%% Software Engineering Institute

Formal Development of ADA Programs
Using Z and Anna: A Case Study

Patrick R. Place
William G. Wood

February 1991

TECHNICAL REPORT
CMU/SEI-91-TR-001

Unlimited distribution subject to the copyright.

http://www.sei.cmu.edu

Carnegie Mellon



Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entersd)
READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

! REPORT NUMBER 2. GOVT ACCESSION NO.] 3. RECIPIENT'S CATAEOG NUMBER

N-3097-AF
2 TITLE (and Sootiilel 5. TYPE OF REPORT a PERIOD COVERED

Interdiction and Conventional Strategy: interim

Prevailing Perceptions 8. PERFORMING ORG, REPORT NUMBER
7 AUTHORA(s) ) 3. CONTRACT OR GRANT NUMBER(3)

Ian 0. Lesser ¥48620-86~C-0008

10, PROGRAM ELEMENT, PROJECT, TASK

9. p,;g?;",““m“ %“chg‘ézrgfégg:‘“g AND ADORESS AREA & WORK UNIT NUMBERS

1700 Main Street

Santa Monica, CA 90406
11. CONTROLLING OF FICE NAME ANO AOCRESS 12. REPORT OATE

Long Range Planning & Doctrine Div, (AF/XOXFP) ™. June 1990

Directorate of Plans, Ofc. DC/Plans & Operations [ 3. NUMBER OF PAGES

Hq USAF Washington, DC . - . 53
14, MONITORING AGENCY NAME & ADORESS(/{ dillerent from Controlling Olfice) 15, SECURITY CLASS, (of this teport)

unclassified
182, OECL ASSIFICATION/ DGWNGRAOING
SCHEDULE

16,

OISTRIBUTION STATEMENT (of thie Report)

Approved for Public Release; Distribution Unlimited

D_ISTRIBUTlON STATEMENT (of the abstract entered In Block 20, If differsnt [rom Report)

No Restrictions

v

SUPPLEMENTARY NOTES

19.

KEY WOROS (Continue on reverse side 1! necessary and identily by black number)
Interdiction

Military Strategy
Conventional Warfare

20.

ABSTRACT (Cantinue on reverse side If necesssry and /denttly by block number)

see reverse side

0D

FORM
L 1473 '
1 JAN T3 Unclassified -

SECURITY CLASSIFICATION OF THIS PAGE !When Dll-l, én'lin;l)
s




Unclassified
SECURITY CLASSIFICATION OF THIS PAGE(Yhen Data Entered)

.

Perceptions about interdiction’s role,
effects, and relationship to conventional
war continue to be shaped largely by images
drawn from the Allied experience in Europe
during World War II, but these are
increasingly remote from the current and
prospective environment. Destruction,
delay and disruption, diversion, and
demoralization do not have uniform
prospects for success. The effects of
interdiction axe likely to be interactive,
divisible, and in some instances,
intangible. Broader strategic factors,
including war duration, intensity, and
phases, will shape the opportunities for
interdiction. A war of high intensity and
long duration will favor a strategy of
interdiction. An environment characterized
by smaller conventional forces on the one
hand and unconstrained surface-to-air
defenses on the other is likely to make the
interdiction mission at once more important
. and more difficult. :

- Unclassified .
SECURITY CLASSIFICATION QF THIS PAGE(When Dats Enhn;d}




Technical Report

CMU/SEI-91-TR-1
ESD-91-TR-1
February 1991

Formal Development of Ada Programs

Using Z and Anna:

A Case Study

: \ Patrick R. H. Place
Mo | William G. Wood

< e /
Application of Formal Methods Project

David C. Luckham

bssanaion for [ Walter Mann
Tin neasl

Sriram Sankar

DVLE UaB (1)

Upunnyrsed

J‘-L,uunc-um.n_..,__?....... Computing Systems Laboratory
o Stanford University

BY e o Stanford, CA 94305

Dlutrivus ton /______
Availi;_sb tlity Codes
”—w:—,’wa.ti andfor

Dis2 Special

R |

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Metton University
Pittsburgh, Penrsyivania 15213




This technical report was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official

DoD position. it is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

P

OHN S. HERMAN, Capt, USAF
SE| Joint Program Office

This work is sponsored by the U.S. Department of Defense.
Copyright ® 1990 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center. DTIC provides access o and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Govemment

agency personnel and their contractors. To obtain a copy, please contact DTlc directly: Defonse Technical Information
Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-8145.

Copies of this document are also available through the National Technical Infarmation Service. For information on ofdering;
please contact NTIS directly: National Technical information Service, U.S. Department of Commerce, Springfield, VA 22161,

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder:




i

Contents

[y

Introduction

1.1 Motivation ................
12 Background ................
1.3 Structure of the Report .. ..... ..

2 Z Overview

Anna Overview

[

Software Development by Refinement

5 Z to Anna Transformations
5.1 Simple Data Schema . ..........
5.1.1 Transformation to Functions . .
5.1.2 Transformation to Variables . . .

ooooooooooooooooooo

ooooooooooooooooooooooo

ooooooooooooooooooooooo

ooooooooooooooooooooooo

ooooooooooooooooooooooo

ooooooooooooooooooooooo

5.1.3 Transformation of BirthdayBook to Functions . . . . . ...........
5.2 Transformation of an Operation toa Procedure . . . ... .............

5.2.1 Transformation of AddBirthday .

ooooooooooooooooooooooo

5.3 Transformation of an Operation toa Function . . . . ... ... .. ...... ..

5.3.1 Transformation of FindBirthday
5.4 Transformation of a Predicate . . . . . .

ooooooooooooooooooooooo

.......................

5.5 Transformation of Schema Conjunction and Disjunction . .............
5.5.1 Example of Schema Conjunction and Disjunction Transformation . . . . .

5.6 Transformation of a Schema Constant .
5.6.1 Transformation of Success . . . .
5.7 Possible Futute Rules . .........

8 Conclusions
6.1 FutureWork ...............

A Full Z Specification
A.l BasicSystem ...............
A.2 Strengthened System . ..........
A.3 Data Refinement for the Basic System .
A.4 Schema Refinement for the Basic System

B Full Anna Specification

ooooooooooooooooooooooo

ooooooooooooooooooooooo

.......................

ooooooooooooooooooooooo

ooooooooooooooooooooooo

-----------------------

ooooooooooooooooooooooo

ooooooooooooooooooooooo

CMU/SEI-91-TR-1

11

15
15
16
16
17
18
19
20
21
21
22
24
25
26
27

29
30

38
35
36
37
37

39

ote




CMU/SEL-91-TR-1




Chapter 1

Introduction

Abstract: This report describes a method for the formal development of Ada programs
from a formal specification written in Z. ANNotated Ada (Anna) is used as an intermedi-
ate language linking the more abstract Z specifications to the concrete Ada program. The
method relies on the notion that successive small transformations of a specification are eas-
ier to verify than a few large transformations. Essentially the method uses three notations
for the representation of the system: an implementation-independent notation for the spec-
ification of the system, an implementation-dependent notation for the representation of a
lower level specification of the system, and the implementation language. Z and Anna are
outlined briefly and examples of transformations are presented. A simple Z specification has
been chosen and the transformations presented in the report are transformations of the Z
specification into Anna. Conclusions are drawn about the development method presented.

This report describes recent work performed by the formal specifications project of thé Software
Engineering Institute in conjunction with members of the Anna project at Stanford University.
Our work involved initial investigations into the development of software from a formal speci-
fication. This work resulted in a practical method for formal software development with some
rules for transforming Z specifications into Anna specifications.

1.1 Motivation

Both safety-critical and security-critical systems require the greatest possible care in software
development. In both cases, it is imperative that the developers exactly meet the intent of the
system requirements. Thus, the system requirements must be stated as precisely and unam-
biguously as possible. The current best known approach to the precise, unambiguous statement
of requirements is to use mathematics to create a formal specification of the requirements. The
customers must then agree that the formal specification satisfies their requirements.

Having created a precise, unambiguous specification of the desired system, a design and imple-
mentation of that system must be developed. The traditional approach has beea to develop
the system with design and code reviews and then to enter a testing phase to ensure that the
developed code exactly meets the specification. This traditional approach is very costly and

CMU/SELOL-TR1 * 1




prone to errors being introduced at each phase of the development which are only discovered
during the testing phase. The approach presented in this report should reduce the development
expense by introducing less development errors than the traditional approach. Our approach
is to transform the specification from an abstract statement of the requirements into the code
by a sequence of transformation steps. The original specification needs to be complete, in that
it describes all of the function of the system, since no new function should be added by the
development process. Each step in the sequence may be shown (by formal proof if necessary) to
meet the requirements stated in the previous step. Thus the developer is assured (again by proof
if necessary, though testing may be preferable) that the resulting code meets the original spec-
ification and that no safety or security flaws have been introduced in the development process.
Because each step in the sequence is a transformation of the previous step and because of the
need to ensure that no safety or security flaws have been introduced, the original requirement
must state not only what the system should do, but also what it must not do. This ensures
that no additional functionality is introduced in the development process. Such requirements
may be thought of as safety requirements for the system. Although our specifications do not
include such safety requirements, due to our use of an existing example specification; however,
the method is appropriate for these types of requirements, since they are expressed as predicates
in the same way that the requirements on what the system should do are expressed.

This report describes a method for developing code from a formal specification that reduces
(eliminates in the case of full formality) errors introduced in the process of developing code
that conforms to the specification. The method is general and may be used for any appropriate
specification and programming languages (although at present linguistic and machine support
for our method is limited to the languages chosen). The general approach of the method is
to transform the initial specification into a form that is programming language-specific. The
programming language-specific specification is subsequently transformed into a program in the
appropriate language. Because the resulting code meets the original specification, it is important
that the original specification has been carefully analyzed for unexpected function (such as a

security loophole) and that any undesired function has been eliminated before development takes
place.

Z was selected as our language-independent notation because of its applicability to the speci-
fication of software systems. The structuring capabilities of the Z schema language were also
considered advantageous in a specification language. Ada was chosen because it is a required
language for Department of Defense contractors and because it has the language-specific spec-
ification language, Anna. The Anna language and associated tool set were chosen because the
language is based on the same underlying mathematical model as Z and the tool set performs the
necessary function of inserting checks into runtime Ada code based upon the Anna specifications.

1.2 Background

The notion of using a language-specific specification notation is not new. Larch [2] is based on the
notion of using a language-independent notation for the specification of a system and a language-
specific notation for lower level details not captured by the language-independent specification.
Larch is based on equational logic while our approach is based on predicate logic and set theory.

7 ~ CMU/SEL-91-TR-1




Further, the Larch language dependent components have been developed specifically for Larch
whereas our approach links Z with Ada, using Anna as an intermediate link.

The method presented in the report depends heavily on the notion of refinement of Z specifica-
tions from abstract specifications to more concrete specifications. This is, in some ways, similar
to the work of Carroll Morgan [5] where a calculus of refinement is presented. Morgan’s book
addresses the use of fully formal refinements in code development, whereas our approach permits
the use of a less formal approach if desired. Further, Morgan’s book concentrates on refinements
of specifications to code and performance issues. Qur approach can use these refinements; how-
ever, we have tried to present a view of the process of code development using refinement, rather
than to concentrate on the refinements themselves. Later work should investigate performance
issues, since these are of importance to many systems: This report concentrates on the basic
method, leaving performance as an issue to be addressed.

1.3 Structure of the Report

In the remainder of this report, Chapter 2 presents a brief overview of the Z language and
Chapter 3 presents an equivalent overview of the Anna language. Neither of these chapters
attempts to act as a language tutorial; they do, however, contain references to appropriate
material. Chapter 4 describes the method through which we develop code from 2 specification;
it makes brief comments with respect to tool support for the method. Chapter 5 lists the
transformations between Z and Anna that have been developed for the purposes of the example
used in the report. The example we use is taken directly from Mike Soivey’s Z tutorial [6] and is
the specification of a birthday book—a system to maintain a collection of names and associated
birthdays, and having facilities to add new birthdays and query the birthday book for useful
information. Chapter 6 presents our conclusions about the use of our method for developing
code from a specification and also lists the future directions in which this work may go. The
complete Z specification of the example may be found in Appendix A and the equivalent Anna
specification is to be found in Appendix B.

CMU/SEI-91-TR-1 3




CMU/SEL91-TR-1




Chapter 2

Z Overview

Z is a language for writing formal specifications using a mathematically based notation. The
concepts of a system being specified are grouped into separate modules called schemas. In
general, schemas consist of data definitions and constraints (expressed as predicates) on that
data. These schemas may be combined into larger units using more of the Z notation.

The Z language has two components: the mathematical language which is used to write the

contents of a schema and the schema language which is used to join schemas together to construct
a system,

The mathematical language of Z uses the notation of predicate logic, sets, and functions to
express the behavior of a system as a collection of abstract schemas. All the standard operations
of sets such as set membership, intersection, union, powersets, are defined in Z. All mathematical
concepts are built on the defined axioms of set theory. Among these is the concept of a function,
and the mapping of a domain set to a range set. Total and partial functions may be described

using the Z notation, as may other more general forms of mappings between domain sets and
range sets.

A schema is defined as having two parts: a declarative part, and a predicative part (which may
be empty). For example, a schema & is defined as:

S2(s:T;8:Ta...;:Ta|lAANLA...Afn]

where s; is a variable of type Tj, and f; is a first-order predicate referring to variables defined
in the schema. The declarative part defines a state of a schema; the predicative part constrains
the values this state may have. If the predicative part is empty, then there are no constraints
on the data (other than those imposed by the type declarations).

In the following example, it should be noted that the declaration is equivalent to schem:. decla~
rations of the form already shown, the different syntax is convenient when a schema with many
variables or predicates is to be declared. Consider the following schemas:

CMU/SEL91-TR-1 ' %




__BirthdayBook
known : P NAME
birthday : NAME -+ DATE

known = dom birthday

The BirthdayBook schema declares two variables: known, whose type is the powerset of type
NAME; and birthday, a partial function from NAME’s to DATE’s. The single predicate con-

strains the value of the two variables such that the domain of the birthday function must be the
same as known.

A schema may include another schema in its declarative part; for example, in the schema:

—. InitBirthday
BirthdayBook

knoun =0

The schema BirthdayBook is included in schema InitBirthday. When one schema is included in
another, it is equivalent to declaring the variables of the included schema in the new schema,
and adding the predicates to the new predicative part; thus InitBirthday contains variables
known and birthday, the constraint of the original schema, in addition to the new constraint in
its predicative part. Thus, we may conclude: '

dom birthday = @

A schema may be included in another schema using A notation, for example, ABirthdayBook.
This schema inclusion describes a state change in the original schema. The variables from the
original schema are introduced, along with a new set of variables which define the state of the
variables after the operation; the new variables are simply those of the schema decorated with
a prime (/). Using the. BirthdayBook example, known and known’, and birthday and birthday’
are all variables of the new schema. An example of such inclusion is:

—. AddBirthday
ABirthdayBook
name? : NAME
date? : DATE

name? ¢ known
birthday' = birthday U {name? — date?}

In addition to the A notation described above, a schema may be included in another schema
using the Z notation, for example, ZBirthdayBook. This inclusion describes an operation which
does not change the state of the original schema. One way to think of this is that, along with
the new variables, the constraints known’ = known and birthday’ = birthday are added to the

6 : CMU/SEL-91-TR-1




predicative part. Further, the original constraints and the equivalent decorated constraints are
added, so we would also add:

known = dom birthday
and

known' = dom birthday’ ’

The schema language is used to join schemas (defined using the w.athematical language) to form
larger schemas that describe larger components of the system. This report covers only the use of

the simple schema language connectives conjunction A and disjunction V and schema inclusion
which has already been described.

An example of the schema language is:

RAddBirthday = (AddBirthday A Success) V AlreadyKnown

This definition states that the schema RAddBirthday behaves either as the combined behaviers
of AddBirthday and Success or it behaves like the schema AlreadyKnown. We have not shown
the schemas Success and AlreadyKnown in this example because their behaviors are not of

importance in discussing the use of the schema language. The full text of all examples may be
found in Appendix A.

This chapter has been a very brief overview of the Z notation and concepts. A full description
can be found in the Z reference manual [7).

CMU/SEI-91-TR-1 7




EI-91-TR-1

CMU/S




Chapter 3

Anna Overview

ANNotated Ada (Anna) is a language extension to Ada [1] that includes facilities for formally
specifying the intended behavior of Ada programs. Anna was designed to augment Ada with
precise machine-processable annotations so that well established formal methods of specification
and documentation could be applied to Ada programs. In this chapter, a brief outline of a few
types of annotation is given. A full definition of Anna is provided in the Anna reference manual
[4]. An introduction to Anna describing the concepts of the language and the way in which
refinement may be performed using Anna may be found in Luckham’s book [3].

Anna is based on first-order logic and its syntax is a straightforward extension of the Ada
syntax. Anna constructs appear as fermal comments within the Ada source text (as specialized
Ada comments). Anna formal comments are introduced by special comment indicators in order
to distinguish them from informal comments. The two kinds of Anna formal comments are
virtual Ada tezt, each line of which begins with the indicator —-:, and annotations, each line of
which begins with the indicator —-|.

Virtual Ada text is Ada text appearing in formal comments, but obeying all of the Ada language
rules, Virtual text may refer to actual Ada code, but is not allowed to affect the computation of
the actual program. Therefore, actual text cannot refer to virtual text. The purpose of virtval
Ada text is to define concepts used in annotations. Often the formal specification of a program
will refer to concepts that are not explicitly implemented as part of the program. For example,
a function may be useful for the specification but may not be useful in the program. Such
concepts can be defined as virtual Ada text. Virtual Ada text provides a computation model of
the system. Since virtual Ada follows the rules of Ada code, it states how a function is to be
performed, rather than stating only what function is to be computed. Generally, virtual Ada is
used to provide function definitions required for specification purposes rather than to provide a
specification of the system.

A concrete example of virtual Ada text is in the specification of a stack. If the stack is bounded,
the specification will have to describe the bound by checking the current size of the stack against
the maximum permitted size of the stack. Thus, a function to compute the size of the stack will
be useful. Further, if we assume that the specification calls for the implementation to raise an
exception if the bound should be exceeded, the interface available to users of the stack package

CMU/SEL-91-TR-1 9




does not need to include the size of stack function. Thus, the size function is useful for the
specification of the behavior of the package, but is not part of the interface of the package. In
this case, the size function would be best written as virtual Ada text.

Annotations place constraints on the Ada program. They are specifications that apply within
specific scopes of the Ada program. Annotations are constructed using boolean expressions.

An example of an annotation is:

MAX : INTEGER;
--| 0 € MAX < 100;

The annotation indicates that all values of the integer MAX must lie in the range of 0 to 100
inclusive.

The location of an annotation in the Ada program indicates the kind of constraints that the
annotation imposes on the program. Anna provides different kinds of annotations, each asso-
ciated with a particular Ada construct. The Anna expressions extend (are a superset of) the
expressions in Ada. The annotations that appear in examples in this report include: subtype
annotations, which are constraints on Ada types; object annotations, which constrain Ada vari-
ables to satisfy specified conditions; and subprogram annotations, which specify the behavior of
an Ada subprogram, typically through input/output specifications. Annotations may be used
to provide a declarative model of the system. They may be used to describe input and output
conditions to Sunctions as well as axioms relating functions within a package to each other.

A suite of tools for the transformation of Ada with annotations and the analysis of Anna speci-
fications exists and is freely available from Stanford University.

10 CMU/SELOLTR1




Chapter 4

Software Development by
Refinement

This report describes a particular version of a general approach to software development using no-
tions of refinement, specifically using: a language-independent notation for initial representation
and design of a system, a language-dependent notation for further design, and a programming

language for implementation. For most programming languages, a suitable language dependent
notation does not exist.

Deciding to use Z and Anna to aid the development of Ada programs is not sufficient; it is also
necessary to have a method through which the notations are to be used. This chapter outlines
a method for formal software development using Z and Anna and discusses the decisions a
developer may make with respect to the relative use of Z and Anna.

Broadly, our approach is to capture the system requirements in the Z notation, refine the Z
notation both to add detail to the specification and to bring the specification into a form suit-
able for transformation into Anna. The Anna specification may be further refined and then is
extended with Ada until the specification has been satisfied.

Since Anna is a specification language, we could use it from the start of the development process;

however, there are three reasons why we prefer to use Z initially and subsequently transform
the Z to Anna:

1. Incremental development of the system specification is an important development tech-
nique for large systems. While this is possible using Anna, the Z schema language not
only allows for incremental development, but also preserves the development hxstory—-an
important feature when tracking down specification flaws.

2. 7 has a notational convenience over Anna which leads to a simpler way of dealing with
problems of incompleteness and ambiguity within the specifications.

3. Z has many more built-in facilities for expressing abstractions. Each of these built-in
facilities has been developed with a notation and rules for use. Although these could be

CMU/SEI-91-TR-1 11




provided for Anna, they would need to be added to the existing language. This has not
been done to date.

L)

The first stage of this approach, the capture of the system requirements in the Z notation, is not
covered by this paper. However, we do consider it important to confirm that the Z specification
is an accurate description of the desired system. If the tools existed, we would analyze the Z
specification until we were satisfied that it accurately described the desired system. However,
since a tool that operates directly on Z does not exist, we transform the Z specification into
an equivalent Anna specification (at present this is done manually, though the process can be
automated).We may then use appropriate /inna tools to analyze the transformed specification
to help to confirm the accuracy of the Anna description of the system with respect to the
requirements. If the transformations preserve meaning and have been performed without error,
then we can conclude that the Z specification is an accurate representation of the desired system
and is, therefore, suitable as a basis for the design process (as is the Anna specification).

Typically, for any less-than-trivial system, the specification will be abstract and there will be
no obvious corresponderce between the specification and the implementation. The job of the
developer is to refine the Z specification, introducing design choices that lead the specification
toward an implementation. After completing each refinement, the developer can prove that the
newly created Z specification is correct with respect to the previous specification. The proof
obligation can be determined a¢ each step by using the Z rules of refinement.

As the Z specification is refined with more detail added, it will become obvious that a corre-
sponding Anna specification can be created using the transformations provided by the method.
The corresponding Anna specification will then be used for further development. It should be
noted that the transformation rules applied at this point may be different from those used when
analyzing the specification. The reason for this difference is that developers will read and refine
this Anna specification, but the transformation for purposes of analysis will be manipulated by
Anna tools rather than humans.

The final stage of the approach is to implement the Anna specification by developing appropriate
Ada code. This stage involves further refinements of the specification; these refinements will
either be more modifications to the Anna specification or addition of Ada declarations and
executable statements. As development proceeds, the executable Ada program will become
complete and will be a correct implementation of the Anna specification. Compilation of the
code will insert runitime checks ensuring that the code conforms to the Anna specification.

The development approach outlined above offers the developer a number of choices over the
notations to be used. The outline suggests that initially the system will be represented by a
description written in Z which will be refined in Z for some number of refinements; then it will
be transformed into Anna and will be further refined; finally, code will be added. The developer
chooses when to transforin the Z specification to an Anna specification. ‘The method allows
a complete range of possibilities: from an immediate transformation from Z to Anna with all
subsequent refinements performed using Anna refinement steps as described by Luckham [3],
to a complete refinement in Z with a transformation into Anna just prior to the addition of
executable Ada code. We expect that most developments will fall somewhere between these two

12 CMU/SEL-91-TR-1




extremes, and that the tastes, skills and background of the developers will dictate when the Z
to Anna transformation occurs.

Figure 4.1 illustrates the method described in this chapter. The figure has been annotated
with names of appropriate Anna tools, as well as with descriptions of particular parts of the
process (for example, design). Essentially, the method uses three types of transformation: from
high-level to low-level Z, from Z to Anna, and from Anna to Ada. These transformations are
addressed by Morgan et al., this report, and Luckham et al., respectively.

CMU/SEL-91-TR-1 13




Validated

Requirements specification
\ Spec M
Z spec —_— ANNA spec
Design
Low-level Low-level
Z spec ANNA spec Ada
code

Semantic| analyzer

Ada code with
annotations

Annotation| transformer

Executable code with
runtime checks

Figure 4.1: Development Method

14 CMU/SEL-91-TR-1




Chapter 5

Z to Anna Transformations

This chapter describes the transformations from Z to Anna that have been identified through the
development of the birthday book example. For each transformation, we describe the charac-
teristics of the Z schema that is to be transformed, the Anna specifications that will be derived,
and we give an example from the birthday book. We list the transformations according to the
structure of the Z schema being transformed.

There are many ways in which a piece of Anna specification may be derived from a Z schema,
and the particular transformation will depend upon the context of other transformations. For
example, a variable in a Z schema may be transformed to either a function (acting as an outside
observer on the state of a package) or to a package body variable depending on whether the

transformation is being performed for the purposes of testing the Z schema or for further software
development.

5.1 Simple Data Schema

A simple data schema is a Z schema that includes no other schemas and has no input or output
variables. Thus, it consists of a name, some variables and their types, and a number (possibly

zero) of constraints in the predicative part of the schema. The general structure of the schema
is:

r.SimpleData
varl : TYPE1

varn : TYPEn
predl

predn

CMU/SEI-91-TR-1 ' 15




This schema declares Z state variables and places some constraints on those state variables.

The name of the schema provides the name of the package into which the state variables and
constraints will be placed. This is a simplification for the purposes of this initial investigation;
further investigation needs to take place with respect to inclusion of multiple schemas which will
affect the decisions for package naming conventions. The choice of transformation, to functions
or to variables, affects the rest of the transformations relating to the package. If the variables
are transformed into functions, then the function specifications and all other procedures and
functions defined in the package specification may refer to these variables. If the variables are
transformed into package body variables, then the procedure and function specifications that
refer to these variables will also be placed in the package body. In a full software development,
the fact that the Anna specification is incomplete is not a disadvantage since specifications (in
the Z form) for the Ada procedures and functions will exist.

5.1.1 Transformation to Functions

If the Z state variables are thought of as observers on the state of the schema, then an appropriate
transformation of the state variables would be to Ada functions that act as observers on the
state of a package. The Anna way of creating observers on the state of a package is by the use
of functions that return appropriate values. This transformation is best when analyzing the Z

specification using the Anna specification analyzer. The constraints then become axioms of the
package specification.

Given appropriate type declarations, the simple data schema becomes:

package SimpleData is

function varl return TYPEL;

function varn return TYPEn;

--|] axiom
-—| predl,

-~-| predn;

end SimpleData;

5.1.2 Transformation to Variables

Another way to think of the Z state variables is that they are variables that may be manip-
ulated by the package developer, but not manipulated by users of the package. The obvious
transformation is to create package body variables. It would be nice if the Z constraints could

16 ‘ CMU/SEI-91-TR-1




then be transformed into invariants in the package body; however, such a transformation is
incorrect. An Anna invariant must be true everywhere in the body of the package, but the Z
constraints need only be true in the pre- and post- conditions of the schema. The Z constraints
may be transformed into virtual Ada functions which would then be invoked by every function
and procedure that is a transformation of a Z schema.

The transformation of schemas such as SimpleData into package variables needs further work,
particularly with respect to the transformation of the constraints.

5.1.3 Transformation of BirthdayBook to Functions

There are two ways to transform the variables of the cchema BirthdayBook: into functions or
into variables. Since the choice affects the rest of the transformations in our complete example,
and we have chosen to maintain all of the components of the birthday book specification in the
Anna package specification, we have chosen to transform the variables into functions. The only
reason for maintaining all the components of the specification in the package specification is so
that the Anna package specification is complete in its own right. Otherwise, we would have to
rely on the Z specification to give semantics to the procedure and function headings of the Ada
package specification, with Anna being used to describe the semantics of the Ada package body.

If we transform the schema BirthdayBook

— BirthdayBook
known : P NAME
birthday : NAME -+ DATE

known = dom birthday

into functions, then we derive the following Anna specification. Throughout the Anna speci-
fications, we will assume that generic packages SET_CONCEPTS and MAP_CONCEPTS are
provided as part of the Anna library used for Z to Anna development. We have not listed these
packages in this document; however, their specifications are such that the facilities provided as
part of Z are available to Anna users.

The SET_CONCEPTS package will contain specifications of operations such as:

MEMBER — which, given a set and a value, returns true if the value is an element of the set.
UNION — which, given two sets, returns the set that is their set union.

ISEMPTY — which, given a set, returns true if there are no values in the set.

The MAP_CONCEPTS package will contain specifications of operations such as:

DOMAIN — which, given a map, will return the set of elements comprising the domain of the
map.

CMU/SEI-91-TR-1 17




MAPSTQO — which, given an element of the domain and an element of the range of the map,
will return a new map element.

There will be specifications of other operations in the SET_CONCEPTS and MAP_CONCEPTS
packages. The operations listed above are the operations used in this report.

The types NAME and DATE are not described further ir the Z document, so they will become
private types in the Anna specification. If the Z specification were complete, we would see either
NAME and DATE as parameters to the specification or they would appear through inclusion of
a schema that models them appropriately.

generic

type NAME is private;
type DATE is private;

package BIRTHDAY_BOOK is

package SET_OF_NAMES is
new SET_CONCEPTS(ELEMENT_TYPE => NAME);
use SET_OF_NAMES;

function KNOWN return SET_OF_NAMES.SET;

package SET_OF_DATES is
new SET_CONCEPTS(ELEMENT_TYPE => DATE);
use SET_OF_DATES;

package NAME_DATE_MAPPING is
new MAP_CONCEPTS(DOMAIN_TYPE => NAME;
RANGE_TYPE => DATE;
DOMAIN_SET => SET_OF_NAMES;
RANGE_SET => SET_OF_DATES);

use NAME_DATE_MAPPING;
function BIRTHDAY return NAME_DATE_MAPPING.MAPPING;
--| KNOWN = MAP_CONCEPTS.DOMAIN(BIRTHDAY);

end BIRTHDAY_BOOK;

5.2 Transformation of an Operation to a Procedure

A schema may include other schemas (of the SimpleData form) in order to operate on the
included data in various ways. If the SimpleData schema is included with the A operator, then
by convention, the meaning is that the state may change. Such a schema is translated into

18 CMU/SEI-91-TR-1




an Anna procedure specification. In addition to the schema inclusion, additional Z variables
may be declared. If these are decorated by a question mark (?), they are assumed to be input
variables and if they are decorated with an exclamation mark (!), they are assumed to be output
variables.

Then, Z schemas of the form
— OpProc

ASimpleData
inl? : TYPE1

inn? : TYPEn
outl!: TYPEn +1

outrn! : TYPEn+m
npredl

npredp

where the constraints opred! ... opredp are constraints involving the input and output variables
of this schema and the decorated (with a prime) and undecorated variables of the SimpleData
schema. The constraints may be divided into two groups: input predicates and output predi-
cates. Input predicates are those that involve only undecorated variables from the SimpleData
schema and variables declared in the OpProc schema that are decorated with a question mark
(the input variables); all other constraints are output predicates.

Thus, the input constraints for the translation will be a conjunction of the constraints of Sim-

pleData and those constraints of OpProc that are input constraints. Similarly for the output
constraints, °

This translates into a procedure specification that is part of the package SimpleData.
procedure OpProc(inl : in TYPEL; ... inn : in TYPEn;

outl : out TYPEn+l1; ... outm : out TYPEn+m);
--| where

-—| in (< Conjunction of input p.+dicates>),
-=| out (< Conjunction of output predicates>);

5.2.1 Transformation of AddBirthday

Given the transformations of operations into procedures, we may now transform the schema
AddBirthday into the appropriate Anna procedure specification:

CMU/SEI-91-TR-1 19°




. AddBirthday
A BirthdayBook
name? : NAME
date? : DATE

name? ¢ known

birthday' = birthday U {name? — date?}

procedure ADD_BIRTHDAY(ANAME : in NAMEF; ADATE : in DATE);
--| where

o in (not SET_CONCEPTS.MEMBER(ANAME, KNOWN)),
-=| out (BIRTHDAY =

SET_CONCEPTS.UNION(MAP_CONCEPTS.MAPSTO(ANAME, ADATE),
in BIRTHDAY));

5.3 Transformation of an Operation to a Function

Another way to include one schema in another is to use the £ annotation. This is similar to the
A form of inclusion just shown, but there is also a requirement that none of the state variables

will be changed by the operation. In all other respects, these schemas have the same form as
those shown in the previous section.

— OpFun
ZSimpleData
inl? : TYPE1

inn? : TYPEn
outl!: TYPEn + 1

outm! : TYPEn+m
opredl

opredp

If there is only one output variable, this schema could be translated into an Anna function
specification. With more than one output variable, a procedure will probably be used. It is
possible, of course, to collect all output variables into an aggregate value and return this using
a function return. We do not recommend such an aggregation, since it makes the intent of the
specification less clear. Thus the general form of the transformation is:

20 CMU/SEL-91-TR-1




procedure OpFun(inl : in TYPEL; ... inn : in TYPEn;

outl : out TYPEn+1; ... outm : out TYPEn+m);
~-~| where

—=| in (< Conjunction of input predicates>),
-] out (< Conjunction of output predicates>);

The special case where there is only one output variable would lead to the following Anna
specification:

function OpFun(inl : in TYPEL; ... inn : in TYPEn)
return TYPEn+1;
--| where

| in (< Conjunction of input predicates>),
-] return outl: TYPEn+1l => (< Conjunction of output predicates>);

5.3.1 Transformation of FindBirthday

The Z schema FindBirthday

_ FindBirthday
EBirthdayBook
name? : NAME
date! : DATE

name? € known

date! = birthday(name?)

is an example of schema inclusion with the = decoration where there is only one output variable;
thus we can transform this into the following Anna function specification.

function FIND_BIRTHDAY(ANAME : in NAME) return DATE;
--| where

--]  in (SET_CONCEPTS.MEMBER(ANAME, KNOWN)),
-] return ADATE: DATE =>

| ADATE = MAP_CONCEPTS.MAPSTO(BIRTHDAY, ANAME);
All of the Z map concepts are collected together in the MAP_CONCEPTS generic package.

5.4 Transformation of a Predicate

As seen in preceding sections, Z schemas may include other schemas and add additional con-
straints. We have shown that a schema, when included with either a A or Z decoration, may
be transformed into an Anna procedure or function specification.

CMU/SEL-91-TR-1 21




There are occasions, however, where a simple data schema is included and additional constraints
are added; such schemas have the following form:

— ConsData
SimpleData

apredl

apredn

These schemas are problematic and show a subtle difference between Z specifications and Anna
specifications. Z is used to create declarative specifications with no implied execution model.
The Z schemas are statements about facts of the system. Schemas of the form of ConsData are
used to state additional facts about the state of the system. The predicates in these schemas do
not need to be true for the entire life of the system, but only need to be true when the schema
is included with other schemas. Anna is declarative, but does imply a model of execution, thus
the purely declarative schemas of the ConsData form may not transform wholly automatically
from Z to Anna. Context will be required to determine an appropriate transformation.

An example is the InitBirthdayBook schema

— InitBirthdayBook
BirthdayBook

knoun =@

which is clearly a schema that describes the initial state of the BirthdayBook schema and would
be translated into the following Anna

-—| BIRTHDAYBOOK’INITIAL.ISEMPTY(BIRTHDAYBOOK’INITIAL.KNOWN);

In general such a simple transformation will not be possible. A more general approach will
be required to transform such schemas into appropriate Anna specifications. The appropriate
transformation may be an Ada procedure that raises an exceptlon if the predicate is not satisfied.
This is an issue for further investigation.

5.5 Transformation of Schema Conjunction and Disjunction

It is possible to connect schemas (by means of schema disjunction and conjunction) in ways that
pieces of program cannot be connected. For example, a schema of the form

Schemal £ (Schema2 A Schema3) V Schema4

defines Schemal to have the behavior of either the combined behaviors of Schema?2 and Schema8
or the behavior of Schema4.

22 CMU/SEI-91-TR-1

L

R
BCUIONS I




The most appropriate way to deal with such a schema definition is to expand the definition
using the Z rules of schema definition to create an equivalent schema definition that may be
transformed using the rules presented in this chapter.

Let us assume that in the following example transformations, we have already defined the fol-
lowing schemas

__Schemal
Includesl
varsl : TYPES1

predsl

__Schema?2
Includes?2
vars2 : TYPES2

preds2

where Includes! and Includes? are the schemas included (by simple naming, A or Z) into the
schema; vars! and vars2 are the lists of variables (and their types) declared in the schemas; and,
preds! and preds? are the predicates constraining the variables in their respective schemas.

Then, schema conjunction,
Schema3 = Schemal A Schema2
would be rewritten first as:

_Schema3

Includesl

Includes?

varsl : TYPES1
vars2 : TYPES2

predsl

preds2

If there are common names in the lists vars! and vars?, or if Includes! and Includes2 contain
the same schema inclusion, then only one copy of the variable or schema will be included. This
means that variables with the same name, included more than once (as can occur in examples
such as this) must have the same type. In the case where Includes! contains ASimpleData and

Includes?2 contains ZSimpleData, the combined schema will use ASimpleData; for each variable
v of SimpleData, a predicate

v=v

CMU/SEL-91-TR-1 23




will be added to the appropriate predicate part of the combined schema.

In a way similar to schema conjunction, schema disjunction
Schema3 = Schemal V Schema2
will be rewritten as:

Schema3
Includesl
Includes?
varsl : TYPES1
vars2 : TYPES2

(predsl) V (preds2)

The resulting schemas may now be transformed according to our other transformation rules.

5.5.1 Example of Schema Conjunction and Disjunction Transformation

The birthday book example uses schema conjunction and disjunction in the creation of the
stronger specification. We are interested in the transformation of

RAddBirthday = (AddBirthday A Success) V AlreadyKnown
where

__ Success
result! : REPORT

result! = ok

and

— AlreadyKnown
ZBirthdayBook
name? : NAME
result! : REPORT

name? € known

result! = already_known

According to our strategy, we first transform this into the following Z specification:

24 CMU/SEL-91-TR-1




_. RAddBirthday
A BirthdayBook
name? : NAMFE
date? : DATE
result! : REPORT

(  name? ¢ known

birthday' = birthday U {name? — date?}

result! = ok
)V
( name? € known

result! = already_known

5.6 Transformation of a Schema Constant

Schema constants are schemas that define constant values within the Z specification. These take

the form of including no other schemas and having only output variables (variables decorated
with an exclamation mark). The general form is

__ConstFun
varl!: TYPE1

varn! : TYPEn
varl = CONST1

varn = CONSTn

and will be transformed in one of two ways, depending upon the developer. The schema will be
transformed into either a collection of functions or constants. The transformation will create a

new package, ConstFun. Thus, the general form of the transformation into functions will lead
to

CMU/SEL-91-TR-1 25




package ConstFun is

function varl return TYPEI;
--| where return CONSTI;

__I :
function varn return TYPEn;
--| where return CONSTn;

end ConstFun;

5.6.1 Transformation of Success

An example of a constant schema definition is the schema Success

__Success
result! : REPORT
result! = ok

which simply defines a constant for use with other schemas (and will be used for schema con-
junction and disjunction).

Assuming the appropriate definitions for REPORT, this would lead to the following Anna spec-
ification:

generic
type REPORT is private;
package Success is

function result return REPORT;
--}  where return REPORT.OK;

end Success;

It remains uncertain whether such transformations are required in practice. Although this type
of transformation is acceptable, it may be that, because of our approach to the transformation of
schema conjunctions and disjunctions, schema constants will not be present in the specification at

transformation time. For the present, we describe this transformation until further investigation
determines that it is unnecessary.

26 CMU/SEL-91-TR-1




5.7 Possible Future Rules

It is clear that there are other rules still to be derived, particularly with respect to schemas that
include multiple other schemas. Our approach to schema conjunction and disjunction may be
too heavy-handed and we may find ways to connect Anna specification fragments in the same
way that we connect 7 schemas.

Also, further rules may need to be developed to consider the inclusion of a simple data schema
within a “A” operation which is itself included in another operation with a A operator, in effect,
creating AASimpleData. Such an inclusion is of dubious value in a Z specification and perhaps
it should be considered an error. However, if a genuine interpretation of AA can be found, we
should consider what it means in terms of an Anna specification. Z schemas may be connected.

Other aspects of Z specifications require further transformation rules. Z is able to specify the
use of infinite sets, as has been shown by the birthday book example. Ada, as a programming
language that executes on finite machines, cannot implement such sets. Generally, infinite
sets are an abstraction used for specification purposes and the designers will develop a finite
implementation of the sets. There may be an opportunity to develop an Anna specification of
finite sets from the Z specification of infinite sets. However, since such a development will be
system dependent, we cannot provide general transformations. An alternative is to eliminate
the infinite sets in either the Z or the Anna notations. Investigations are required to determine
the best development approach for infinite sets.

A further Z feature is the use of polymorphic types in the system specifications. It seems obvious
that the specification of polymorphic types should transform to Anna specifications of generic
packages. However, this transformation should be investigated to determine its appropriateness.
Similarly, Z can hide variables declared in the schemas. It seems that hidden variables would
transform to variables in the private parts of the package specifications. Such transformations
need to be checked for appropriateness.

Z can specify non-deterministic behavior in the system. Anna can also be used to specify non-
deterministic behavior. It remains to determine whether such behaviors should be eliminated
before the transformation to Anna, or in the addition of Ada code. This issue is probably
best left up to the developers of a specific system, since the appropriate time for elimination of
non-deterministic behaviors (if they should be eliminated at all) is dependent on the particular
system. The method should give guidelines on transformations of non-deterministic behaviors
to deterministic behaviors in both the Z and Anna notations, leaving the choice of which trans-
formations should be applied to the developers.

CMU/SEIL-91-TR-1 27




28

CMU/SEL-91-TR-1




Chapter 6

Conclusions

This chapter presents the conclusions we have drawn from the development of the method based
on our use of the birthday book example. We also describe planned future work that will provide
more examples of the use of the method as well as enable us to further develop the method.

An important function of a specification is to provide the basis from which executable code may
be developed. This report describes a methed through which such development can take place. -
The method may be used with varying levels of formality ranging from the rigorous approach to a
fully formal approach, the former giving the developer confidence in the developed system and the
latter giving the developer certainty that the developed system meets the specification. Although
we use heuristic guidelines to choose the transformations, we believe that the correctness of the
transformations may be proven. So, regardless of the transformation chosen, the meaning of the
specification will be preserved. Thus we claim a fully formal development process is achievable
using this method.

Rather than take the more traditional verification approach of attempting to prove the final code -
against the original specification, we suggest an approach where small, incremental verifications
may be performed. Each incremental proof step will be easier to perform than the entire step,
thus enabling our method to be proven by hand or with less sophisticated tools than those used
by the average developer.

We can take specifications written in Z and, using the Anna tool set, can convert these specifica-
tions using a sequence of transformations into runtime code. The runtime code developed using
this method contains checks that ensure conformance with the Anna specification. The method
ensures that the Anna specification is a correct derivative of the original Z specification; thus,
we have confidence that the code, as long as it does not raise an Anna exception, conforms to
the original Z specification.

If each step in the process is incrementally verified, the system (given input allowable by the
original Z specification) will not raise Anna exceptions. In less formal developments, errors may
arise and the code will raise Anna exceptions. We claim that it will be easier to debug the code,
since the exception will be raised at the point at which the error occurs rather than at a later
point. We have presented the transformations from Z to Anna based on the development of

CMU/SELOL-TR1 T 29




the birthday book example. The transformations may be applied in a systematic manner that
can be automated. We have confidence that the transformations may be applied in the same
systematic manner on larger specifications.

The birthday book example is trivial to the extent that it is not clear why a developer would
wish to make the refinement chosen rather than transform the specification directly into Anna.
Indeed, a developer may write the specification in Anna immediately and feel confident that it is
a specification of the desired system. We chose the birthday book as an example system in order
to develop the approach described in the report so that it is easy for the reader to understand
the specification and concentrate on the method rather than the problem. With more complex
examples, the way in which Z schemas may be composed, using the schema language, may make
it desirable to use Z initially rather than to use Anna immediately.

6.1 Future Work

There are a number of directions that must be explored to further the work presented in this
paper.

Larger examples must be developed using the method presented in this report. This work may
involve the development of further heuristics with respect to Z to Anna transformations, although
if we discover that each new system developed using the method involves new transformations,
we might conclude that the method is not appropriate for software development. There are still
some forms of Z schema for which appropriate heuristics for deriving Anna have not yet been
developed. An example is a schema that includes multiple “data” schemas.

The issue of tool support must be investigated further; the use of the Anna specification analyzer
on the transformed Z specification is awkward since errors are presented in terms of Anna, but
we are encouraging the developer to modify the Z specification. In the long run, it may make
sense to convert the Anna specification analyzer to work directly on the Z specification. We

have discussed a tool to automate the transformations between Z and Anna; it remains for this
tool to be built.

The transformations between Z and Anna presented in this report must be shown to be semantic-
preserving transformations. Although we believe this to be the case, we have not yet formally
proven that the transformations are meaning-preserving,.

We have stated throughout that this report describes a possible development path; it would
be interesting to attempt such a development using other notations, for example, developing C
code from Z. The problem with this extension is that the intermediate language we use for Ada
(Anna) does not exist for C.

The system presented (and those foreseen as possible future examples) is sequential. Many
systems being developed are inherently concurrent in nature. The method should be extended
to cover concurrency. At a certain level of abstraction in non-distributed systems, a concurrent
system may be viewed as being sequential (if only the hardware were fast enough, it could be
implemented that way). Concurrency then becomes an implementation issue, so the Z notation
should be investigated to see how it will handle such systems.

30 CMU/SEI-91-TR-1



The work described above must be performed in order that the method presented in the report
may be applied to real systems with full formality.

CMU/SEL-91-TR-1 R




32

DI L s s T om
AT Redh ﬁﬂ...%%v%ﬁﬂ%iﬂ%ﬁ%ﬁ;m«“
R R Yo S
B2, abae 3 TEERL L ]
s T e
PRI TR A e
s ety
.t . ~ - M..‘nv- WM«H»
N R
RN

- R

~ Fiay St
” RS Ny

. N wa i e
SYE s
N v
L P
@
hJ A
-
(=] St

: st

d RN

. N
o’ :

N
/ et

S




Bibliography

[1} American National Standards Institute. Reference Manual for the Ada Programming Lan-
guage. ANSI/MIL-STD-1815A-1983, February 1983.

[2] J.V. Guttag, J.J. Horning, and J.M. Wing. Larch in Five Easy Pieces. Technical report,
DEC Systems Research Center, 1985.

[3] D.C. Lackham. Programming with Specifications: An Introduction to ANNA, A Language
for Specifying Ada Programs. Texts and Monographs in Computer Science. Springer-Verlag,
October 1990.

(4] D.C. Luckham, F.W. von Henke, B. Krieg-Eruckner, and O. Owe. ANNA: A Language for

Annotating Ada Programs, volume 260 of Lecture Notes in Computer Science. Springer-
Verlag, 1987.

[5] C. Morgan. Programming From Specifications. Prentice-Hall, 1990.

[6] J.M. Spivey. An Introduction to Z and Formal Specifications. Software Engineering Journal,
January 1989.

[7] J.M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall, 1989.

CMU/SEI-91-TR-1 33




TN

o S AN
PRV
Ve R A
- AR 40,
- -
N
Kt ey
e .
REE
S Py
DN

RN
ot
LS
14 T
N .1..... Y
. BT
13 % A
N [
_T, SR
Bl +

W,

SEI

v/

oM

34




Appendix A

Full Z Specification

This appendix contains the complete Z specification of the birthday book example used through-
out the document. The specification is taken directly from Spivey’s paper introducing Z [6]. Only
the specification has been presented; the interested reader is directed to the original paper for
the rationale behind the specification and design.

The specification is presented in four sections: A specification of a basic birthday book system, a
strengthened specification of the basic system to account for possible errors, the data refinement

for the basic system with the appropriate abstraction functions, and the schema refinements of
the basic system.

A.1 Basic System

— BirthdayBook
known : P NAME
birthday : NAME -+ DATE

known = dom birthday

— AddBirthday
A BirthdayBook
name? : NAME
date? : DATE

name? ¢ known

birthday’ = birthday J {name? — date?}

CMU/SEI-91-TR-1 35




— FindBirthday
ZBirthdayBook
name? : NAME
date! : DATE

name? € known

date! = birthday(name?)

— Remind
ZBirthdayBook
today? : DATE
cards! : P NAME

cards! = { n : known | birthday(n) = today? }

. Init BirthdayBook
BirthdayBook

known = @

A.2 Strengthened System

__Success
result! : REPORT

result! = ok

— AlreadyKnown
ZBirthdayBook
name? : NAME
result! : REPORT

name? € known

result! = already.known

RAddBirthday = (AddBirthday A Success) V AlreadyKnoun.

_ NotKnown
ZBirthdayBook
name? : NAMFE
result! : REPORT

name? ¢ known

result! = not_known

36 CMU/SEL-91-TR-1




RFindBirthday £ (FindBirthday A Success) V NotKnown.

RRemind = Remind A Success.

A.3 Data Refinement for the Basic System

_. BirthdayBook1

names : Ny - NAME
dates : Ny — DATFE
hwm : N

Vi,j:1l..hume
i # j = names(i) # names(j)

__Abs

BirthdayBook
BirthdayBook1

known = {1 :1.. hwm e names(i) }

Vi:l..hume
birthday(names(t)) = dates(z)

__AbsCards

cards : P NAME
cardlist : Ny - NAMFE
ncards : N

cards = {i:1..ncards e cardlist(¢)}

A.4 Schema Refinement for the Basic System

— AddBirthdayl

A BirthdayBook1
name? : NAME
date? : DATE

Vi:l..hwm e name? # names(i)

hwm' = hum + 1
names’ = names @ {hwm’ — name?}
dates’ = dates @ {hwm' — date?}

CMU/SEI-91-TR-1

37




_. FindBirthdayl

Z BirthdayBook1
nome? : NAMFE
date! : DATE

Ji:1..hume
name? = names(i) A date! = dates(i)

__ Remindl

ZBirthdayBook1
today? : DATE
cardlist! : Ny - NAME
ncards! : N

{i:1..ncards! e cardlist!(i) }

= {j:1.. hwm | dates(j) = today? e names(j) }

— InitBirthdayBook1

BirthdayBook1

hum =0

38

CMU/SEL-91-TR-1

" G s e
N, R

v

5o




Appendix B

Full Anna Specification

This appendix contains the complete Anna specification of the basic birthday book system. As
in Appendix A, the specification is presented without explanatory text.

The specification presented in this appendix is typical of the output that should be generated
by an automated tool transforming Z specifications into Anna.

We have not presented a specification of the refined basic system since the refinement has not
been taken far enough for a precise corresponding Anna specification to be built. A further
refinement must be made in the Z specification, making the infinite arrays into finite arrays
(thus changing the meaning of the birthday book). It would be better to make this restriction
in the top-level specification and then perform the refinement. We have chosen to follow the
original example and would have to make the refinement at the lower-level Z specification, which

we have not done. Such a refinement is feasible and the appropriate Anna specification could
then be generated.

generic

type NAME is private;
type DATE is private;

package BIRTHDAY_BOOK is
package SET_OF_NAMES is
new SET_CONCEPTS(ELEMENT_TYPE => NAME);
use SET_OF_NAMES;
function KNOWN return SET_OF_NAMES.SET;
package SET_OF_DATES is

new SET_CONCEPTS(ELEMENT_TYPE => DATE);
use SET_OF_DATES;

CMU/SEL-91-TR-1 30




package NAME_DATE_MAPPING is
new MAP_CONCEPTS(DOMAIN_TYPE => NAME;
RANGE_TYPE => DATE;
DOMAIN_SET => SET_OF_NAMES;
RANGE_SET => SET_OF_DATES);
use NAME_DATE_MAPPING;

function BIRTHDAY return NAME_DATE_MAPPING.MAPPING;

--| KNOWN = MAP_CONCEPTS.DOMAIN(BIRTHDAY);

procedure ADD_BIRTHDAY(ANAME : in NAME; ADATE : in DATE);
~-| where
-=]| in (not SET_CONCEPTS.MEMBER(ANAME, KNOWN)),
—~-|  out (BIRTHDAY =
SET_CONCEPTS.UNION(MAP_CONCEPTS.MAPSTO(ANAME, ADATE),
in BIRTHDAY));

function FIND_BIRTHDAY(ANAME : in NAME) return DATE;

~--| where

d in (SET_CONCEPTS.MEMBER(ANAME, KNOWN)),

-] return ADATE: DATE =>

ol ADATE = MAP_CONCEPTS.MAPSTO(BIRTHDAY, ANAME);

procedure REMIND(TODAY : in DATE;
CARDS : out SET_OF_NAMES.SET);
--| where
- for all N : NAME =>
- SET_CONCEPTS.MEMBER(N, CARDS) <-> (MEMBER(N, KNOWN)
- and MAP_CONCEPTS.MAPSTO(BIRTHDAY, N) = TODAY);

procedure INIT_BIRTHDAY_BOOK;
--| where
--|  out (IS_EMPTY(KNOWN));

--| BIRTHDAY_BOOK’INITIAL.IS_EMPTY(BIRTHDAY_BOOK’INITIAL.KNOWN);

end BIRTHDAY_BOOK;

40

CMU/SEI-91-TR-1




!0

e

@

UNLIMITED, UNCLASSIFIED

SECURITY CLASSIFICATION QF THIS PAGE

REPORT DOCUMENTATION PAGE

1s REPOAT SECURITY CLASSIFICATION
l UNCLASSIFIED

16. RESTRICTIVE MARKINGS
NONE '

2. SECURITY CLASSIFICATION AUTHORITY R 3. OISTRIBUTION/AVAILABILITY OF REPOAT
N/A APPROVED FOR PUBLIC RELEASE
2b. OECLASSIFICATION/DOWNGRADING SCHEDULE DISTRIBUTION UNLIMITED
N/A

4 PERFOAMING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-91-TR-1

S. MONITORING ORGANIZATION REPORT NUMBER(S)

ESD-TR-91-1

€s. NAME OF PERFORMING ORGANIZATION b, OFFICE SYMBOL
(1f applicabdle)
SOFTWARE ENGINEERING INST. SEI

78. NAME OF MONITORING ORGANIZATION

SEI JOINT PROGRAM OFFICE

6¢c. ADORESS (City, State and ZIP Code)

CARNEGIE MELLON UNIVERSITY
PITTSBURGH, PA 15213

To. AOORESS (City, State and ZIP Code)

ESD/AVS -
HANSCOM AIR FORCE BASE, MA 01731

8s. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL

9. PROCUAEMENT INSTRUMENT IDENTIFICAT.ON NUMBER

QRGANIZATION (1! applicedle) ;
4 SEI JOINT PROGRAM OFFICE ESD/ AVS F1962390C0003
8c. ADORESS (City. State and 2IP Code) 10. SOURCE OF FUNDING NOS.
CARNEGIE MELLON UNIVERSITY PROGAAM PROJECT TASK WOARK UNIT
PITTSBURGH, PA 15213 ELEMENT NO. NO. NO. NO,
11, TITLE (Include Secunty Clossification) 63752F N/A N/A N/A
FORMAL DEVELOPMENT OF ADA PROGRAMS USING Z ANDy ANNA: A CASﬁ STUDY

12. PEASONAL AUTHOR(S)

Patrick R. H, Place, William G. Wood, David C.

Luckham, Walter Mann, Sriram Sankar

13b. VIME COVERED
FAOM TO

13a. TYPE OF REPORT

14. OATE QOF REPOAT (Yr, Me., Day) 18. PAGE COUNT

FINAL

February 1991 40 pp.

16, SUPPLEMENTARY NOTATION

172 COSATI CODES

FIELD GAOUP SUS. GR.

Ada
Anna

18 SUBJECT TERMS (Continue on reverse if necessery end identify by bdlock number)
Formal Specification Development

Z

specification written in Z,

verify than a few large transformations.

development method presented.

linking the more abstract Z specifications fo the concrete Ada program.
on the notion that successive small transformations of a specification are easier to
Essentially the method uses three notatioms for
the representation of the system: an implementation-independent notation for the
specification of the system, an implementation-dependent notation for the representation
of a lower level specification of the system, and the implementation language.
Anna are outlined briefly and examples of transformations are presented.
specification has been chosen and the transformations presented in the report are
transformations of the Z gpecification into Anna.

19. ABSTRACT (Conlinue on reverse if necessary end identify by Mock number)
This report describes a method for the formal development of Ada programs from a formal
ANNotated Ada (Anna) is used as an intermediate language

The method relies

Z and
A simple Z

Conclusions are drawn about the

20. OISTRIBUTION/AVAILABILITY OF ABSTRACT

UNCLASSIFIED/UNLIMITED ftJ sAME As rev. O ovic usens (3

21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED, UNLIMITED DISTRIBUTION

22s. NAME OF RESPQNSIBLE INDIVIDUAL

JOHN S. HERMAN, Capt, USAF

220 TELEPHONE NUMBER 22¢. OFFICE SYMBOL
(tnciude Ares Code) ESD7 AVS

412 268-7630

EQITION OF 1 JAN.JI.IS QRSQLETE

m%
LML IMITED o UNCLASSIRIR D i






