense, management material than on engineering topics. For example, its
treatment of abstract data types and information hiding is so superficial as to be
useless, yet this should be a primary design topic in a technically oriented course. I
do not believe that there is a good, technical software engineering text available;
some would say that is because the subject has no technical content, and that books
like Fairley’s are the best that can be done. It is a weakness of the book that the
references are not collected together in one place, but rather scattered at chapter
endings: even though the paper you want is cited, you have to guess where. The
exercises, although better than the traditional ones created at the last minute when
the publisher suggests them, are too much of the flavor of “summarize Section __ in
your own words,” or “design something–how did it go?”

192 CMU/SEI-91-TR-2

Comment by Professor Jim Tomayko, The Wichita State University

The actual textual material in this book is terse and minimalistic. Its strengths lie in
its excellent references and in providing templates for the most commonly-developed
documents.

Joseph M. Fox. Software and its Development

Englewood Cliffs, N. J.: Prentice-Hall, 1982. ISBN 0-13-822098-0. 299 pages.
$46.00.

Table of Contents

1. What is Software?
2. The Computer and Its Uses
3. Performance Concepts
4. A Taxonomy of Software
5. Software Development
6. Managing Software Development
7. Some Advanced Computer Concepts
8. A Perspective

Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of
Software Engineering

Englewood Cliffs, N. J.: Prentice-Hall, 1991. 573 pages.

Table of Contents

1. Software Engineering; A Preview
2. Software: Its Nature and Qualities
3. Software Engineering Principles
4. Software Design
5. Software Specification
6. Software Verification
7. The Software Production Process
8. Management of Software Engineering
9. Software Engineering Tools and Environments

10. Epilogue

Philip Gilbert. Software Design and Development

Chicago: Science Research Associates, 1983. ISBN 0-574-21430-5. 681 pages.
Includes systems, design, and evaluation problems. Instructor’s guide is available.

Reviewed in Computing Reviews, February 1987.

Table of Contents

Part One: Introduction
1. The Software Development Process

Part Two: Initial Design Steps
2. Discovering the Problem
3. The Design Concept

CMU/SEI-91-TR-2 193

Part Three: System Design and Development
4. Introduction to Module Organization
5. Design and Development of Module Organization

Part Four: Module Development
6. Design of Modules
7. Module Implementation Using Top-Down Design
8. Issues in Program Construction
9. Verifying Program Correctness

Part Five: Other Perspectives
10. Management Perspectives

Watts S. Humphrey. Managing the Software Process

Reading, Mass.: Addison-Wesley, 1989. ISBN 0-201-18095-2. 494 pages. $43.25.

Reviewed in American Programmer, January 1990; that is review condensed and
reprinted in Data Processing Digest, May 1990.

Table of Contents

Part I: Software Process Maturity
1. A Software Maturity Framework
2. The Principles of Software Process Change
3. Software Process Assessment
4. The Initial Process

Part II: The Repeatable Process
5. Managing Software Organizations
6. The Project Plan
7. Software Configuration Management
8. Software Quality Assurance

Part III: The Defined Process
9. Software Standards

10. Software Inspections
11. Software Testing
12. Software Configuration Management (Continued)
13. Defining the Software Process
14. The Software Engineering Process Group

Part IV: The Managed Process
15. Data Gathering and Analysis
16. Managing Software Quality

Part V: The Optimizing Process
17. Defect Prevention
18. Automating the Software Process
19. Contracting for Software
20. Conclusion

Comment by Professor Jim Tomayko, The Wichita State University

This is a good overview of the software development process, but it should be
graduate-level only and should be used in conjunction with a more comprehensive
text that explains specific methods.

194 CMU/SEI-91-TR-2

Randall W. Jensen and Charles C. Tonies, eds. Software Engineering

Englewood Cliffs, N. J.: Prentice-Hall, 1979. ISBN 0-13-822130-8. 580 pages.
$56.00.

Table of Contents

1. Introduction
2. Project Management Fundamentals
3. Software Design
4. Structured Programming
5. Verification and Validation
6. Security and Privacy
7. Legal Aspects of Software Development

Comment by Professor Jim Tomayko, The Wichita State University

Despite its advanced age, there is little in this book that is dated, with the exception
of some of the material on legal issues. The appendix dealing with software engineer-
ing education still rings true. The book’s strength is that it is written by industrial
experts, and thus has little “academic” flavor. The weakness is that, even though the
concepts remain the same, lots of the terminology has changed.

David Alex Lamb. Software Engineering: Planning for Change

Englewood Cliffs, N. J.: Prentice-Hall, 1988. ISBN 0-13-822982-1. 298 pages.
$47.00. Includes exercises.

Reviewed in Computing Reviews, February 1989; IEEE Software, November 1989;
Computer, March 1988.

Table of Contents

Part I: Overview
1. Introduction
2. The Lifetime of a Software System
3. Technical Writing

Part II: Software Lifetime
4. Requirements Analysis and Specification
5. Preliminary Design
6. Module Interfaces
7. Module Implementation
8. Testing
9. System Delivery

10. Evolution
Part III: Specifications and Verification

11. Introduction to Specifications
12. Algebraic Specifications
13. Trace Specifications
14. Abstract Modeling

Part IV: Other Topics
15. The Workplace
16. Scheduling and Budgeting
17. Configuration Management
18. Quality Assurance

CMU/SEI-91-TR-2 195

19. Tools
20. Retrospective

Appendices
A. Sample User’s Guide
B. Sample Life-Cycle Considerations
C. Sample System Test Plan
D. Sample Module Decomposition and Dependencies
E. Sample Module Specifications
F. Sample Integration Test Plan
G. Sample Module Implementation Summary
H. Sample Listing
I. Sample Release Notice

A. Macro and J. N. Buxton. The Craft of Software Engineering

Wokingham, England: Addison-Wesley, 1987. ISBN 0-201-18488-5. 380 pages.
$26.95.

Reviewed in Software Engineering Journal, July 1989; Information and Software
Technology, December 1989.

Table of Contents

1. Introduction
2. Software engineering
3. Managing software development: fundamental issues
4. Specification and feasibility
5. Estimating effort and timescale
6. Organizing and controlling software development
7. Systems and software design
8. Implementation
9. Software quality

10. Additional management issues
11. Casestudy: extracts from an archive

Allen Macro. Software Engineering: Concepts and Definitions

Prentice-Hall International, 1990. 544 pages. $43.20.

Table of Contents

Part One: Concepts and Definitions
1. The Etymology: What is Software Engineering
2. The State of Software Engineering
3. The Properties of Software Systems

Part Two: The Modalities of Software Development
4. The Life Cycle Issue Briefly Revisited
5. Requirements Specification
6. Feasibility and the Outline Systems Design
7. Software Design
8. Implementation
9. Software Quality

10. Maintenance, New Versions and the Preservation of Software Quality
Part Three: Software Management

11. Comprehension and Visibility in Software Development

196 CMU/SEI-91-TR-2

12. Estimating Effort and Time-Scale
13. Managing Software Development

Epilog
Part Four: Appendices
Appendix 1. A Consolidated Case Study
Appendix 2. Specimen Questions
Appendix 3. Glossary of Terms
Appendix 4. References

Philip W. Metzger. Managing a Programming Project, 2nd Ed.

Englewood Cliffs, N. J.: Prentice-Hall, 1981. ISBN 0-13-550772-3. 244 pages.
$50.00.

Table of Contents

Part I: The Programming Development Cycle
1. Introduction
2. The Definition Phase
3. The Design Phase
4. The Programming Phase
5. The System Test Phase
6. The Acceptance Phase
7. The Installation and Operation Phase
8. Special Considerations
9. A War Story

10. A Summary
Part II: A Project Plan Outline

Comment by Gary Ford, SEI

As the title implies, this book focuses on project management. An especially useful
part of the book is the detailed outline of a project plan, which runs 31 pages. The
book can be a valuable resource to an instructor of a software engineering project
course, even when the students are using another book.

Barbee Teasley Mynatt. Software Engineering with Student Project
Guidance

Englewood Cliffs, N. J.: Prentice-Hall, 1990. 429 pages.

Table of Contents

1. What is Software Engineering
2. Requirements Analysis and Specification
3. Preliminary Design: Designing the User Interface
4. Preliminary Design: Designing the Software Structure and Data Structures
5. Detailed Design and Choosing a Programming Language
6. Coding and Integration
7. Testing
8. More about Software Engineering: Now and in the Future

Appendices
A. Sample Documents from the Rev-Pro Case Study
B. Writing a User’s Manual

CMU/SEI-91-TR-2 197

Shari Lawrence Pfleeger. Software Engineering: The Production of Quality
Software

New York: Macmillan, 1987. ISBN 0-02-395720-4. 443 pages. Includes exercises.
Instructor’s manual available; includes answers to exercises.

Reviewed in Computing Reviews, July 1988 and February 1989; Software
Engineering Journal, July 1989.

Table of Contents

1. Why Software Engineering
2. Project Planning
3. Requirements Analysis
4. System Design
5. Program Design
6. Program Implementation
7. Program Testing
8. System Testing
9. System Delivery

10. Maintenance
11. What Can Go Wrong

Roger S. Pressman. Software Engineering: A Practitioner’s Approach, 2nd
Ed.

New York: McGraw-Hill, 1987. ISBN 0-07-050783-X. 567 pages. $44.95.

Reviewed in IEEE Software, January 1988.

Table of Contents

1. Software and Software Engineering
2. Computer System Engineering
3. Software Project Planning
4. Requirements Analysis Fundamentals
5. Requirements Analysis Methods
6. Software Design Fundamentals
7. Data Flow-Oriented Design
8. Data Structure-Oriented Design
9. Object-Oriented Design

10. Real-Time Design
11. Programming Languages and Coding
12. Software Quality Assurance
13. Software Testing Techniques
14. Software Testing Strategies
15. Software Maintenance and Configuration Management

Comment by Professor Jim Tomayko, The Wichita State University

This book is a significant improvement on the first edition. It contains material at
sufficient depth for a one-semester course. It goes beyond Fairley in that you truly
feel as though you understand the usefulness and characteristics of a method or
concept.

198 CMU/SEI-91-TR-2

Ronald A. Radice and Richard W. Phillips. Software Engineering: An
Industrial Approach, Vol. 1

Englewood Cliffs, N. J.: Prentice-Hall, 1988. 457 pages. $37.00.

Reviewed in IEEE Software, September 1989.

Table of Contents

Part 1. The Basis of This Book
1. The State of Software Engineering
2. The Process of Software Production

Part 2. The Software Product
3. Planning the Product
4. Requirements Engineering
5. Human Factors and Usability

Part 3. Software Engineering Methods
6. Planning the Project
7. Design of Software
8. Validation and Verification

Part 4. Design and Coding Stages
9. Product Level Design and Component Level Design

10. Module Level Design (MLD)
11. Code

Part 5. Appendixes
A. A Specification Language (ASL) Reference
B. Design Programming Language (DPL) Reference
C. A Design Language (ADL) Reference

B. Ratcliff. Software Engineering—Principles and Methods

Blackwell, 1987.

Reviewed in Software Engineering Journal, July 1989.

Kenneth D. Shere. Software Engineering and Management

Englewood Cliffs, N. J.: Prentice Hall, 1988. ISBN 0-13-822081-6.

Table of Contents

1. Introduction
2. Structured Programming
3. A Life-cycle Approach to Software Engineering
4. Risk Management
5. Cost Estimation
6. Determining the System Legacy
7. Life-cycle Products
8. Case Study: Design of a Large, Complex System
9. Overview of Structured Techniques

10. Data-base Design
11. Quality Assurance
12. Some Analytical Techniques
13. Case Study: Design of an Office Automation System
14. Designing an Integrated Home Computer: A Challenge to the Reader

CMU/SEI-91-TR-2 199

Martin L. Shooman. Software Engineering: Design, Reliability, and
Management

New York: McGraw-Hill, 1983. ISBN 0-07-057021-3. 683 pages. $50.95.
Appendices summarize probability theory, reliability theory, and graph theory.
Includes exercises and answers to selected exercises.

Table of Contents

1. Introduction
2. Program Design Tools and Techniques
3. Complexity, Storage, and Processing-Time Analyses
4. Program Testing
5. Software Reliability
6. Management Techniques

Review by Professor J. H. Poore, The University of Tennessee

This is an excellent book but is a bit out of date. I usually make a course project of
updating all the charts and tables from current reports. The approach of this book is
sound. The organization of the material is correct and the methodology is solid. By
using this book, students understand that the field is inherently mathematical and
that the word engineering is not an affectation. I supplement the course with techni-
cal papers to update the models and introduce new ones. This book is used in a
senior-level course.

Charles D. Sigwart, Gretchen L. Van Meer, and John C. Hansen. Software
Engineering: A Project Oriented Approach

Irvine, Calif.: Franklin, Beedle & Associates, 1990. ISBN 0-938661-27-2. 484
pages.

Table of Contents

Part I System Specification and Planning
1. Introduction to Software Engineering
2. The Software Requirements Specification
3. System Models
4. Software Design and Planning
5. Planning for Software Testing

Part II Development
6. User Interface and Error Handling
7. Issues in Detailed Design and Development
8. Testing
9. Maintenance and Design for Maintainability

Part III The Rest of the Picture
10. Defining the Problem: Systems Analysis
11. Software Tools and Environments
12. Quality Assurance and Software Evaluation
13. Software Protection, Security, and Ethics

Appendix A Standards for Software Project Documentation and Evaluation
Appendix B Instrumenting a System for an Execution Trace

200 CMU/SEI-91-TR-2

Review by Professor W. S. Curran, Southeastern Louisiana University

If you are looking for a good textbook for an introductory course on software engineer-
ing, Sigwart, Van Meer and Hanson’s new text should please you greatly. It is a book
written by experienced teachers of software engineering who are sympathetic to the
problems inherent in group projects, and who are interested in producing students
who are well prepared for the “real world.” Too often, students have been burdened
with arcane and archaic formulae, idiosyncratic and bewildering terminology and
diagrams, or highly specialized topics in software engineering texts. In this book, the
authors have concentrated instead on how to do software engineering properly by
simulating an industrial environment and incorporating academic features as well.
They use industry and IEEE standard terminology and diagrams throughout (with
glossary), and have included a suggested documentation standard.

The style is lucid, the overall organization is well thought-out, and a sprinkling of
humorous and pithy quotes help keep things in perspective. The suggested projects
are appropriate, the exercises at the end of each chapter are worthwhile, and the
references are excellent.

In addition to the standard topics of design, testing, maintenance, complexity
metrics, etc., students will reap a harvest of wisdom and practical advice that only
years of teaching combined with industry experience can produce. There are sections
on group dynamics, scheduling problems, how to deal with customers who don't know
what they want, human factors, sections on legal aspects of programming, software
security, error trapping, and even a section, long overdue, on ethics.

The intended audience for this book is an undergraduate computer science student
with a structured programming background that includes data structures and
machine architecture. The authors indicate that the book could serve as a reference
text for students after they graduate, and that it might be used for either a one-
semester or two-semester course. There is plenty of material for two semesters, and
there is room for a wide variety of teaching styles, but it might have been more help-
ful if a suggested breakdown of topics were offered for a two-semester course.

Professors who are teaching a software engineering course for the first time, and
those with limited industry experience, should find the book particularly invaluable.
(An instructor’s guide is available, but not reviewed.)

Before choosing a software engineering text, it will be worthwhile to read the preface
to this book, scan the table of contents, and read a dozen pages or so of the first
chapter. The authors are interested in teaching software engineering rather than
just writing a book, and it shows.

David J. Smith and Kenneth B. Wood. Engineering Quality Software

London: Elsevier Applied Science, 1989. ISBN 1-85166-358-4.

Table of Contents

Part 1. The Background to Software Engineering and Quality
1. The Meaning of Quality in Software
2. Software Failures—Causes and Hazards
3. The Effect of the Software Life-cycle on Quality

Part 2. Current Quality Systems and Software Standards
4. The Traditional Approach to Software Quality
5. Current Standards and Guidelines

Part 3. Software Quality Engineering—An Ideal Approach

CMU/SEI-91-TR-2 201

6. An Engineering Approach to Defining Requirements
7. Putting Design into an Engineering Context
8. A Structured Approach to Static and Dynamic Testing
9. Languages and Their Importance

10. Aspects of Fault Tolerance in Software Design
Part 4. New Management for Software Design

11. Software Project Management
12. Quality—Can it be Measured?
13. The Role of the Software Engineer

Part 5. Exercise
14. Software System Design Exercise—Addressable Detection System

Comment by Gary Ford, SEI

This book includes an extensive glossary and bibliographies of British and American
standards for software products and processes.

Ian Sommerville. Software Engineering, 3rd Ed.

Reading, Mass.: Addison-Wesley Publishing Company, 1989. ISBN 0-201-17568-1.
653 pages. $36.75. Includes exercises.

Second edition reviewed in Computing Reviews, February 1989; IEEE Software,
January 1987; Software Engineering Journal, July 1989.

Table of Contents

1. Introduction
2. Human Factors in Software Engineering

Part 1: Software Specification
3. Software Specification
4. System Modelling
5. Requirements Definition and Specification
6. Requirements Validation and Prototyping
7. Formal Specification
8. Algebraic Specification
9. Model-Based Specification

Part 2: Software Design
10. Software Design
11. Object-Oriented Design
12. Function-Oriented Design
13. User Interface Design
14. Design Quality Assurance

Part 3: Programming Practice, Techniques and Environments
15. Programming Practice
16. Data Abstraction
17. Portability and Reuse
18. Computer-Aided Software Engineering
19. Software Engineering Environments

Part 4: Software Validation
20. Program Verification and Validation
21. Testing Techniques
22. Static Program Verification
23. Testing and Debugging Tools

Part 5: Software Management
24. Software Management

202 CMU/SEI-91-TR-2

25. Project Planning and Scheduling
26. Software Cost Estimation
27. Software Maintenance
28. Configuration Management
29. Documentation
30. Software Quality Assurance

Review by Professor Frank Friedman, Temple University

This book is partitioned into an introductory section and five major parts, one each on
Software Specification; Software Design; Programming Practice, Techniques and
Environments; Software Validation; and Software Management. Ada is used as the
example language throughout, but all material is understandable by any reader
having a knowledge of Pascal, C, or Modula-2. Familiarity with the basics of
programming techniques and data structures is required and the material on formal
specification assumes a knowledge of elementary set theory. Aside from this, no
mathematical background is required and few other assumptions about student
background are made.

The author has a targeted audience of undergraduate and graduate students as well
as practitioners; but despite its length, the book does not seem well suited to even
most senior undergraduates. Most of the material is written at a very high, superfi-
cial level with insufficient detail and not enough substantial examples.

Those examples that are provided are rather small in scale. They are not effective in
providing any sort of indication of larger scale system implications of the techniques
and issues discussed in the text. While this is a problem with a number of introduc-
tory, survey kinds of texts, Sommerville's text suffers from it more so than most
others.

For more sophisticated students, however—those with experience in working with
large scale systems or those more skilled than the typical undergraduate at using
supplementary references—this text may be more than adequate for an initial survey
of the software engineering field. It covers a wide spectrum of material, including
functional specification, the use of schemas, software design and implementation,
programming environments (and CASE tools), verification, validation, testing and
debugging, and a variety of management issues including costing, planning, configu-
ration management, quality assurance and documentation. Obviously, none of these
topics are covered in much depth.

Chapter summaries, extensive references and numerous small exercises are also
provided. There are no case studies in the text and hence no large scale problems or
projects are suggested. If appropriately supplemented, the book may be suitable for
an introductory graduate-level survey course in software engineering, or as a good
overview text for practitioners who might be new to the field.

Review by Professor Rodney L. Bown, University of Houston-Clear Lake

Sommerville’s third edition of Software Engineering is very readable and will support
an introductory/survey course for third and/or fourth year students who have
completed a course in the Ada language. This reviewer supports the choice of Ada as
the language of choice.

In the preface and appendix, the author provides guidance on how to use the book as
a course text to support several different courses. The size of the book is misleading
(653 pages) in that the book has excessive white space. The problem with the book is
that there are too many separate topics for one semester and not enough for two
semesters. The treatment of each topic is shallow and requires that the instructor

CMU/SEI-91-TR-2 203

provide considerable support material. Chapters 7, 8, and 9 present topics which are
related to formal methods. The coverage is too thin to support a complete teaching
unit. Other examples would include the limited coverage in Chapter 11 on object-
oriented design. This instructor uses supplementary material to support all teaching
units.

The book does not have a consistent case study to demonstrate each of the software
engineering phases. The book should not be a survey of different applications.
Chapter 10 uses as examples: a control system, compiler, radar system, and
spellcheck. The weather station in Chapter 11 is an excellent example but it is very
incomplete. Chapter 11 also uses the heating system, address list, and counter as
examples. The author should recognize that a third or fourth year university student
has limited to no real-world application knowledge to appreciate multiple examples.
My first recommendation for a fourth edition is to examine the positive results from
using a consistent case study to support the ideas and concepts presented in the book.

The instructor’s manual promised camera-ready figures to be used for production of
visual aids by the instructor. This was a great disappointment in that the figures
were not enlarged from those contained in the textbook. Many pages in the manual
were used for programming lists and were of no value. The instructor’s manual has
provided limited support to this instructor.

The list of references is excellent.

Bottom Line: This instructor will continue to use the book with local supplementary
material that supports a case study. This material includes but is not limited to
topics such as IRDS, CAIS, DOD STD 2167, IEEE tutorial on Process Models, and
brochures on commercial CASE products.

Donald W. Steward. Software Engineering with Systems Analysis and
Design

Monterey, Calif.: Brooks/Cole Publishing Co., 1987. ISBN 0-534-07506-1.
414 pages. $44.75. Includes exercises.

Reviewed in Computer, April 1988.

Table of Contents

Part 1: Introducing Software Engineering
1. What is Software Engineering?
2. Software Engineering Principles

Part 2: Describing the Product
3. Data Flow Diagrams and Matrices
4. Tree Structures

Part 3: Managing the Software Development Process
5. Managing People and Expectations
6. Estimating the Project
7. Scheduling and Controlling the Project

Part 4: Applying the Technology
8. Technical Considerations in Analysis and Design
9. User Interfaces

Part 5: Stepping Through the Process
10. Documenting the Project
11. Planning the Project
12. Analyzing the Current System and Expectations
13. Specifying Requirements

204 CMU/SEI-91-TR-2

14. Appraising Feasibility and Cost
15. Designing the System
16. Implementation
17. Testing and Maintenance

Ray Turner. Software Engineering Methodology

Reston, Va.: Reston Publishing Company, 1984. ISBN 0-8359-7022-1. 236 pages.
$34.00.

Table of Contents

Introduction
Software Development Cycle—Small Project
Software Development Cycle—Large Projects
Documentation Standards
Functional Specification Format
Software Design
Structured Design Techniques
Design Specification Format
Coding Techniques
Debugging and Validating Testing
Software Development Environment
Project Management
Software Department Management
Software Configuration Control

Anneliese von Mayrhauser. Software Engineering: Methods and
Management

San Diego, Calif.: Academic Press, 1990. ISBN 0-12-727320-4. 864 pages. $49.95.
Includes exercises.

Table of Contents

Part 1: Methods
1. Introduction
2. Problem Definition
3. Functional Requirements Collection
4. Qualitative Requirements
5. Specifications
6. Design: Strategies and Notations
7. Software System Structure Design
8. Detailed Design
9. Coding

10. Testing
11. Operation and Maintenance

Part 2: Management
12. Management by Metrics
13. Feasibility and Early Planning
14. Models for Managerial Planning
15. Project Personnel
16. Software Development Guidelines

CMU/SEI-91-TR-2 205

Richard Wiener and Richard Sincovec. Software Engineering with
Modula-2 and Ada

New York: John Wiley & Sons, 1984. ISBN 0-471-89014-6. 451 pages. Includes
exercises.

Reviewed in Computing Reviews, October 1985.

Table of Contents

1. What is Software Engineering? A Top-Down View
2. Software Requirements and Specifications
3. Programming Languages and Software Engineering
4. General Principles of Software Design
5. Modular Software Development Using Ada
6. Modular Software Construction Using Modula-2
7. Programming Methodology
8. Software Testing
9. A Case Study in Modular Software Construction

206 CMU/SEI-91-TR-2

CMU/SEI-91-TR-2 207

6. Survey of Software Engineering Research Journals

Although the SEI curriculum recommendations are aimed at stimulating the growth
of software engineering education, we hope that software engineering research will
also become more widespread in universities. Faculty members often find that doing
research and teaching in the same area improves their ability to do both.

A first step in initiating software engineering research is an awareness of the cur-
rent research literature. Software engineering has matured to the point that there
are now many research journals that report advances in the discipline. Many of
these journals are relatively new and many professors are new to the discipline, so
these journals may not be widely known. The two sections below identify archival
journals in software engineering and journals in related areas that frequently
include papers on software engineering. We recommend that schools developing
software engineering degree programs ask their libraries to consider subscribing to
these journals.

The information describing each journal has been extracted from the journal’s
information for authors and in most cases is a direct quotation.

6.1. Archival Journals

ACM Transactions on Software Engineering and Methodology

Publisher: Association for Computing Machinery.

This new journal (first issue in January 1991) will publish significant papers on all
aspects of research related to complex software systems, generally characterized by
a scale requiring development by teams, not individuals. It will include research
issues such as specific tools, methods, technologies, environments, and platforms;
languages, algorithms data structures, theory as appropriate to the scale and com-
plexity of the application domains and within context of large-scale systems; results
which are extensible, scalable with practical import; work demonstrating clear
application of scientific method: thesis, development, experiment, evolution and
iteration; empirical studies; application of innovative technologies, such as: data
and object management; intelligent systems and artificial intelligence; new pro-
gramming styles; new hardware, systems, and graphics; methods for real-time and
other time-constrained systems; techniques for prototyping and reuse; and risk
evaluations and containment.

208 CMU/SEI-91-TR-2

Formal Aspects of Computing

Publisher: British Computer Society.

Computing science is developing and providing a basis on which complex systems
can be designed and analysed. Theories are evolving in terms of which a true under-
standing of difficult computing concepts can be gained. To employ such theories in
discussions requires the use of formal notation. Although notation can present an
initial barrier, practitioners are now finding that the investment of effort is
worthwhile.

The principal aims of this journal are to promote the growth of computing science, to
show its relationship to practice, and to help in the application of formalisms. In
particular, contributions to the formal aspects of computing are to be published. The
following fall within the scope of formal aspects: Well founded notations for system
description/specification, verifiable designs, proof methods, theories of objects used
in specifications and implementations, transformational design, formal approaches
to requirements analysis, results on algorithm and problem complexity, fault-toler-
ant design, descriptions of relevant “project support environments,” methods of
approaching development.

Applications of known formal methods as well as new results would be suitable sub-
jects for papers. Comprehensive surveys will also be published and there is hope
that some systematic coverage of major topics can be achieved over a period of years.
Contributions to the teaching of formal aspects would also be welcome.

IEEE Transactions on Software Engineering

Publisher: Institute for Electrical and Electronic Engineers.

The IEEE Transactions on Software Engineering is an archival journal published
monthly. We are interested in well-defined theoretical results and empirical studies
that have potential impact on the construction, analysis, or management of software.
The scope of the Transactions ranges from the theoretical to the practical. We
welcome treatments ranging from formal models to empirical studies, from software
constructive paradigms to assessment mechanisms, from the development of princi-
ples to the application of those principles to specific environments. Since the journal
is archival, it is assumed that the ideas presented are important, have been well
analyzed and/or empirically validated and are of value to the software engineering
research or practitioner community.

Specific topic areas include: a) development and maintenance methods and models,
e.g., techniques and principles for the specification, design, implementation of soft-
ware systems including notations and process models; b) assessment methods, e.g.,
software tests and validation, reliability models, test and diagnosis procedures,
software redundancy and design for error control, and the measurements and evalu-
ation of various aspects of the process and product; c) software project management,
e.g., productivity factors, cost models, schedule and organizational issues, standards;

CMU/SEI-91-TR-2 209

d) tools and environments, e.g., specific tools, integrated tool environments including
the associated architectures, databases, and parallel and distributed processing
issues; e) system issues, e.g., hardware-software tradeoffs; and f) state-of-the-art
surveys that provide a synthesis and comprehensive review of the historical devel-
opment of one particular area of interest.

Information and Software Technology

Publisher: Butterworth Heinemann, 80 Montvale Avenue, Stoneham, MA 02180.

Information and Software Technology focuses on international research on software
development and its application in industry. The journal brings the results of
government projects and academic and commercial research to its readers. It
discusses techniques for tailoring software and information systems for institutional,
industrial and commercial use, and it explains in depth the technical needs of its
users for more efficient and reliable systems. Emphasis is placed on the use of
proper methodologies and formal practices to improve software productivity.

Among the topics covered are software engineering development standards, tools
and methodologies, environments, metrics, automatic program development, quality
assurance and testing, formal methods, project management, and reliability and
maintenance.

International Journal of Computer and Software Engineering

Publisher: Ablex Publishing Corporation, 355 Chestnut Street, Norwood, NJ 07648.
(The journal is scheduled to begin publication in 1991.)

The International Journal of Computer and Software Engineering will present state-
of-the-art research and development in the area of computer engineering and soft-
ware engineering. The journal will publish refereed papers relating to a wide
variety of topics, theory, and practical applications in these areas.

The journal will be of interest to all those concerned with research and development,
especially engineers, computer scientists, and those in allied disciplines. It will
publish original research, development, and state-of-the-art tutorials and related
topics. All papers submitted to the journal will be refereed by an international
review board.

Journal of Software Maintenance: Research and Practice

Publisher: John Wiley & Sons Ltd., Baffins Lane, Chichester, Sussex PO19 1UD,
England.

The Journal of Software Maintenance publishes refereed papers in all aspects of
software maintenance. We seek to include articles from practitioners working in the
field (including the user community) as well as research papers. It is not the inten-
tion to publish papers on software development except where topics directly of
relevance to maintenance are addressed. These could include (for example) the pro-

210 CMU/SEI-91-TR-2

duction of more maintainable software, or metrics produced during development to
predict the maintainability, quality or reliability of software. Papers on the impact
for maintenance of new software practices will be welcomed.

Other journals do not cater well for “post-delivery” and operational support issues,
and the Journal of Software Maintenance fills this need. The editors’ aim is to
convey the results of academic research and practical experience into the computing
community.

Topics on which papers will be published include: software evolution lifecycles,
software maintenance management, tools, environments, metrics and productivity
methods, quality assurance, theory of software maintenance, maintainability of new
software, methods for software maintenance, impact for maintenance of new soft-
ware practices.

Journal of Systems and Software

Publisher: Elsevier Science Publishing Co., Inc., 655 Avenue of the Americas, New
York, NY 10010.

The Journal of Systems and Software publishes papers covering all aspects of
programming methodology, software engineering, and related hardware-software-
systems issues. Topics of interest include, but are not limited to, software tools,
programming environments, techniques for developing, validating, and maintaining
software systems, prototyping issues, high level specification techniques, procedural
and functional programming techniques, data flow concepts, multiprocessing, real-
time, distributed concurrent, and telecommunications systems, software metrics,
reliability models for software, performance issues, and management concerns. The
journal publishes research papers, state-of-the-art surveys, and reports of practical
experience.

Journal of Systems Integration

Publisher: Kluwer Academic Publishers, 101 Philip Drive, Norwell, MA 02061-1677.

The Journal of Systems Integration is a quarterly peer-reviewed technical publica-
tion containing original, survey application, and research papers on all topics related
to systems integration. The intent is to encompass a collection of papers that hereto-
fore have been dispersed throughout a wide body of literature involving the interac-
tion of disciplines, technologies, methods and machines necessary to integrate
various constituent systems.

The scope of this journal generally parallels the definition of the integration of com-
puter systems. However, it also deals with the general integration of processes and
systems, and the development of mechanisms and tools enabling solutions to multi-
disciplinary problems found in the computer services and manufacturing industries.
This journal focuses on the following critical steps found in effective systems inte-
grations: process characterization, re-engineering and simplification of processes,

CMU/SEI-91-TR-2 211

convergence on a common system architecture, and automation of the processes and
systems.

Since the successful implementation of these steps for systems integration requires
diverse knowledge bases and expertise in various areas, the journal also emphasizes
additional topics such as managing knowledge and information that are physically
distributed in various databases; computer communications impact on the system
process; dealing with heterogeneous computers and environments, and coordinating
diverse computer communications networks with information networks.

Real-Time Systems

Publisher: Kluwer Academic Publishers, 101 Philip Drive, Norwell, MA 02061-1677.

Real-time systems are defined as those systems in which the correctness of the
system depends not only on the logical result of computation, but also on the time at
which the results are produced. Real-Time Systems is an archival, peer-reviewed,
technical journal publishing the following types of papers, which concentrate on real-
time computing principles and applications: research papers, invited papers, reports
on projects and case studies, standards and corresponding proposals for general
discussion, and a partitioned tutorial on real-time systems as a continuing series.

Software Engineering Journal

Publisher: The Institution of Electrical Engineers (IEE), Savoy Place, London
WC2R 0BL, United Kingdom.

Software Engineering Journal welcomes original contributions of interest to practi-
tioners, researchers and managers engaged in software engineering. It is intended
that the journal should cover the spectrum from reports on practical experience
using software engineering methods and tools through to papers on longterm
research activities. The Editors particularly welcome material which is of practical
benefit today, or which could be brought into practical application in the foreseeable
future.

The scope of the journal is the whole of software engineering, including, but not lim-
ited to: management of software development; the development process; standards;
support environments (IPSEs); development methods and tools; formal methods;
software engineering training; software metrics and estimation methods; high-
reliability systems.

Software: Practice and Experience

Publisher: John Wiley & Sons Ltd., Baffins Lane, Chichester, Sussex PO19 1UD,
England.

To write successful software requires a great deal of know-how, and far too little of
this is at present available in written form, which results in a duplication of inven-
tive effort. Other journals do not cater well for the software writer and Software fills

212 CMU/SEI-91-TR-2

this need; the emphasis is on conveying the results of practical experience for the
benefit of the computing community. Both “systems” software and “applications”
software, for use in batch, multi-access, interactive and real-time environments are
included. Articles cover software design and implementation, case studies which
describe the evolution of systems and the thinking behind them, and critical
appraisals of software systems. Well-tried techniques that are not documented are
included in articles of a tutorial nature. Although the emphasis is on practical
experience, articles of a theoretical or mathematical nature will be included when it
is felt that an understanding of theory will lead to better practical systems.

6.2. Other Journals

In addition to the journals that focus primarily on software engineering, there are
several others that frequently include software engineering papers. These include:

ACM Transactions on Programming Languages and Systems

Publisher: Association for Computing Machinery.

The purpose of the ACM Transactions on Programming Languages and Systems
(TOPLAS) is to provide a unified forum for the presentation of research and devel-
opment results on all aspects of the design, definition, realization, and use of
programming languages and systems. In addition to the traditional research contri-
butions, the journal includes reports of the insights and experience gained by the
practitioner in applying the fruits of that research.

Among the topics within the scope of TOPLAS are design or comparisons of
language features, analysis of the design or implementation of particular languages,
description of novel program development tools and techniques, testing and verifi-
cation methodology, user experience with languages or methodologies, program
specification languages and methods, storage allocation and garbage collection algo-
rithms, methods for specifying programming language semantics, language
constructs for and programming of asynchronous and distributed processes, and
applications of programming languages or methods to other areas such as databases
and office automation.

Communications of the ACM

Publisher: Association for Computing Machinery.

Communications of the ACM is a monthly magazine that publishes articles of
general interest to the computing community. Papers of direct and immediate inter-
est to practitioners are published in the Computing Practices section. Submitted
manuscripts should emphasize the skills and techniques used daily, including the
design and construction of applications systems; discussion of computer systems and
tools; methodologies for management; computer philosophy; and the implications of

CMU/SEI-91-TR-2 213

theoretical contributions to application areas. Papers submitted to Computing
Practices are reviewed by the Computing Practices Panel for content, definitiveness,
interest, and importance to the practice of computing.

Case Studies are articles that report on experiences gained and lessons learned
constructing and using major computer systems. They take a comprehensive view of
selected systems, covering them from requirements through design, implementation,
and use. Case Studies should take a rigorously objective perspective on the systems
they describe, and should be both evaluative and descriptive.

Computer

Publisher: Institute for Electrical and Electronic Engineers.

Computer covers all aspects of computer science, engineering, technology, and appli-
cations. It is aimed at a broad audience. Articles in Computer are usually survey or
tutorial in nature and cover the state of the art or important emerging develop-
ments. Computer publishes technically substantive articles that are referenced
extensively in the literature. One of the important purposes of Computer is to act as
a technology transfer conduit to bring results and formalisms from university,
industry and government research and development centers to the general practi-
tioners in the field.

Computer Journal

Publisher: British Computer Society.

In order to maintain the Journal as a leading medium in all aspects of computer
science and compute applications, it has been agreed that future issues will identify
state-of-the-art themes and will publish new papers related to those themes. By
“new” it is intended that papers would have been written no longer than six months
before the press date. The list of themes to be chosen will be published approxi-
mately 18 months in advance and submissions will be invited against the themes.

Future special issues include Concurrent Programming for the February 1991 issue
and Methodologies (Software and Systems) for the April 1991 issue.

IEEE Software

Publisher: Institute for Electrical and Electronic Engineers.

IEEE Software emphasizes current practice and experience together with promising
new ideas that are likely to be used in the near term. It is directed to the practice of
the software profession. We welcome papers on topics across the software spectrum.
Sample topics are data engineering and database software; programming environ-
ments; languages and language-related issues; knowledge-based and decision
support systems; program and system debugging and testing; distributed, network,
and parallel systems; education of software professionals; design, development, and
programming methodologies; algorithms, their analysis and pragmatics;

214 CMU/SEI-91-TR-2

performance measurement and evaluation; program and system reliability, security,
and verification; software-related social and legal issues; and human factors and
software metrics.

Articles describing how software is developed in specific companies, laboratories,
and university environments, as well as articles describing new tools to aid in the
software and system development process, are welcome. The intent is to provide the
reader with information on advances in software technology, specifics on novel fea-
tures and applications, contrasts in designing and programming in the large versus
designing and programming in the small, discussions of limitations and failures, and
an awareness of the trends in this rapidly evolving area. Tutorials, survey articles,
standards, guided tours through descriptions of projects, designs, or algorithms, and
case studies are also encouraged.

IEEE Transactions on Engineering Management

Publisher: Institute for Electrical and Electronic Engineers.

IEEE Transactions on Engineering Management is a research-based, refereed jour-
nal in engineering management. The purpose of this Transactions is multifold: to
assist in the establishment and recognition of the engineering management disci-
pline; to provide the publications medium for authors at the leading edge of engi-
neering management in academic institutions, industrial organizations, government
agencies, or other settings; to establish the guidelines and identify the future direc-
tions of critical issues in engineering management; and to become a forum for the
researchers and practitioners of engineering management, regardless of their tech-
nical specialties.

IEEE Transactions on Parallel and Distributed Systems

Publisher: Institute for Electrical and Electronic Engineers.

The goal of the Transactions is to publish a range of papers, short notes, and survey
articles that deal with the research areas of current importance to our readers.
Current areas of particular interest include but are not limited to: a)
architectures—design, analysis, and implementation of multiple-processor systems
(including multiprocessors, multicomputers, and networks); impact of VLSI on
system design; interprocessor communications; b) software—parallel languages and
compilers; scheduling and task partitioning, databases, operating systems, and
programming environments for multiple-processor systems; c) algorithms and
applications—models of computation; analysis and design of parallel/distributed
algorithms; application studies resulting in better multiple-processor systems; d)
other issues—performance measurements, evaluation, modeling and simulation of
multiple-processor systems; real-time, reliability and fault-tolerance issues;
conversion of software from sequential-to-parallel forms.

CMU/SEI-91-TR-2 215

Interacting with Computers

Publisher: Butterworth Heinemann Publishers.

The objective of the study of human-computer interaction (HCI) is to understand
how people communicate with computers so that the design and use of computer
systems can be improved. HCI is an increasingly important, but diverse and frag-
mented field. A new medium is needed to allow the communication and coordination
of expertise, findings and activities. Interacting with Computers is the international
forum for just such communication. It makes information accessible not only to
those engaged in research but to all HCI practitioners.

Coverage includes: systems and dialogue design; evaluation techniques; user inter-
face design, tools and methods; empirical evaluations; user features and user
modelling; new research paradigms; design theory, process and methodology; orga-
nizational and societal issues; intelligent systems; training and education applica-
tions; and emerging technologies.

Journal of Parallel and Distributed Computing

Publisher: Academic Press.

Among the areas in which papers are solicited are software tools and environments,
real-time systems, performance analysis, and fault-tolerant computing.

Structured Programming

Publisher: Springer International.

The international journal Structured Programming will serve the professional
computing and engineering community. Its scope will include technical contribu-
tions and short communications in the areas of programming, programming
methodology and style, programming languages, programming environments, com-
pilers, interpreters, and applications. It will report on technical advances in the
field, announce and review systems, implementations, and relevant publications.
Structured Programming will emphasize innovative concepts in programming (such
as literate programming) and practical solutions to real problems. Structured
Programming is not intended as an archival journal, but rather an informal forum
for the timely exchange of ideas and information.

216 CMU/SEI-91-TR-2

CMU/SEI-91-TR-2 217

Appendix 1. An Organizational Structure for
Curriculum Content

The body of knowledge called software engineering consists of a large number of
interrelated topics. We thought it impractical to attempt to capture this knowledge
as an undifferentiated mass, so an organizational structure was needed. The
structure described below is not intended to be a taxonomy of software engineering.
Rather, it is a guide that helps the SEI to collect and document software engineering
knowledge and practice, and to describe the content of some recommended courses
for a graduate curriculum.

Discussions of software engineering frequently describe the discipline in terms of a
software life cycle: requirements analysis, specification, design, implementation,
testing, and maintenance. Although these life cycle phases are worthy of presenta-
tion in a curriculum, we found this one-dimensional structure inadequate for
organizing all the topics in software engineering and for describing the curriculum.

A good course, whether a semester course in a university or a one-day training
course in industry, must have a central thread or idea around which the presenta-
tion is focused. Not every course can or should focus on one life cycle phase. In an
engineering course (including software engineering), we can look at either the engi-
neering process or the product that is the result of the process. Therefore, we have
chosen these two views as the highest level partition of the curriculum content.
Each is elaborated below.

The Process View

The process of software engineering includes several activities that are performed by
software engineers. The range of activities is broad, but there are many aspects of
each activity that are similar across that range. Thus, we organize those topics
whose central thread is the process in two dimensions: activity and aspect (see
Figure A1.1).

The Activity Dimension

Activities are divided into four groups: development, control, management, and
operations. Each is defined and discussed below.

Development activities are those that create or produce the artifacts of a software
system. These include requirements analysis, specification, design, implementation,
and testing. Because a software system is usually part of a larger system, we some-
times distinguish system activities from software activities; for example, system
design from software design. We expect that many large projects will include both

218 CMU/SEI-91-TR-2

systems engineers and software engineers, but it is important for software engineers
to appreciate the systems aspects of the project, and system activities should be
included in a curriculum.

Control activities are those that exercise restraining, constraining, or directing influ-
ence over software development. These activities are more concerned with control-
ling the way in which the development activities are performed than with producing
artifacts. Two major kinds of control activities are those related to software evolu-
tion and those related to software quality.

A software product evolves in the sense that it exists in many different forms as it
moves through its life cycle, from initial concept, through development and use, to
eventual retirement. Change control and configuration management are activities
related to evolution. We also consider software maintenance to be in this category,
rather than as a separate development activity, because the difference between
development and maintenance is not in the activities performed (both involve
requirements analysis, specification, design, implementation, and testing), but in
the way those activities are constrained and controlled. For example, the
fundamental constraint in software maintenance is the pre-existence of a software
system coupled with the belief that it is more cost-effective to modify that system
than to build an entirely new one.

Software quality activities include quality assurance, test and evaluation, and inde-
pendent verification and validation. These activities, in turn, incorporate such tasks
as software technical reviews and performance evaluation.

Management activities are those involving executive, administrative, and supervi-
sory direction of a software project, including technical activities that support the
executive decision process. Typical management activities are project planning
(schedules, establishment of milestones), resource allocation (staffing, budget),
development team organization, cost estimation, and handling legal concerns
(contracting, licensing). This is an appropriate part of a software engineering cur-
riculum for several reasons: there is a body of knowledge about managing software
projects that is different from that about managing other kinds of projects; many
software engineers are likely to assume software management positions at some
point in their careers; and knowledge of this material by all software engineers
improves their ability to work together as a team on large projects.

Operations activities are those related to the use of a software system by an organi-
zation. These include training personnel to use the system, planning for the delivery
and installation of the system, transition from the old (manual or automated) system
to the new, operation of the software, and retirement of the system. Although soft-
ware engineers may not have primary responsibility for any of these activities, they
are often participants on teams that perform them. Moreover, an awareness of these
activities will often affect the choices software engineers make during the develop-
ment of a system.

CMU/SEI-91-TR-2 219

The operation of software engineering support tools provides a case of special inter-
est. These tools are software systems, and the users are the software engineers
themselves. Operations activities for these systems can be observed and experi-
enced directly. An awareness of the issues related to the use of software tools can
help software engineers not only develop systems for others but also adopt and use
new tools for their own activities.

The Aspect Dimension

Engineering activities traditionally have been partitioned into two categories:
analytic and synthetic. We have chosen instead to consider an axis orthogonal to
activities that captures some of this kind of distinction, but that recognizes six
aspects of these activities: abstractions, representations, methods, tools, assessment,
and communication.

Abstractions include fundamental principles and formal models. For example, soft-
ware development process models (waterfall, iterative enhancement, etc.) are models
of software evolution. Finite state machines and Petri nets are models of sequential
and concurrent computation, respectively. COCOMO is a software cost estimation
model. Modularity and information hiding are principles of software design.

Representations include notations and languages. The Ada programming language
thus fits into the organization as an implementation language, while decision tables
and data flow diagrams are design notations. PERT charts are a notation useful for
planning projects.

Methods include formal methods, current practices, and methodologies. Proofs of
correctness are examples of formal methods for verification. Object-oriented design
is a design method, and structured programming can be considered a current prac-
tice of implementation.

Tools include individual software tools as well as integrated tool sets (and, implic-
itly, the hardware systems on which they run). Examples are general-purpose tools
(such as electronic mail and word processing), tools related to design and implemen-
tation (such as compilers and syntax-directed editors), and project management
tools. Other types of software support for process activities are also included; these
are sometimes described by such terms as infrastructure, scaffolding, or harnesses.
Sometimes the term environment is used to describe a set of tools, but we prefer to
reserve this term to mean a collection of related representations, tools, methods, and
objects. Software objects are abstract, so we can only manipulate representations of
them. Tools to perform manipulations are usually designed to help automate a par-
ticular method or way of accomplishing a task. Typical tasks involve many objects
(code modules, requirements specification, test data sets, etc.), so those objects must
be available to the tools. Thus, we believe all four—representations, tools, methods,
and objects—are necessary for an environment.

220 CMU/SEI-91-TR-2

Assessment aspects include measurement, analysis, and evaluation of both software
products and software processes, and of the impact of software on organizations.
Metrics and standards are also placed in this category. This is an area we believe
should be emphasized in the curriculum. Software engineers, like engineers in more
traditional fields, need to know what to measure, how to measure it, and how to use
the results to analyze, evaluate, and ultimately improve processes and products.

Communication is the final aspect. All software engineering activities include writ-
ten and oral communication. Most produce documentation. A software engineer
must have good general technical communication skills, as well as an understanding
of forms of documentation appropriate for each activity.

By considering the activity dimension and the aspect dimension as orthogonal, we
have a matrix of ideas that might serve as the central thread in a course (Figure
A1.1). It is likely that individual cells in the matrix represent too specialized a topic
for a full semester course. Therefore, we recommend that courses be designed
around part or all of a horizontal or vertical slice through that matrix.

The Product View

Often it is appropriate to discuss many activities and aspects in the context of a
particular kind of software system. For example, concurrent programming has a
variety of notations for specification, design, and implementation that are not
needed in sequential programming. Instead of inserting one segment or lecture on
concurrent programming in each of several courses, it is probably better to gather all
the appropriate information on concurrent programming into one course. A similar
argument can be made for information related to various system requirements; for
example, achieving system robustness involves aspects of requirements definition,
specification, design, and testing.

Therefore we have added two additional categories to the organizational structure
for curriculum content: software system classes and pervasive system requirements.
Although these may be viewed as being dimensions orthogonal to the activity and
aspect dimensions, it is not necessarily the case that every point in the resulting
four-dimensional space represents a topic for which there exists a body of knowl-
edge, or for which a course should be taught. Figure A1.2 shows an example of a
point for which there is probably a very small but nonempty body of knowledge.

Any of the various system classes or pervasive requirements described below might
be the central thread in a course in a software engineering curriculum. We empha-
size that the same material might be taught in courses whose central thread is one
of the activities mentioned earlier. For example, techniques for designing real-time
systems could be taught in a design course or in a real-time systems course. Testing
methods to achieve system robustness could be taught in a testing course or in a

CMU/SEI-91-TR-2 221

robustness course. The purpose of adding these two new dimensions to the struc-
ture is to allow better descriptions of possible courses.

Activities

Aspects

Development

Control

Management

Operations

(requirements analysis, specification,
design, implementation, testing, ...)

(quality assurance, configuration
management, independent V&V, ...)

(project planning, resource allocation,
cost estimation, contracting, ...)

(training, system transition, operation,
retirement, ...)

1. Ada
2. Object-Oriented Design
3. COCOMO Model
4. Path Coverage Testing
5. Interactive Video

 6. Performance Evaluation
 7. Configuration Management Plan
 8. Waterfall Model
 9. Code Inspection
10. PERT Chart

Examples

Abstractions
Representations
M

ethods
Tools

Assessm
ent

Com
m

unication

➀ ➁

➂

➃

➄

➅

➆

➇

➈

➉

Figure A1.1. The process view: examples of activities and aspects

222 CMU/SEI-91-TR-2

A
ct

iv
it

ie
s

Methods for
Specification
of Real-Time
Systems

Methods for Specification
of Fault Tolerance in
Real-Time Systems

Methods

Requirements

Specification

Design

Implementation

TestingD
ev

el
o

p
m

en
t

Aspects

Figure A1.2. Organizational structure for curriculum content

Software System Classes

Several different classes can be considered. One group of classes is defined in terms
of a system’s relationship to its environment; its members are described by terms
such as batch, interactive, reactive, real-time, and embedded. Another group has
members described by terms such as distributed, concurrent, or network . Another
has members defined in terms of internal characteristics, such as table-driven,
process-driven, or knowledge-based. We also include generic or specific applications
areas, such as avionics systems, communications systems, operating systems, or
database systems.

Clearly, these classes are not disjoint. Each class is composed of members that have
certain common characteristics, and there is or may be a body of knowledge that
directly addresses the development of systems with those characteristics. Thus each
class may be the central theme in a software engineering course.

CMU/SEI-91-TR-2 223

Pervasive System Requirements

Discussions of system requirements generally focus on functional requirements.
There are many other categories of requirements that also deserve attention.
Identifying and then meeting those requirements is the result of many activities per-
formed throughout the software engineering process. As with system classes, it may
be appropriate to choose one of these requirement categories as the central thread
for a course, and then to examine those activities and aspects that affect it.

Examples of pervasive system requirements are accessibility, adaptability, availabil-
ity, compatibility, correctness, efficiency, fault tolerance, integrity, interoperability,
maintainability, performance, portability, protection, reliability, reusability, robust-
ness, safety, security, testability, and usability . Definitions of these terms may be
found in the ANSI/IEEE Glossary of Software Engineering Terminology [IEEE83].

224 CMU/SEI-91-TR-2

CMU/SEI-91-TR-2 225

Appendix 2. Bloom’s Taxonomy of Educational
Objectives

Bloom [Bloom56] has defined a taxonomy of educational objectives that describes
several levels of knowledge, intellectual abilities, and skills that a student might
derive from education. An adaptation of this taxonomy for software engineering is
shown below. This taxonomy can be used to help describe the objectives—and thus
the style and depth of presentation—of a software engineering curriculum.

Evaluation: The student is able to make qualitative and quantitative
judgments about the value of methods, processes, or artifacts. This
includes the ability to evaluate conformance to a standard, and the
ability to develop evaluation criteria as well as apply given criteria.
The student can also recognize improvements that might be made to
a method or process, and to suggest new tools or methods.

Synthesis: The student is able to combine elements or parts in
such a way as to produce a pattern or structure that was not
clearly there before. This includes the ability to produce a plan
to accomplish a task such that the plan satisfies the require-
ments of the task, as well as the ability to construct an artifact.
It also includes the ability to develop a set of abstract relations
either to classify or to explain particular phenomena, and to
deduce new propositions from a set of basic propositions or
symbolic representations.

Analysis: The student can identify the constituent elements
of a communication, artifact, or process, and can identify the
hierarchies or other relationships among those elements.
General organizational structures can be identified.
Unstated assumptions can be recognized.

Application: The student is able to apply abstractions
in particular and concrete situations. Technical
principles, techniques, and methods can be remem-
bered and applied. The mechanics of the use of
appropriate tools have been mastered.

Comprehension: This is the lowest level of
understanding. The student can make use of
material or ideas without necessarily relating them
to others or seeing the fullest implications.
Comprehension can be demonstrated by
rephrasing or translating information from one form
of communication to another, by explaining or
summarizing information, or by being able to
extrapolate beyond the given situation.

Knowledge: The student learns terminology and
facts. This can include knowledge of the existence
and names of methods, classifications,
abstractions, generalizations, and theories, but
does not include any deep understanding of them.
The student demonstrates this knowledge only by
recalling information.

Knowledge

Comprehension

Application

Analysis

Synthesis

Evaluation

Figure A2.1. Bloom’s taxonomy of educational objectives

226 CMU/SEI-91-TR-2

CMU/SEI-91-TR-2 227

Appendix 3. SEI Curriculum Modules and Other
Publications

The SEI Education Program has produced a variety of educational materials to sup-
port software engineering education. Those documents in the list below that have
DTIC numbers (of the form ADA000000) are available from the Defense Technical
Information Center (DTIC) and the National Technical Information Service (NTIS).
Other documents (excluding conference proceedings) are available from the SEI;
please send written requests, accompanied by a mailing label, to the Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA 15213, Attn.:
Publications Requests.

SEI Curriculum Modules and Support Materials

A curriculum module documents and explicates a body of knowledge within a rela-
tively small and focused topic area of software engineering. Its major components
are a detailed, annotated outline of the topic area, an annotated bibliography of the
important literature in the area, and suggestions for teaching the material. A
module is intended to be used primarily by an instructor in designing and teaching
part or all of a course.

A support materials package includes a variety of materials helpful in teaching a
course, such as examples, exercises, or project ideas. Contributions from software
engineering educators are solicited.

The currently available modules and support materials packages are listed below.†

For each module, a capsule description, which is similar to a college catalog descrip-
tion or the abstract of a technical paper, is included.

Introduction to Software Design

David Budgen,
University of Stirling

SEI-CM-2-2.1

This curriculum module provides an introduction to the principles
and concepts relevant to the design of large programs and systems.
It examines the role and context of the design activity as a form of
problem-solving process, describes how this is supported by current
design methods, and considers the strategies, strengths, limita-
tions, and main domains of application of these methods.

†CM-1, CM-15, and CM-18 do not appear in this list. CM-1 has been superseded by CM-19, CM-15 is
still under development, and CM-18 has been superseded by CM-23.

228 CMU/SEI-91-TR-2

The Software Technical Review Process

James Collofello,
Arizona State University

SEI-CM-3-1.5

This curriculum module consists of a comprehensive examination of
the technical review process in the software development and main-
tenance life cycle. Formal review methodologies are analyzed in
detail from the perspective of the review participants, project man-
agement and software quality assurance. Sample review agendas
are also presented for common types of reviews. The objective of
the module is to provide the student with the information necessary
to plan and execute highly efficient and cost effective technical
reviews.

Support Materials for The Software Technical Review Process

Edited by John Cross,
Indiana University of
Pennsylvania

SEI-SM-3-1.0

This support materials package includes materials helpful in teach-
ing a course on the software technical review process.

Software Configuration Management

James E. Tomayko,
The Wichita State
University

SEI-CM-4-1.3

Software configuration management encompasses the disciplines
and techniques of initiating, evaluating, and controlling change to
software products during and after the development process. It
emphasizes the importance of configuration control in managing
software production.

Support Materials for Software Configuration Management

Edited by James E.
Tomayko, The Wichita
State University

SEI-SM-4-1.0

This support materials package includes materials helpful in teach-
ing a course on configuration management.

Information Protection

Fred Cohen,
University of Cincinnati

SEI-CM-5-1.2

This curriculum module is a broad based introduction to informa-
tion protection techniques. Topics include the history and present
state of cryptography, operating system protection, network protec-
tion, data base protection, physical security techniques, cost benefit
tradeoffs, social issues, and current research trends. The successful
student in this course will be prepared for an in-depth course in any
of these topics.

CMU/SEI-91-TR-2 229

Software Safety

Nancy Leveson,
University of California,
Irvine

SEI-CM-6-1.1

Software safety involves ensuring that software will execute within
a system context without resulting in unacceptable risk. Building
safety-critical software requires special procedures to be used in all
phases of the software development process. This module intro-
duces the problems involved in building such software along with
the procedures that can be used to enhance the safety of the result-
ing software product.

Assurance of Software Quality

Brad Brown,
Boeing Military Airplanes

SEI-CM-7-1.1

This module presents the underlying philosophy and associated
principles and practices related to the assurance of software qual-
ity. It includes a description of the assurance activities associated
with the phases of the software development life-cycle (e.g.,
requirements, design, test, etc.).

Formal Specification of Software

Alfs Berztiss,
University of Pittsburgh

SEI-CM-8-1.0

This module introduces methods for the formal specification of pro-
grams and large software systems, and reviews the domains of
application of these methods. Its emphasis is on the functional
properties of software. It does not deal with the specification of
programming languages, the specification of user-computer inter-
faces, or the verification of programs. Neither does it attempt to
cover the specification of distributed systems.

Support Materials for Formal Specification of Software

Edited by Alfs Berztiss,
University of Pittsburgh

SEI-SM-8-1.0

This support materials package includes materials helpful in teach-
ing a course on formal specification of software.

Unit Testing and Analysis

Larry Morell,
College of William and
Mary

SEI-CM-9-1.2

This module examines the techniques, assessment, and manage-
ment of unit testing and analysis. Testing and analysis strategies
are categorized according to whether their coverage goal is func-
tional, structural, error-oriented, or a combination of these.
Mastery of the material in this module allows the software engineer
to define, conduct, and evaluate unit tests and analyses and to
assess new techniques proposed in the literature.

230 CMU/SEI-91-TR-2

Models of Software Evolution: Life Cycle and Process

Walt Scacchi,
University of Southern
California

SEI-CM-10-1.0

This module presents an introduction to models of software system
evolution and their role in structuring software development. It
includes a review of traditional software life-cycle models as well as
software process models that have been recently proposed. It iden-
tifies three kinds of alternative models of software evolution that
focus attention to either the products, production processes, or pro-
duction settings as the major source of influence. It examines how
different software engineering tools and techniques can support
life-cycle or process approaches. It also identifies techniques for
evaluating the practical utility of a given model of software evolu-
tion for development projects in different kinds of organizational
settings.

Software Specification: A Framework

Dieter Rombach,
University of Maryland

SEI-CM-11-2.1

This module provides a framework for specifying software processes
and products. The specification of a software product type describes
how the corresponding products should look. The specification of a
software process type describes how the corresponding processes
should be performed.

Software Metrics

Everald Mills,
Seattle University

SEI-CM-12-1.1

Effective management of any process requires quantification,
measurement, and modeling. Software metrics provide a quantita-
tive basis for the development and validation of models of the
software development process. Metrics can be used to improve
software productivity and quality. This module introduces the most
commonly used software metrics and reviews their use in construct-
ing models of the software development process. Although current
metrics and models are certainly inadequate, a number of organiza-
tions are achieving promising results through their use. Results
should improve further as we gain additional experience with
various metrics and models.

Introduction to Software Verification and Validation

James Collofello,
Arizona State University

SEI-CM-13-1.1

Software verification and validation techniques are introduced and
their applicability discussed. Approaches to integrating these
techniques into comprehensive verification and validation plans are
also addressed. This curriculum module provides an overview
needed to understand in-depth curriculum modules in the verifica-
tion and validation area.

CMU/SEI-91-TR-2 231

Intellectual Property Protection for Software

Pamela Samuelson and
Kevin Deasy,
University of Pittsburgh
School of Law

SEI-CM-14-2.1

This module provides an overview of the U.S. intellectual property
laws that form the framework within which legal rights in software
are created, allocated, and enforced. The primary forms of intellec-
tual property protection that are likely to apply to software are
copyright, patent, and trade secret laws, which are discussed with
particular emphasis on the controversial issues arising in their
application to software. A brief introduction is also provided to
government software acquisition regulations, trademark, trade
dress, and related unfair competition issues that may affect soft-
ware engineering decisions, and to the Semiconductor Chip
Protection Act.

Software Development Using VDM

Jan Storbank Pedersen,
Dansk Datamatik Center

SEI-CM-16-1.1

This module introduces the Vienna Development Method (VDM)
approach to software development. The method is oriented toward
a formal model view of the software to be developed. The emphasis
of the module is on formal specification and systematic development
of programs using VDM. A major part of the module deals with the
particular specification language (and abstraction mechanisms)
used in VDM.

User Interface Development

Gary Perlman,
Ohio State University

SEI-CM-17-1.1

This module covers the issues, information sources, and methods
used in the design, implementation, and evaluation of user inter-
faces, the parts of software systems designed to interact with
people. User interface design draws on the experiences of designers,
current trends in input/output technology, cognitive psychology,
human factors (ergonomics) research, guidelines and standards,
and on the feedback from evaluating working systems. User inter-
face implementation applies modern software development tech-
niques to building user interfaces. User interface evaluation can be
based on empirical evaluation of working systems or on the predic-
tive evaluation of system design specifications.

Support Materials for User Interface Development

Edited by Gary Perlman,
Ohio State University

SEI-SM-17-1.0

This support materials package includes materials helpful in teach-
ing a course on user interface development.

Software Requirements

John Brackett,
Boston University

SEI-CM-19-1.2

This curriculum module is concerned with the definition of software
requirements—the software engineering process of determining
what is to be produced—and the products generated in that defini-
tion. The process involves: (1) requirements identification, (2) re-
quirements analysis, (3) requirements representation, (4) require-
ments communication, and (5) development of acceptance criteria
and procedures. The outcome of requirements definition is a
precursor of software design.

232 CMU/SEI-91-TR-2

Formal Verification of Programs

Alfs Berztiss,
University of Pittsburgh;
Mark Ardis, SEI

SEI-CM-20-1.0

This module introduces formal verification of programs. It deals
primarily with proofs of sequential programs, but also with consis-
tency proofs for data types and deduction of particular behaviors of
programs from their specifications. Two approaches are consid-
ered: verification after implementation that a program is consis-
tent with its specification, and parallel development of a program
and its specification. An assessment of formal verification is
provided.

Software Project Management

James E. Tomayko,
The Wichita State
University;
Harvey K. Hallman, SEI

SEI-CM-21-1.0

Software project management encompasses the knowledge, tech-
niques, and tools necessary to manage the development of software
products. This curriculum module discusses material that man-
agers need to create a plan for software development, using effec-
tive estimation of size and effort, and to execute that plan with
attention to productivity and quality. Within this context, topics
such as risk management, alternative life-cycle models, develop-
ment team organization, and management of technical people are
also discussed.

Design Methods for Real-Time Systems

Hassan Gomaa,
George Mason University

SEI-CM-22-1.0

This module describes the concepts and methods used in the
software design of real-time systems. It outlines the characteristics
of real-time systems, describes the role of software design in real-
time system development, surveys and compares some software
design methods for real-time systems, and outlines techniques for
the verification and validation of real-time designs. For each design
method treated, its emphasis, concepts on which it is based, steps
used in its application, and an assessment of the method are
provided.

Technical Writing for Software Engineers

Linda Levine, Linda Hutz
Pesante, Susan Dunkle,
Carnegie Mellon
University

SEI-CM-23

ADA223872

This module, which is directed specifically to software engineers,
discusses the writing process in the context of software engineering.
Its focus is on the basic problem-solving activities that underlie
effective writing, many of which are similar to those underlying
software development. The module draws on related work in a
number of disciplines, including rhetorical theory, discourse analy-
sis, linguistics, and document design. It suggests techniques for
becoming an effective writer and offers criteria for evaluating
writing.

Concepts of Concurrent Programming

David Bustard,
University of Ulster

SEI-CM-24

ADA223897

A concurrent program is one defining actions that may be
performed simultaneously. This module discusses the nature of
such programs and provides an overview of the means by which
they may be constructed and executed. Emphasis is given to the
terminology used in this field and the underlying concepts involved.

CMU/SEI-91-TR-2 233

Language and System Support for Concurrent Programming

Michael B. Feldman,
George Washington
University

SEI-CM-25

ADA223760

This curriculum module is concerned with support for concurrent
programming provided to the application programmer by operating
systems and programming languages. This includes system calls
and language constructs for process creation, termination, synchro-
nization, and communication, as well as nondeterministic language
constructs such as the selective wait and timed call. Several readily
available languages are discussed and compared; concurrent
programming using system services of the UNIX operating system
is introduced for the sake of comparison and contrast.

Support Materials for Language and System Support for Concurrent
Programming

Edited by Gary Ford, SEI

SEI-SM-25

ADA223760

This package contains examples of concurrent programs written in
Ada, Concurrent C, Co-Pascal, occam, and Modula-2. Machine-
readable source code for the programs is available.

Understanding Program Dependencies

Norman Wilde,
University of West Florida

SEI-CM-26

A key to program understanding is unravelling the interrelation-
ships of program components. This module discusses the different
methods and tools that aid a programmer in answering the ques-
tions: “How does this system fit together?” and “If I change this
component, what other components might be affected?”

234 CMU/SEI-91-TR-2

Selected SEI Educational Support Materials

Teaching a Project-Intensive Introduction to Software Engineering

James E. Tomayko

CMU/SEI-87-TR-20

ADA200603

This report is meant as a guide to the teacher of the introductory
course in software engineering. It contains a case study of a course
based on a large project. Other models of course organization are
also discussed. Appendices A-Z of this report contain materials used
in teaching the course and the complete set of student-produced
project documentation. These are available for $55.00 ($20.00 for
the first copy sent to an Academic Affiliate institution).

Software Maintenance Exercises for a Software Engineering Project Course

Charles B. Engle, Jr.,
Gary Ford, Tim Korson

CMU/SEI-89-EM-1

This report provides an operational software system of 10,000 lines
of Ada and several exercises based on that system. Concepts such
as configuration management, regression testing, code reviews, and
stepwise abstraction can be taught with these exercises. Diskettes
containing code and documentation may be ordered for $10.00.
(Please request either IBM PC or Macintosh disk format.)

The APSE Interactive Monitor: An Artifact for Software Engineering Education

Charles B. Engle, Jr.,
Gary Ford, James E.
Tomayko

CMU/SEI-89-EM-2

In 1987 the SEI began a search for a well-documented Ada system,
developed under government contract, that could be used in soft-
ware engineering education. The APSE Interactive Monitor (AIM)
was determined to be appropriate for this purpose. This system
acts as an interface between a user of an Ada programming support
environment (APSE) and the programs that the user executes in
the APSE. It provides facilities to support the concurrent execution
of multiple interactive programs, each of which has access to a
virtual terminal. Educational uses of the system are described,
including use as a case study and as the basis for exercises.
Software engineering topics that can be taught with the system
include software maintenance, configuration management, software
documentation, cost estimation, and object-oriented design.

Program Reading: Instructor’s Guide and Exercises

Lionel Deimel,
Fernando Naveda

CMU/SEI-90-EM-3

ADA228026

The ability to read and understand a computer program is a critical
skill for the software developer, yet this skill is seldom developed in
any systematic way in the education or training of software profes-
sionals. These materials discuss the importance of program
reading, and review what is known about reading strategies and
other factors affecting comprehension. These materials also include
reading exercises for a modest Ada program and discuss how educa-
tors can structure additional exercises to enhance program reading
skills.

CMU/SEI-91-TR-2 235

Conference Proceedings

The conference and workshop records below are available directly from Springer-
Verlag. Prices are indicated. Please send orders directly to the publisher: Book
Order Fulfillment, Springer-Verlag New York, Inc., Service Center Secaucus, 44
Hartz Way, Secaucus, NJ 07094. Please specify the ISBN number when ordering.

Software Engineering Education: The Educational Needs of the Software
Community

Norman E. Gibbs and
Richard E. Fairley, editors

ISBN 0-387-96469-X

This volume contains the extended proceedings of the 1986
Software Engineering Education Workshop, held at the SEI and
sponsored by the SEI and the Wang Institute of Graduate Studies.
This workshop of invited software engineering educators focused on
master’s level education in software engineering, with some discus-
sion of undergraduate and doctoral level issues. Hardback, $32.00.

Issues in Software Engineering Education: Proceedings of the 1987 SEI
Conference

Richard Fairley and
Peter Freeman, editors

ISBN 3-540-96840-7

Proceedings of the 1987 SEI Conference on Software Engineering
Education, held in Monroeville, Pa. Hardback, $45.00.

Software Engineering Education: SEI Conference 1988

Gary Ford, editor

ISBN 3-540-96854-7

Proceedings of the 1988 SEI Conference on Software Engineering
Education, held in Fairfax, Va. (Lecture Notes in Computer Science
No. 327.) Paperback, $20.60.

Software Engineering Education: SEI Conference 1989

Norman E. Gibbs, editor

ISBN 3-540-97090-8

Proceedings of the 1989 SEI Conference on Software Engineering
Education, held in Pittsburgh, Pa. (Lecture Notes in Computer
Science No. 376.) Paperback.

Software Engineering Education: SEI Conference 1990

Lionel E. Deimel, editor

ISBN 3-540-97274-9

Proceedings of the 1990 SEI Conference on Software Engineering
Education, held in Pittsburgh, Pa. (Lecture Notes in Computer
Science No. 423.) Paperback.

236 CMU/SEI-91-TR-2

CMU/SEI-91-TR-2 237

Appendix 4. History and Acknowledgements

SEI curriculum development efforts began in the fall of 1985, when the staff of the
SEI Graduate Curriculum Project developed a strawman description of the impor-
tant subject areas and possible courses for a professional Master of Software
Engineering (MSE) degree. This document was reviewed by the participants at the
February 1986 SEI Software Engineering Education Workshop [Gibbs87], who
offered numerous suggestions for improvement.

We then wrote a revised version of the document, which was widely circulated for
additional comments. Those comments were analyzed over the winter of 1986-87,
and in May 1987 the SEI published Software Engineering Education: An Interim
Report from the Software Engineering Institute [Ford87]. This report was our first
publication of curriculum recommendations, and it addressed not only curriculum
content but also the related curriculum issues of educational objectives, prerequi-
sites, student project work, electives, and resources needed to support the curricu-
lum.

The interim report came to be regarded as a specification for an MSE curriculum
because it concentrated on the content of the curriculum rather than how that
content might be organized into courses or how those courses might be taught. We
expected future work to include curriculum design (the organization of that content
into meaningful courses), implementation (the detailed description of each course by
instructors of the course), and execution , the process of teaching each course. (We
have not yet planned a validation effort, though we see the need to do so.)

Two events in 1987 made it clear that a curriculum design was needed immediately.
First, the SEI established a new project, the Video Dissemination Project, which
would work with cooperating universities to offer graduate-level software engineer-
ing courses on videotape. Second, Carnegie Mellon University made a commitment
to establish an MSE program within its School of Computer Science. Both of these
efforts needed a curriculum, including detailed designs for courses.

In February 1988, the SEI sponsored the Curriculum Design Workshop, whose goal
was to design an MSE curriculum that was consistent with the specification in the
interim report. The workshop produced designs for six core courses. Those courses
were described in our 1989 curriculum report [Ardis89].

The staff of the SEI Video Dissemination Project implemented and taught those six
courses during the period 1988-1990. Those implementations are described in
Chapter 3 of this report.

The curriculum recommendations in this report have benefitted from the efforts of
many people. We had valuable discussions with many members of the SEI technical
staff, including Mario Barbacci, Dan Berry, Barbara Callahan, Maribeth Carpenter,
Clyde Chittister, Lionel Deimel, Larry Druffel, Peter Feiler, Robert Firth, Priscilla

238 CMU/SEI-91-TR-2

Fowler, Dick Martin, Nancy Mead, John Nestor, Joe Newcomer, Mary Shaw, Nelson
Weiderman, Chuck Weinstock, and Bill Wood, and with visiting staff members Bob
Aiken, Alfs Berztiss, John Brackett, Brad Brown, David Budgen, Fred Cohen, Jim
Collofello, Chuck Engle, Bob Glass, Paul Jorgensen, Nancy Leveson, Ev Mills, Larry
Morell, Dieter Rombach, Rich Sincovec, Joe Turner, and Peggy Wright. We also
acknowledge ideas from Harlan Mills and John Musa.

Earlier versions of the MSE recommendations were written by Jim Collofello and
Jim Tomayko, and reviewed by Evans Adams, David Barnard, Dan Burton, Phil
D’Angelo, David Gries, Ralph Johnson, David Lamb, Manny Lehman, John Manley,
John McAlpin, Richard Nance, Roger Pressman, Dieter Rombach, George Rowland,
Viswa Santhanam, Walt Scacchi, Roger Smeaton, Joe Touch, and K. C. Wong.

An early version of the MSE curriculum was the subject of discussion at the
Software Engineering Education Workshop, which was held at the SEI in February
1986 [Gibbs87]. In addition to several of the people mentioned above, the following
participants at the workshop contributed ideas to the current curriculum recom-
mendations: Bruce Barnes, Victor Basili, Jon Bentley, Gordon Bradley, Fred
Brooks, James Comer, Dick Fairley, Peter Freeman, Susan Gerhart, Nico
Habermann, Bill McKeeman, Al Pietrasanta, Bill Richardson, Bill Riddle, Walter
Seward, Ed Smith, Dick Thayer, David Wortman, and Bill Wulf.

The six MSE core courses were developed by Mark Ardis, Jim Collofello, Lionel
Deimel, Dick Fairley, Gary Ford, Norm Gibbs, Bob Glass, Harvey Hallman, Tom
Kraly, Jeff Lasky, Larry Morell, Tom Piatkowski, Scott Stevens, and Jim Tomayko.

The courses in the SEI Academic Series were developed by Mark Ardis, Dan Berry,
Robert Firth, Harvey Hallman, and Jim Tomayko.

CMU/SEI-91-TR-2 239

Bibliography

Amoroso88 Amoroso, Serafino, Kuntz, Richard, Wheeler, Thomas, and Graff,
Bud. “Revised Graduate Software Engineering Curriculum at
Monmouth College.” Software Engineering Education: SEI
Conference 1988, Ford, Gary A., ed. New York: Springer-Verlag,
1988, 70-80.

Ardis89 Ardis, Mark, and Ford, Gary. 1989 SEI Report on Graduate
Software Engineering Education. Tech. Rep. CMU/SEI-89-TR-21,
ADA219018, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, Pa., June 1989.

Bloom56 Bloom, B. Taxonomy of Educational Objectives: Handbook I:
Cognitive Domain. New York: David McKay, 1956.

Brackett88 Brackett, John, Kincaid, Thomas, and Vidale, Richard. “The
Software Engineering Graduate Program at the Boston University
College of Engineering.” Software Engineering Education: SEI
Conference 1988, Ford, Gary A., ed. New York: Springer-Verlag,
1988, 56-63.

Budgen86 Budgen, David, Henderson, Peter, and Rattray, Chic.
“Academic/Industrial Collaboration in a Postgraduate MSc Course
in Software Engineering.” Software Engineering Education: The
Educational Needs of the Software Community, Gibbs, Norman E.,
and Fairley, Richard E., eds. New York: Springer-Verlag, 1986,
201-211.

Collofello82 Collofello, James S. “A Project-Unified Software Engineering
Course Sequence.” Proc. Thirteenth SIGCSE Technical
Symposium on Computer Science Education. New York: ACM,
Feb. 1982, 13-19.

Comer86 Comer, James R., and Rodjak, David J. “Adapting to Changing
Needs: A New Perspective on Software Engineering Education at
Texas Christian University.” Software Engineering Education:
The Educational Needs of the Software Community, Gibbs,
Norman E., and Fairley, Richard E., eds. New York: Springer-
Verlag, 1986, 149-171.

Engle89 Engle, Charles B., Jr., Ford, Gary, and Korson, Tim. Software
Maintenance Exercises for a Software Engineering Project Course.
Educational Materials CMU/SEI-89-EM-1, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, Pa., Feb. 1989.
Includes distribution diskettes for software.

Ford87 Ford, Gary, Gibbs, Norman, and Tomayko, James. Software
Engineering Education: An Interim Report from the Software
Engineering Institute. Tech. Rep. CMU/SEI-87-TR-8, ADA182003,
Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, Pa., May 1987.

240 CMU/SEI-91-TR-2

Gibbs87 Software Engineering Education: The Educational Needs of the
Software Community. Gibbs, Norman E., and Fairley, Richard E.,
eds. New York: Springer-Verlag, 1987.

Horning76 Horning, J. J. “The Software Project as a Serious Game.”
Software Engineering Education: Needs and Objectives:
Proceedings of an Interface Workshop, Wasserman, Anthony, and
Freeman, Peter, eds. New York: Springer-Verlag, 1976, 71-75.

IEEE83 IEEE Standard Glossary of Software Engineering Terminology.
ANSI/IEEE Std 729-1983, IEEE, New York, 1983.

Lehman86 Lehman, Manny M. “The Software Engineering Undergraduate
Degree at Imperial College, London.” Software Engineering
Education: The Educational Needs of the Software Community,
Gibbs, Norman E., and Fairley, Richard E., eds. New York:
Springer-Verlag, 1986, 172-181.

Mills86 Mills, Everald. “The Master of Software Engineering [MSE]
Program At Seattle University After Six Years.” Software
Engineering Education: The Educational Needs of the Software
Community , Gibbs, Norman E., and Fairley, Richard E., eds. New
York: Springer-Verlag, 1986, 182-200.

Musa90 Musa, John D., Iannino, Anthony, and Okumoto, Kazuhira.
Software Reliability: Measurement, Prediction, Application . New
York: McGraw-Hill, 1990.

Norman88 Norman, Donald A. The Psychology of Everyday Things. New
York: Basic Books, Inc. Publishers, 1988.

NRC85 National Research Council, Commission on Engineering and
Technical Systems. Engineering Education and Practice in the
United States: Foundations of Our Techno-Economic Future.
Washington, D.C.: National Academy Press, 1985.

Scacchi86 Scacchi, Walter. “The Software Engineering Environment for the
System Factory Project.” Proc. Nineteenth Hawaii Intl. Conf.
Systems Sciences. 1986, 822-831.

Wang86 Bulletin, School of Information Technology 1986-1987 . Wang
Institute of Graduate Studies, July 1986.

Webster83 Webster’s Ninth New Collegiate Dictionary. Springfield, Mass.:
Merriam-Webster Inc., 1983.

Wortman86 Wortman, David B. “Software Projects in an Academic
Environment.” Software Engineering Education: The Educational
Needs of the Software Community, Gibbs, Norman E., and Fairley,
Richard E., eds. New York: Springer-Verlag, 1986, 292-305.

	Table of Contents
	Abstract
	1. Introduction
	2. A Model Curriculum for a Master of Software Engineering Degree
	2.1. Summary of Changes Since 1989
	2.2. Objectives
	2.3. Prerequisites
	2.4. Core Curriculum Content
	2.5. Core Curriculum Topic Index
	2.6. Curriculum Design
	2.7. Project Experience Component
	2.8. Electives
	2.9. Pedagogical Considerations
	2.10. The Structure of the MSE Curriculum

	3. The SEI Academic Series Videotape Courses
	3.1. Software Systems Engineering
	3.2. Specification of Software Systems
	3.3. Principles and Applications of Software Design
	3.4. Software Creation and Maintenance
	3.5. Software Verification and Validation
	3.6. Software Project Management

	4. Survey of Graduate Degree Programs in Software Engineering
	5. Survey of Comprehensive Software Engineering Textbooks
	6. Survey of Software Engineering Research Journals
	6.1. Archival Journals
	6.2. Other Journals

	Appendix 1. An Organizational Structure for Curriculum Content
	Appendix 2. Bloom’s Taxonomy of Educational Objectives
	Appendix 3. SEI Curriculum Modules and Other Publications
	Appendix 4. History and Acknowledgements
	Bibliography

