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Executive Summary

This report describes a method for discovering and representing commonalities among re-
lated software systems.  By capturing the knowledge of experts, this domain analysis meth-
od attempts to codify the thought processes used to develop software systems in a related
class or domain. While domain analysis supports software reuse by capturing domain ex-
pertise, domain analysis can also support communication, training, tool development, and
software specification and design.

The primary focus of the method is the identification of prominent or distinctive features of
software systems in a domain.  These features are user-visible aspects or characteristics of
the domain.  They lead to the creation of a set of products that define the domain and also
give the method its name: Feature-Oriented Domain Analysis (FODA). The features define
both common aspects of the domain as well as differences between related systems in the
domain. Features are also used to define the domain in terms of the mandatory, optional, or
alternative characteristics of these related systems. This report provides a description of the
products of the domain analysis, as well as the process for generating them. The report
also contrasts the FODA method with other related work.

An important component of this report is a comprehensive example of the application of the
method. The example demonstrates the utility of the FODA method in providing an under-
standing of a domain, both in terms of the scope of the domain and in terms of the features
and common requirements. The report also describes several technical issues raised dur-
ing the development of the method. These issues will be further explored in subsequent
domain analyses.

This report does not cover the non-technical issues related to domain analysis, such as
legal, economic, or managerial issues. The emphasis on defining process and products
stems from the belief that the non-technical issues can be fully explained only in light of
specific approaches to domain analysis and to reuse in general.  This report establishes one
such approach.

Domain analysis remains a relatively new practice.  Although first proposed ten years ago,
domain analysis is still a topic primarily of research groups.  The report Feature-Oriented
Domain Analysis can advance the state of the practice of domain analysis by providing
meaningful examples and issues for further exploration.
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Feature-Oriented Domain Analysis

Abstract: Successful software reuse requires the systematic discovery and ex-
ploitation of commonality across related software systems.  By examining related
software systems and the underlying theory of the class of systems they repre-
sent, domain analysis can provide a generic description of the requirements of
that class of systems and a set of approaches for their implementation.  This re-
port will establish methods for performing a domain analysis and describe the
products of the domain analysis process.  To illustrate the application of domain
analysis to a representative class of software systems, this report will provide a
domain analysis of window management system software.

1. Introduction

1.1. Scope

The systematic discovery and exploitation of commonality across related software systems
is a fundamental technical requirement for achieving successful software reuse [Prieto-Diaz
90]. Domain analysis is one technique that can be applied to meet this requirement.  By
examining a class of related software systems and the common underlying theory of those
systems, domain analysis can provide a reference model for describing the class. It can
provide a basis for understanding and communication about the problem space addressed
by software in the domain.  Domain analysis can also propose a set of architectural ap-
proaches for the implementation of new systems.

The primary intent of this report is to establish the Feature-Oriented Domain Analysis
(FODA) method for performing a domain analysis. The feature-oriented concept is based
on the emphasis placed by the method on identifying those features a user commonly ex-
pects in applications in a domain.  This method, which is based on a study of other domain
analysis approaches, defines both the products and the process of domain analysis.  The
report also provides a comprehensive example to illustrate the application of the FODA
method to a representative class of software systems.

This report is directed toward three groups:

1. Individuals providing information about a domain under analysis (domain
experts).

2. Individuals performing the domain analysis (domain analysts).

3. Consumers of domain analysis products (systems analysts and developers).

The roles of each group with respect to domain analysis will be defined later in this chapter.

This report provides an introduction to domain analysis, a description of a method for per-
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forming the analysis, and a sample application of that method.  It does not address such
related areas as legal and economic issues pertaining to domain analysis, nor does it ex-
plore other non-technical areas.

The report is organized in the following way:

• The rest of this chapter will introduce the concepts of domain analysis

• The second chapter provides an historical overview of the field, describing sev-
eral methods proposed for performing domain analysis; the chapter also estab-
lishes a set of basic criteria for evaluating domain analysis methodologies.

• Resulting from this evaluation of existing methodologies, Chapter 3 presents an
overview of the Feature-Oriented Domain Analysis (FODA) method by describ-
ing the three basic activities of the method: context analysis, domain modelling
and architecture modelling. Chapters 4-6 then contain detailed discussions of
each of these activities and the products produced.

• Chapter 7 presents a domain analysis of window manager software, illustrating
the application of the FODA method.

• The appendices provide the detailed domain terminology dictionary and other
supporting information to document the window manager software domain anal-
ysis. Other material supporting the method is also presented in the appen-
dices.

1.2. Domain Analysis Concepts

The development of large and complex software systems requires a clear understanding of
desired system features and of the capabilities of the software required to implement those
features. Software reuse, which has long promised improvements in the development proc-
ess, will become feasible only when the features and capabilities common to systems within
a domain can be properly defined in advance of software development.  Domain analysis,
the systematic exploration of software systems to define and exploit commonality, defines
the features and capabilities of a class of related software systems. Thus, the availability of
domain analysis technology is a factor that can improve the software development process
and promote software reuse by providing a means of communication and a common under-
standing of the domain.

The list below offers definitions of several terms which are basic to domain analysis, and
which are essential to the following discussion of a domain analysis method.

Application: A system which provides a set of general services for solving
some type of user problem.

Context: The circumstances, situation, or environment in which a par-
ticular system exists.

Domain: (also called application domain) A set of current and future
applications which share a set of common capabilities and
data.

Domain analysis: The process of identifying, collecting, organizing, and
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representing the relevant information in a domain based on
the study of existing systems and their development histories,
knowledge captured from domain experts, underlying theory,
and emerging technology within the domain.

Domain engineering: An encompassing process which includes domain analysis
and the subsequent construction of components, methods,
and tools that address the problems of system/subsystem de-
velopment through the application of the domain analysis
products.

Domain model: A definition of the functions, objects, data, and relationships in
a domain.

Feature: A prominent or distinctive user-visible aspect, quality, or char-
acteristic of a software system or systems [American 85].

Software architecture: The high-level packaging structure of functions and data, their
interfaces and control, to support the implementation of ap-
plications in a domain.

Software reuse: The process of implementing new software systems using ex-
isting software information.

Reusable component: A software component (including requirements, designs,
code, test data, etc.) designed and implemented for the spe-
cific purpose of being reused.

User: Either a person or an application that operates a system in
1order to perform a task.

Because it is central to several of the definitions and to the concept of domain analysis itself,
the term domain requires some clarification through examples. A domain does not neces-
sarily have to occur at a specific level of software granularity, such as that of a system,
Computer Software Component (CSC), or Computer Software Configuration Item (CSCI).
Rather, a domain is a more general concept which may be stretched to apply to most any
potential class of systems. This class is referred to as the target domain, which may have
both higher-level domains to which it belongs and sub-domains within it. As an example,
different instances of the same type of system (such as window management systems or
relational database management systems) can be grouped together to define a domain.  In
a similar way a domain of data structures could be identified which would be at a much
lower level than that of entire systems, but could still constitute a target domain in its own
right. Grady Booch could be said to have performed an analysis of this domain which
resulted in the creation of the abstract data type components described in [Booch 87]. In
another context this target domain of abstract data types could be viewed as a sub-domain
of the larger data management domain.  Put another way, the X window system is correctly
thought of as a system on which user application programs are written and executed. From
a different perspective, however, a collection of similar window management systems such

1The user of a system is not necessarily the same as the customer for a system. These are two separate
concepts, although they may be combined in many cases.
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as X windows, NeWS, and others, constitutes a domain, and each window management
system is an application in that domain. Both views are correct, in that X windows is both a
complete system and an instance of a larger domain. One view may be more useful than the
other if it helps to solve the problem at hand.

1.2.1. Domain Analysis Process
Domain analysis gathers and represents information on software systems that share a com-
mon set of capabilities and data.  The methods proposed in [GILR89A, MCNI86A, PRIE86A]
suggest that there are three basic phases in the domain analysis process:

1. Context analysis: defining the extent (or bounds) of a domain for analysis.

2. Domain modelling: describing the problems within the domain that are ad-
dressed by software.

3. Architecture modelling: creating the software architecture(s) that implements a
solution to the problems in the domain.

Figure 1-1 depicts the three groups of participants in the domain analysis process.  During
each phase these players take on slightly different roles.
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Figure 1-1: Participants in the Domain Analysis Process

• Context analysis: The domain analyst interacts with users and domain experts
to establish the bounds of the domain and establish a proper scope for the
analysis. The analyst also gathers sources of information for performing the
analysis.

• Domain modelling: The domain analyst uses information sources and the other
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products of the context analysis to support the creation of a domain model.
This model is reviewed by the system user, the domain expert, and the require-
ments analyst.

• Architecture modelling: Using the domain model, the domain analyst produces
the architecture model.  This model should be reviewed by the domain expert,
the requirements analyst, and the software engineer.  The user need not partic-
ipate in this review.

The requirements analyst and software designer will use the products of a domain analysis
when implementing a new system.  During implementation, these products are tailored to
produce the specification and design of that system.  This tailoring process will provide feed-
back of information to the domain analyst and expert to modify or extend the domain anal-
ysis for future developments.  (See Figure 1-2.)  This feedback may also serve to improve
the domain analysis process, by discovering possible weaknesses in the original methods.
The specific roles of the participants in the tailoring process will be defined as part of the
FODA method in Chapter 3.
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Figure 1-2: Tailoring the Products to Enhance the Domain Analysis
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1.2.2. Domain Analysis Products
The domain analysis method must provide specific representations to document the results
of each of the domain analysis activities.  These representations form a reference model for
systems in the domain.  The representations define the scope of the domain, describe the
problems solved by software in the domain, and provide architectures that can implement
solutions.

For each of the three phases of the domain analysis process there will be a separate set of
representations of the domain.

Context analysis: The results of this phase provide the context of the domain.
This requires representing the primary inputs and outputs of
software in the domain as well as identifying other software in-
terfaces.

Domain modelling: The products of this phase describe the problems addressed
by software in the domain.  They provide:

• features of software in the domain

• standard vocabulary of domain experts

• documentation of the entities embodied in soft-
ware

• generic software requirements via control flow,
data flow, and other specification techniques

Architecture modelling: This phase establishes the structure of implementations of soft-
ware in the domain. The representations generated provide
developers with a set of architectural models for constructing
applications and mappings from the domain model to the ar-
chitectures. These architectures can also guide the develop-
ment of libraries of reusable components.

Figure 1-3 depicts the three phases of the method and lists the products of each.

The FODA method provides a means of applying these products of domain analysis to sup-
port software development.  Figure 1-4 depicts the use of domain analysis products and
their ability to provide a means to support communication between users and developers.
This view of domain analysis shows that it can be integrated into a more general process for
software development to support:

• understanding the domain

• implementing applications in the domain

• creating reusable resources (designs, components, etc.)

• supporting creation of domain analysis and other reuse tools
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Domain Analysis

Domain ModellingContext Analysis Architecture Modelling

Structure diagram

Context diagram

Entity relationship model

Features model

Domain terminology
dictionary

Functional model

Process interaction
model

Module structure
chart

Figure 1-3: Phases and Products of Domain Analysis

1.3. Feasibility Study Overview

Before a discussion of the details of the FODA domain analysis method itself is appropriate,
it is necessary to discuss the context in which this feasibility study was performed. Certain
constraints applied to this initial study influenced the work, and are re-examined in Chapter
8 in light of the study’s results.

First, domain analysis is still a research topic. Despite the different efforts outlined in Chap-
ter 2 there is no uniform agreement on method, representation, or products. This report
presents a proposed approach and some experience in applying it, but does not attempt to
imply that all of the central issues surrounding domain analysis have been resolved.

Second, the application of the FODA method to the window manager domain was done as a
feasibility study to see if it would be possible and useful to analyze application domains with
this method. While most aspects of the method were applied to the sample window manager
domain, it was not deemed necessary to exhaustively apply the method beyond the point
where basic feasibility had been determined and significant lessons learned.
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Figure 1-4: Domain Analysis Supports Software Development

Third, in performing the sample domain analysis no sufficiently mature automated tool sup-
port for domain analysis was available. While general purpose tools are available which can
support some domain analysis functions, and prototype tools have been built specifically to
support domain analysis activities, no tool support was available which was both robust and
specific to domain analysis.  In addition, the purpose of the study was to demonstrate the
feasibility of a general domain analysis method, rather than the effectiveness of any partic-
ular support environment.  As a result, primarily manual methods were used, with some spe-
cific automated support such as Statemate for some of the model types. As is discussed in
Section 8.1.3, the issue of effective knowledge representation will be a focus of future work.

Fourth, at the time the feasibility study began, the definition of the third and final phase of
the FODA method, architecture modelling, had not been completed. Therefore, while the
general approach to this phase is defined in this document, it was not applied to the sample
domain analysis.  One effect of this is that the architecture modelling phase of the method is
not as specific in direction as the others because there has been no feedback to it from
actual use.
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Fifth, the products of the sample window manager domain analysis were not formally vali-
dated against another application in the domain (one which was not used as an input to the
domain analysis), as the FODA method recommends. The products were informally vali-
dated through review by experts, and showed good agreement across the eight window
manager systems which were used as inputs to the analysis.

1.4. Successful Application of Domain Models

The process of domain analysis has been successfully applied in many mature domains.
While not formally called domain analysis, companies that establish generic architectures for
software systems that they build are creating and using some of the products of a domain
analysis. This is precisely the approach taken by the Toshiba Corporation [Matsumoto 84],
which has successfully established a software "factory" that can produce many highly similar
systems that are customized to the specific needs of each customer.  The Thomson-CSF
Company [Andribet 90] has also used this approach to develop air traffic control systems.
They recognize that they are building similar software systems in an established domain, so
the architecture becomes a standard from which new systems are derived.  This is a varia-
tion of domain analysis.

These successes point towards the need for a domain analysis method to achieve two spe-
cific goals:

1. The method leads to the development of domain analysis products that sup-
port implementation of new applications.  This goal will be met when domain
analysis products are used in new implementations.

2. The method can be incorporated into the general software development proc-
ess. This goal will be met when domain analysis methods become an ac-
cepted part of software development.

The successful application of methods similar to those proposed in this report support the
contention that the products of a domain analysis can be used efficiently to produce new
systems in the domain, and to implement software reuse.

The use of the FODA method in this feasibility study, while successful in explicitly setting
forth the capabilities of systems in the domain, is not yet a complete success for the method.
The method produces accurate products which describe the domain, but these products
have not been used in the implementation of new applications. When this has been done,
then the method may be considered a success.

The next chapter will highlight other domain analysis approaches, document their suc-
cesses, and describe where they differ from the FODA method.  These successes show that
domain analysis methods can succeed when:

• The domain of applicability is of suitable scope (i.e., the extent or size of the
analysis is feasible).

• The analysis attempts to abstract the requirements to the problem level from
the application level.
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• The products provide documentation of the problem abstraction and guidance
in tailoring the abstraction to meet specific requirements.

This report will provide specific methods to meet these three criteria.

10 CMU/SEI-90-TR-21



2. Review of Domain Analysis Methods

While the reuse community has not established a uniform approach to identifying reusable
software resources, there is general agreement that domain analysis offers the ability to
identify and support development of these resources.  During the past ten years, there have
been several major efforts in domain analysis.  Reports on these efforts include descriptions

2of methods, case studies, and tool recommendations.

The following list provides a brief chronology of those domain analysis studies that describe
usable products to support software reuse.

• 1979: Raytheon Missile Systems Division [Lanergan 79]

• 1980: Neighbors’ dissertation: Software Construction Using Components
[Neighbors 80]

• 1985: McDonnell Douglas: Common Ada Missile Packages (CAMP) [McNicholl
86, McNicholl 88]

• 1985: Schlumberger: Domain Specific Automatic Programming [Barstow 85]

• 1988: Batory: Domain Analysis of Database Management Systems [Batory
88a, Batory 88b, Batory 88c]

• 1988: CTA studies and tools for NASA [Bailin 88, Moore 89, Bailin 89]

• 1988: SEI: An OOD Paradigm for Flight Simulators [Lee 88, D’Ippolito 89]

• 1989: MCC: DESIRE System [Biggerstaff 89a]

• 1989: Thompson-CSF: Air Traffic Control Systems Domain Analysis [Andribet
90]

• 1989: CSC: Domain Analysis for Flight Dynamics Applications

In addition to the product-directed studies, there have been other studies that focused on
the process of domain analysis:

• 1987: Prieto-Diaz: "Domain Analysis for Reusability" [Prieto-Diaz 87]

• 1988: Arango: thesis and other domain analysis studies [Arango 88a, Arango
88b, Arango 88c, Arango 89]

• 1988: Bruns and Potts: "Domain Modeling Approaches to Software
Development" [Bruns 88]

• 1988: Lubars: "A Domain Modeling Representation" [Lubars 88]

• 1989: SPS: Impact of Domain Analysis on Reuse Methods [Gilroy 89]

• 1990: SPC: A Domain Analysis Process [Jaworski 90]

The distinction between product and process emphasis in these lists is not purely organiza-
tional; most studies to date have concentrated on one of the two areas.  Studies such as
those by Neighbors and CAMP describe their products in detail, but give little insight into the

2A more complete enumeration of related studies and papers is available in a companion report, A Domain
Analysis Bibliography, CMU/SEI-90-SR-3 [Hess 90].
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methods used to generate them.  The process studies such as those by Lubars or SPS
define methods but do not give significant examples of the application of those methods.
While much work has been done on methods for domain analysis there is no single defini-
tive domain analysis method.  The next section proposes some criteria for evaluating
domain analysis methods and applies those criteria to support a comparison of existing
methods to the FODA method.

2.1. Evaluation of Methods

Gathering and representing domain knowledge in the form of a domain model and generic
architecture presents problems that have not been addressed by traditional development
methods. These traditional methods are not reuse-based, but rather are oriented toward
single system development.  Domain analysis can be distinguished from this single system
approach in that its objective is to represent exploitable commonalities among many sys-
tems.

This domain analysis task is made more complex by the fact that information comes from
multiple sources such as source code, requirements and design documents, domain litera-
ture, and domain experts.  Assimilating all this information presents a difficulty in information
management. The requirement that this information and other end-products be general in
form and in a format that can be exploited by others complicates the requirements for repre-
sentation mechanisms.

In order to facilitate the evaluation of existing domain analysis methods and their products, a
set of classification and evaluation criteria is very helpful [Firth 87].  Criteria for classifying
and evaluating the existing products and processes of domain analysis can assist the devel-
opment of a domain analysis method.  A set of appropriate criteria can be broken down into
three major areas:

1. The process aspect considers: how the domain analysis method will affect an
organization (e.g., evolutionary vs. revolutionary); how to manage and main-
tain the products; how the producer gathers, organizes, validates, and main-
tains information; and how the users can effectively apply the products in the
development.

2. The product aspect considers: the types of products that are generated by the
method; how they are represented; and how applicable they are in applica-
tions development.

3. The tool support aspect considers the availability of tools and the extent to
which the tools support the method.  It also looks at how well the support tools
are integrated, their ease of use, and their robustness.

For the purposes of this study, emphasis will be placed on process and product considera-
tions of the different methods.  The level of tool support is less important than the method
embodied in the tool.

12 CMU/SEI-90-TR-21



2.2. Comparative Study

A comparative study of domain analysis techniques will provide a better understanding of
the range of approaches. Several of the studies listed in the previous section describe dif-
fering approaches to the techniques of domain analysis. The following four approaches will
be the focus of this section:

1. Genesis/University of Texas: a tool for constructing database management
systems (DBMSs). An analysis of the DBMS domain is the basis of a generic
architecture, components, and the constructor.

2. KAPTUR (Knowledge Acquisition for the Preservation of Tradeoffs and Under-
lying Rationales)/CTA: a tool to facilitate knowledge representation and anal-
ysis. A domain analysis provides a baseline structure; any deviations from the
baseline are stored as distinctive features of the domain, along with a rationale
for the new features.

3. DESIRE (DESIgn REcovery)/MCC: a tool that supports recovering and re-
engineering a design from existing code. This is one of the parts of performing
a domain analysis.

4. SPS (Software Productivity Solutions): guidelines for conducting a domain
analysis.

The following sections describe each of these methods and contrast it with the FODA meth-
od.

2.2.1. The Genesis System
Genesis is a tool system developed by Don Batory of the University of Texas ( [Batory 88b],
[Batory 88c]). The goal of this effort was to develop a "database compiler" to synthesize

customized DBMSs from pre-written components.  The developers report that:

Enormous increases in software productivity are achieved by exploiting reusable
and plug-compatible modules.  The popularized, but mythical, concept of ‘software
ICs’ is actually a reasonably accurate description of our technology [Batory 88c].

The system has been under development for ten years and can now generate centralized
relational DBMSs with various configurations.  Current efforts include extending the proto-
type to support object-oriented and distributed databases.

The developers used domain analysis techniques to formulate a building-block technology
for file management systems.  Their approach, similar to the FODA method, uses "existing
systems, published algorithms, and structures to discern generic architectures for large
classes of systems." [Batory 88c] The Genesis method also defines the generic architecture
as the primary product of the domain analysis.  While the method recognizes the need to
gain a full understanding of a domain in order to construct the architecture, Genesis does
not give specific techniques for obtaining or representing this understanding. The devel-
opers of Genesis point out, however, that their domain model has been evolving for years.

The Genesis generic architecture is a template for constructing systems.  Building-block
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modules with standardized interfaces can be "plugged" into this template by the Genesis
tool at the direction of the user.  The Genesis approach recommends studying domain infor-
mation, including systems, algorithms, and data structures, to produce an architecture and
interfaces that cover the class of systems.  This product forms a blueprint for constructing
software systems from building blocks.

The Genesis approach describes the two steps to the analysis process:

1. Defining a generic architecture: a software architecture is defined in terms of a
hierarchy of "independently-definable objects" (IDOs): objects whose imple-
mentations have no impact on other objects.  For each IDO, there are opera-
tions, standard interfaces, and a collection of algorithms that implement the
operations. The method does not produce a domain model, domain terminol-
ogy dictionary, or method of mapping the DBMS problem domain to the IDOs,
as would be required by the FODA method.

2. Defining standardized interfaces to objects: in addition to the architecture in-
formation, the Genesis method also produces information about the inter-
relationships between the building-blocks (i.e., IDOs, operations, and
algorithms). When the tool is executed, these constraint rules eliminate all
building blocks that are incompatible with others already selected by the user.
These constraints are similar to rules for combining required, optional, or alter-
native features in the FODA method.

Genesis offers some guidelines for creating a software architecture, but in general the meth-
od relies on the knowledge, experience, and creativity of domain experts to create the ar-
chitecture. The underlying problem domain is not represented.  In addition, the method
does not capture information to support requirement or design decisions.  A developer using
the Genesis tool must be an expert in the domain and should know what to select and the
implications of the selection. To improve its utility, the tool should provide users an inter-
active design aid that explains the effects of each design decision.

The Genesis developers have recognized many of the issues that have also been used in
creating the FODA method.

• Establishing the proper decomposition of the domain is essential.  If the sub-
domains are too restricted, the analysis may lead to interfaces that are un-
stable, with changes required each time new algorithms or structures are intro-
duced. If the decomposition is too broad, the grouping of algorithms and struc-
tures will link objects that really should be separate.

• Developing the architecture is not simply listing algorithms and structures and
allowing a developer to select what appears to support his requirements.  The
domain analysis must provide an architecture for building a system from these
orthogonal units (IDOs).

• The technology embodied in Genesis is intended to support the exploration of
solutions to problems in the domain.  The architecture provides "a platform on
which to implement a class of previously identified solutions." [Batory 88c]

The developers of Genesis have validated a reuse approach based on domain analysis.
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Their method is built upon identifying the underlying IDOs of a domain, fashioning a generic
architecture for structuring the IDOs, constructing the building blocks to implement these
structures and implementing the tool to perform system synthesis.  The FODA method is
directed towards generalizing that approach for other domains.

2.2.2. MCC Work
The Microelectronics and Computer Technology Corporation (MCC) has developed domain
analysis methods and related tools to support software reuse ( [Biggerstaff 89a, Biggerstaff
89b, Lubars 87, Lubars 88]). These tools include:

DESIRE: A tool for recovering design from code and re-engineering the
recovered design.

ROSE: A tool for representing design templates and generating code from
the templates.

TAO: An expert tool for domain understanding and modeling (in concept
development stage).

Each of these tools was developed independently of the other, leading to an integration
problem. For instance, the designs recovered by DESIRE cannot be accessed by ROSE.  In
addition, there is no single underlying domain analysis approach; DESIRE is built upon
reverse engineering concepts, while ROSE selects abstract designs to meet requirements
and specifications supplied by a user.

2.2.2.1. The DESIRE Design Recovery Tool
The MCC DESIgn REcovery method gathers design information from source code, organ-
izes the information, and abstracts a design.  The DESIRE tool performs these steps and
allows domain experts to display and restructure the design, incorporating their knowledge.
The recovery results have been positive, and there are active users of the tool that can
process C and C++ programs of moderate size (50 - 100,000 lines of code).

The main product of this method is a generic design which MCC calls a domain model.
Various aspects of this model, such as the calling structure and module structure, can be
captured and displayed using the tool. However, there is no way to abstract the design
model into an architecture model (e.g., a layered architecture that shows packaging of
routines) or to access design decision information.  The MCC design recovery method also
does not provide any model of the problem space.  Both design criteria and problem space
modelling are important aspects of the FODA domain analysis method.

DESIRE is used primarily as a tool for maintaining or re-engineering existing code.  To truly
support domain analysis and reuse, the design recovery method and tool must provide
knowledge to support an analysis of the features of the problem domain.  One could then
use the tool to explore the extent to which existing systems exhibit these features, and ex-
tract their implementation.  The information extracted from the code could be structured to
represent the implementation in a format (such as a design template) that could be reused
in other developments.
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2.2.2.2. Domain Analysis Method
The MCC domain analysis method is primarily embodied in the Reuse of Software Elements
(ROSE) system.  This tool attempts to capture domain knowledge to support early reuse
decisions. The tool is aimed at meeting four goals:

1. Feature based selection: identifying domain objects and associated compo-
nents from their known features.

2. Constraint based analysis: analyzing a set of user requirements based on
known domain dependencies and relationships.

3. Domain-driven completion: performing completeness checks to ensure there
are no missing requirements in a system specification.

4. Domain-driven refinement: collecting and applying design issues as the crite-
ria for support of design decisions.

The goals of the MCC domain analysis method directly match those of the FODA method.
However, while stating these goals, the MCC approach does not provide specific techniques
for capturing or representing this information.  The ROSE tool embodies some of these ele-
ments and has been used experimentally to produce small programs (up to 600 lines of
code). ROSE assumes that the domain information already exists, and does not support its
creation. The tool remains a prototype for exploring the concepts of design analysis, but is
useful in defining requirements for domain analysis support.

2.2.3. CTA Work
Computer Technology Associates (CTA) has developed a domain analysis method and a
series of prototype support tools. CTA has used its method, independent of the tools, to
perform a domain analysis of NASA payload operations control center (POCC)
software [Moore 89].  This effort was a major factor in setting requirements for a tool cur-
rently under development called KAPTUR (Knowledge Acquisition for the Preservation of
Tradeoffs and Underlying Rationales) [Bailin 89]. KAPTUR will embody CTA’s current ap-
proach to domain analysis.

One of the major concepts behind KAPTUR is the ability to apply the tool to successive
system developments in the same domain and have KAPTUR semi-automatically support
the detection of significant differences between these systems. These differences are
referred to in KAPTUR terminology as distinctive features. Distinctive features consist of (1)

3new functions, (2) new subsystems, or (3) new placements of existing subsystems. As
new systems are input into KAPTUR, the user must identify and name new capabilities, or
use the same name for a feature that is identical to one present in a previous system.  Given
this information, KAPTUR can automatically build a set of knowledge base relationships that
connect the different systems sharing common features. (This is done using a Prolog
program.)

3Note that these features are not decomposable into lower-level features as such, although the function,
subsystem, etc. which constitutes the distinctive feature may be decomposed like other functions, subsystems,
etc. in KAPTUR’s knowledge base description.
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The CTA approach highlights the roles played by domain developers ("supply side") and by
system developers ("demand side") to define a reuse-based life-cycle, much as the FODA
method establishes the domain analyst as supplying information to the user community.
(Figure 2-1 shows the CTA roles and equivalent FODA method roles in italics under each
CTA label.)  In the CTA approach, the "develop-for-reuse" expert establishes the scope of
the domain knowledge that is commonly used across the systems in the domain.  The
domain developer organizes this knowledge in the domain library in a consumable form.
The "develop-by-reuse" expert uses the domain library to discover resources available for
development and provides them to the system developers who apply these resources to
implement systems. The system developers feedback new reuse requirements to the
domain developers to improve the domain library.  This process very closely matches that of
the FODA method.

Domain
Library

Domain
developer

(Domain analyst)

Develop-for-
reuse Expert

(Domain expert)

System
developer

(Software designer)

Develop-by-
reuse expert

(Requirements analyst)

Domain
knowledge

Domain
requirements

Resources
to support

reuseResources
to support

reuse

New reuse
requirements

Supply Side Demand Side

Figure 2-1: Participants in CTA’s Reuse-Based Development Process

The CTA method produces many of the same products considered essential by the FODA
method. The CTA domain model is stored as a hypertext network to represent system
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structure. The network includes system features such as subsystems, functions, resources
(documents or people), external entities, and parameters.  In addition, the links carry rela-
tional information, such as composition/decomposition, inputs/outputs, interactions, etc.  Be-
cause the model is intended to capture the domain knowledge of system developers, the
network also includes design decision information.  This includes justifications that represent
design issues, positions, and arguments, as well as explanations to help users understand
the system.  The method also advocates the use of entity-relationship and data flow
diagrams as conventional specification methods.

CTA is developing the KAPTUR tool to support its method. One of the salient features of the
KAPTUR tool is its ability to store and trace the decision process that leads to a specific
architecture. This reasoning process is captured in the database, an idea previously em-
bodied in the gIBIS (graphical Issue Based Information Systems) [Begeman 88] system from
MCC at a greater level of detail.  FODA also makes use of design decision information,
linking it to specific features of the domain.

2.2.4. SPS Work
Software Productivity Solutions (SPS) has developed guidelines for performing a domain
analysis [Gilroy 89]. SPS defines domain analysis as: "the systems engineering of a family
of systems in an application domain through development and application of a reuse library"
[Gilroy 89]. The process proposed in their guidelines follows the phases of the FODA meth-

od. The SPS method defines the goal of domain analysis as the production of a "reuse
library asset that will be used in the implementation of system instances."  Although the
method includes the domain model and generic architecture as assets, the method does not
provide concrete examples of these products.

The SPS method proposes a three-step process for domain analysis:

1. Model the domain: to scope the domain and develop "a complete specification
of the domain, accomplishing a sort of requirements analysis."

2. Architect the domain: to develop and validate a generic, object-oriented Ada
architecture for the family of systems.

3. Develop software component assets: to build a set of reusable object-oriented
Ada components and catalog the components into a library for the domain.

The FODA method is similar to the SPS method in that both include separate scoping,
modelling, and architecture phases.  The SPS method differs in its emphasis on Ada ar-
chitectures and components as the products of the analysis.

A detailed view of the SPS method also reveals similarities to the FODA method.  The scop-
ing activity in the SPS method produces a "domain planning document" to guide the anal-
ysis. The other modelling activities produce a domain model based on the planning docu-
ment and knowledge of previous systems.  While the FODA method concentrates on user-
visible features, the SPS method seems to concentrate on internal characteristics of the
identified objects, such as data flow and state transition. FODA also includes this internal
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view in the functional descriptions, but it is not the primary focus of the method.  This
domain modelling phase also generates a domain dictionary, similar to FODA’s domain ter-
minology dictionary.

The SPS domain architecture provides design information for building Ada software compo-
nents. This view of an architecture contrasts with that of the FODA method.  Both SPS and
FODA provide dynamic/static requirements information as part of the domain model. SPS
then turns this information into Ada package specifications for reusable code. The FODA
method relies on a generic set of parallel processes to define the control aspect of the ar-
chitecture, and allocates specific functions defined in the domain model to modules that
these processes control.  The available documentation for the SPS method also does not
provide any example of its architectural methods.

Although the SPS method lacks detailed guidelines for representing the products of a
domain analysis, it is useful in establishing a process for domain analysis.  The method is
also valuable in connecting domain analysis to the development process as a whole.  The
SPS process model served as an example in defining the FODA methods.
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3. Overview of the Feature-Oriented Domain Analysis
(FODA) Method

The FODA method supports reuse at the functional and architectural levels.  Domain prod-
ucts, representing the common functionality and architecture of applications in a domain, are
produced from domain analysis.  Specific applications in the domain may be developed as
refinements of the domain products.

Domain analysis is related to requirements analysis and high-level design, but is performed
in a much broader scope and generates different results.  It encompasses a family of sys-
tems in a domain, rather than a single system, producing a domain model with
parameterization to accommodate the differences and a standard architecture for develop-
ing software components.  An ideal domain model and architecture would be applicable
throughout the life cycle from requirements analysis through maintenance.

3.1. Method Concepts

The development of domain products that are generic and widely applicable within a domain
is a primary goal of the FODA method. This genericness (i.e., general knowledge) can be
achieved by abstracting away "factors" that make one application different from other ap-
plications. However, to develop applications from the generic products, those factors that
have been abstracted away must be made specific and reintroduced during refinement.  Not
only the genericness, but also those factors that make each application unique are an im-
portant part of the domain knowledge and should be captured in the domain products.  With
this method, domain products are not ends unto themselves, but evolve though applications.

The underlying concepts of this method are discussed in the remainder of this section.  Sec-
tion 3.2 describes some of the sources of domain information.  A summary of the domain
analysis activities and products is included in Section 3.3.

3.1.1. Modelling Primitives
The maturity of an engineering field can perhaps be indicated by the level of standardization
of the design of products in the field. No cars are designed from scratch these days: design
frameworks have been standardized over time, and new features are added to an existing
design framework to develop a new model.  Software development, like other engineering
fields, can benefit from the development and reuse of "product frameworks" in an application
domain (i.e., a product line or a product family).  The "product frameworks" in the context of
software are abstractions of functionalities and designs (i.e., architecture) of the applications
in an application domain.

To support the development and reuse of "abstractions," this method is founded on a set of
modelling concepts. They are:

• aggregation/decomposition
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• generalization/specialization [Borgida 84]

• parameterization [Goguen 84]

Abstracting a collection of units into a new unit is called aggregation. For example, school is
an aggregation of students, teachers, etc. Refining an aggregation into its constituent units
is called decomposition. This modelling primitive allows composition of components into a
new aggregated component or decomposition of an abstract component into its parts. The
stepwise refinement method [Wirth 71] is based on this aggregation/decomposition concept.

Abstracting the commonalities among a collection of units into a new conceptual unit sup-
pressing detailed differences is called generalization. Refining a generalized unit into a unit
incorporating details is called specialization. For example, the conceptual entity "employee"
is an abstraction of secretaries, managers, technical staffs, etc.  This modelling primitive
allows the development of generic components that can be refined in many different ways.

Parameterization is a component development technique in which components are adapted
in many different ways by substituting the values of parameters which are embedded in the
component. It allows codification of how adaptation is made within a component. The Ada
generic is one example of parameterization.

The FODA method applies the aggregation and generalization primitives to capture the
commonalities of the applications in the domain in terms of abstractions.  Differences be-
tween applications are captured in the refinements. An abstraction can usually be refined
(i.e., decomposed or specialized) in many different ways depending on the contexts in which
refinements are made.  Parameters are defined to uniquely specify the context for each spe-
cific refinement.  The result of this approach is a domain product consisting of a collection of
abstractions and a series of refinements of each abstraction with parameterization. When-
ever a new refinement (i.e., a refinement that is not already included in the domain product)
is made, the context in which the refinement is made must be defined in terms of
parameters before it is incorporated into the domain product.  Therefore, in the FODA meth-
od, a domain product is not the end-product; it expands and evolves through application.

Understanding what differentiates applications in a domain is most critical in domain anal-
ysis since it is the basis for abstraction, refinement, and parameterization.  The FODA meth-
od focuses on identifying factors that can cause differences among applications in a domain
(both at the functional and the architectural level) and uses those to parameterize domain
products. The concept of parameterization and the types of factors considered in this meth-
od for parameterization are described in the following section.

3.1.2. Product Parameterization
The purpose of parameterization is to develop generic components that can be adapted in
many ways by supplying values to parameters.  This is not a new software engineering con-
cept; it has been implemented in many forms such as subroutines, generics, macros, and
preprocessors. However, these techniques have mostly been applied to code, although
code is not the only software engineering product.  The FODA method applies this concept
to other software engineering products including requirements and design.
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Identifying and understanding "factors" that result in different applications or different imple-
mentations of similar applications in a domain is the basis for parameterization.  The factors
considered in this method for parameterization can be largely classified into commonalities
and differences of:

• The capabilities of applications in a domain from the end-user’s perspective.

• The operating environments in which applications are used and operated.

• The application domain technology (e.g., navigation methods in the avionics
domain) based on which requirements decisions are made.

• The implementation techniques (e.g., synchronization mechanisms used in the
design).

Applications in a domain, although they provide a large set of common capabilities, provide
different sets of capabilities, which make each application different from others.  These ca-
pabilities from the perspective of end-users are modelled as features. Some examples of
features from the window manager domain are tiled and overlapped window layouts, and
listener and real estate window selection modes.  A set of features (e.g., an overlapped
window system with listener mode) from the window manager domain characterizes the ca-
pability of a window manager.  Therefore, features are used to parameterize domain prod-
ucts from the user’s perspective.

It is important to understand the use of the term user in this context. In Section 1.2 a user is
defined as being either a person or an application that operates a system. In this sense the
term user can include the interactive user of a database management system (DBMS), the
developer of an inventory application built on top of the DBMS, or the inventory application
itself. All of these "users" require similar, but slightly varying knowledge of the interfaces to
the DBMS and how to operate it. In a practical sense the scope of the term "user" should be
taken to apply to the "interface" which is of most relevance; the interactive interface, the
application programmer interface (API), or other interfaces.

Applications may run in different operating environments. They may run on different
hardware or operating systems, or interface with different types of devices.  Understanding
the commonalities and differences between the external components with which the applica-
tions interface is essential to abstracting the functionalities of those external components
and defining common interfaces to them.

There are many ways to provide the features desired by the end-users.  Different people
involved in the development can make different decisions, all of which affect how the fea-
tures are implemented.  Requirements analysts select a set of domain technologies and
define internal functions based on the selected technologies.  For example, the choice be-
tween pixel-based and paint-and-stencil imaging models determines what internal functions
the display software should provide.

Designers also see many ways to implement the internal functions defined by requirements
analysts. Considering the hardware and software platforms, the space and time constraints,
the expected transaction volume and frequency, etc., designers make a number of design
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decisions which all affect the formulation of software products.  For example, a decision as
to whether a window system will be implemented based on the kernel-based model or the
client-server model affects the structure of the system.  Various technical factors, from the
perspectives of requirements analysts and designers, that can result in different product
structures (e.g., different functional decompositions or design structure) are defined as
issues and decisions. The issues and decisions, along with features, are used to
parameterize the functional and the architecture models of the domain.

In the development of an application, earlier decisions generally affect the range of deci-
sions that can be made later, as shown in Figure 3-1.  For instance, any prior decisions on
an operating environment may affect the range of architecture models and implementation
techniques that can be selected later.  In the window management domain, for example, a
kernel-based window system might be appropriate in a non-multitasking environment.  The
knowledge of inter-relationships between various development decisions is an important
part of domain knowledge.

Capabilities

Operating Environments

Domain Technology

Implementation Techniques

 
 

Figure 3-1: Types of Development Decisions

3.1.3. Levels of Abstraction
To maximize reusability, the FODA method advocates that applications in the domain be
abstracted to the level where differences between the applications are not revealed.  This
abstraction is accomplished by using the modelling primitives discussed in Section 3.1.1.
The factors that make each application unique are subsequently incorporated into the refine-
ments of the abstractions, but incorporation should be delayed as much as possible. For
example, "x" in Figure 3-2 represents the commonalities of all applications considered in the
domain analysis. As "x" is refined, the information on the context in which each refinement is
made is incorporated into the refinement. Therefore, "x1" and "x2" in Figure 3-2 are more
context sensitive and less reusable than "x."
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Figure 3-2: Model Abstraction

A generic component that captures only the common characteristics of applications in a
domain and, therefore, is free of those "factors" discussed in Section 3.1.2 has a high de-

4gree of reusability because of generality.  However, the "productivity increase" from the
reuse of a generic component may not be as high as the productivity increase from the
reuse of a component that is less generic but addresses specific features of the intended
application, as shown in Figure 3-3.  The FODA method gives the benefits of both ap-
proaches by providing generic components and also refinements of those components at
various levels.  As generic components are refined the factors that make applications unique
are incorporated into the refinements. Reuse of the components can happen at the level that
is most appropriate for an application.

Domain products (i.e., abstractions and refinements) embody a wide range of domain
knowledge. During the domain analysis, the knowledge is collected from various sources
and then organized and represented as domain products.  Some of the important sources of
domain knowledge are discussed in the next section.

3.2. Information Sources

There are several information sources that may be available for a domain analysis, each
with distinct advantages and drawbacks in the types of information it offers. Table 3-1 pro-
vides an overview of information sources to use while gathering information for the domain
analysis.

4The phrase "productivity increase" here refers to the reduction in total software development effort from
applying the component.
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Figure 3-3: Model Reuse

Source Advantages Disadvantages

Textbooks • Good source of domain knowledge, • Reflects only specific author’s
theories, methods, techniques, views
models • May use idealized or biased

models

Standards • Represents standard reference • Model may not be current with new
model for domain technology

Existing Applications • Most important source of domain • Cost of analyzing many systems is
knowledge high

• Can be directly used to determine
user-visible features

• Requirements documents available
for domain model

• Detailed design & source code
show architectures

Domain Experts • Can provide contextual/rationale in- • Experts have different areas of ex-
formation unavailable elsewhere pertise; several experts may be

needed• Can be consultant during DA,
validator of products afterwards

Table 3-1: Domain Analysis Information Sources

As an example of the use of textbooks, in the database domain there are many books de-
scribing the relational theory [Codd 70] that is the basis of many database management sys-
tems. An understanding of the theory is essential to understand the database management
systems. Also, many textbooks describe the principles of different domain-specific tech-
niques, such as hashing and indexing methods.
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In the use of existing applications it should be pointed out that systems should be selected
that are as divergent (or "orthogonal") in functionality as possible, while still being in the
domain. This helps to minimize the number of systems that must be examined. As a general
guideline, at the very least three systems should be used as inputs to the domain analysis.

Domain products are produced through a number of activities. The domain analysis activi-
ties of this method and their inter-relationships are discussed in the next section.

3.3. Activities and Products

The domain analysis process consists of a number of activities and many models are pro-
duced from the process. Table 3-2 summarizes a grouping of the activities into phases, with
the inputs to and outputs from each activity, and shows how the outputs from one activity
are used in other activities.

The models produced from a domain analysis are used to develop applications in the
domain, as depicted in Figure 3-4.  The context model can be used by a requirements
analyst to determine if the application required by the user is within the domain for which a
set of domain products is available.  If the application is within the domain, then the feature
model can be used by the requirements analysts to negotiate the capabilities of the appli-
cation with the users.  The feature model (described in detail in Section 5.1.2) identifies
common (i.e., mandatory), alternative, and optional features. Where the terms relevant to
the features are new or unclear, the domain terminology dictionary contains descriptions of
their meanings. Typically, a data-flow model has been used as a communication medium
between users and developers. However, a data-flow model contains definitions of the inter-
nal functions and does not contain the information that the user needs most, which is a
description of the external, or user-visible aspects of the system.  The feature model is a
better communication medium since it provides this external view that the user can under-
stand.

The entity-relationship model can be used by a requirements analyst to acquire knowledge
about the entities in the domain and their inter-relationships. An understanding of the
domain will help the analyst to deal with the user’s problems.  The analysis can determine if
the functional model, consisting of the data-flow model and the finite state machine model of
the domain products, can be applied to the user’s problems to define the requirements of
the application. If the user’s problems are all reflected in the feature model, then the require-
ments may be easily derived from the models by tracing the features embedded in the
models as parameters.  Otherwise, new refinements of the abstract components may have
to be made. The architecture model is used by the designer as a high-level design for the
application. Again, if the user’s problems are reflected in the feature model, a design may be
easily derived from the architecture model. If the problems are not represented, then the
architecture model should be further refined from the other domain products.

Detailed discussions of the domain analysis activities and models are included in Chapters 4
through 6.
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Table 3-2: A Summary of the FODA Method
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Figure 3-4: Use of Domain Analysis Products in Software Development
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4. FODA Context Analysis

4.1. Purpose

The purpose of context analysis is to define the scope of a domain that is likely to yield
exploitable domain products. In the context analysis phase the relationships between the
candidate domain and the elements external to the domain are analyzed, and variability of
the relationships and the external conditions (e.g., different applications using the domain
and their data requirements, different operating environments, etc.) are evaluated.  The
results of the context analysis, along with other factors such as availability of domain exper-
tise, domain data, and project constraints, are used to scope the domain.

The final results of the context analysis are documented in a context model.  This context
model defines the boundary of the domain, that is, the scope of the domain modelling which
follows the context analysis.

4.2. Model Description

A context model consists of one or more structure diagrams and data-flow diagrams.  A
structure diagram is an informal block diagram in which the target domain is placed relative
to higher, lower, and peer-level domains.  The higher level domains, if any, are those of
which the target domain is a part. If there is no higher level domain, then the types of ap-
plications in the domain should be identified.  The lower level domains (i.e., sub-domains)
are those that are within the scope of the target domain, but are well understood. Previous
domain analysis results or standards are available and, therefore, they will not be included
in the analysis.  Any other domains that interface with the target domain (i.e., peer-level
domains) must also be in the diagram.  More than one structure diagram may be used if
necessary. (An example structure diagram may be found in Figure 7-3 on page 60.)

A data-flow diagram shows data-flows between the target domain and all other domains and
entities with which the target domain communicates.  (See Figure 7-4 on page 61 for an
example.) One thing that differentiates the use of data-flow diagrams in domain analysis
from other typical uses is that the variability of the data-flows across the domain boundary
must be indicated in the diagram.  This may be done with a set of diagrams, each describing
a different context, or with one diagram with the text describing the differences.  If the varia-
tions are due to different features of the applications in the domain, the variations must be
described in terms of the features.  (Context modelling and features modelling may have to
be performed in parallel or iteratively until the context model becomes complete, at which
time detailed feature modelling may start.)  Textual descriptions of the functionality and
reusability of the target domain, the objectives of the domain analysis, and any standards
that are relevant must also be included in the context model.

The sub-domains that need not be included in the analysis are also identified in the diagram.
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These are the domains for which the results of previous domain analyses exist as stan-
dards, reusable components, and/or domain models. These sub-domains should be identi-
fied as lower-level domains in the structure diagram and as external entities in the data flow
diagrams. Standards or other domain analyses results that apply to the external entities
should be identified in the diagram.

For each entity in the context model, the following information should be included in the
document.

• Name of the entity (an object on the diagram).

• Description of the function for a functional entity or description of the contents
for a data entity.

• Applicable standards and/or reusable components.

• Description of variability, including the range, frequency, and binding time (i.e.,
compile-time, activation-time, and runtime) of the variation (see Section 5.1.2
for details of feature binding times).

• Other items describing the attributes of the entity.

• Source for the information or for additional information.

Other information which would be appropriate to include in the context model would be the
applicable or related features from the feature model produced during the domain modelling
phase (see Section 5.1). The incorporation of this information into the context model implies
either an "iterative" or a parallel approach to the context analysis and domain modelling
phases, since in a strictly sequential approach the feature model would not be available to
the context analysis (it is developed in the next phase of the analysis). The feature model
information may be useful in determining the scope of the analysis.

4.3. Model Usage

One of the necessary conditions for building reusable software is an understanding of the
different contexts in which the reusable software is to be incorporated or operated. This un-
derstanding of the extent of contextual differences, and when and how frequently the con-
text changes, will help software developers decide if software that meets the requirements
can be built and, if so, what to parameterize and how to structure software so that it can be
adapted to different contexts as needed. For example, in an environment where there are
many different types of terminals, the user interface part of the software should be built so

5that it can handle different terminals without modification. In order to be able to build com-
mon user interface software, the commonality and differences of terminals (to abstract and
define common interfaces) and their usages (to build common utilities) must be understood.

The understanding of contextual variations will help rescope the domain.  If there is a high
degree of variation in context and the contextual differences cannot be abstracted away, it

5Precisely this capability is provided by the UNIX "curses" and "termcap" facilities.
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might indicate either that there is no commonality, or that the domain needs to be rescoped
to a narrower domain.

The context model defines the scope of a domain analysis. Other subsequent analysis acti-
vities, such as feature modeling, functional modelling, entity-relationship modelling, and ar-
chitecture modelling, are all performed within the scope defined in the context diagram.  The
data-flow context diagram is used as the starting point in the functional modelling.

4.4. Process and Guidelines

To yield domain products that can be exploited in other applications, the scope of a domain
should be decided considering: (1) the commonality of the domain in existing systems, (2)
the availability of information on the domain and domain expertise, (3) the expected usages
of the domain products, and (4) the project resources and constraints.  Keeping these fac-
tors in mind, the activities for context analysis and domain scoping are identified as follows:

1. Make an initial "cut" of the target domain and the domain boundary.  (It is as-
sumed that a candidate domain for context analysis is already selected.)
Identify the existing applications in the domain or applications using the
domain. Identify information sources and any previous works on the domain
including domain analysis products, standards, and books and technical
papers.

2. For each application identified for the analysis, describe the context of the
candidate domain in terms of structure diagrams and data-flow diagrams.
Verify that the domain has a clear physical boundary within the application. If
there are any previous domain analysis results or standards, determine if they
address each application adequately; record problems, if any.

3. Understand the usage of the target domain, any recent technical develop-
ments that will affect the domain, and any future plans or requirements.

4. Analyze the variability of the usages and the contexts of each use.

a. Based on the features of applications in the domain, begin the defini-
6tion of a feature model (See Section 5.1 on the feature model).

b. Identify the environmental differences (i.e., operating environments).

c. Identify any assumptions (sub-domains and standards) on which the
target domain is based.

d. Construct a common model by classifying specifics of the contexts into
general categories so that each context can be defined as an instan-
tiation of the common model.

5. Evaluate the model against the applications used in the analysis and incor-
porate the variability information (i.e., how the common model can be adapted
to each context) into the context model.

6Again, use of the feature model in the context analysis phase requires iterative or parallel development of the
context and domain models.
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6. Evaluate the commonality of the applications, feasibility of constructing
domain products, and potential uses and benefits of the domain products.

7. Estimate the resources for the subsequent activities considering availability of
domain experts, previous work, and maturity of the domain.

8. Document the context model; define the terms used in the model in the
domain terminology dictionary.

9. Validate the model against at least one application that is not included in the
analysis. Also, have the model reviewed by domain experts.  Record the vali-
dation results in the context model documentation.

Within the scope defined from the context analysis, the problems pertaining to the domain
are analyzed and modelled in the domain modelling phase.  Chapter 5 describes domain
modelling activities.
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5. FODA Domain Modelling

For the domain that is scoped in the context analysis, commonalities and differences of the
problems that are addressed by the applications in the domain are analyzed in the domain
modelling phase and a number of models representing different aspects of the problems are
produced. The domain modelling phase consists of three major activities: feature analysis,
entity-relationship modelling, and functional analysis.  Each of these activities is described in
the following sections.

5.1. Feature Analysis

5.1.1. Purpose
The purpose of feature analysis is to capture in a model the end-user’s (and customer’s)
understanding of the general capabilities of applications in a domain. Typically, data-flow
diagrams have been used by software developers as a medium to communicate require-
ments with customers (and also with designers).  However, data-flow diagrams include
definitions of software functions for satisfying customers’ needs and, often, such information
is not of interest to customers.  Customers need to know the essential capabilities of the
application that satisfy their needs.  These capabilities might include features such as:

1. services provided by the application,

2. performance of the application,

3. hardware platform required by the application,

4. cost,

5. others

Our approach to analysis focuses on an end-user perspective of the functionality of applica-
tions, that is, the "services" provided by the applications and the operating environments in
which the applications run.

Since the primary interest is in the commonality of a family of applications, the feature model
should capture the common features and differences of the applications in the domain.  The
features in the feature model will be used to generalize and parameterize other models.

5.1.2. Model Description
Features are the attributes of a system that directly affect end-users. The end-users have to
make decisions regarding the availability of features in the system, and they have to under-
stand the meaning of the features in order to use the system.  Examples of such features
are the call-forwarding and call-transfer features of a telephone switching system, and the
automatic and manual transmission features of an automobile, as illustrated in Figure 5-1.
When a person buys an automobile a decision must be made about which transmission
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7feature the car will have, as it is not possible to have both.

Car

Transmission Horsepower Air conditioning

Optional
feature

Mandatory
features

Alternative
features

Manual Automatic
Air conditioning requires Horsepower > 100

Composition rule:

Manual more fuel efficient

Rationale:



Figure 5-1: Example Showing Features of a Car

A feature model represents the standard features of a family of systems in the domain and
relationships between them.  The structural relationship consists of, which represents a logi-
cal grouping of features, is of interest. Alternative or optional features of each grouping
must be indicated in the feature model. For example, the automatic and manual features are
alternatives and the air-conditioning feature is optional, as indicated in Figure 5-1 by small
arcs and circles, respectively.  Each feature must be named distinctively and the definition
should be included in the domain terminology dictionary.

Alternative features can be thought of as specializations of a more general category. For
example, the automatic and manual transmission features can be thought of as specializa-
tions of the general "transmission" feature.  The term "alternative features" is used (rather
than "specialization features") to indicate that no more than one specialization can be made
for a system.  However, the attributes of (i.e., the description made for) a general feature are
inherited by all its specializations.

Composition rules define the semantics existing between features that are not expressed in
the feature diagram.  All optional and alternative features that cannot be selected when the

8named feature is selected must be stated using the "mutually exclusive with" statement. All
optional and alternative features that must be selected when the named feature is selected
must be defined using the "requires" statement.

7At the time of the publication of this report a car was announced which had both types of transmission
available simultaneously. This is a common evolution of features over time and is discussed in Section 8.2.1.

8The syntactical form and automated tool used to process this statement is presented in Section 7.3.2.6.
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Selection of optional or alternative features is not made arbitrarily. It is usually made based
on a number of objectives or concerns that the end-user (and customer) has. For example,
in the case of buying an automobile, if the buyer’s only concern is fuel efficiency, then he
might want to take the manual transmission feature and the smallest available engine, per-
haps a diesel if that option is available. However, if the user’s concern is fuel efficiency and
maintenance cost, and if the maintenance cost of a diesel engine were much higher than
that of a gasoline engine, then he might want to take the gasoline engine option instead,
even if the fuel efficiency is not as good as that of a diesel engine. A set of issues and
alternative decisions in the selection of optional and alternative features is captured using
the form in Appendix A.5.

One of the fundamental trade-offs a system architect makes is deciding when to "bind" or fix
the value of a feature, as this will have an impact on the final architecture.  For the purpose
of generalization and parameterization of the software architecture, alternative and optional
features are grouped into three classes based on when the binding of those features (i.e.,
instantiation of software) is done, as depicted in Figure 5-2.

Compile-time features: features that result in different packaging of the software and,
therefore, should be processed at compile-time.  Examples of this
class of features are those that result in different applications (of
the same family), or those that are not expected to change once
decided. It is better to process this class of features at compile-
time for efficiency reasons (time and space).

Load-time features: features that are selected or defined at the beginning of execution
but remain stable during the execution.  Examples of this class of
features are the features related to the operating environment
(e.g., terminal types), and mission parameters of weapon systems.
Software is generalized (e.g., table-driven software) for these fea-
tures, and instantiation is done by providing values at the start of
each execution.

Runtime features: features that can be changed interactively or automatically during
execution. Menu-driven software is an example of implementing
runtime features.

Documentation of a feature model includes: a structure diagram showing a hierarchical
decomposition of features indicating optional and alternative features, definition of features,
and composition rules of the features. Each feature definition should include the information
stated in the sample form in Appendix A.1.

5.1.3. Model Usage
The feature model serves as a communication medium between users and developers. To
the users, the feature model shows what the standard features are, what other features they
can choose, and when they can choose them.  To the developers, the feature model in-
dicates what needs to be parameterized in the other models and the software architecture,
and how the parameterization should be done.
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Figure 5-2: Processing of Features

Other domain models and the software architecture should be defined around the standard
features. Alternative and optional features must be incorporated into the models and ar-
chitecture, but should always be parameterized with the corresponding features so that in-
stantiation of the models and architecture can be done easily.

5.1.4. Process and Guidelines
The feature analysis process consists of: (1) collecting source documents, (2) identifying
features, (3) abstracting and classifying the identified features as a model, (4) defining the
features, and (5) validating the model. The various sources of domain information are dis-
cussed in Section 3.2; each of the remaining activities is detailed below.

5.1.4.1. Feature Identification
Application features fall largely into four categories (as shown in Figure 3-1 on page 24):

• operating environments

• capabilities

• domain technology

• implementation techniques

Of these features, this method focuses on the analysis of features related to application ca-
pabilities. (This limitation is due to the experimental nature of the current project. The feature
analysis process outlined in this section can be extended to cover other types of features.)
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Features related to capabilities can further be categorized into three areas (according to
[Myers 88]):

• functional features

• operational features

• presentation features

Functional features are basically "services" that are provided by the applications. Features
of this type can be found in the user manual and the requirements documents. Operational
features are those that are related to the operation of applications (again, from the user’s
perspective); that is, how user interactions with the applications occur. User manuals are a
good source for this type of features.  The last category, presentation features, includes
those that are related to what and how information is presented to the users. User manuals
and requirements documents usually provide information for this type of features.

The feature categories discussed above may not be complete; they are provided as a guide-
line for identifying features. Other types of features that are appropriate should also be in-
cluded in the model.  More experience in domain analysis supports the definition of a more
complete set of feature categories.

The identified features should be named and any naming conflicts should be resolved.
Synonyms for the features should also be recorded in the domain terminology dictionary.

5.1.4.2. Feature Abstraction, Classification, and Modelling
Once the features of all applications used in the analysis are named and defined and any
naming conflicts are resolved, then a hierarchical model should be created by classifying
and structuring features using the consists-of relationship. Whether or not each feature is
mandatory, alternative, or optional should be indicated in the model. Each feature in the
model should be defined. The description should also indicate whether it is a compile-time,
an activation-time, or a runtime feature. This can be determined based on when and how
frequently the adaptation will be made.

The classification of the features can be used in the components construction for
modularization and for selection of appropriate development techniques.  If the domain is
well-defined and is expected to remain stable, a preprocessor or an application generator
development technique might be appropriate to process the compile-time features.  A table-
driven approach which has been used in many terminal handlers (e.g., UNIX "termcap" files)
might be appropriate for the activation-time features, and an interactive menu might be ap-
propriate for the runtime features.

5.1.4.3. Model Validation
Whether the feature model correctly represents the features of the domain must be vali-
dated by domain experts and against existing applications.  The domain experts who have
been consulted during the analysis should not be selected for validation so as to avoid any
possible bias.  Also, at least one application that was not included in the analysis should be
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used in the validation to determine the generality and applicability of the model. If available,
a new set of several applications would provide a better validation, but the ability to do this
will depend on the maturity of the domain and financial constraints.

5.2. Entity-Relationship Modelling

5.2.1. Purpose
The entity-relationship model captures and defines the domain knowledge that is essential
for implementing applications in the domain.  The domain knowledge is either contextual
information which gets lost after the development, or is deeply embedded in software and is
often difficult to trace.  Those who maintain or reuse software have to re-acquire this knowl-
edge in order to understand the problems that the application addresses.  Therefore, the
purpose of entity-relationship modelling is to represent the domain knowledge explicitly in
terms of domain entities and their relationships, and to make them available for the deriva-
tion of objects and data definitions during the functional analysis and architecture modelling.

5.2.2. Model Description
The entity-relationship modelling technique in the FODA method is an adaptation of Chen’s
method [Chen 76] with semantic data modelling ( [McLeod 78], [Borgida 84]). Chen’s nota-
tion and method are used, with the adoption of the generalization and aggregation concepts
from semantic data modelling that are used as predefined relationship types.  Therefore, the
basic building blocks of the model are entity classes and consist-of and is-a relationships.
Entity classes represent abstractions of objects in the application domain and the relation-
ship types is-a and consists-of represent generalization and aggregation relationships, re-
spectively. Aggregation relationships specify composition structures between entities while
generalization relationships specify commonalities and differences among entities.  Any re-
lationship types other than these two relationship types that are important for the domain
may be defined using the form in Appendix A.4 and used in the model.  The definitions of
the is-a and the consists-of relationships are also included in Appendix A.4.

Relationships between entities are described graphically using [Chen 76].  An example of
the entity-relationship diagram notation may be found in Figure 7-5 on page 62. Other infor-
mation pertaining to each entity may be described textually following the sample form found
in Appendix A.2.

More than one attribute may be defined for an entity. Also, attributes may be defined
separately from entities and may be used in an entity definition.  In this case, the values of
an attribute used in the entity definition must be within the range of the attribute value speci-
fied in the original definition. Attributes used in the relationships must always be defined
prior to use.  An attribute should be defined using the form in Appendix A.3.
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5.2.3. Model Usage
The primary use of an entity-relationship model is to support analysis and understanding of
the domain problems and to derive and structure domain objects used in the applications
development. Entities are units of domain information that have to be processed and/or
maintained by the systems. They, with their definitions of attributes, can be used to identify
domain objects, which are then used to define data-flows and data-stores in the functional
model. They may also be used for object-oriented development.

The consists-of and is-a relationships generally are used to identify the compositions of
domain objects and the commonality and differences among domain objects, which will lead
to the development of domain products that are general and parameterized. For example,
an inheritance structure may be derived from is-a relationships in an object-oriented devel-
opment. Also, the consists-of relationships group together entities that are integrated. This
information can be used to identify consistency and integrity rules and to derive data-stores
definitions in the functional model.  Often, integrated and related data are accessed together
in applications and need to be kept in the same area.

5.2.4. Process and Guidelines
Construction of a system starts by perceiving entities and their relationships which may be
derived from existing systems or from a hypothetical system.  (An entity is either a physical
entity or a concept.)  Then, the perceived entities and their relationships are named, and
each entity is characterized by its properties (attributes), some of which (for example, name)
may be used as identifiers.

One of the heuristics used in the development of an entity relationship model is that entities,
relationships, and attributes are usually English nouns, verbs, and adjectives, respectively.
When analyzing the existing systems, nouns and verbs that repeatedly appear in the docu-
mentation are collected, synonyms are identified, and the meanings of the words in the con-
text of the domain are clarified. The nouns and verbs that appear repeatedly in the docu-
mentation and are considered important conceptual elements for the domain are captured in
the model as entities and relationships, respectively. This is a heuristic, however, not an
algorithm, and should be treated as such. It is limited in its usefulness, and should not be
applied indiscriminately.

The perceived reality may contain names which are not within the scope of the target
domain: they are eliminated from the model.  The concepts captured in the model constitute
a major part of the domain terminology (which is recorded in the domain terminology
dictionary).

The entities in the model are classified into homogeneous sets (classes or types) of entities;
homogeneous in the sense that all entities in the same class have some properties in com-
mon. Each entity classified as such is named as an entity type, which is a unit in conceptual
model construction.  The generalization relationships identified during the classification will
lead to is-a hierarchies. Other relationships existing between the entities, including the ag-
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gregation shown by consists-of relationships, are also classified into relationship types, and
these types are defined between the entity types. Properties of the entities in a class are
classified into attribute types, and for each attribute type, possible values are defined. The
entity-relationship model contains an abstraction of the target domain.

Of the many relationships that exist between entities, structural relationships are the most
interesting, specifically is-a (generalization) and consists-of (aggregation). These relation-
ships are important because they are critical to understanding similarities and differences.
The entity-relationship analysis of the domain will primarily focus on these relationships; any
other relationship types that are important for the domain may be added in the entity-
relationship model, but only after they are defined using the form in Appendix A.4.  The is-a
and the consists-of relationship types are predefined and the definitions are also included in
Appendix A.4.

5.3. Functional Analysis

5.3.1. Purpose
Functional analysis identifies functional commonalities and differences of the applications in
a domain. It abstracts and structures the common functions in a model from which appli-
cation specific functional models can be instantiated or derived with appropriate adaptation.

The feature model and entity-relationship model are used as guidelines in developing the
functional model. The mandatory features and the entities are the basis for defining an ab-
stract functional model.  The alternative and optional features are embedded into the model
during refinement. Also, any factors (other than features) that cause functional differences
between the applications are defined as issues and decisions, which are used in the refine-
ments for parameterization.

5.3.2. Model Description
Specifications of a functional model can be classified into two major categories: specifica-
tions of functions and specifications of behavior. The specification of functions describes
the structural aspect of an application in terms of inputs, outputs, activities, internal data,
logical structures of these, and data-flow relationships between them. The specification of
behaviors describes how an application behaves in terms of events, inputs, states, con-
ditions, and state transitions.  (The sample domain analysis presented in Chapter 7 employs
the Statemate Activitycharts and Statecharts to describe the functional and the behavioral
aspects, respectively.)

An abstract model of the functionality of domain applications is defined at the top level. (Any
difficulty in abstracting the functionality as a model might indicate that the selected domain is
too broad.) During refinement of a model, there may be cases where an entity of a model
can be refined in more than one way. For instance, in the case where there is more than
one domain technology that can be selected, the selection of a particular technology can
result in functional specifications that are different from others. The analyst must understand
the implication of the selection of each technology and make a decision that is best for the
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application. The major decision points and the alternative decisions at each decision point
are captured as issues and decisions by the FODA method. (This concept is also supported
by [Conklin 88], [Baldo 89], and [Bailin 89].) The rationale for each decision and any
constraints or requirements derived from the decision are also recorded. The information
that is collected for each issue and the related decisions is shown in a sample form found in
Appendix A.

One thing that differentiates the FODA method from other domain analysis methods is
parameterization through the use of features and issues/decisions. As an abstract model is
refined, alternative and optional features are embedded into the model. Any issues raised
during the analysis and the resolutions (i.e., decisions) of the issues are also incorporated
into the model. There are generally three ways to incorporate the features and
issues/decisions into the model:

1. By developing separate components (refinements) for every alternative, as il-
lustrated by Case 1 of Figure 5-3.

2. By developing one component, but with parameterization for adaptation to
each alternative, as illustrated by Case 2 of Figure 5-3.

3. By defining a general component and developing each alternative as an in-
stantiation of the general component (with an inheritance
mechanism) [Borgida 84], as illustrated by Case 3 of Figure 5-3.

Case 1

A

B

C A

B

D

A

B

C

D

Feature A1 Feature A2

if A1

if A2

Case 2

Activity A1:
is-a AA
perform C

Activity AA:
perform A, B

Activity A2:
is-a AA
perform D

Case 3

or

Activity AA:

perform A,B
if A1 perform C
if A2 perform D

 
 Figure 5-3: Parameterization: An Illustration

Most of the requirements analysis techniques available today do not support the above ap-
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proaches, and it is especially difficult to extend them to support the second and third ap-
proaches. Statemate conditions are used in the example domain analysis to parameterize
specifications as illustrated by Case 2.

5.3.3. Model Usage
The primary uses of this model are to (1) understand the domain problems and (2) reuse
models in the requirements analyses.  The model represents the functionality of applications
from an abstract level down to the detailed level. The decomposition structure and rationales
associated with decompositions will help analysts understand the domain problems. Also,
analysts can reuse the model at the level where it is most appropriate for the given appli-
cation.

5.3.4. Process and Guidelines
The notion of generalization/specialization is adopted to define generic functions and ob-
jects, and specifications of each system are made as specialization of the generic functions
and objects.  What to generalize/specialize can be determined as follows:

• Alternative features in the feature model may be used to identify generic func-
tions. Alternative features are specializations of a more general feature, and
the functionality corresponding to the general feature is defined as a generic
function which is inherited by the functions implementing the alternative fea-
tures.

• The generalization/specialization relationships (i.e., is-a relationships) of the
entity-relationship model can be used to identify generic objects and the func-
tionality associated with the generic objects.

• The context model identifies the external entities and the commonalities among
the same type of entities, which can be used to define
generalization/specialization of functions.

• Alternative domain technologies, with which different requirements decisions
are made, can be a basis for defining generic functions.  A generic function is
defined based on the commonality of the alternatives, which is inherited by the
functional definitions of specific technologies.  This information is obtained by
analyzing and comparing applications in the domain during the function anal-
ysis phase.

The process of functional model development takes both re-engineering and reverse engi-
neering approaches to specify the functionality of existing applications.  If requirements doc-
uments are available, the functional models are re-engineered from the documents. Other-
wise, the functional models are reverse engineered from the design documents and/or code.
In either case the functional models are specified using data flow and state transition
modelling techniques (which is done in the Statemate notation for the feasibility study).  The
steps of the process are:

1. Gather and study the documents (e.g., requirements documents) describing
the functionality of the applications. See if there is any standard model or if a
model emerges as standard in the domain.
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2. Produce data flow and finite state machine representations of the functional
and behavioral aspects of each application used in the domain analysis.
While naming objects in the representations, be certain that the semantics of
the names are consistent; resolve any conflicts.

3. Based on the understanding of the models, see if there is enough common-
ality among the models to warrant a general model. If a general model cannot
be readily abstracted because of structural differences, check if the entity-
relationship model can serve as a basis for object-oriented modelling [Coad
89]. Check if the feature model or other real-world models such as the queu-
ing network model, feedback control model, or decision support systems
models can be used to represent the problem.

4. Refine the general model until all the problems represented in the application
specific models are addressed. Embed features in the model to parameterize
or to define alternative decompositions.

5. Check if all features are properly addressed in the model; document the map-
pings between features and the objects of the model.

6. Have the model validated by domain experts. Demonstrate the applicability of
the model by using the model to describe an application not included in the
analysis.
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6. FODA Architecture Modelling

6.1. Purpose

The purpose of architecture modelling is to provide a software "solution" to the problems
defined in the domain modelling phase. An architecture model (also known as a design
reference model) is developed in this phase, and from it detailed design and component
construction can be done.

A primary goal of the FODA method is to make domain products reusable.  In the devel-
opment of an architecture model, architecture layering is done so that reuse can occur at the
layer appropriate for a given application and the impact of technical and requirements
changes to the model can be localized.

A FODA architecture model is a high-level design of the applications in a domain. Therefore,
the FODA method focuses on identifying concurrent processes and domain-oriented com-
mon modules, and on allocating the features, functions, and data objects defined in the
domain model to the processes and modules. Many other implementation decisions still
have to be made to complete the design.

6.2. Model Description

An architecture model must address the problems defined in the domain in a way that the
model can be adapted to future changes in the problems and technology. This adaptation is
achieved through architecture layering where:

• An architecture is defined at various levels of abstraction so that reuse can oc-
cur at the level appropriate for a given application.

• Packaging of domain functions and objects is done separately from packaging
of implementation techniques so that:

• Implementation decisions can be separated from the packaging of func-
tionality.

• The reusability of modules (both application-oriented and generic) can be
increased.

• The impact to the rest of the system arising from changes in implemen-
tation techniques can be localized.

Many decisions are made during the design of a software system.  An application is decom-
posed into a collection of programs (i.e., processes) that can be compiled separately and
executed in parallel.  (A finite state machine model from the domain modelling phase pro-
vides the necessary information.) Each process must be designed as a hierarchy of mod-
ules with the allocation of functions and data objects defined in the data-flow model.  Then,
domain-oriented common modules that can be used across the applications must be identi-
fied to increase the reusability.  Implementation decisions must be made in which various
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implementation techniques such as communication and synchronization mechanisms, proc-
ess scheduling methods, database management systems, and programming languages are
selected.

A layered architecture of systems may be defined as shown in Figure 6-1.  This is based on
the types of design decisions discussed above and the general sequence of making those
design decisions.  The top, or domain architecture layer, is represented as a model showing
the concurrent domain-processes and inter-connections between them. This model is called
a process interaction model in the FODA method and is represented using the DARTS
(Design Approach for Real-Time Systems) methodology [Gomaa 84].  The layer below that,
the domain utilities layer, shows the packaging of functions and data objects into modules
and the inter-connections between. This is called module structure charts and is
represented using the Structure Chart notations [Yourdon 78] following the DARTS method-
ology. Domain-oriented modules that are common across the applications in the domain
are also identified. For example, in the window management system domain (discussed in
Chapter 7), window management library domain utilities (such as Xlib) are used for devel-
oping window applications, and these utilities are identified in this layer.  The common
utilities layer contains modules that can be used across different domains.  Modules for
inter-process communication and synchronization (e.g., a message queue implementation,
an event handler) and for data management belong in this layer.  Any utilities provided by
the operating systems and programming languages, such as, semaphores and the Ada run-
time environment, belong in the bottom systems layer. Classifications similar to Figure 6-1
may also be found in [Shlaer 90] and [Neighbors 87].

Domain Architecture Layer

Domain Utilities Layer

Common Utilities Layer

Systems Layer

Figure 6-1: Architectural Layers

This methodology focuses on the top two layers, that is, the development of an application
domain-oriented architecture. It is a high-level design where the packaging of functions and
objects in software modules is the primary objective. Concurrent tasks are identified, and

48 CMU/SEI-90-TR-21



communication and synchronization between the tasks are defined using the DARTS nota-
tion. Each task is designed as a sequential program by allocating application specific func-
tions and data using the Structured Design. No decision as to the implementation of com-
munication and synchronization mechanisms is made at this level; they should be made
later to complete the design.

Components in each of the architectural layers above can further be layered based on the
levels of "conceptual models" one can define for the component.  For example, in the win-
dow management system domain, a layered design can be developed as shown in Figure
6-2. The layer at the lowest level, a virtual device driver, provides a conceptual model in
terms of the pixel level operations hiding peculiarities of particular devices from the rest of a
system. The next layer above the virtual device driver provides a conceptual model at the
level of "graphics" where different types of lines and shapes are defined and the operations
to create, move, and destroy those are provided. The layer above the graphics layer is de-
fined based on the concept of windows and window operations: a window has a shape,
contains information, has display attributes, etc.; operations for creating windows, displaying
contents, and changing attributes are provided. The top level layer contains different types
of windows (typically called widgets) including push buttons, scroll bars, menus, forms, etc.,
which can be composed to create more complex windows (i.e., composite windows).

Types of Windows

Windows (Core Class)

Graphics

Virtual Device Driver

Figure 6-2: Window Management Subsystem Design Structure

The following should be noted from the above example.

• Each layer is defined based on a "conceptual model."

• A conceptual model at a low level is generic across more domains than the
models above (i.e., each layer is a specialization of the layer below).

Designing a module based on a conceptual model is important because the model provides
a basis for defining objects and operations and for verifying the design. Also, with an under-
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standing of this model, users can easily relate this model to the problems they have and
decide if the module implementing the model will solve their problems.

Although low-level models are generic and reusable across more domains than high-level
models, the productivity increase from the reuse of high-level models is higher than that of
low-level models (as explained in Section 3.1.3).  Therefore, in the architecture modelling
many levels of layering should be done to increase both productivity and reusability.  How-
ever, program performance might be degraded with many layers and an optimal decision
should be made considering all these factors.

As with other models discussed in the previous sections, features and other design deci-
sions are embedded in the architecture model for parameterization.  Also, many design de-
cisions (e.g., selection of an implementation technique) are made during the design, which
can result in different implementations.  These decision points are captured as issues and
possible alternatives are captured as decisions in the architecture model as discussed in
Section 5.1.2.  The types of information collected on design issues and decisions are the
same as those collected on requirements issues and decisions (see Section 5.1.2 for
details).

Packaging of functions and objects into modules must be done considering the processing
time of the features (i.e., compile-time, activation-time, and runtime) that each module imple-
ments. Packaging of compile-time features must be done so that modules implementing
each compile-time feature can be identified uniquely from a collection of alternative modules
or be instantiated from general ones.  There must be a module for activation-time features
that collects values of the activation-time features at the start of execution, verifies the cor-
rectness, and stores values for other modules to access during the execution of the appli-
cation. For runtime features, a module(s) allowing interactive selection of the features during
execution must be included in the design.

6.3. Model Usage

An architecture model can be used to:

• Make a detailed design and identify opportunities for reusable components.

• Provide a reference model for future systems development and for evolution of
existing systems.

• Ascertain reusability of candidate components.

• Provide a model for managing (classifying, storing, and retrieving) software
components in a domain.

• Provide a framework for tooling and systems synthesis.

An architecture model for a domain serves many different purposes. It is in essence a stan-
dard reference model for building applications in the domain, and thus may be used as a
framework for building new systems, as a means to educate potential system engineers in
that application domain, or as a template for the construction of domain-specific reusable
components.
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6.4. Process and Guidelines

FODA uses the DARTS methodology to develop an architecture model with some exten-
sions for parameterization of modules as illustrated in Figure 5-3.  (The DARTS method-
ology uses the Structured Design [Yourdon 78] technique to design module structures.
Therefore, the Structured Design technique will be considered a part of the DARTS
methodology.) The DARTS methodology is summarized here; details can be found in
[Gomaa 84].

• Real-time software consists of a set of synchronously or asynchronously com-
municating tasks. Each task is a sequential program.

• From data flow diagrams, concurrent tasks are identified using the following cri-
teria:

• dependency on I/O devices
• time-criticality
• computational requirements
• functional cohesion
• temporal cohesion
• periodicity

• A Task Communication Module (TCM) handles all cases of communication
among tasks.  Two types of TCMs are supported in DARTS: message commu-
nication modules for loosely or tightly coupled message communication, and in-
formation hiding modules for data pool or data store.

• A Task Synchronization Module (TSM) is typically the main module of a task,
controlling the synchronous behavior of the task. A task may wait for one or
more synchronizing or message queue events.

• Each task is designed using the Structured Design technique.

A process for developing an architecture model is defined below based on the DARTS
methodology, the architecture layering concept, and the parameterization concept. The
process is:

1. Identify major concurrent processes from the data-flow diagrams and finite
state machine diagrams. A Statemate representation of the finite state ma-
chine identifies parallel states which indicate concurrency.

2. Identify other concurrent processes using the criteria provided by DARTS.

3. Allocate the functions and data to each process and check if all the functions
and data in the data flow diagrams are properly allocated to the processes.

4. Define process interactions using the DARTS notation.

5. Design each process using the Structured Design method producing structure
charts. (Other design methods may be used instead of the Structured Design
method.) Each process consists of a TSM (as the main module), which in-
vokes TCMs and application modules. Application modules include abstract
data types, mathematics libraries, device interface modules, and other infor-
mation hiding modules. In designing application modules apply the layering
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concept as shown in Figure 6-2.  Also, define modules for activation-time and
runtime features.

6. Parameterize modules for the compile-time features (as shown in Figure 5-3)
so that they may be instantiated for different selections of compile-time fea-
tures.

7. Specify the components identified in the structure charts.  Specifications of
each module should include operations and parameters, a high-level internal
logic, and allocation of features and functions.  Ada PDL [IEEE 89] may be
used for this purpose.
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7. Application of Domain Analysis to Window
Management Systems

The previous four chapters have presented the underlying concepts and specific products of
the FODA method.  This chapter presents a comprehensive example of their application.

As a sample domain window manager software, a sub-domain of window management sys-
tems software, offers a fairly complex set of requirements for domain analysis and is an
application area that should be familiar to most users of the method.  This domain features:

• Availability of many examples of implementations.

• Relevant literature and documentation, both user and developer.

• Availability of domain expertise to those performing the example analysis.

This chapter presents an application of the FODA method to the window manager software
domain. An overview of window manager capabilities is presented, followed by presenta-
tions of each of the domain analysis products produced in the course of the study. Due to
the size of even this sample domain, only excerpts of some of the models are discussed.
For the complete documentation of the analysis, see Appendices B-G.

The example covers the first two phases of the FODA method: context analysis and domain
modelling. The context analysis section focuses on the window manager context diagram
and structure diagram. (However, not all of the steps outlined in Section 4.4 were performed
due to resource constraints.) The domain modelling section describes the window manager
entity-relationship diagram, the different components of the feature model (feature diagram,
composition rules, and "issues and decisions") and the automated features tool, and the
functional behavior model’s data flow and state transition models.  Although the architecture
modelling phase of the method was not applied to this sample domain because that portion
of the methodology had not been completed, the results of the first two phases demonstrate
a successful application of much of the method.

7.1. Definition of a Window Management System

A window management system (often called simply a window system) is a type of interactive
user interface that enables users to work with multiple separate applications at the same
time. This is achieved through the use of a desktop metaphor, in which each process is
associated with a graphical window, which is visually analogous to a paper or document on
a physical desktop. Users may switch back and forth between different applications much as
a person at a desk might choose between different documents on a desktop in the course of
a day. A window management system provides the functionality to create and manipulate
this display of multiple processes.

The functionality of a window manager is central to a window management system, and is to
help the user manage screen "real estate," i.e., the portions of the screen that are available
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for displaying useful information.  The window manager helps the user to do this by provid-
ing various operations on windows that are, again, taken from the desktop metaphor.

For example, the window manager allows users to make (create) and discard (destroy) win-
dows. Users can relocate (move) windows to different positions on the screen just as they
might move documents on a desktop. Some window managers allow users to stack (expose
and hide) windows on top of one another.  Most window systems extend the desktop
metaphor by allowing users to change the size of windows (resize) and to change (iconify)
the windows into icons, an alternate form of the window that requires little space. With these
operations available the user is in full control of the appearance of the workstation screen
and may effectively manage several different tasks.  Figure 7-1 shows a conceptual view of
where the window manager is positioned relative to the "outside world." It accepts user in-
puts from the pointer (mouse) and the keyboard, communicates with the appropriate inde-
pendent client programs, and sends the output to the display [Peterson 86].

Despite the fact that the window manager in some sense has control of the user interface, it
does not directly influence the applications that run in the windows; it simply routes the input
and output to and from the application. Often a window manager has no knowledge of the
contents or activities of an application within a window. As an example of this, applications
are often responsible for maintaining the contents of their own windows. The window man-
ager will notify an application that its display has been damaged (i.e., by having a previously
obscured portion revealed), but the application is responsible for redrawing it. Even if the
window manager does preserve obscured portions of windows for the applications, it is
simply saving graphic data.

There are many different implementations of window managers and some have important
differences, but there is still significant commonality. Some window managers do not allow
windows to be stacked on top of one another (tiled systems), while most others do

9(overlapped systems). Other window managers do not support icons, or have more subtle
differences in the way the common operations work. Nonetheless, virtually all window man-
agers support creating, destroying, moving, resizing, and other window operations.

An important aspect of window management systems is the distinction between the
capabilities of the window system and the presentation style, or set of conventions, by which
the window system operates. Often applications are written under a window system where a
consistent appearance, style, and interface, referred to as a "look and feel", are considered
more important than the functionality of a single application. The window manager is an im-
portant part of the "look and feel" of a window system, primarily supplying the "feel."  Of the
window managers that are currently available, many have been written to run under X win-
dows, since X allows a "user-defined" window manager that is separate from the rest of the
window system. The following list of window managers displays a wide range of function-
ality, all implemented with the X window system.

9In fact, a window manager may support virtually any window layout policy the designer wishes to impose.
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Figure 7-1: Function of a Window Manager

• uwm: Universal Window Manager

• olwm: Open Look Window Manager

• wm: Andrew Window Manager

• mwm: Motif Window Manager

• wmc: CMU Computer Club Window Manager

• twm: Tom’s Window Manager

• gwm: Generic Window Manager

In other systems the window manager is integrated into the window management system
and has no individual name, as is the case in the Macintosh, SunView, the Symbolics win-
dow system, and others.
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7.1.1. Window Manager Capabilities
In order to be able to discuss the capabilities of window managers it is necessary to review
some of the basic functionality.  Some of the operations which are typically, but not neces-
sarily, provided by a window manager are:

• Create and Destroy

• Move and Resize

• Iconify and Deiconify

• Hide, Expose, and Circulate

• Change Focus

• Refresh

For the purposes of explaining the FODA method in the context of the window manager, the
examples will be centered around the window manager Move operation for windows. Move
is a mandatory operation, and must be present in all window managers. This restriction in
scope of the presentation of the analysis is done to limit the amount of new concepts and
terminology which must be introduced. Move was chosen because it is one of the most
complex operations a window manager must perform; as a result it has a wide variety of
feature variations.  The full set of features and other results for all window manager opera-
tions may be found in Appendices C-G.

Figure 7-2 depicts several common window manager features that pertain to the Move oper-
ation. These are defined below.

constrainedMove: A window may be constrained so as to move only
horizontally or vertically, rather than in any direc-
tion.

eraseBefore/eraseAfter: The image of a window is erased either before
the move operation begins, or after it ends.

exposeAfterMove: After the move operation ends, the window is
10placed at the top of the stacking order (in an

overlappedLayout system).

ghostFeedback/opaqueFeedback: Either a "rubber-banded" outline of a window
(ghost), or the entire window image (opaque) is
displayed while the position of the window is
being changed.

moveIcon: This feature provides the ability to move an icon
to a new location.

objectAction/actionObject: (also called select-then-operate or subject-verb)
This feature determines if the user must first se-
lect an object to operate on (a window) and then

10The order of overlapping sibling windows that determines which one lies visually on top and which on the
bottom. Circulating, exposing, and hiding windows changes the stacking order. The first window in the stacking
order is the window on top.
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an action to perform on it (objectAction), or
vice versa.

overlappedLayout/tiledLayout: Either windows may overlap (or be overlapped
by) other windows, or no windows are allowed to
overlap (like tiles).

partiallyOffScreen: A window is allowed to be pushed partially (but
not entirely) off the screen.

realEstateMode/listenerMode: (also called point-to-type or follow-the-pointer)
The realEstate feature is a paradigm where
the keyboard input focus is always at the window
in which the pointer is currently "in." In
listenerMode (also called click-to-type) the in-
put focus is set to be a particular window by a
mouse click, regardless of the position of the
pointer.

zapEffect: Optional "ghost" lines which temporarily "flash" to
follow a window or icon from its original position
to its new position after a move operation.
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Figure 7-2: Sample User Features Found in Window Managers
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7.2. Scoping the Window Management System Domain

The first step in performing any domain analysis is to gather sufficient information about the
domain. The following sources were used as inputs to the window manager domain anal-
ysis:

Domain experts: people with extensive knowledge of user interfaces and window man-
agement systems, and experienced users of these systems.

Window systems: user experience primarily with features of X10/uwm, VMS Windows, and
SunView, with additional experience with X11/uwm, Macintosh, Andrew,
Symbolics, OSF/Motif, and NeWS

Domain literature: books, articles, surveys, manuals, and evaluations of many different
window managers and window management systems

It is essential to first thoroughly understand the proposed domain area in order to properly
scope the domain. A lack of sufficient domain knowledge can lead to choosing domains that
are too large, have relatively little commonality, or do not have clean, logical boundaries to
their scope.

After an initial review of the window management system domain, it became clear that an
analysis of the entire domain was inappropriate for a small-scale feasibility study. It also
became clear that the window manager portion was central to the user-visible functionality
of the window management system. Further study of window managers confirmed this, and
the window manager itself became the scope of the feasibility study domain analysis.

Given a well-defined domain, at this stage of the process it is most useful to have access to
any previously done surveys or commonality studies of applications in the domain. Such
surveys do exist for many domains. In the window management domain, a paper by Brad
Myers, "A Taxonomy of Window Manager User Interfaces" [Myers 88], provided an excellent
starting point for further research, as well as an initial bibliography. Given a basic back-
ground in the domain, other references could be researched for additional information be-
fore having discussions with domain experts.

A significant advantage in collecting information about external, user-visible aspects of win-
dow managers came from the ready availability of multiple implementations of window man-
agers. While this availability of systems is not the case in some other domains, there are
always "existing systems" of some kind, even if they are manual systems and/or procedures.

In terms of the FODA method, scoping of the domain to be analyzed is done in the context
analysis phase. The two primary products of this phase are the structure diagram and the
context diagram. The purpose of these diagrams is to clearly delineate what the scope of
the analysis is to be.  It is useful for the domain analysts to return to these diagrams
throughout the analysis as they help to avoid unnecessary and wasteful digressions.

The structure diagram (shown in Figure 7-3) shows the position of the window manager
within the entire domain of window management systems.  The window manager is shown
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in bold outline in the upper left corner. The purpose of this diagram, informal though it may
be, is to separate the logical concept of the window manager from many other related items
with which it is often confused. For example, a window manager is not a graphical user
interface (GUI), although it may provide the "feel" portion of a GUI’s "look and feel".

The context diagram (shown in Figure 7-4) is a standard top-level data flow diagram of the
interfaces a window manager has with the other significant parts of a window management
system. This particular view of the role of a window manager within a window system was
one of the products of the early context analysis process, and was not taken from any out-
side source. In the context diagram the functionality of the window manager is separated
from the closely related functions of the input manager, the process manager, and the dis-
play manager. The input manager converts the "raw" user input events into higher-level
events for the window manager.

The implications of this arrangement are that the window manager is not responsible for
interpreting combinations of keys and button presses, dealing with application processes, or
maintaining the integrity of the screen. The window manager is responsible for allowing the
user to manipulate the shape, size, and position of windows. These other (admittedly closely
related) activities are not part of the window manager functionality and are therefore not part
of the window manager domain analysis. While the context diagram serves as a good cut at
the boundaries of the domain analysis scope, the process of refining the scope continues
throughout the analysis.

7.3. Domain Model

The domain model (as explained in Chapter 5) describes the elements of systems in a given
application domain from the point of view of a "problem space"; that is, what the systems in
that domain must do. It complements the architecture model (i.e., the solution space) which
describes various alternative ways in which systems may be built to meet the requirements
of the domain model and the operating environment.

The domain model comprises the following:

• entity-relationship model

• feature model

• functional model

• domain terminology dictionary

The domain terminology dictionary is used to standardize the terminology that describes the
domain. The dictionary is especially critical in a new and rapidly evolving domain, such as
window management systems, where no clear standard may exist. As an example, even the
term "window" is non-standard, also being referred to as "view," "canvas," and "wob" in dif-
ferent window system documents. The dictionary results from information gathering in all of
the analysis phases. The dictionary resulting from the window manager domain analysis has
approximately 300 entries including many synonyms due to the evolving window system
nomenclature. This dictionary is included in this report as Appendix B.
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Figure 7-3: Structure Diagram: Relationship of Window Managers
to Window Management Systems

The following three sections describe the three components of the domain model for the
window manager domain analysis: the entity-relationship model, the feature model, and the
functional model.

7.3.1. Entity-Relationship Model
The entity-relationship model used in the domain analysis consists of three parts:

1. entity-relationship diagram

2. attributes of the entities

3. constraints on the entities and relationships

Figure 7-5 is the entity-relationship diagram for a window manager, showing (in a different
way from the context diagram) its relationships with the other significant entities of window
systems in general. These entities are (as shown in Figure 7-5):
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Figure 7-4: Context Diagram: Major Data Flows of Window Management
Systems

• window

• main window

• process

• icon

• screen

• pointer

Many of the relationships shown in the diagram are straightforward, such as those between
11the pointer, the screen, a window, and the application process(es). Some of the other

relationships require further explanation.  By its nature this diagram is a generalization of the
way many window systems are structured, and therefore the degree to which it maps direct-
ly to the model of a specific implementation varies. The diagram uses the is-a and
consists-of relationships defined in Section 5.1.2 to show that both an icon is-a window, and

12a "main window" is-a window. The diagram calls out these two entities as specializations

11The 1-to-many relationship between the screen and the pointer is a maximum. While this is almost always a
1-to-1 relationship in practice, the emerging window manager technology indicates that this may change.

12A main window is a window displayed in its normal, full form, i.e., not an icon.

CMU/SEI-90-TR-21 61



screen

pointer

has

is a

has connects
to

is a

has

has

has
cursor picture

for

1 m

1

m

m child1 parent

main
window process

windowicon

1 1

1

1

m

n

Figure 7-5: Window Manager Entity-Relationship Diagram

of a generic window entity because they are closely related, and they are fundamental to
window managers. While some implementations explicitly view icons as a type of window
(such as X Windows), others do not. However, the fact that a particular implementation does
not treat icons as a type of window does not invalidate the application of the entity-
relationship diagram to that implementation.

Another relationship depicted in the diagram is the one-to-many, parent-child, has relation-
ship among main windows, which describes a parent-child hierarchy. While this is not al-
ways the approach used in actual implementation, it is useful to describe the behavior when
one window manager operation can affect a group of seemingly independent windows.

The attributes associated with these entities are listed in Appendix A. The attributes could
be used in designing the data structures of the implementations of these entities, much as
they are traditionally used in database schema design. One assumption that is made in the
listing of these attributes is that inheritance of attributes will take place across is-a relation-
ships. As a result, attributes belonging to the generic window entity are not also listed as
belonging to icons or main windows.

In addition to the entity-relationship diagram and the attributes, during the course of the
domain analysis it became clear that there are many (typically unstated) constraints on the
operation of a window manager.  The entity-relationship model can include these constraints
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as well, even though they are not expressible through the entity-relationship diagram.
These constraints include:

• There is at most one input focus.

• There is one root window that has no parent window.

• The root window exactly covers the screen.

• The pointer cannot leave the area of the screen.

• Events propagate from the source window to ancestor windows until they are
handled.

• Child windows exist only while their parent windows do.

Some constraints are specific to the presence of certain features in the window manager.  In
such cases the entity-relationship model may be parameterized by the feature model, as are
many other models of the domain model.

If the windowLayout is overlappedLayout then:

• A child window must be in front of its parent window.

• Only sibling windows may overlap.

• Child windows are clipped by their parent window.

• The position and size of child windows within their parent window can be fixed.

7.3.2. Feature Model
The purpose of the feature model is to describe the "requirements space" of known window
managers. The model should encompass as many window managers as is feasible, to in-
clude the fullest range of features and feature values.  A specific implementation of a win-
dow manager, such as the OSF/Motif mwm, may be thought of as an instantiation of the
feature model, or a set of feature values which describes its particular capabilities. Being
able to describe a proposed system to a potential customer in terms of the possible features
which can be provided simplifies the requirements elicitation process, and can clarify the
various implicit trade-off decisions which must be made.

The components of the feature model are as follows:

Feature diagram: A graphical And/Or hierarchy of features

Composition rules: Mutual dependency (Requires) and mutual exclusion
(Mutex-with) relationships

Issues and decisions: Record of trade-offs, rationales, and justifications

System feature catalogue: Record of existing system features

The following paragraphs discuss each of these parts of the feature model in detail.
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7.3.2.1. Feature Diagram
The feature diagram, shown in Figure 7-6, is an and/or tree of different features. Optional
features are designated graphically by a small circle immediately above the feature name,
as in partiallyOffScreen. Alternative features are shown as being children of the same
parent feature, with an arc drawn through all of the options, as is the case in
windowLayout. The arc signifies that one and only one of those features must be chosen.
The remaining features with no special notation are all mandatory.

The line drawn between a child feature and a parent feature indicates that a child feature
requires its parent feature to be present; if the parent is not marked as valid, then the child
feature for that system is in essence "unreachable."  For example, if the windowLayout
were selected to be overlappedLayout, then the feature tiledColumns would be
"unreachable" for that specific system, since its parent tiledLayout would not be valid.
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Figure 7-6: Features for the Window Manager Move Operation

To illustrate the use of the feature diagram Figure 7-7 shows a comparison of the move
operation features for two different existing window managers: X10/uwm and SunView. The
selected optional and alternative features are highlighted in the diagram with boxes. For ex-
ample, notice that the feature partiallyOffScreenWindows (abbreviated on the
diagram) is present in X10/uwm, but not present in SunView. Thus, when a SunView win-
dow is moved so that its border touches the edge of the screen, the window will stop moving
in that direction. In X10/uwm the window will continue to move, disappearing off the screen,
until the cursor hits the screen edge and stops the window from moving completely off.

This type of comparison information, which may be available in this graphical form or in the
catalogue form shown in Appendix C, makes the task of evaluating and comparing different
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systems straightforward. Certain types of information are more difficult to obtain from such a
display, such as knowledge of invalid feature combinations or underlying issues and
rationales. These types of information are discussed in the next two sections.
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Figure 7-7: Comparison of Move Operation Features in X10/uwm and SunView

7.3.2.2. Composition Rules
Features are related to one another primarily through the use of composition rules, which
are a type of constraint on the use of a feature. Composition rules have two forms: (1) one
feature requires the existence of another feature (because they are interdependent), and (2)
one feature is mutually exclusive with another (they cannot coexist).

The textual representation for these rules is as follows:

<feature1> (‘requires’ | ‘mutex-with’) <feature2>

An example of a composition rule used in the window manager domain is:

moveIcon requires hasIcons

In Section 7.1.1 these window manager capabilities were defined. Composition rules may be
obvious, given an understanding of the domain. In this case a window manager cannot have
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the moveIcon feature unless the system hasIcons. While this is clear, in large system
definitions these interdependencies can be lost in the overall complexity.  Also, some com-
position rules are less immediately obvious, but are based on common sense. For example:

opaqueFeedback mutex-with moveErasure:
If the entire window image is moved, then there is nothing left in the previous posi-
tion to erase.

zapEffect requ ires ghostFeedback:
If the entire window image is moved (i.e., opaqueFeedback), then there is no
window to draw the final zap lines from.

zapEffect requires eraseAfter:
If the old window image were erased before the move operation, then there would
be nowhere to draw the final zap lines from.

ghostFeedback requires moveErasure:
If ghostFeedback is used, then the old window image must be erased at some
point, either before or after. Thus one of the two alternatives of moveErasure
must be selected.

exposeAfterMove requires overlappedLayout:
An expose operation can only be done in an overlapped system.

These composition rules relating the features were often derived from experience with sys-
tems that have these features. For example, observing the interaction of ghostFeedback
and moveErasure makes the composition relationship clear.

7.3.2.3. Issues and Decisions
A record of the issues and decisions that arise in the course of the feature analysis must be
incorporated into the feature model to provide the rationale for choosing options and select-
ing among several alternatives.  As an example, the interactiveFeedback feature has
two different alternatives: ghostFeedback and opaqueFeedback. It is impossible to se-
lect one or the other without having access to the same information the original designer
had. However, if the feature model contains a record of the original rationales, it is a simple
process. The following excerpt from the "Issues and Decisions" record attached to the

13interactiveFeedback feature demonstrates the usefulness of this information.

13The forms for recording this information (presented in Appendix A) were modified for use with the window
manager example.
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Issue: Resource consumption/Feedback clarity

Description: interactiveFeedback is the way the window manager shows the user the
current size or shape of a window being moved or resized.

Raised at: interactiveFeedback

Decision: ghostFeedback

Description: An outline and/or grid of the window is drawn and
moved with the cursor to the new location, where
the complete window is drawn (and the old window
erased).

Rationale: Provides sufficient user feedback for positioning
and resizing, and requires significantly fewer
resources than redrawing the entire image often
enough to follow the moving cursor.

Decision: opaqueFeedback

Description: The window manager moves or resizes the entire
original image of the window.

Rationale: Opaque moving and resizing allows the user to see
immediately what the window will look like in the
new position or shape, and is typically used on fast
displays where the act of updating a potentially
complex window display is feasible.

If the user knows enough about the trade-offs between the two options, then an informed
decision based on the user’s hardware environment (in this example) may be made.

7.3.2.4. System Feature Catalogue
In the course of gathering information for the domain analysis, one useful source is experi-
ence with existing systems in the domain. This is not always an option, as some domains
may have a history of largely manual methods, but in the case of window managers there
are many existing systems. It is important to record the features and feature values of actual
existing systems (even in the case of manual methods) to allow for later modelling of the
systems in terms of their features. An excerpt of the system feature catalogue generated for
the window manager domain analysis is given in Table 7-1 for the Move operation features.
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System/Feature X10/uwm VMS Windows SunView Mac Windows

moveWindow Move yes Move yes

constrainMove no no yes no

moveIcon yes yes yes no

moveErasure after before after

exposeAfterMove yes yes no yes

zapEffectMove ∗ no no no

interactiveFeedback ∗ ghost ghost ghost

partiallyOff yes yes no yes

abortMove no no Cancel no

selectOrder actionObject objectAction objectAction objectAction

Table 7-1: Window Operation Functionality

Certain window managers have already incorporated into their software some of the range
of variation in the domain, making it possible for the user to specify certain features of the
appearance and functionality at activation-time or runtime. This is specified in Table
ref{Catalogue} by an asterisk ("∗"). The X11/twm window manager profile file offers a num-
ber of user-settable options, many of which relate directly back to features offered in the
feature model. Some of these features are illustrated in Table 7-2.

In the full feature catalogue tables in Appendix C, as well as in Table 7-1, the following
conventions are used:

• <Name>: This is the name used for this feature on this system (i.e., Move or
Cancel).

• "yes/no": This feature does/does not exist on this system.

• <blank>: No information has been collected for this feature on this system.

• "∗": This feature is bound at either activation-time or runtime, but not at compile-
time.

• "--": This feature is inapplicable to this system (a composition rule with anoth-
er feature excludes it).
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Profile Option Feature

AutoRaise {"application"} exposeAfterMove

DontMoveOff no partiallyOffScreen

DontIconifyByUnmapping unmappedDeiconifiedIcons

IconManagers {"application"} iconBox

NoHighlight no highlightInputFocus

NoRaiseOnDeiconify no exposeAfterDeiconify

NoRaiseOnResize no exposeAfterResize

NoTitle no titleBars

NoTitleHighlight no titlebarHighlight

OpaqueMove opaqueFeedback

StartIconified createIconified

WarpCursor warpToWindow

Zoom 10 zoomEffect

Table 7-2: X11/twm Profile Options Related to Features

7.3.2.5. Model Validation
The feature model may be used to predict behavior in a given scenario based on the feature
values of a specific system. The results of having two (or more) specific systems perform an
operation may be compared with the results predicted by the feature model instantiations for
those systems. Any variation between the predicted and actual results should indicate prob-
lems with the system descriptions of one or both systems.

An example is a comparison of X10/uwm and SunView in performing a move operation on
an existing window at the bottom of the stacking order, and trying to push it off the screen
while it is overlapped by another window. While the scenario is simple, it can involve a sig-
nificant number of features.  The results of the scenario (given by listing features from the
catalogue for each system) are as follows:
X10/uwm:

• actionObject: Command is selected before the window.

• opaqueFeedback: Feedback is an image of the window itself.

• partiallyOffScreen: Window moves partially off the screen.

• exposeAfterMove: Window is exposed after the move.

• realEstateMode: Window becomes the input focus after move due to the
pointer position being above the window.
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SunView:

• objectAction: Window is selected before the command.

• ghostFeedback: Feedback is an outline of the window.

• no partiallyOffScreen: Window kept inside screen.

• no exposeAfterMove: Window still partly hidden.

• listenerMode: Window becomes the input focus before the move by clicking
to select it.

Due to the choices made by the designers of X10/uwm and SunView, and the runtime selec-
tions made in this example for X10/uwm (opaqueFeedback and realEstateMode), the
results are direct opposites of one another in terms of the possible feature values.

7.3.2.6. Automated Tool Support for Features
Manually creating a feature model that correctly describes a complex domain is a large ef-
fort; validating that model in some way is still more difficult. As part of the feasibility study for
performing useful, "real-world" domain analyses it became clear that manual methods would
not suffice, even in a relatively small example. Because the FODA method is new, and no
existing automated tool support was available, a prototype tool was developed using Prolog.
The primary function of the tool is to validate the usefulness of the feature analysis ap-
proach, and secondarily to establish some baseline requirements for future automated sup-
port for the method.

The tool is separate from the information about the domain being analyzed, so that it may be
applied to any domain. The features are stored in a Prolog fact base, along with the com-
position rules and other related information.  The tool supports definition of existing or pro-
posed systems by allowing arbitrary sets of feature values to be specified and checked. The
composition rules relating the features are enforced, as are standard rules about complete-
ness of the model.

Given a set of user-specified (i.e., "marked") features, the automated features tool presently
performs the following functions:

• Checks for all features that are specified, but which may not be reachable.

• Marks a feature as "valid" if it is either:

• marked "valid",
• mandatory,
• not marked "invalid", or
• required by a "valid" feature.

• Marks a feature as "invalid" if it is mutually exclusive with a "valid" feature.

• Produces an error if a feature is marked as both "valid" and "invalid."

• Enforces the proper selection of alternatives:

• at least one alternative must be marked "valid."
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• more than one alternative cannot be "valid."

14The features stored in the fact base have six pieces of information attached to them (see
Appendix A). These are illustrated with the example of the exposeAfterMove feature be-
low.

Name: exposeAfterMove

Description: Expose the window at the end of a move operation

Type: optional

Parent: moveWindowOp

Rules: requires overlappedLayout

Source: SunView window system experience

The fact as it is stored in Prolog format is as follows:

daFeature(exposeAfterMove,
’Expose the window at the end of a move operation.’,
optional,
moveWindowOp,
[requires(overlappedLayout)],
’SunView window system experience’).

In addition to the general feature model, specific systems (i.e., sets of feature values) may
also be stored; as they are developed they may be periodically checked for consistency. To
illustrate this consistency checking process, the following small example of an inconsistent
system description will suffice.

An imaginary (and certainly incomplete) system is specified with a set of only three feature
values:

• zapEffect
• eraseBefore
• opaqueFeedback

While the actual automated features tool will report in detail the incompleteness of the
model, for now the focus is only on the consistency of the feature model or lack thereof. It is
already clear from the discussion of the sample composition rules in Section 7.3.2.2 that
these particular features are not compatible, and in fact a run of the features tool on the
above "system" definition produces a report including the following messages:

• ghostFeedback is selected due to zapEffect.

• eraseAfter is selected due to zapEffect.

• moveErasure is selected due to ghostFeedback.

14The issue and decision information should be stored in the Prolog automated features tool with the feature,
but currently is not.
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• moveErasure is invalid due to opaqueFeedback.

• More than one alternative of interactiveFeedback has been selected- only
one is allowed.

In this case the features tool attempted to make the description complete where possible,
without knowing that doing so would lead to inconsistencies.  For example, it added
ghostFeedback and eraseAfter, as well as others. There are several inconsistencies
here: both ghostFeedback and opaqueFeedback have been selected (i.e., more than
one alternative); both eraseBefore and eraseAfter have been selected; moveErasure
has been marked as both valid and invalid. While the system will continue to discover other
errors, only one is necessary to point out that the system description is incorrect. As is the
case with many similar systems (notably compilers), further messages may provide little ad-
ditional information.

7.3.3. Functional Model
The functional model of the domain analysis identifies functional commonalities of the ap-
plications in a domain.  The model also seeks to identify and compare differences between
these related applications.  The model abstracts and represents these common/differing
functions so that a specific application can be viewed as an adaptation or refinement of the
model.

The development of the functional model depends on the features and entity-relationship
models. A high-level, abstract functional model is derived from the common features and
entities of these models.  Features from the feature model parameterize the functional
model through refinement by representing alternative and optional functions. While the fea-
ture model is used to communicate between the requirements analyst and the user (see
Figure 3-4), the functional model together with the feature model support communication
between the analyst and the software designer.  The user’s choice of features provides ac-
tual values for the parameters of the functional model.

The example domain analysis uses Statemate Statecharts and Activitycharts to represent
the functional model [Harel 89]. As was the case in the Prolog automated features tool, no
existing tool adequately handles the requirements necessary for modelling common func-
tionality and handling parameterization through features.  Statemate offers a good, general-
purpose specification and documentation tool, though the application of the tool to support
domain analysis requires tailoring.  Through tailoring to handle domain analysis, Statemate
can:

• Capture commonality

• Statecharts show all states and transitions for specifying a behavioral
view.

• Activitycharts show common functions and data flows (input and output)
for specifying a functional view.

• Parameterize differences through features
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• Statecharts show alternative/optional features as conditions for modifying
behavior.

• Activitycharts show optional data flows and provide textual descriptions.

While Statemate can support many aspects of functional modelling, it does have some
weaknesses (presented in Chapter 8).  In addition to its use as a modelling tool, the experi-
ence of applying Statemate to the functional modelling task can provide guidance in estab-
lishing specific requirements for a domain analysis support tool, as is discussed in Sections
8.1.3 and 8.2.

7.3.3.1. Specification of Behavior − State Transition View
The behavioral view of a system can be specified by characterizing the system in terms of
states and state transitions. A state represents a conceptual mode of a system.  For the
window manager domain, examples of the states include window creation, operation selec-
tion, and window moving.  A transition causes transfer from one state to the next in re-
sponse to an event, such as the window manager user’s selecting an operation to perform
on a window, or the user’s deleting a window.  In addition, transitions can be affected by
conditions; the value of the condition will determine whether the transition will take place.
The Statemate tool captures this behavior in a Statechart, as shown in Figure 7-8.

State_1 State_2

Event_1

Event_2[On_Condition]

(In this example, the arrow into State_1 indicates that the system starts in
State_1. A transition to State_2 will occur when Event_1 takes place.  The sys-
tem will transition back to State_1 when Event_2 occurs and the boolean
On_Condition is true.)

Figure 7-8: Statechart Illustrating Behavioral View of a System

A domain analysis of window managers must capture the behavior exhibited by all of the
systems studied in the domain analysis and represent that behavior. In the window man-
ager domain analysis features that are common to all window managers appear on
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Statecharts as mandatory states.  Alternative and optional features are handled through
conditional transitions and optional states.

For the window manager domain, the behavior includes information on the state of windows
controlled by the window manager and on the state of actions of the user of the window
manager. Figure 7-9 shows the parallelism of these two views of the behavior of systems in
the domain.  The two parallel states show:
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Figure 7-9: Statechart Illustrating Behavioral View of Window Manager

1. WINDOW_X - the behavior of the system in response to user operations.  This
side of the state chart shows the state of a given window on which the user
may choose to operate.

2. OPER_BUILDER - the behavior of the system to support user operations.
Once a user creates a window, he can perform operations on that window.

The functional analysis focussed again on the move operation to illustrate the application of
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the method.  Within the state called WINDOW_X are substates in which a window operates.
The states labeled AVAILABLE and WINDOW_SETUP are the window states that exist be-
fore and during creation of the window, respectively.  Following window creation, the window
goes into an IN_USE_X state.  The IN_USE_X state illustrates the manner in which a fea-
ture can parameterize the functional model.  When the window enters IN_USE_X, it is al-
ways in state FOCUS_WNDW indicating it is the input_focus. This mandatory feature is
common to all window managers.  However, the transition to MAIN_WINDOW is conditional;
this optional state is parameterized via the hasIcons condition. This parameter is derived
directly from the feature model; the has_icons feature is optional among window manag-
ers and parameterizes the functional model.

The state transitions (events) within the WINDOW_X behavioral view of the window man-
ager are also derived from features of the domain.  For example, each state transition under
the WINDOW_X state occurs in response to an operational feature (e.g., create, destroy,
move, resize). Table 7-3 illustrates this correspondence.  The features shown in the table
from the feature model are represented as events prompting a state transition in the func-
tional model.

Feature Event

create create

destroy destroy

move move_selected

resize resize_selected

iconify iconify
Table 7-3: Features and State Transitions

The states under OPER_BUILDER are also related to specific features of a user’s inter-
actions with window managers.  The basic operational cycle shown in this state consists of:

1. Creating a window.

2. Selecting a new operation (which may be to perform an operation on that win-
dow, perform an operation on another window, or create a new window).

3. Performing the operation.

The feature model gives explicit guidance in the specification of the user’s interactions.  For
each state transition that a window may undergo in WINDOW_X there is a corresponding
transition in the user’s interaction with the window manager shown in state

15OPER_BUILDER. For example:

Creating a window
• WINDOW_X: The create event causes a transition to the

WINDOW_SETUP state to perform the create operation.  When

15For clarity, the Statechart does not show these transitions to the level of detail necessary to explicitly show
each transition.  Only those for creating and moving a window are shown.
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this operation is complete, the setup_done causes a transition
to IN_USE_X.

• OPER_BUILDER: When the user performs a create operation
the create event causes a transition to the CREATE_WNDW
state. From this state, the setup_done will cause the transition
out of the CREATE_WNDW state.

Moving a window
• WINDOW_X: The move_selected event causes a transition to

the MOVING state. When the user completes the move, the
move_complete event causes a transition back to the state
IN_USE_X (signified by the connector labelled "1" in Figure
7-9).

• OPER_BUILDER: The move_selected event causes a transi-
tion to the INITIALIZING state within MOVE_OP.  The states
subsequent to INITIALIZING perform the move operation.  The
move_complete event (shown in detail in Figure 7-11) causes a
transition out of the MOVE_OP state.

The feature model also provides alternative and optional states for user interaction with the
window manager.  One feature of all window managers is the order in which a user selects a
window and an operation to perform on that window.  The alternatives are:

• objectAction: The user first selects the window, then chooses an operation.

• actionObject: The user selects an operation, then designates the window.

The conditional transition following the setup_done event in Figure 7-9 demonstrates the
use of these features to parameterize the functional model.  The obj_act condition will cause
a transition to the WNDW_SELECT state first, in accordance with the objectAction fea-
ture. After selecting the window, the feature is completed with the transition to the
OP_SELECT state to allow the user to select the operation.  When actionObject is the
feature, the not obj_act conditional causes the states to be OP_SELECT first, then
WNDW_SELECT in accordance with actionObject.

A detailed study of the common features of the move operation (Figure 7-10) will provide a
further understanding of the application of the FODA method in establishing the functional
model. This example will also show the interaction between the behavioral and functional
aspects of the model.  The basic move operation consists of three successive states, com-
mon to all window managers:

1. Initializing: obtaining current window position and other parameters and con-
straints

2. Dragging: moving the window or a ghost image of the window to an interim
position

3. Repositioning: redrawing the entire window and establishing the new location
of the window, both visually on the screen and in internal tables.

Transitions between these states occur in response to specific events, such as the comple-
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MOVE_OP

INITIALIZING DRAGGING REPOSITIONING

/MOVE_SELECTED

INIT_COMPLETE[OPAQUE] or IMAGE_DRAWN
POINTER_MOVE[OPAQUE]

DROP/tr!(FINAL_POS)

WNDW_DRAWN[OPAQUE and not FINAL_POS]

Figure 7-10: Statechart Illustrating Basic Move Behavior

tion of initialization (event init_complete) or the movement of the pointer (event
pointer_move).

One significant difference between window manager move operations is highlighted by the
parameterization for the opaqueFeedback vs. ghostFeedback features.

• Under opaqueFeedback, each movement of the pointer causes the entire win-
dow to be redrawn.  The behavioral view must show this feature as causing a
loop from dragging to repositioning and back to dragging.  This loop causes the
window to be redrawn with each pointer movement as shown by the transition
from DRAGGING to REPOSITIONING that occurs on event pointer_move
when the opaque condition is true.

• For ghostFeedback, the looping occurs entirely within the dragging state −
the window is not redrawn until it is dropped via event drop in its final desired
new location.

The combination of other move-related features leads to a more detailed view of the move
operation in Figure 7-11.  This refinement of the more abstract functional view of Figure 7-10
shows the effect of both alternative and optional features.  These features become
Statemate conditionals in the figure within each of the higher level states.  The following list
shows the result that selecting certain features has on transitions:

• INITIALIZING: The opaqueFeedback feature is parameterized as the opaque
condition, which is mutually exclusive with the ghost condition.  This condition
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Figure 7-11: Statechart Illustrating Details of Move Behavior

causes a transition from the INITIALIZING state when the event init_complete
occurs. In order to support the feature, this parameterization causes the win-
dow manager to bypass other substates in INITIALIZING that erase the window
or draw a ghost.

• INITIALIZING: The eraseBefore and eraseAfter features are also
parameterized. The condition erase_before causes a transition to erase the
window before drawing a ghost; erase_after bypasses this state.

• DRAGGING: The opaqueFeedback and ghostFeedback features
parameterize this state.  The condition not opaque (i.e., ghost) will support the
ghostFeedback feature, causing an internal loop to drag the ghost image with
each pointer movement.  The opaque condition causes a transition to the
REPOSITIONING state with each pointer_move event, causing the window to
be completely redrawn in a new position every time the pointer is moved.

• REPOSITIONING: The zapEffect feature parameterizes the OVERLAPPED
substate within REPOSITIONING.  The condition zap will support this feature
by causing a transition to DO_ZAP_LINES.  When the zapEffect condition is
not true, for example when the opaqueFeedback feature is in effect due to the
composition rule relating the two discussed in Section 7.3.2.2, the transition will
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be to the DRAW_WNDW state, to redraw the window in a new position without
zap lines.

This detailed functional model can be instantiated for any valid combination of features to
specialize the model for a particular window manager.  This type of specialization will be
presented in Section 7.3.3.3.

7.3.3.2. Specification of Function − Data Flow View
The functional view of the functional model is based on data flow techniques. Among the
factors that this view establishes are:

• functions of applications in a domain

• their inputs and outputs

• internal data and data structures

• data flow between functions

As with the behavioral view, the features and entity relationship models play a significant
role in the functional view of the domain.  The features can lead to mandatory, optional, and
alternative functions or data flows:

The constrainedMove feature will determine whether window motion can be
restricted in the horizontal or vertical direction during a move. This will affect the
functionality of converting new pointer position to new window position.

Features will also be a factor in characterizing the data inputs and outputs:

The windowShape feature will parameterize the data flow to a function to draw a
window; a window manager that supports non-rectangular windows will have a
data flow different from that of a window manager supporting only rectangular win-
dows. The functional view must be general enough to accommodate either value,
rectangular or non-rectangular, for this feature.

The entity-relationship model and attributes provide guidance in specifying the data struc-
tures for the functional view:

The window geometry attribute defines the window size, shape, position, and, if
applicable, stacking order position.  The functional view of the window manager
must capture this information in its internal data structures.

For the window manager domain, the functional view includes functions such as setting the
position of the pointer, drawing a new window, and erasing a window. These functions must
input data to obtain the positions of windows and the pointer, window shapes and sizes, and
other parameters and constraints.  The functional view also defines the relationship between
functions:

Drawing a window requires input from the pointer position to determine the new
window position and from the window data to determine the window’s size and
shape; the function must output the new window position to a window data store.

The Statemate tool handles these functional specification requirements through the Ac-
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tivitychart. Boxes on the activity chart shown in Figure 7-12 represent functions, while flow
lines represent data flows.  In addition, the activities are controlled by a control activity,
namely the WNDW_CONTROLLER shown in Figure 7-12 and in detail in Figure 7-9. During
each state of Figure 7-9, the system performs one or more specific activities.  The man-
datory, alternative, and optional features of the behavioral view will control exactly which
activities are performed for a specific window manager.  This separation of concerns be-
tween control (behavioral view) and function (functional view) is directly supported by
Statemate.

PARAMETERS

PRIMITIVES

WINDOW_DATA

WINDOW_ID

SET_CURSOR_LOC

ERASE_WNDW

DRAW_WNDW

DRAW_LINE

DRAW_BOX

DRAW_CURSOR

WNDW_CONTROLLER

INPUT_MGR

SCREEN_MGR

POS_CONSTRAINTS

TARGET_PICTURE

GHOST_DATA

INT_CURSOR_LOC

WINDOW_ID

WNDW_SHAPE_POS

NEW_WNDW_POS

POINTER_POSITION

SCREEN_UPDATES

SCREEN_UPDATES

SCREEN_UPDATES

SCREEN_UPDATES

SCREEN_UPDATES

Figure 7-12: Activitychart Illustrating Functional Specification

The sequence of activities performed by several window manager states will illustrate the
purpose of the Activitychart.  During the MOVE_GHOST state of DRAGGING in the move
operation (Figure 7-11), the window manager must determine the new position of the ghost
as well as its shape and size.  Figure 7-13 shows the activities and data flows for this state,
as a subset of those of Figure 7-12.
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PARAMETERS

INPUT_MGR

SCREEN_MGR

MOVE_GHOST_PRIMI

WINDOW_DATA

SET_CURSOR_LOC

DRAW_BOX

POS_CONSTRAINTS

GHOST_DATA

POINTER_POSITION

SCREEN_UPDATES

WNDW_SHAPE_POS

INT_CURSOR_LOC

Figure 7-13: Activitychart Illustrating MOVE_GHOST Activities

The set_cursor_loc activity will get the pointer location from the input manager and position
constraints from the external parameters data store.  The activity takes the actual location of
the pointer (labelled pointer_position) and converts it to an internal location.  The conversion
is necessary to account for features such as constrainedMove or
partiallyOffScreen, which restrict the movement of the window and require rein-
terpretation of pointer position.  The data flow labelled int_cursor_loc represents this position
value for the location.  The draw_box activity will then draw a ghost image, using ghost data
(such as outline and background characteristics) and data on the shape and location of the
window being moved.  The draw_box activity outputs data to update the screen display
through the screen_manager activity.

During the DRAW_WNDW state of REPOSITIONING in the move operation (Figure 7-11), a
similar set of activities will occur.  Figure 7-14 shows the activities and data flows for this
state. As with the MOVE_GHOST state, the set_cursor_loc activity must be parameterized
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for the constrainedMove and partiallyOffScreenWindows features of the move op-
eration. The draw_wndw activity inputs wndw_shape_pos to get the window characteristics
and outputs data to update the screen.  In addition, the activity updates the window
geometry; these updated values are output as new_wndw_pos to the window_data store.

PARAMETERS

INPUT_MGR

SCREEN_MGR

DRAW_WNDW_PRIMIT

WINDOW_DATA

WINDOW_ID

SET_CURSOR_LOC

DRAW_WNDW

POS_CONSTRAINTS

POINTER_POSITION

SCREEN_UPDATES

WNDW_SHAPE_POS

NEW_WNDW_POS

WINDOW_ID

INT_CURSOR_LOC

Figure 7-14: Activitychart Illustrating DRAW_WNDW Activities

7.3.3.3. Validation of Functional Model
A critical aspect of the domain analysis is verifying that the model can be used to represent
the performance of a new or existing system. The verification of the feature model was
described in Section 7.3.2.5.  To perform this verification, the domain model was refined
using features of two different window managers. In verifying the functional model, these
refinements entail parameterization through setting conditions to account for differences in
the behavioral and functional views of the two managers.  The use of Statemate to repre-
sent the functional model provides an additional benefit; the performance of the functional
model can be simulated in Statemate to test if the parameterization corresponds to expected
operations.
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For each of the two systems in the comparison, X10/uwm and SunView, the group of
relevant features was set via conditional parameters.  Three alternative features were ex-
amined for the purpose of this validation:

X10/uwm SunView

objectAction actionObject

opaqueFeedback ghostFeedback

exposeAfterMove no exposeAfterMove

Running the simulation using the features of the X10/uwm window manager produced the
results shown in Figure 7-15. After the INIT_MOVE state, the operation immediately transi-
tions to the DRAGGING state because there is no change to the window under
opaqueFeedback during INITIALIZING.  When a window is being dragged under the
X10/uwm move operation with opaqueFeedback selected, each pointer movement causes
the entire window to be redrawn in the new position. Statemate simulates this performance
by making a transition from the DRAGGING state to the REPOSITIONING state with each
pointer_move event. The simulation continues to model the performance of the X10/uwm
window manager by looping back to the DRAGGING state following the redrawing of the
window in the DRAW_WNDW state, until the user indicates the final position of the window
via the final_pos condition on the drop event. (In most window managers, this event is
caused by the release of a mouse button or similar user input.)  Following the move,
X10/uwm exposes the window, i.e., moves it to the top of the stacking order, in the new
position. The simulation makes a transition to the EXPOSE state to perform this operation.

Running the simulation using the features of the SunView window manager produced the
results shown in Figure 7-16.  Because the SunView move operation supports only
ghostFeedback, after the INIT_MOVE state the manager makes a transition to the
DRAW_GHOST state, as is the case when the SunView window manager is performing a
ghost move.  The erase_after condition is also followed to indicate that the window will not
be erased until the move is complete.  Within the DRAGGING state, each movement of the
pointer causes a corresponding ghost movement.  The loop states of EVENT_WAIT and
MOVE_GHOST simulate the ghost movement following a pointer movement within DRAG-
GING. When the user signals the final position for the move, a drop event occurs.  This
causes the transition to REPOSITIONING. During this state, the SunView window manager
erases the old window and redraws it in the new position.  Statemate successfully simulated
the performance of both actual window managers.

This discussion has traced only the state transitions of the move operation. The actual sim-
ulation also shows the activities and data flows performed in response to states and
transitions.
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Figure 7-15: Statechart Illustrating X10/uwm Specification

7.3.3.4. Application of Functional Model
The functional model supports several important factors in performing the domain analysis:

• It captures commonality of data and control flow.

• Through applying Statemate, it verifies system performance through simulation.

• It provides requirements for architectures and reusable components.

The example analysis did not include the analysis of architectures or components.  The
feasibility study did produce a functional model that can be applied during architecture
modelling:

• Behavioral view: used to establish control of the system in the process inter-
action model.

• Functional view: used to establish packaging of functions and data objects in
the module structure charts.
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Figure 7-16: Statechart Illustrating SunView Specification
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8. Discussion of the FODA Method

The primary purpose of the sample analysis was to apply the FODA method to a realistic
domain. Although the sample analysis did not cover the entire method (omitting the ar-
chitecture modelling phase), the application of the method uncovered several limitations
which are discussed in the next section.  The sample analysis also pointed out the need for
follow-on study to broaden the application of the method and to explore new uses for the
domain products.

8.1. Limitations of the FODA Method

8.1.1. Methods for Representing Generalization/Specialization
Although a set of modelling primitives for capturing commonalities and differences of a
domain is identified in the FODA method, the method does not provide representation tech-
niques or tools that will adequately support these primitives.  For instance,
generalization/specialization relationships cannot be represented graphically at the function-
al level and the method must rely on textual description. Also, parameterization of the func-
tional model is not adequately supported. Statemate conditions for feature parameterization
could not be distinguished from other conditions used in the specification.  A representation
technique that will support these modelling primitives and a support tool that will allow the
users to instantiate diagrams easily are necessary.

8.1.2. Composition Rules vs. And-Or of Features
The hierarchical relationship between the features in the and/or tree is an alternate graphical
representation of the requires composition rule (discussed in Section 7.3.2.2). While using
two alternate representations of the same relationship complicates the feature model, the
feature diagram provides a way for users of the model to "see" some of the feature relation-
ships. That is difficult to do with a model composed solely of composition rules. Sophis-
ticated automated support for the interactive display of the feature model, such as hypertext
techniques, could provide displays that would make the feature diagram redundant and
hence unnecessary.

8.1.3. Manual vs. Automated Methods
The domain analysis of window managers was first approached with the intention of per-
forming the analysis using only manual techniques. As the amount of information needed to
describe the domain grew, the manual techniques became more complex. For example, the
feature diagram had no way of displaying the effects of the composition rules on the rela-
tions between features to show that the existence of one feature was conditional on another
feature. To handle this some notational extensions to the diagram were tried, but these only
made an already complex diagram larger and more abstruse.  The feature diagram had
been split across several pages along arbitrary boundaries in an attempt to make it more
manageable, and contained inconsistencies that could be found only through exhaustive
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manual examination. This situation was a primary reason for building a prototype automated
features tool to represent the feature model and support consistency and completeness
checking. The manual methods were insufficient to handle a set of little more than 100 fea-
tures, and would clearly be inadequate to the task of modelling a larger domain.

Representing the results of a domain analysis process is primarily a task of representing a
large amount of knowledge, and providing facilities so that the user can access that knowl-
edge quickly and easily. The goal of domain analysis tool support is to offer an integrated
environment for collecting and retrieving the domain model and architectures. The current
set of manual and independent semi-automated methods does not meet this goal. It has,
however, clearly pointed out the problem which must be addressed, and provides a basis for
working on the problem.

The sample analysis used Statemate to prototype a tool that could take a consistent set of
features produced by the automated features tool and support the functional modelling of
the domain.  Statemate has provided valuable support to the domain analysis, but also has
several limitations.  Among the strengths of the Statemate tool are:

• It is a good analysis tool.

• It supports parameterization.

• It is a production-quality tool.

Some of the weaknesses of the Statemate tool are:

• It is not scalable without tailoring.

• The transitions/conditionals hide commonality.

• It is difficult to transition due to the cost and training required.

Statemate can also serve as a means of establishing requirements for domain analysis tools
as discussed in Section 8.2.

8.2. Future Directions

8.2.1. Near-Term

8.2.1.1. Formalization of Features
The FODA method does not apply formal techniques in the specification of features.  The
specification of features is made informally in English text, which can result in ambiguity and
inconsistency. For example, features from the window manager domain such as
constrainedMove and zapEffect could have been specified more precisely using a for-
mal specification technique. The project applied an algebraic specification technique to

16specify the concept of stacking order in the window manager domain. However, this effort
was not expanded to cover the entire model.

16This technique is not discussed in this report.
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8.2.1.2. Formalization of Issues/Decisions
The FODA method records issues related to each decision point of the feature model to help
users make selections of both optional and alternative features. However, it does not pro-
vide a model showing how these issues are related. For example, in the case of automobile
features in Figure 5-1, the issue of operating cost is related to maintenance cost and fuel
efficiency, and to help users make decisions this relationship must be captured in the model
with quantitative values.  (One way of implementing this feature is to define issues as fea-
ture attributes; the issue model would be used to define relationships between these attri-
butes, i.e., issues.)

Also, a customer often has a set of conflicting issues.  For example, if one wants to buy a
car with good acceleration and low fuel consumption, he identifies the requirements (i.e.,
issues) that are contradictory and a compromise decision must be made.  While this type of
situation is resolved on a regular basis without automated support, more complex sets of
conflicting issues are not so easily decided.  Automated assistance is needed to identify
these conflicting issues and resolve them to make an optimal decision.

8.2.1.3. Tool Support for Domain Analysis
The feasibility study determined the need for tools to support both the process of domain
analysis and the process by which the products of domain analysis support software devel-
opment. These tools are needed to deal with the volume and complexity of information
gathered during the domain analysis and the presentation of that information in specific
domain analysis products.  Tools are also required to provide a user with an understanding
of the domain and to support the user/implementor interaction in developing a new system
within the domain. Domain analysis tools will also be used to support the development and
application of reusable software.

The study established four levels of tool support, ranging from manual methods to those that
are specifically intended to support domain analysis. Figure 8-1 illustrates the successive
levels of support and provides examples of each.  The first level provides only a database of
information that the user must handle through manual means to derive any new results.
The second level takes the data from the first level and automates part of the derivation
process. For example, the automated features tool (see Section 7.3.2.6) checks consis-
tency between features and the Statemate-supported simulation of the functional model.
The third level, that of integrated tools, takes general-purpose tools that may be used in an
informal way at the second level and incorporates their use into the method. Tools at the
fourth level are those specifically developed or tailored to support the specific needs of
domain analysis.

One task in future domain analysis methods investigation will be to further integrate tool
support into the domain analysis method and produce requirements for specific domain
analysis support tools.  This investigation will determine which of the four approaches pro-
vides the best support for the FODA method and which can be most easily transitioned.
The investigation will continue to work in well established domains to refine these require-
ments in a prototype tool.
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Figure 8-1: Levels of Domain Analysis Tool Support

8.2.1.4. Handling the Feature Binding Time Attribute
One of the fundamental trade-offs that a system designer makes is to select binding times
for features, which can then have a significant impact on system functionality, size, speed,
and architecture.  As discussed in Section 7.3.2.4, some window managers have already
incorporated a range of variation into the executable, allowing activation-time and runtime
tailoring of functionality. It is worth generalizing this concept into another attribute of a fea-
ture, feature binding time. For example, in describing the features of a specific system it is
necessary to select all of the features and feature values which that system has, which often
includes selecting a single feature from a set of alternatives. In the case of an activation-
time tailorable system such as X11/uwm (using a profile file) there may be no single appro-
priate alternative. Section 5.1.2 describes how the model must designate at what time the
alternative will be bound: compile-time, activation-time, or runtime. An example of a tradi-
tional compile-time feature might be tiledLayout versus overlappedLayout (where the
constraints are "hard-coded" into the window manager source), an activation-time feature
might be ghostFeedback versus opaqueFeedback, and a runtime feature might be
realEstateMode versus listenerMode (in X10/uwm both options are available
simultaneously).

In addition to affecting the feature model, the ability of the user to postpone the selection of
features until activation-time or runtime can significantly change the software architecture by
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requiring a profile file for input of the activation-time selections, or runtime menus, or other
capabilities. As another example, "late" binding times (i.e., activation-time and runtime)
might require more general and robust access to data, rather than less general, optimized
data structures which would suffice for compile-time binding. As the technology of window
managers progresses, features which now may be thought of as compile-time will migrate
toward being runtime features. Some more advanced window managers such as gwm
[Nahaboo 89] have already done this to some extent, making features that have always

been assumed to be compile-time options (of necessity) into runtime choices.

Another option to pursue is that of widening the set of possible binding times to include
"system design" phase binding as a subdivision of compile-time binding, where system de-
sign binding indicates more far-reaching architectural decisions. For example, in such an
approach different values of compile-time features may all have source code available, but
only one can exist in the executable.  This area must be addressed more completely, with
feature binding time being fully incorporated into the feature model.

8.2.2. Long-Term

8.2.2.1. Justifying Domain Analysis Economically
The intuitive justifications for performing domain analysis are the same as those which jus-
tify software reuse: improved quality and reduced cost. The specific questions which a sys-
tem engineer contemplating the use of domain analysis must have answered are:

• What will the up-front costs be?

• What kind of return on investment can be expected, and over what period?

In order to properly answer these questions metrics must be collected on the effort ex-
pended in applying a domain analysis method such as FODA. This must be followed by the
use of the domain analysis products on subsequent efforts, with a measurement of the im-
pact they have. Until this has been done, the benefits of domain analysis are theoretical,
and the work done must be treated as research.

8.2.2.2. Automating Support of the User Decision-Making Process
The domain analysis should provide information that supports the user’s decision-making
process as the user specifies and implements a new system.  This information should in-
clude a standard set of products from which to build systems.  (These products are called
domain products in the FODA method.)  To support decision-making, these products must
include performance and cost assessments.  The process of applying these products must
be grounded in existing methods for engineering design [Cross 89], providing support both
during:

• Divergence: when a wide range of alternatives are under evaluation.

• Convergence: when the final, evaluated specification is complete.
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An approach from the design engineering discipline commonly used to explore established
design alternatives and create a new design is the morphological method. In this approach,
the design of a related class of systems is broken down into a set of sub-problems that are
common to the entire class.  For any new system in the class there are known means of
solving the sub-problems.  The design process becomes one of recognizing the common-
ality of a new system with other previously developed systems, and choosing the appro-
priate methods of implementing each of the sub-problems.  Design reuse is further ad-
vanced because many of the same sub-problems generally apply to more than one class of
systems. Tools to support this process may incorporate expert systems to support design
constraints [Maher 86].

Domain analysis can support a similar process for software development.  By establishing
the set of sub-problems (the feature model) and solutions to these problems (the functional
and architecture models), domain analysis supports both divergence and convergence. In
addition, development of design rationales, with issues and arguments, addresses issues in
design constraints. Merging this approach with already established design engineering ap-
proaches can be an effective means of supporting the decision making process.

8.2.2.3. Merging Domain Analysis and Other Reuse Methods
Domain analysis can also provide guidance in determining what to build to support reuse
and how to build it.  By agreeing on a common model for development, developers of reus-
able software can produce software to meet a range of needs for a set of problems.  Instead
of filling a repository with a large number of general purpose, non-integrated components,
the pool of reusable resources will consist of tested and measured solutions to specific sub-
problems in a given application area.  In addition, the range of capabilities of systems in the
area (i.e., the features) will determine customization requirements.  Reusable software de-
velopers will know what to build and how to parameterize their products for varied use
across the domain, rather than overgeneralizing them for all possible contexts.

The products of the FODA method also provide a natural organization for the library. The
features/functional models define the structure for organizing and populating a software
reuse library.  The models allow users to see a recommended structure for solving their
problem, while finding out about the software available to implement the solution.  The cus-
tomer for a new system is asked to define his software requirements in light of capabilities
suggested by the domain products.  The developer can then work with the customer to es-
tablish appropriate means for delivering those capabilities from existing software.  Cost and
performance factors that have been established for existing solutions can be compared, and
the customer-designer interaction becomes one of negotiation in selecting the best choices
that meet the customer’s requirements.
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9. Conclusions

Domain analysis is a necessary first step in establishing requirements for software reuse.
The analysis can serve a variety of purposes toward this end:

• specifications for reusable resources

• tool support (e.g., catalogs, constructors)

• process model for reuse

In general, the analysis provides a detailed overview of the problems solved by software in a
given domain.

Methods for domain analysis must take both the products and process into account.  Those
methods that have generated successful results have been tested in realistic domains.  In
some cases the analysis can lead to tools that can construct entire applications. Other
methods are geared towards coverage of a number of domains, without providing detailed
constructor tools.

The Feature-Oriented Domain Analysis (FODA) method is built on the results of other suc-
cessful domain analysis endeavors.  The method establishes three phases of a domain
analysis:

• Context analysis: to establish scope

• Domain modelling: to define the problem space

• Architecture modelling: to characterize the solution space

The FODA method establishes a basis for proper domain scoping, which is critical to suc-
cess. Without appropriate scoping the results can be too diffuse to meet the needs of appli-
cation developers, or too narrow and omit critical areas of a domain.  The feature model of
the FODA method is central to domain modelling; features parameterize all other models.
They provide a description of any real or proposed systems by means of sets of feature
values. The domain model is refined by additional characteristics of the domain:

• Composition rules, also a part of the feature model, constrain combinations of
features. They provide a means of developing automated support tools to vali-
date complete and consistent sets of feature values.

• The functional model provides a behavioral and functional view of the system.
Features are used to parameterize this model to support alternative views.

• The rationale for selecting options is supported by "Issues and Decisions."
These are built around specific features or around aspects of the functional
model.

Tool development/adaptation must take into account domain analysis methods.  The com-
plexity of even a well understood domain, such as that of window managers, establishes the
need for tools to handle the volume and variety of information a domain analysis can gener-
ate.
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The FODA method will continue to evolve through subsequent domain analyses.  While the
sample analysis covered the first two phases of the method, performing the architecture
modelling is required to test the FODA method in that phase.  The sample analysis pointed
out the need for additional support in the area of handling the representation of common-
ality, both generalization and specialization.  The FODA method must also be expanded to
provide automated support for rationales to support user decisions.  Applying the FODA
method in new domains will support the evolution of the method and give further validation
to the approach.
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Appendix A:  Forms

A.1. Feature Definition Form

Name: <standard feature name>

Synonyms: <name> [FROM <source name>]

One or more synonyms may be defined, and the source of each
name may optionally be included.
Description:
<textual description of the feature>

Consists Of <feature names> [ { optional | alternative } ]

This information shows the hierarchical structure of features,
and may be represented graphically.
Source:

<information source>

This information is used to produce a feature catalog.
The source of information (e.g., standards, textbooks, existing
systems) from which the feature is derived is included here.
Type: { compile-time | load-time | runtime }

[Mutually Exclusive With: <feature names>]
[Mandatory With: <feature names>]

A.2. Entity Description Form

Entity: <entity name>

Synonyms: <synonyms>

Description:
<a textual description of the entity>

Attributes:

<attribute name>:  <value range> [<unit>]

Source:
<information source>

The source of information (e.g., standards, textbooks, existing
systems) from which the feature is derived is included here.
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A.3. Attribute Description Form

Attribute: <attribute name>

Synonyms: <synonyms>

Description:
<a textual description of the attribute>

Value range:
<value range specification> [ <unit name>]

Source:
<information source>

The source of information (e.g., standards, textbooks, existing
systems) from which the feature is derived is included here.

A value range can be any combination of:
(1) value types such as integer, string, real, boolean
(2) range of values (e.g., 10 through 100)
(3) strings (e.g., South, North)

Examples of the <unit name> are days, pounds, seconds, etc.

A.4. Relationship Type Forms

...................................................

Relationship Type <name>

Description:

<A textual description of the semantics of the
relationship type. Any rules applied to the
relationship type must also be included.>

Parts: (<role name> { <entity type name> ... |
<attribute name> |
ANY-ENTITY} ;) ...

The Parts statement defines the roles of the entities in a
relationship and what types of entities can play each role.
For example, the Activity hierarchy relation of Statemate
can be defined as:
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Parts: upper-part Activity
lower-part Activity;

Connectivity:
(<role name> {ONE | MANY} ) ... ;

The Connectivity defines how many entities can play
the same role in a relationship. The example above,
could be specified as:

Connectivity: upper-part ONE
lower-part MANY;

to indicate that one Activity may contain many Activities
and that one Activity cannot be contained in other Activities
more than once.
Syntax:

(<role name> (<keyword> ... <role name> ... ;) ...

The Syntax statement is used to define a language statement
for expressing the relationship in text. A graphical language
may also be defined.

A.4.1. Relationship Type is-a Form

Relationship Type is-a ;

Description:
To describe generalization/specialization relationships
between entities. An entity in a generalization/
specialization hierarchy inherits all of the attributes
of its generalization entity. The value of an inherited
attribute may be modified as long as the modified value
is within the range of its generalization entity’s value.
A specialization entity may have attributes that are not
defined for its generalization entity.;

Parts: generalization ANY
specialization ANY;

Connectivity:
generalization MANY
specialization MANY;

Syntax:
specialization IS-A generalization;
generalization IS-A-GENERALIZATION-OF specialization;
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A.4.2. Relationship Type consists-of Form

Relationship Type consists-of;

Description:
To specify an aggregation relationship between an
entity and its constituent parts.;

Parts: whole ANY
parts ANY
how-many INTEGER;

Connectivity:
whole MANY
parts MANY
how-many ONE;

Syntax:
whole CONSISTS OF [how-many] parts;
parts IS A PART OF whole;

A.5. Issue Description Form

--------------------------------------------

Issue: <issue-name>

Description:
<a textual description of the issue>

Raised at: <component name>

The "Raised at" statement indicates the component
(e.g., an Activity of Statemate or a feature in the
feature model) during the refinement
of which the named issue was raised.
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Decision: <decision name>

Description:
<a textual description of the decision>

Rationale:
<a textual description the rationale behind
the decision>

Constraints/Requirements:
<a textual description of any new constraints
caused by, or any new requirements derived
from the decision>

Applies to: <component name>

The "Applies to" statement identifies the
components that are resulted by the decision.
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Appendix B:  Domain Terminology Dictionary

In this dictionary terms which have been designated as "standard" for the purposes of the
domain analysis appear in bold type, with a list of synonyms following.
Entries for the synonyms point back to the standard entries.

above: See expose

abstract data object: A generic view of a widget, which allows various styles of user
inputs to be transformed into simple data values

accelerator: (also called shortcut)
A way for an experienced user to bypass cumbersome novice com-
mands to allow faster operation. A keyboard equivalent of a menu com-
mand is a type of accelerator.

active grab: (see also grab and passive grab)
A grab is active when the pointer or keyboard is actually owned by the
single grabbing application

active window: See input focus

active window selection: See input focus selection

ancestor: (also called superior)
A window is an ancestor of any and all of its descendants.

application programmer interface (API):
The set of subroutines and calling conventions for the programmer’s in-
terface to the window system

application: An executable process

atom: A unique ID corresponding to a string name. Atoms are used to identify
various pieces of information within the window manager.

auto exposure: See auto raise

auto raise: (also called auto exposure)
The ability of the window to go to the top of the current stacking order of
overlapping windows as soon as it becomes the input focus, without an
explicit expose operation.

back: See hide

backing store: (see also save under)
When the contents of a window (or a region of a window) which is
obscured (by an overlapping or transient window) are saved for later
restoration, the temporary area used to save the pixels is called a
backing store.

background: The background color or tile pattern of a window upon which all text oor
graphics are displayed

base bar: See footer

base window: The main window associated with an application process

below: See hide

bitblt: (pronounced bit-blit) An abbreviation of "bit block transfer" which is an operation that
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moves a rectangle of pixels from one area of a pixel-based screen to
another.

bit gravity: (see also window gravity)
The way the contents of a window are attracted to a particular position
within a window relative to a corner or edge during a resize operation.

bitmap: A (usually rectangular) portion of a pixel-based display where each pixel
is represented by one bit.

border: (also called frame)
A border is the displayed edging around a window that can (depending
on the window system) be used as both a command area and a visual
feedback area. The border may be a solid color or a pattern, and usually
has a variable width.

bottom: See hide

bounding box: (see also ghost and select all)
When multiple items need to be selected for an operation the bounding
box paradigm may be used. A ghost box is drawn with, typically, the
upper left-hand corner at the the point of origin and the lower right-hand
corner rubber-banding to the pointer position.  The items within the box
are considered to be selected for the operation.  This is most commonly
used to mark portions of a graphic image for manipulation.

bury: See hide

busy feedback: See dimmed

button: See mouse button

callback: A type of procedure, usually bound to a widget, that is invoked by a user
action, such as a click on a mouse button. Typically the window man-
ager receives notification of the click via an event, looks for any proce-
dures attached to the event, and uses a callback to have the application
execute the attached procedure(s).

canvas: See window

caret: See text cursor

cascading menu: See walking menu

child window: (also called subwindow)
A window that has a parent window. A top-level window has the root
window as its parent, and so all windows (except for the root window)
are child windows, but some have different parents.

circulate: (also called cycle windows or shuffle)
Rotate through all displayed windows which overlap (in an overlapped
window system), exposing the bottom window (or hiding the top
window) and continue to cycle through all (overlapping) windows. Cir-
culating windows by exposing the lowest is called circulating up, and the
opposite is called circulating down.

click: Pressing and releasing a button (typically a mouse button) in rapid suc-
cession.

click-to-type: See listener
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client: An application program that makes requests of the server to do things,
such as draw windows, text, and other objects.

client server model: An architectural model that separates into two parts the job of
drawing windows between the client and the server. The client and ser-
ver execute asynchronously and communicate via a protocol. This
model is used to improve device independence in some windowing sys-
tems.

client window: Strictly speaking, a window whose display is totally controlled by a client
application. In more general terms, a subwindow controlled by any ap-
plication, excluding any related subwindows such as the scroll bar, title
bar, etc.

clipboard: A holding area where data is placed after it is "cut" from within a window
system, and from which data may be "pasted".

clipping: Trimming the output of a window so that it only goes into the areas that
need to be updated. For example, if a window is half-covered, when it is
refreshed it only needs to redraw half of itself, and the other half is
clipped.

clip mask: See clipping region

clipping region: (also called clip mask)
The area of a window that is visible to the user after the window’s size,
shape, and other overlapping windows are considered. The window
manager clips the output from the window to this shape before display-
ing it on the screen. With rectangular shaped windows the clipping
region may be defined with a bitmap or a list of rectangles.

close: See iconify

collapsed window: See icon

color cell: A 3-tuple of values specifying red, green, and blue intensities.

color map: A set of color cells which, put together, constitute all of the colors which
are currently displayable.

command button: A widget that resembles a button and contains text or graphics to in-
dicate the function of the button. When the mouse enters the window it
is highlighted, and clicking the mouse while in the button notifies the ap-
plication.

composite widget: A widget which is composed of other widgets

confirmer: See confirmation box

confirmation box: (also called confirmer)
A pop-up menu widget that offers a binary choice to the user, typically
yes and no, or cancel and continue

containment: (see also in) A window contains the pointer if the hotspot of the pointer is
within a visible region of the window or a visible region of one of its child
windows.

context-sensitive borders: Button presses and releases on a window border will be inter-
preted as commands to the window

control: See widget
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corner: (see also handle) A pointer-sensitive area of a window located at each of a
window’s corners.  A corner may be used in move and resize opera-
tions.

covered presentation: See overlapped presentation

cover: See hide

current window: See input focus

cursor: A locator of information on the screen, presented as a small graphical
image (a cursor picture) superimposed on the screen and controlled by
a pointing device.

cursor picture: (also called tracking symbol)
The specific image used to show the location of the pointer, often to
indicate the current function the pointer is performing. Different cursor
pictures may be associated with different windows.

cut buffer: See cut-and-paste buffer

cut-and-paste: (see also selection)
To delete a portion of a text or graphics window display and later re-
insert it into the same or another window

cut-and-paste buffer: (also called cut buffer)
A temporary buffer belonging to the window manager used to store the
contents being transferred in curt-and-paste operations

cycle windows: See circulate

deiconify: (also called expand, open, or restore)
Change an icon into its corresponding main window

depth: The number of bits available for a pixel to represent its shade or color in
a pixel-based imaging model.

descendant: (also called inferior)
The descendants of a window are all of the child windows nested below
it: the children, the children’s children, etc.

desktop metaphor: Either 1: an intuitive user interface metaphor used with overlapped win-
dow managers that makes an analogy between overlapped windows
and papers laying stacked on a physical desk top, or 2: a window man-
ager that uses icons to represent files and directories rather than ex-
ecuting processes, in addition to the overlapped appearance, so that
there is an even stronger resemblance to a physical desktop. The
MacIntosh is generally considered to use a desktop metaphor.

display: A set of one or more screens that are all driven by a single server

dialogue box: (also called form)
A window widget that may appear dynamically to inform the user of an
event and possibly ask for input.

dimmed: (also called busy feedback)
When a widget or object is currently either busy or inactive it is dimmed
(i.e., typically grayed or displayed in a gray font, rather than black) to
show that it can’t accept input.

dock: (see also icon box) A special area on the screen where icons are kept
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double-click: (see also click)
Two clicks in rapid succession

drag: To press a button (typically a mouse button) and hold it down while
moving the mouse. This is sometimes used to move an object on the
screen (such as a window or icon) by visibly dragging it across the
screen to its new position.

drawable: Windows and pixmaps are collectively known as drawables.

draw through: Selecting a region of text by moving the pointing device through it.

drop-down menu: A type of menu widget

drop shadow: An image that resembles a shadow falling from the window onto the
screen background behind it. Its ostensible purpose is to enhance the
outline of the window.

elevator scroll bar: See scroll bar

end style: The shape used to terminate the end of a line: rounded, square, etc.

event: An occurrence that typically causes action within a window system,
such as input, output, an error, etc. Events are grouped into types, and
are usually reported relative to a window.

event mask: The set of event types that is requested relative to a window is de-
scribed by an event mask.

event propagation: Device-related events propagate from the event source window to an-
cestor windows until interest is expressed in handling that type of event
or until the event is discarded explicitly.

event source: The smallest window containing the pointer is the source of a device-
related event.

expand:

1. See deiconify

2. See full screen

expose: (also called above, top, front, or raise)
To change the stacking order of a window in an overlapped system so
that no other window obscures any part of it. After a window has been
exposed, it may then obscure other overlapping windows.

exposure event: An event caused by the exposure of a window. This event informs the
application that contents of regions of its window have been lost by
having been previously obscured.

fixed menu: A menu which always appears at a fixed place on the screen or within a
window.

fill pattern: See stipple

focus of control indicator: This visual feedback device tells the user whether or not this
window is the input focus. Examples of such indicators are highlighted
borders, cursors, scroll bars, title bars, exposing the focus window, and
shading all other windows.

follow-the-pointer: See real estate
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font: A font is an array of glyphs along with information about the sizes of its
glyphs.

footer: (also called base bar, see also title bar)
A region displayed immediately below a window that is used for infor-
mation and error messages

foreground: The color or tile pattern that is used for drawing text or graphics; in text
display the foreground is often black and the background is white.

form: See dialogue box

frame: See border

front: See expose

frozen events: Event processing may be frozen while the screen is being changed. As
an example, if a button is pressed to indicate that a menu should ap-
pear, then events may be frozen to insure that the menu is drawn before
the button-release event is processed. This means that the event is
guaranteed to be reported with respect to the menu windows, and not
those underneath where the menu now lies.

full screen: (also called expand or maximize) (see also zoom)
The state of a window that occupies the entire screen display, or the
action that resizes and moves a window so that it reaches that state

gadget: A type of widget that is not tied to a window, but is rather an independ-
ently executing process

gauge: (also called thermometer)
A read-only display of a value that resembles a thermometer

geometry manager: A mechanism that can be used to define the layout of a window
and its children, as well as determine the action to be taken when a
resize of the window is performed

ghost: (also called window outline or hair-lines)
Typically a rubber-banded outline of a window displayed while the posi-
tion or size of the window is being changed by the user

glyph: A type of small image- font characters are glyphs

grab: The input devices such as the keyboard, pointing device, and mouse
buttons may be temporarily grabbed for exclusive use by an application

graphical user interface (GUI): (also called look and feel)
The appearance and behavior of the system. Both OSF/Motif and Open
Look are GUIs. A GUI may be realized through a combination of toolkit
widgets, usage conventions, and window manager policy.

graphics context (GC): The collection of information that influences drawing operations,
including the foreground and background, the clipping region, the line
width and style, the plane mask, the tile and stipple, the end style and
the join style.

graphics package: See imaging model

gravity: (see also bit gravity and window gravity)
An attraction between objects on the screen that imposes a precise
alignment between them in response to an approximate user movement
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grid:

1. See ghost

2. An automatic way of neatly aligning a set of windows or
icons for the user

grow: See resize

hair-lines: See ghost

handle: (see also corner) A pointer-sensitive area of a window located at each of a
window’s sides.  A handle may be used in move and resize operations.

header: See title bar

hide: (also called below, bury, bottom, back, cover, obscure, occlude, or lower)
To change the stacking order of a window in an overlapped system so
that it obscures no other window.

hidden region: (also called shared region)
A region on the screen in an overlapped system which is used by two
windows simultaneously

highlight: A visual feedback mechanism used to indicate a special state of some-
thing on the screen. Highlighting may be achieved by blinking, by
reverse video on monochrome systems, or by special colors on color
systems.

hint: A piece of information provided to the window manager about the rec-
ommended placement or sizing of a window which may or may not be
honored.

history: See saved lines

hotspot: The specific point within a pointer’s cursor picture whose coordinates
are returned with a cursor event.

icon: (also called collapsed window or icon window)

1. A small graphical image that represents a window running
an application.  An icon of the window is used when the
window is not currently in use, but will be used again. Use
of the icon rather than the main window when it is inactive
conserves screen real estate.

2. Any small image that is used to represent a concept to the
user. An icon in this sense may be used to label a button
widget instead of a text name.

icon box: (see also icon manager)
A window in which all icons are stored

icon manager: (see also icon box)
An alternative to normal separate icons for handling temporarily unused
processes. Icon managers will list the names of the windows they are
currently handling. Multiple icon managers may coexist simultaneously
to handle different sets of windows.

icon window: See icon
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iconic menu: A menu whose options consist of symbolic images representing the dif-
ferent functions which can be performed.

iconify: (also called shrink, close, minimize, or iconize)
Change a main window into its corresponding icon.

iconize: See iconify

illegal item: A menu item which is not valid in a certain context. In some window
systems theses items are dimmed to indicate they cannot be chosen.

image: A graphical representation normally realized as a pixmap

imaging model: (also called graphics package)
The model used for displaying images, such as the pixel model.

in: The pointer is in a window if the window contains the pointer but no infe-
rior contains the pointer.

inferior: See descendant. May also refer to a window’s position in the stacking
order as not being the top window.

input device: Allows the user to provide input to the system in various forms such as
positions, text, and values

input focus: (also called active window or current window)
The window that is the current recipient of user input. See keyboard
focus.

input focus selection: (also called active window selection)
The way the window manager allows the user to choose a window as
the current input focus

input manager: Accepts input events and transmits them to the process manager

inputonly window: A window which cannot display any output- inputonly windows are invis-
ible, but can handle input differently from other windows. Typically a dif-
ferent cursor picture is used for the pointer so that the user understands
that input will be handled differently. Inputonly windows cannot have
inputoutput windows as children.

inputoutput window: A normal main window (one which is not an inputonly window)

insert point: The point in a window where new keyboard input will be inserted. This
point is designated by the text cursor.

intrinsics: The foundation layer of functionality used to manipulate widgets

join style: The shape used to connect two lines at a corner: rounded, flat, closed,
etc.

joystick: A type of pointing device

kernel: The low-level interface to the underlying graphics hardware and operat-
ing system

key grabbing: Keys on the keyboard may be passively grabbed. When the key is
pressed, the keyboard is then actively grabbed.

keyboard: A keyboard is a set of keys that allows the entry of textual data.

keyboard equivalent: (see also accelerator)
A single key or a sequence of keys that performs an operation which is
also accessible from a menu
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keyboard focus: (see also input focus)
The window that is the current recipient of all keyboard user input.

keyboard grabbing: The keyboard may be actively grabbed by an application, and then key
event will be sent to that application, rather than to the usual application
indicated by the input focus.

knob: A type of physical input device that functions as a valuator

label: The displayed name or title of a menu item, button, or other widget

light pen: A type of pointing device

lightweight process: (also called thread)
A type of process that lacks the normal full process context, which al-
lows fast context switching

list menu: A menu widget which appears on the screen as a sequence of lines,
each of which contains an item; it can be of the fixed or pop-up variety

listener: (also called click-to-type)
A listener style window manager sets the input focus to a particular win-
dow when that window is clicked on with a mouse button.

locked menu: A menu where the user is not allowed to change the current item selec-
tion

look and feel: See graphical user interface

lower: See hide

main window: A window displayed in its normal, full form-- i.e., not an icon

menu: A widget that is a finite list of text buttons called menu items; choosing
an item from a menu typically invokes some action

mapped: (see also unmapped and viewable)
A window is mapped if the window manager has designated that it
should be viewable to a user. For example, while a window is being
used, its corresponding icon is unmapped, and therefore not viewable.

maximize: See full screen

menu item: One of the possible choices on a menu

minimize: See iconify

modifier key: A key which, when pressed in conjunction with or preceding another
key, does not send another character, but instead alters the character
that is sent.

monitor: A type of physical output device

mouse: (see also pointer) A pointing device that is held in the hand and moved across a
surface.

mouse-ahead: Giving commands with the pointer before the system is ready to execute
them; these are queued for later execution

mouse button: (also called button)
A physical input device with two states, up and down (or released and
pressed)

mouse cursor: See pointer
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multiclicking: Clicking a button two or more times in rapid succession.

multitasking: The ability of an operating system to simultaneously execute more than
one process. The UNIX operating system is multitasking; the DOS
operating system is not.

object-action model: (also called select-then-operate paradigm or subject-verb model)
A user interface model where the user must first select an object to
operate on (a window in a window system) and then an action to per-
form on it

output device: Converts data into a human-understandable format such as displayed
text and graphics, or sound

obscure: See hide

occlude: See hide

opaque: Refers to the way a window is represented during a move or resize op-
eration. An opaque window means that the full window image is pre-
served and continually displayed during the operation so that the full ef-
fect of the operation may be seen by the user. This is typically sup-
ported only on relatively fast display hardware.

open: See deiconify

overlapped presentation: (also called covered presentation)
A window system paradigm where a window may occupy any position
on the screen, and may overlap or be overlapped by any number of
other windows

pages: See stacked menu

paint and stencil model: An imaging model used in some window systems (such as
NeWS). PostScript is one implementation of a paint and stencil model.

pan: (see also scroll when applied to text)
The ability to use a window as a viewport on a larger virtual graphic
space, and move the viewport to focus on different parts of the space.

pane: A defined area within a window, typically the central or primary display
of the window; multiple panes within a window are normally tiled and do
not overlap one another.

parent window: A window that has child windows. The area of a child window can never
extend beyond the borders of its parent.

passive grab: (see also grab and active grab)
Grabbing a key or mouse button is a passive grab. The grab activates
when the key or mouse button is actually pressed.

pixel: A short form for "picture element"- a single point on a bitmap monitor
which may be either colored or black and white.

pixel map: See pixmap

pixmap: (abbreviation of pixel map)
An array of pixels; alternately, a stack of bitmaps, or a three-
dimensional array of bits.

pixel model: (also called raster model)
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An imaging model based on pixels and logical operations upon pixels,
such as ANDing and ORing pixels together. Within a system based on
the pixel model all images are generated using pixels.

point: Move the pointer to a specific region or object

point-to-type: See real estate

pointer: (also called mouse cursor)
A type of cursor that marks the current position of the pointing device.

pointing device: (also called mouse)
An input device that allows the entry of accurate location data on the
screen by moving the pointer on the screen

pop-up window: (see also transient window)
A window that appears dynamically to allow the user to enter some kind
of input, and then disappears again after the input is made. A pop-up
window is a type of transient window.

presentation: The representation of a window on the screen, which is either in iconic
or main form.

process manager: Ties applications to windows for I/O and other operations

prompter: A pop-up window widget that requires the user to type in a response

property: Windows may have associated properties such as name, type, data for-
mat, and various data. Such information as resize hints, program
names, and icon formats may be expressed as properties.

property list: The list of all properties defined for a window

pull-down menu: (see also pop-up menu)
A type of pop-up menu that appears after the selection of an item on the
screen, usually immediately below, and allows the user to specify fur-
ther options

pushpin: A pushpin is used to fix a transient menu into a position.

raise: See expose

raster model: See pixel model

real estate: (also called point-to-type or follow-the-pointer)
A window system paradigm where the input focus is always at the win-
dow the pointer is in

recursive subwindows: (see also child window)
Windows which adhere to a parent-child window hierarchy

redirecting control: A way of enforcing window layout policy- when an application attempts
to change the size or position of a window, the operation may be
redirected to another application

redisplay: See refresh

redraw: See refresh

refresh: (also called redisplay or redraw)
To erase and freshly display all or part of the screen that may have
been damaged
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region: The area of a polygon defined by a collection of points. Regions are
usually used within windows to further subdivide the containing space
for the application.

reparent: To reparent a window means to insert a new parent window behind an
existing window, often for highlighting or additional user input.

reserved area: See special area

resize: (also called shape or grow)
To change the shape and/or the size of a window

resource: A resource is an object handled by the window manager, such as a win-
dow, cursor, font, color map, etc.

restore: See deiconify

root window: The window that has no parent window, and is the ancestor of all other
windows on the screen. The root window covers the entire screen.

rubber band: The act of interactively moving the pointer in relation to a stationary
point while lines are continuously drawn between them to show the pos-
sible final state of the relationship. Rubber-banding is often used to al-
low the user to visualize the results of a resize operation on a window.

save-set: A list of windows that will be restored to their normal state if the window
manager exits abnormally (i.e., the windows will be mapped again if the
window manager had unmapped them for an icon)

save under: (see also backing store)
The pixmap of the contents of a window (or a region of a window) which
is obscured (in an overlapped window system)

saved lines: (also called history)
The lines of text in a window that have been scrolled off the window, but
have been saved and are still available for display.

screen: A logical output display device on which windows and other graphics
may be displayed

screen real estate: The visible area provided by a screen. A window manager’s function is
to manage this area.

screen manager: Directs output to the proper window on the screen.

scroll: To move through a set of data which is larger than the available window
by alternately showing different portions of it.

scroll bar: (also called elevator scroll bar)
A composite widget usually associated with a window that allows the
user to specify the scroll amount using valuators and command button
widgets.

select all: (see also bounding box)
When multiple items need to be selected for an operation the select all
paradigm may be used to allow the user to individually select each item.

select-then-operate paradigm:
See object-action model

selection: A selection is an item of data which can be highlighted in one instance
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of an application and pasted into another instance of the same or a dif-
ferent application.

server: A program that runs on each user’s workstation and draws the required
objects on the display in a client-server architecture

shadow: (see also drop shadow)
A shaded area on the screen sometimes used to show the previous po-
sition of an icon that has been deiconified to its main window.

shape: See resize

shared region: See hidden region

shortcut: See accelerator

shrink: See iconify

shuffle: See circulate

sibling: Children windows of the same parent are known as siblings.

slide-off menu: See walking menu

slidebox: A rectangular area within a valuator widget that may be positioned with
the pointer

slider: An input/output widget used to both set and display a value; sliders may
resemble gauges.

special area: (also called reserved area)
A reserved region on the screen that is provided exclusively for special
functions, such as the display of error messages, prompts, icons, etc.

stacked menu: (also called pages)
A type of submenu that stacks menus on top of one another but slightly
offset so that the total effect is that of pages in a book. Each page will
typically auto raise when touched by the cursor to display its options.

stacking order: The order of overlapping sibling windows (in an overlapped system) that
determines which one lies visually on top and which on the bottom.  Cir-
culating, exposing, and hiding windows changes the stacking order. The
first window in the stacking order is the window on top.

stipple: (also called fill pattern)
A bitmap that is used to tile a region (not related to tiled presentation)

stippling: Tiling a region with a stipple

subject-verb model: See object-action model

submenu: (see also walking menu and stacked menu)
A menu widget that displays an additional menu after an item in a previ-
ous menu is selected, providing additional options and parameters to
that selected operation.

subwindow: See child window

superior: See ancestor. May also refer to a window’s position in the stacking
order as being the top window.

switch: A type of input device

tear-off menu: A pop-up menu which is fixed in a certain position with a push-pin and
remains there.
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temporary window: See transient window

terminal emulator: A window which emulates the functionality of a standard terminal such
as a VT100.

text button: A widget that consists of a displayed piece of text which becomes high-
lighted when the pointer crosses over it. If a mouse button is pressed
while the cursor is within the text button the application is notified.

text cursor: (also called caret)
A cursor that marks the current position for text insertion within a win-
dow. This cursor position is independent of the position of the pointer.

thermometer: See gauge

thread: See lightweight process

tile: A pixel map that can be repeated both vertically and horizontally to com-
pletely cover (or tile) an area.

tile mode: The position of a background tile pattern in a window can be placed rel-
ative to the parent window, or absolutely in the child without considera-
tion of matching the parent’s pattern.

tiled presentation: A window system paradigm where each window occupies a separate
portion of the screen, and no window can overlap any other.

title bar: (also called header)
A region displayed immediately above a window that indicates the name
or title of the window

titlebutton: A type of command button that is incorporated into the window title bar
and is typically used for moving or resizing windows

toolkit: A set of facilities for building user interfaces for applications, typically
including widgets for menus, forms, text editing, and scrolling capabil-
ities

top: See expose

top-level window: A window that is a direct child of the root window

touch panel: An input device that uses the touch of the user’s finger or a stylus on the
screen to mark a position

touch tablet: A pointing device that uses the touch of the user’s finger or a stylus on a
tablet to mark a position or move the pointer

track ball: An input device that remains stationary and is used to move the pointer

tracking symbol: See cursor picture

transient window: (also called temporary window)
A temporary subwindow of the root window that is usually (in actuality)
associated with a top-level window, rather than the root. Having the win-
dow be a temporary subwindow of the root means that it will not be
clipped by the borders of the top-level window which is its real parent.
Transient windows typically use save-unders to prevent redrawing any
underlying windows.

typescript package: Provides basic text editing capability for typing in command input, such
as backspace, delete, etc.
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unmapped: (see also mapped)
A window is unmapped when it is not mapped. An unmapped window is
not viewable.

user interface language (UIL):
A language used to determine the user interface of an application by
defining the functional characteristics

user interface management system (UIMS):
A system that provides facilities for the high-level design of user inter-
faces. Provides an additional layer of abstraction above a window sys-
tem toolkit.

valuator: A widget sometimes used to implement scrolling bars that contains a
rectangular slidebox that follows the motion of the mouse.  The valuator
informs the application whenever the user changes the position of the
slidebox.

view: See window

viewable: (see also mapped and unmapped)
A window is viewable if it and all of its ancestors are mapped. The fact
that a window is viewable does not imply that it is necessarily visible,
since the window may be totally obscured by other windows.

visible: A region of a window is visible if someone looking at the screen can see
it (i.e., it is not obscured by another window).

visual: A visual is a data structure defining the physical characteristics sup-
ported by a particular screen. In particular it defines the various color-
map abstractions supported and the depth(s) of the display.

warp: To automatically place the pointer into a window immediately after it has
been deiconified

walking menu: (also called cascading menu or slide-off menu)
A type of submenu where as the user slides the cursor off the right side
of a menu an additional menu appears containing sub-options of the
chosen command. All of the menus will disappear after the final options
have been chosen.

widget: (also called control)
An object found in a UIMS toolkit that is used to construct user inter-
faces. Widgets include such graphical devices for input and output as
command buttons, valuators, gauges, etc. A widget may exist as an ob-
ject in a single-inheritance class hierarchy of other types of widgets.

window: (also called view, wob, or canvas)
A logical area on a bit-mapped display that is connected to at least one
application process.

window configuration: The collection of information about the appearance of a window
on the screen which consists of the size, position, border width, and
stacking order.

window geometry: A window’s position, shape, and size

window gravity: (see also bit gravity)
The way the children windows are attracted to a particular position
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within a parent window relative to a corner or edge during a resize oper-
ation. Styles of gravity may include static, center, and the compass
points.

window layout policy: A policy on how top-level windows will be placed on the screen

window management system:
Manages a set of display windows running asynchronous processes.

window manager: Performs operations on windows (create, move, resize, etc.) so as to
allow the user to use the screen space effectively.

window outline: See ghost

wob (window object): See window

zap lines: Ghost lines which temporarily "flash" to follow a window or icon from its
original position to its new position during move, resize, or (de)iconify
operations

zoom:

1. See full screen

2. Display successively smaller (or larger) outlines of a win-
dow to suggest shrinking (or expanding) during Iconify (or
Deiconify) operations

zoomed window: A window whose pixmap is displayed at a larger than normal magnifica-
tion.
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Appendix C:  System Feature Catalogue

In the feature catalogue tables the following conventions are used:

1. <Name>: This is the name used for this feature on this system.

2. "yes/no": This feature does/does not exist on this system.

3. <blank>: No information was collected for this feature.

4. "∗": Selection of this feature is a load-time or run-time option.

5. "--": This feature is inapplicable to this system (a composition rule with
another feature excludes it).
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System/Feature X10/uwm VMS Windows SunView Mac Windows

multObjSelect no no no yes

inputFocusSelect ∗ listener realEstate listener

mandatoryFocus no no no yes

revertToNewFocus -- nextOnStack -- nextOnStack

selectOrder actionObject objectAction objectAction objectAction

windowLayout overlapped overlapped overlapped overlapped

partiallyOff yes yes no yes

tiledColumns -- -- -- --

windowShape rectangular rectangular rectangular rectangular

hasIcons yes yes yes yes

specialAreas no no no yes

titleBars ∗ yes yes yes

1 1 1highlightedAreas bord./title/cur. cursor bord./cur. title/scroll

7 7changeFocus yes yes yes yes

3,7 3,7,8 3,7 3createWindow yes yes yes yes

4 4destroyWindow yes Delete Quit yes

exposeWindow Raise Pop to Top Front Select

hideWindow Lower Push Behind Back no

circulateUp Circulate no no no

circulateDown no no no Cycle Windows

7 5,7,8 5moveWindow Move yes Move yes

constrainedMove no no yes no

7 7resizeWindow Resize Change Size Resize yes

corners&Handles all all all lower right

expandWindow no no Full Screen yes

7 7,8 7iconify (De)iconify Shrink Close yes

7 7,8 7deiconify (De)iconify yes Open yes

refreshWindow yes no Redisplay no

refreshAll Refresh no Redisplay no

abortMove no no Cancel no

quitWindowSystem no no Exit no

Table C-1: Window Manager Features I
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System/Feature Andrew Symbolics X11/uwm OSF/Motif

multObjSelect no no

inputFocusSelect realEstate listener ∗

mandatoryFocus no

revertToNewFocus --

selectOrder objectAction actionObject objectAction

windowLayout tiled overlapped overlapped overlapped

partiallyOff no yes yes

tiledColumns yes -- -- --

windowShape rectangular rectangular rectangular rectangular

hasIcons yes no yes yes

specialAreas no yes no no

titleBars yes ∗ yes

1 2 1highlightedAreas title greyed bord./cur. bord./title/cur.

7 7changeFocus yes yes yes yes

3 3 6createWindow yes yes yes yes

destroyWindow Quit Kill yes Quit

7exposeWindow -- Select Raise no

hideWindow -- Bury Lower Lower

circulateUp -- no Circulate Up Shuffle Up

circulateDown -- no Circulate Dn. Shuffle Down

5moveWindow yes Move Move Move

constrainedMove

resizeWindow Enlarge Shape Resize Size

corners&Handles no all all

6expandWindow Proportion Expand Maximize

iconify yes -- (De)iconify Minimize

deiconify yes -- (De)iconify Restore

refreshWindow Redisplay Refresh no no

refreshAll no yes

abortMove no

quitWindowSystem Logout Quit

Table C-2: Window Manager Features II

CMU/SEI-90-TR-21 119



NOTES

1. Bord. refers to a highlighting (or shading) of the border around the window,
title refers to a highlighting of the window’s title bar, scroll refers to the exis-
tence of the graphics in the scrollbar, and cur. refers to a highlighting of the
text cursor in the window.

2. Greyed signifies that all portions of the screen other than the input focus win-
dow are overlaid with a grey stipple.

3. Few window managers have explicit create commands- a window is implicitly
created when its primary associated application is started.

4. Few window managers have explicit destroy commands- a window is
destroyed when its primary associated application is terminated.

5. These systems do not have explicitly named move functions- moving a win-
dow is accomplished by clicking on the border or title bar and dragging the
resulting ghost.

6. The proportion command proportions all of the windows in a column so that
they share the available space equally. It is analogous to expand since it
makes a window as large as it can be without sacrificing the other windows.

7. These commands move the window to the top of the stacking order.

8. These commands change the current input focus.
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Appendix D:  Issues and Decisions

Issue: Input Focus Selection

Description: The way the window manager allows the user to designate the current input
focus

Raised at: inputFocusSelection

Decision: realEstateMode

Description: A window becomes active by moving the cursor
over it (if it is visible).

Rationale: Simple and quick to use
Decision: listenerMode

Description: The user must click on a window to make it active.

Rationale: Helps prevent accidental activation of the window.
Allows the system to make the existence of a cur-
rent input focus mandatory.

Issue: Window Layout

Description: The way windows relate physically on the screen.

Raised at: windowLayout

Decision: tiledLayout

Description: A window system paradigm where each window oc-
cupies a separate portion of the screen, and no win-
dow can overlap any other.

Rationale: Avoids dealing with issues of exposing and hiding
overlapping windows, and makes it simpler to iden-
tify the recipient of user input (complex clipping
masks are avoided). However, a tiled system must
provide some sort of automatic layout system for
the windows. In this paradigm, resizing events be-
come common.

Decision: overlappedLayout

Description: A window system paradigm where a window may
occupy any position on the screen, and may overlap
or be overlapped by any number of other windows

Rationale: Provides a user interface that emulates the overlap-
ping papers found in a physical desktop environ-
ment. The user is in almost full control of the win-
dow layout, but an overlapped system must deal
with maintaining the stacking order of the window
and the clipping masks for displaying their contents.
In this paradigm, exposure events become com-
mon.

Issue: Tiling Method
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Description: The type of window tiling which is enforced

Raised at: tiledLayout

Decision: tiledColumns

Description: Allow windows to be positioned only within a set
number of columns.

Rationale: Simpler than the alternative, and it avoids potential-
ly unpredictable screen layout changes when win-
dows are added or removed.

Decision: tiledArbitrary

Description: Allow windows to be positioned anywhere on the
screen (as long as no other window is overlapped).

Rationale: Intuitively less constraining than using columns to
avoid overlap

Issue: Window Shape

Description: The set of shapes allowed for windows by the window manager

Raised at: windowShape

Decision: rectangularShape

Description: A window may only have a rectangular shape

Rationale: Relatively simple to compute which window the
pointer is in, and the clipping regions for display

Decision: arbitraryShape

Description: A window may have any arbitrary two-dimensional
shape

Rationale: If the window information is not rectangular (i.e., a
clock face) then there is no wasted space from fit-
ting a circle into a square.

Issue: Interactive Feedback

Description: The way the window manager shows the user the current size or shape of a
window being moved or resized.

Raised at: interactiveFeedback

Decision: ghostFeedback

Description: An outline and/or grid of the window is drawn and
moved with the cursor to the new location, where
the complete window is drawn (and the old window
erased.

Rationale: Provides sufficient user feedback for positioning
and resizing, and requires significantly fewer
resources than redrawing the entire image often
enough to follow the moving cursor.

Decision: opaqueFeedback

Description: The window manager moves or resizes the entire
original image of the window.
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Rationale: Opaque moving and resizing allows the user to see
immediately what the window will look like in the
new position or shape, and is typically used on fast
displays where the act of updating a potentially
complex window display is feasible.

Issue: Command Selection Order

Description: The order in which objects and actions are selected for the performance of win-
dow operations.

Raised at: selectionOrder

Decision: objectAction

Description: The window is selected before the command.

Rationale: Selecting the object first allows the menu of pos-
sible actions to be tailored based on the type of ob-
ject, i.e., an icon or a window. This makes the user
interface more intuitive.

Decision: actionObject

Description: The command is selected before the window.

Rationale: Allows the possible actions to include commands
that do not require the selection of a destination ob-
ject.
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Appendix E:  Window Manager Features

abortMoveOp: optional
Abort the current move operation.

Parent: moveWindowOp
Source: SunView window system experience

abortResizeOp: optional
Abort the current resize operation.

Parent: resizeWindowOp
Source: SunView window system experience

actionObject: alternative
First the command, then the window.

Parent: selectionOrder
Source: Open Look GUI documentation

activeIcons: alternative
An icon may update its image.

Parent: iconIO
Source: A Taxonomy of Window Manager User Interfaces

arbitraryNumberColumns: alternative
Window layout is tiled using arbitrarily many columns.

Parent: tiledColumns
Source: A Taxonomy of Window Manager User Interfaces

arbitraryShape: alternative
Windows may be of any shape.

Parent: windowShape
Source: NeWS window system documentation

borderHighlight: optional
Highlight the border.

Parent: highlightedAreas
Source: A Taxonomy of Window Manager User Interfaces

changeFocusOp: mandatory
Change the input (keyboard) focus.

Parent: windowManager
Source: General

circulateDownWindowsOp: optional
Circulate down through all windows.

Parent: stackingOrder
Source: X11 Xlib documentation

circulateUpWindowsOp: optional
Circulate up through all windows.

Parent: stackingOrder
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Source: X11 Xlib documentation

colorHighlight: alternative
Highlighting via a color.

Parent: highlightMethod
Source: Motif window manager experience

commandAreaHighlight: optional
Highlight the command areas.

Parent: highlightedAreas
Source: A Taxonomy of Window Manager User Interfaces

constrainedMove: optional
Window movement may be constrained horizontally or vertically.

Parent: moveWindowOp
Source: SunView window system experience

cornersAndHandlesResize: alternative
Users may select the windows corners and handles to resize it.

Parent: resizeInput
Source: A Taxonomy of Window Manager User Interfaces

createIconified: optional
Create new windows as icons.

Parent: createWindowOp
Source: X11/twm documentation
Rules: requires hasIcons

createWindowOp: mandatory
Create a new window.

Parent: windowManager
Source: General

dataIcons: alternative
Icons represent data items such as files and directories.

Parent: iconUsage
Source: A Taxonomy of Window Manager User Interfaces

deiconifiedIconDisplay: mandatory
The way currently deiconified icons displayed.

Parent: hasIcons
Source: X10/uwm window manager experience

deiconifyIconOp: mandatory
Turn an icon into a main window.

Parent: hasIcons
Source: General

destroyWindowOp: mandatory
Destroy an existing window.

Parent: windowManager

126 CMU/SEI-90-TR-21



Source: General

dimmedDeiconifiedIcons: alternative
They are dimmed.

Parent: deiconifiedIconDisplay
Source: Macintosh window system experience

dimmedHighlight: optional
Dim all other windows.

Parent: highlightedAreas
Source: Symbolics window system experience

dropShadowsEffect: optional
Aesthetically pleasing 3D visual effect to make windows stand out.

Parent: windowManager
Source: X11 Xlib documentation

eraseAfter: alternative
Erase at the end of the move.

Parent: moveErasure
Source: VMS window system experience

eraseBefore: alternative
Erase at the start of the move.

Parent: moveErasure
Source: VMS window system experience

expandWindowOp: optional
Expand a window to fill the entire screen.

Parent: resizeInput
Source: SunView window system experience

exposeAfterChangeFocus: optional
Expose the window at the end of a change focus operation.

Parent: changeFocusOp
Source: SunView window system experience
Rules: requires overlappedLayout

exposeAfterDeiconify: optional
Expose the window at the end of a deiconify operation.

Parent: deiconifyIconOp
Source: SunView window system experience
Rules: requires overlappedLayout

exposeAfterIconify: optional
Expose the icon at the end of an iconify operation.

Parent: iconifyWindowOp
Source: SunView window system experience
Rules: requires overlappedLayout

exposeAfterMove: optional
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Expose the window at the end of a move operation.
Parent: moveWindowOp
Source: SunView window system experience
Rules: requires overlappedLayout

exposeAfterResize: optional
Expose the window at the end of a resize operation.

Parent: resizeWindowOp
Source: SunView window system experience
Rules: requires overlappedLayout

exposeWindowOp: mandatory
Expose a window.

Parent: stackingOrder
Source: X10/uwm window manager experience

fixedNumberColumns: alternative
Window layout is tiled in a fixed number of columns.

Parent: tiledColumns
Source: A Taxonomy of Window Manager User Interfaces

focusBeforeCommand: optional
The need to make a window the focus before a command is performed on it.

Parent: changeFocusOp
Source: Macintosh window system experience

ghostFeedback: alternative
An outline displayed for feedback.

Parent: interactiveFeedback
Source: X10/uwm window manager experience
Rules: requires moveErasure

hasIcons: optional
The window manager supports icons.

Parent: windowManager
Source: Symbolics window system experience

hiddenInputFocus: optional
The ability to make a hidden window the input focus.

Parent: updateHiddenWindows
Source: A Taxonomy of Window Manager User Interfaces

hideWindowOp: optional
Hide a window beneath all other windows.

Parent: stackingOrder
Source: X10/uwm window manager experience

highlightInputFocus: optional
Highlight the current input focus.

Parent: changeFocusOp
Source: A Taxonomy of Window Manager User Interfaces
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highlightMethod: mandatory
The way highlighting is done.

Parent: highlightInputFocus
Source: Motif window manager experience

highlightedAreas: mandatory
Where the current input focus is highlighted.

Parent: highlightInputFocus
Source: A Taxonomy of Window Manager User Interfaces

iconBox: optional
Icons are stored in an icon box (or manager).

Parent: hasIcons
Source: Motif window manager experience
Rules: requires iconBoxDeiconifiedIcons

iconBoxDeiconifiedIcons: alternative
Deiconified icons go into an icon box.

Parent: deiconifiedIconDisplay
Source: Motif window manager experience
Rules: requires iconBox

iconFocus: optional
An icon may be the current input focus.

Parent: activeIcons
Source: A Taxonomy of Window Manager User Interfaces
Rules: requires changeFocusOp

iconIO: mandatory
The way icons deal with input/output.

Parent: hasIcons
Source: A Taxonomy of Window Manager User Interfaces

iconOperationFeedback: optional
Visible feedback for iconify/deiconify icon operations.

Parent: operationFeedback
Source: X10/uwm window manager experience

iconUsage: mandatory
The way icons are used in the window manager.

Parent: hasIcons
Source: A Taxonomy of Window Manager User Interfaces

iconifyWindowOp: mandatory
Turn a main window into an icon.

Parent: hasIcons
Source: General

inputFocusSelection: mandatory
The way the user selects the input focus.

Parent: windowManager

CMU/SEI-90-TR-21 129



Source: A Taxonomy of Window Manager User Interfaces

interactiveFeedback: mandatory
The user feedback during a move or resize.

Parent: moveResizeFeedback
Source: X10/uwm window manager experience

interiorHighlight: optional
Highlight the interior of the window.

Parent: highlightedAreas
Source: A Taxonomy of Window Manager User Interfaces

keyboardAccelerators: optional
Keyboard equivalents for commands normally run from menus.

Parent: windowManager
Source: A Taxonomy of Window Manager User Interfaces

largerThanScreenWindows: optional
The ability to create windows larger than the screen.

Parent: partiallyOffScreenWindows
Source: X10/uwm window manager experience

listenerMode: alternative
Click to type.

Parent: inputFocusSelection
Source: A Taxonomy of Window Manager User Interfaces

mandatoryFocus: optional
The need for a designated input focus at all times.

Parent: changeFocusOp
Source: A Taxonomy of Window Manager User Interfaces
Rules: requires listenerMode

moveErasure: optional
Erase the old window at start or end of move.

Parent: moveWindowOp
Source: VMS window system experience

moveIcon: optional
Move an icon to a new location.

Parent: moveWindowOp
Source: A Taxonomy of Window Manager User Interfaces
Rules: requires hasIcons

moveResizeFeedback: mandatory
Visible feedback for move/resize operations.

Parent: operationFeedback
Source: X10/uwm window manager experience

moveWindowColumnOp: optional
Move a window from one column to another.
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Parent: moveWindowOp
Source: A Taxonomy of Window Manager User Interfaces
Rules: requires tiledColumns

moveWindowOp: mandatory
Move a window to a new location.

Parent: windowManager
Source: General

multipleInputFoci: optional
The ability to have multiple simultaneous input foci.

Parent: changeFocusOp
Source: A Taxonomy of Window Manager User Interfaces

multipleObjectSelection: optional
The ability to select multiple windows (or other objects).

Parent: windowManager
Source: A Taxonomy of Window Manager User Interfaces

newIconPlacement: mandatory
Where newly created icons are placed.

Parent: hasIcons
Source: VMS window system experience

nextOnStackingOrder: alternative
The input focus switches to the next on the stacking order.

Parent: revertToNewFocus
Source: VMS window system experience
Rules: requires overlappedLayout

objectAction: alternative
First the window, then the command.

Parent: selectionOrder
Source: Open Look GUI documentation

onePlaceResize: alternative
Users may select only the lower right corner to resize the window.

Parent: resizeInput
Source: A Taxonomy of Window Manager User Interfaces

opaqueFeedback: alternative
The complete window displayed for feedback.

Parent: interactiveFeedback
Source: X10/uwm window manager experience
Rules: mutex with moveErasure

openAreaIconPlacement: alternative
In an arbitrary open area.

Parent: newIconPlacement
Source: VMS window system experience
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operationFeedback: mandatory
Visible feedback for users when operations are performed.

Parent: windowManager
Source: X10/uwm window manager experience

overlappedLayout: alternative
Overlapped presentation.

Parent: windowLayout
Source: A Taxonomy of Window Manager User Interfaces

parentNewFocus: alternative
The input focus switches to the parent.

Parent: revertToNewFocus
Source: X11 Xlib documentation

partiallyOffScreenWindows: optional
The ability to place windows partially off the screen.

Parent: overlappedLayout
Source: A Taxonomy of Window Manager User Interfaces

passiveIcons: alternative
An icon may *not* display data from an application.

Parent: iconIO
Source: A Taxonomy of Window Manager User Interfaces

patternHighlight: alternative
Highlighting via a pattern.

Parent: highlightMethod
Source: X10/uwm window manager experience

pointerPositionIconPlacement: alternative
The current pointer position.

Parent: newIconPlacement
Source: X10/uwm window manager experience

processIcons: alternative
Icons represent executing processes/applications.

Parent: iconUsage
Source: A Taxonomy of Window Manager User Interfaces

quitWindowSystem: optional
Quit the window system.

Parent: windowManager
Source: SunView window system experience

realEstateMode: alternative
Point to type.

Parent: inputFocusSelection
Source: A Taxonomy of Window Manager User Interfaces

rectangularShape: alternative
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Windows must be rectangular.
Parent: windowShape
Source: X10/uwm window manager experience

refreshAllWindowsOp: optional
Redraw all windows.

Parent: windowManager
Source: X10/uwm window manager experience

refreshWindowOp: optional
Redraw the window.

Parent: windowManager
Source: SunView window system experience

resizeIcon: optional
Resize an icon.

Parent: resizeWindowOp
Source: General
Rules: requires hasIcons

resizeInput: mandatory
The way the user provides the resizing information.

Parent: resizeWindowOp
Source: A Taxonomy of Window Manager User Interfaces

resizeWindowOp: mandatory
Change the dimensions of a window.

Parent: windowManager
Source: General

revertToNewFocus: mandatory
The way a new input focus is chosen when the current one is deleted.

Parent: listenerMode
Source: X11 Xlib documentation

rootNewFocus: alternative
The input focus switches to the root.

Parent: revertToNewFocus
Source: X11 Xlib documentation

scrollbarHighlight: optional
Highlight the scroll bar.

Parent: highlightedAreas
Source: Symbolics window system experience

selectionOrder: mandatory
The order in which the command and the window are chosen.

Parent: windowManager
Source: Open Look GUI documentation

specialAreaIconPlacement: alternative
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In a special area.
Parent: newIconPlacement
Source: Macintosh window system experience
Rules: requires specialIconAreas

specialAreas: optional
Reserved regions on the screen.

Parent: windowManager
Source: A Taxonomy of Window Manager User Interfaces

specialAreasCoverable: optional
Special areas may be covered.

Parent: specialAreas
Source: A Taxonomy of Window Manager User Interfaces
Rules: requires overlappedLayout

specialAreasRemovable: optional
Special areas may be removed.

Parent: specialAreas
Source: A Taxonomy of Window Manager User Interfaces

specialCommandAreas: optional
Special areas for commands.

Parent: specialAreas
Source: A Taxonomy of Window Manager User Interfaces

specialIconAreas: optional
Special areas for icons.

Parent: specialAreas
Source: A Taxonomy of Window Manager User Interfaces
Rules: requires hasIcons

specialPromptInputAreas: optional
Special areas for prompts and input.

Parent: specialAreas
Source: A Taxonomy of Window Manager User Interfaces

stackingOrder: mandatory
The stacking order for overlapping windows.

Parent: overlappedLayout
Source: A Taxonomy of Window Manager User Interfaces

textCursorHighlight: optional
Highlight the text cursor.

Parent: highlightedAreas
Source: A Taxonomy of Window Manager User Interfaces

tiledArbitrary: alternative
Window layout is tiled arbitrarily (windows not placed in columns).

Parent: tiledLayout
Source: A Taxonomy of Window Manager User Interfaces
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tiledColumns: alternative
Window layout is tiled in columns.

Parent: tiledLayout
Source: A Taxonomy of Window Manager User Interfaces

tiledLayout: alternative
Tiled presentation.

Parent: windowLayout
Source: A Taxonomy of Window Manager User Interfaces

titleBars: optional
Title bars are used on windows.

Parent: windowManager
Source: A Taxonomy of Window Manager User Interfaces

titlebarDeiconifiedIcons: alternative
A windows title bar is its icon.

Parent: deiconifiedIconDisplay
Source: Andrew window manager experience
Rules: requires titleBars

requires hasIcons

titlebarHighlight: optional
Highlight the title bar.

Parent: highlightedAreas
Source: A Taxonomy of Window Manager User Interfaces
Rules: requires titleBars

unchangedDeiconifiedIcons: alternative
Icons remain visible as before.

Parent: deiconifiedIconDisplay
Source: A Taxonomy of Window Manager User Interfaces

undoOp: optional
Undo the last operation.

Parent: windowManager
Source: A Taxonomy of Window Manager User Interfaces

unmappedDeiconifiedIcons: alternative
Icons are made invisible by unmapping them.

Parent: deiconifiedIconDisplay
Source: X10/uwm window manager experience

updateHiddenWindows: optional
The ability to update windows which are hidden.

Parent: overlappedLayout
Source: A Taxonomy of Window Manager User Interfaces

upperLeftCornerIconPlacement: alternative
Upper left-hand corner.

Parent: newIconPlacement
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Source: X10/uwm window manager experience

warpToWindow: optional
Change the current input focus to the deiconified window.

Parent: deiconifyIconOp
Source: X11/twm documentation
Rules: requires changeFocusOp

windowConfiguration: optional
Numerical feedback about the window’s position, size, and shape.

Parent: moveResizeFeedback
Source: X10/uwm window manager experience

windowLayout: mandatory
The overriding display philosophy of the window manager.

Parent: windowManager
Source: A Taxonomy of Window Manager User Interfaces

windowManager: mandatory
The Window Manager

Parent: top
Source: General

windowPositionIconPlacement: alternative
The current window position.

Parent: newIconPlacement
Source: SunView window system experience

windowShape: mandatory
The allowable shapes for windows.

Parent: windowManager
Source: NeWS window system documentation

zapEffectIcons: alternative
Temporary lines flashed to show the results of icon operations.

Parent: iconOperationFeedback
Source: X10/uwm window manager experience
Rules: requires hasIcons

zapEffectMoveResize: optional
Lines flashed to show the results of move and resize operations.

Parent: moveResizeFeedback
Source: X10/uwm window manager experience
Rules: requires ghostFeedback

requires eraseAfter

zoomEffectIcons: alternative
A visual effect used to show the results of icon operations.

Parent: iconOperationFeedback
Source: X11/twm documentation
Rules: requires hasIcons
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Appendix F:  Hierarchical Window Manager Feature
Listing

In the following listing indentation is used to show the hierarchical (parent/child) structure
among the features. The numbers on the left indicate the indentation level. This diagram
could be converted directly into the form of a feature diagram. To do so, the symbols should
be interpreted as follows:

• Asterisks ("*") indicate optional features

• Bar ("|") indicates alternative features

• Dash ("-") indicates that the feature is applicable to this subtree

• All other features are mandatory

0 windowManager
1 createWindowOp
2 * createIconified
1 destroyWindowOp
1 moveWindowOp
2 - partiallyOffScreenWindows
2 - zapEffectMoveResize
2 - windowConfiguration
2 - windowLayout
2 - interactiveFeedback
2 * moveIcon
2 * constrainedMove
2 * moveWindowColumnOp
2 * abortMoveOp
2 * moveErasure
3 | eraseBefore
3 | eraseAfter
2 * exposeAfterMove
1 changeFocusOp
2 * highlightInputFocus
3 highlightedAreas
4 * borderHighlight
4 * titlebarHighlight
4 * textCursorHighlight
4 * scrollbarHighlight
4 * interiorHighlight
4 * commandAreaHighlight
4 * dimmedHighlight
3 highlightMethod
4 | patternHighlight
4 | colorHighlight
2 * focusBeforeCommand
2 * mandatoryFocus
2 * multipleInputFoci
2 * exposeAfterChangeFocus
1 resizeWindowOp
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2 - largerThanScreenWindows
2 - interactiveFeedback
2 - windowConfiguration
2 - zapEffectMoveResize
2 * resizeIcon
2 resizeInput
3 | onePlaceResize
3 | cornersAndHandlesResize
3 * expandWindowOp
2 * abortResizeOp
2 * exposeAfterResize
1 * hasIcons
2 iconifyWindowOp
3 - zapEffectIcons
3 - zoomEffectIcons
3 * exposeAfterIconify
2 deiconifyIconOp
3 - zapEffectIcons
3 - zoomEffectIcons
3 * warpToWindow
3 * exposeAfterDeiconify
2 * iconBox
2 iconUsage
3 | processIcons
3 | dataIcons
2 deiconifiedIconDisplay
3 | unmappedDeiconifiedIcons
3 | titlebarDeiconifiedIcons
3 | dimmedDeiconifiedIcons
3 | unchangedDeiconifiedIcons
3 | iconBoxDeiconifiedIcons
2 iconIO
3 | activeIcons
4 * iconFocus
3 | passiveIcons
2 newIconPlacement
3 | upperLeftCornerIconPlacement
3 | pointerPositionIconPlacement
3 | windowPositionIconPlacement
3 | openAreaIconPlacement
3 | specialAreaIconPlacement
1 windowLayout
2 | tiledLayout
3 | tiledColumns
4 | fixedNumberColumns
4 | arbitraryNumberColumns
3 | tiledArbitrary
2 | overlappedLayout
3 * partiallyOffScreenWindows
4 * largerThanScreenWindows
3 * updateHiddenWindows
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4 * hiddenInputFocus
3 stackingOrder
4 exposeWindowOp
4 * hideWindowOp
4 * circulateUpWindowsOp
4 * circulateDownWindowsOp
1 * refreshWindowOp
1 * refreshAllWindowsOp
1 * undoOp
1 * quitWindowSystem
1 operationFeedback
2 * iconOperationFeedback
3 | zapEffectIcons
3 | zoomEffectIcons
2 moveResizeFeedback
3 * windowConfiguration
3 * zapEffectMoveResize
3 interactiveFeedback
4 | ghostFeedback
4 | opaqueFeedback
1 windowShape
2 | rectangularShape
2 | arbitraryShape
1 * specialAreas
2 * specialPromptInputAreas
2 * specialAreasCoverable
2 * specialAreasRemovable
2 * specialCommandAreas
2 * specialIconAreas
1 inputFocusSelection
2 | listenerMode
3 revertToNewFocus
4 | parentNewFocus
4 | rootNewFocus
4 | nextOnStackingOrder
2 | realEstateMode
1 * titleBars
1 * dropShadowsEffect
1 * keyboardAccelerators
1 * multipleObjectSelection
1 selectionOrder
2 | objectAction
2 | actionObject
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Appendix G:  Window Manager Entity Attributes

1. Icon attributes:

• Window Operations:

• Deiconify

2. Main window attributes:

• Window Operations:

• Resize
• Iconify
• Expose
• Hide
• Circulate

• Internals:

• Window gravity

3. Pointer attributes:

• Position

4. Screen attributes:

• Size

• Shape

• Resolution

5. Window attributes:

• Window Operations:

• Create
• Destroy
• Move
• Refresh

• Internals:

• ID
• Valid events (event suppression mask)
• Parent window
• ID of associated main window or icon
• Application processes
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• Configuration/Geometry:

• Position
• Shape
• Size
• Border width
• Stacking order position

• Visual attributes:

• Cursor picture

• Source bitmap

• Shape bitmap

• Pair of colors

• Mapping (mapped/unmapped)
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