
_~rechnical Report
-CMU/SEI-90-TR-20
ESD-TR-90-221

Carnegie-Mellon University

Software Engineering Institute

Prospects for
an Engineering Discipline
of Software

-Mary Shaw

September 1990

The following statement of assurance is more than a statement required to comply with the federal law. This is a sincere statement by the university to assure that all
people are included in the diversity which makes Carnegie Mellon an exciting place. Carnegie Mellu~l wishes to include people without regard to race, color, national
origin, sex, handicap, religion, creed, ancestry, belief, age, veteran status or sexual orientation.

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required not to discriminate in admissions and employment on the basis of race,
color, national origin, sex or handicap in violation of Title VI of the Civil Rights Act of 1964, Title IX of the Educational Amendments of 1972 and Section 504 of the
Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders. In addition. Carnegie Mellon does not discriminate in admissions and employment on
the basis of religion, creed, ancestry, belief, age, veteran status or sexual orientation in violation of any federal, state, or local laws or executive orders, inquiries concern-
ing application of this policy should be directed to the Provost, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone (412) 268-6684 or the
Vice President for Enrollment,,Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone (412) 268-2056.

Technical Report
CMU/SEI-90-TR-20

ESD-TR-90-221
September 1990

Prospects for
an Engineering Discipline

of Software

Mary Shaw
Software Architecture Design Principles

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

JOHN So HERMAN, Capt, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense, in part by Contract F19628-
¯90-C0003 with the U.S. Air Force as the executive contracting agent, and in part by the
Defense Advanced Research Projects Agency (DoD) ARPA Orde~r No. 4976, Amendment
20, under Contract F33615-87-C-1499, monitored by the Avionics Laboratory, Air Force
Wright Aeronautical Laboratories, Aeronautical Systems Division (AFSC), Wright-
Patterson AFB, Ohio 45433-6543.

¯ Copyright © 1990 by Mary Shaw

This report appears as an invited paper in the November 1990 issue of IEEE Software. It also appears as
Camegie Mellon University School of Computer Science Technical Report No. CMU-CS-90-165.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S.
Government agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense
Technical Information Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Service. For information on
ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce,
Springfield, VA 22161.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder,

Table of Contents

1. What is Engineering?

1.1. Routine and Innovative Design

1.2. A Model for the Evolution of an Engineering Discipline

2, Examples from Traditional Engineering
2.1. Civil Engineering: A Basis in Theory

2.1.1. Emergence of Civil Engineering
2.1.2. Structure of Civil Engineering

2.2. Chemical Engineering: A Basis in Practice

2.2.1. Emergence of Chemical Engineering
2.2.2. Structure of Chemical Engineering

3. Current State of Software Technology

3.1. Information Processing as an Economic Force
3.2. Growing Role of Software in Critical Applications

3.3. Maturity of Software Development Techniques
3.4. Scientific Basis for Engineering Practice

3.4.1. Maturity of Supporting Science

3.4.2. Interaction Between Science and Engineering
4. Toward an Engineering Dis(~ipline of Software

4.1. Understand the Nature of Expertise

4.2. Recognize Different Ways to Obtain Information
4.3. Encourage Routine Practice

4.4. Expect Professional Specializations
4.5. Improve Coupling Between Science and Commercial Practice

Acknowledgements

References

1

2

3

7
7

7

8

8

9

9
11

11

~,~11
12

14

14

15

17

17

17
18

19

20

21
23

CMU/SEI-90-TR-20 i

ii CMU/SEI-90-TR-20

Table of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:

Evolution of an Engineering Discipline

Evolution of Civil Engineering
Evolution of Chemical Engineering

Significant Shifts in Research Attention

Figure 5: Codification Cycle for Science and Engineering

Figure 6: Evolution of Software Engineering

4

8

10

13

-15

16

CMU/SEI-90-TR-20 iii

iv CMU/SEI-90-TR-20

Prospects for an Engineering Discipline of Software

Abstract: Software engineering is not yet a true engineering discipline, but it has the
potential to become one. Older engineering fields offer glimpses of the character software
engineering might have. From these hints and an assessment of the current state of
software practice, we can project some characteristics software engineering will have and
suggest some steps toward an engineering discipline of software.

The term software engineering was coined in 1968 as a statement of aspiration--a sort of
rallying cry. That year NATO convened a workshop by that name to assess the state and
prospects of software production [NATO 69]. Capturing the imagination of software
developers, the phrase achieved popularity during the 1970s. It now refers to a collection
of management processes, software tooling, and design activities for software
development. The resulting practice, however, differs significantly from the practice of
older forms of engineering.

This paper begins by examining the usual practice of engineering and the way it has
evolved in other disciplines. This discussion provides a historical context for assessing the
current practice of software production and setting out an agenda for attaining an
engineering practice.

1. What is Engineering?

Software engineering is a label applied to a set of current practices for software
development. Using the word engineering to describe this activity takes considerable
liberty with the common use of that term. In contrast, the more customary usage refers to
the disciplined application of scientific knowledge to resolve conflicting constraints and
requirements for problems of immediate, practical significance.

Definitions of engineering have been written for well over a hundred years. Here is a
sampling of typical definitions:

In 1828 Thomas Tredgold wrote, "Engineering is the art of directing the great sources of
power in nature for the use and convenience of man; being that practical application of the
most important principles of natural philosophy which has, in a considerable degree,
realized the anticipations of Bacon, and changed the aspect and state of affairs in the
whole world" [Armytage 61, p.123].

"Engineering is ’the art or science of making practical applications of the knowledge of pure
sciences.’ In other words, although engineers are not scientists, they study the sciences
and use them to solve problems of practical interest, most typically .by the process that we
call creative design" [Florman 76, p.x].

"Engineering is often defined as the use of scientific knowledge and principles for practical
purposes usually by designing useful products" [Parnas 90, p.17].

Arthur Wellington, the late 19th century scholar of railroad economics, defined an engineer
as "a man who can do thatwell with one dollar which any bungler can do with two after a
fashion" [Finch 51, p.102].

CMU/SEI-90-TR-20 1

Although these and other definitions differ in detail, they share a common set of clauses:

Creating cost-effective solutions... Engineering is not just about solving problems; it
is about solving problems with economical use of
all resources, including money.

...to practical problems... Engineering deals with practical problems
whose solutions matter to people outside the
engineering domainNthe customers.

...by applying scientific knowledge... Engineering solves problems in a particular way:
by applying science, mathematics, and design
analysis.

...building things... Engin.eering emphasizes the solutions, which
are usually tangible artifacts.

...in the service of mankind Engineering not only serves the immediate
customer, but also develops technology and
expertise that will support the society.

Engineering relies on codifying scientific knowledge about a technological problem
domain in a form that is directly useful, to the practitioner, thereby providing answers for
questions that commonly occur in practice. Engineers of ordinary talent can then apply
this knowledge to solve problems, far faster than they otherwise could. In this way,
engineering shares prior solutions rather than relying always on virtuoso problem solving.

Engineering practice enables ordinary practitioners to create sophisticated systems that
work--unspectacularly, perhaps, but reliably° The history of software development is
marked by both successes and failures. The successes have often been virtuoso
performances or the result of diligence and hard work. The failures have often reflected
poor understanding of the problem to be solved, mismatch of solution to problem, or
inadequate follow-through from design to implementation. Some failed by never working,
others by overrunning cost and schedule budgets.

In current software practice, knowledge about techniques that work is not shared
effectively with later projects, nor is there a large body of software development
knowledge organized for ready reference. Computer science has contributed some
relevant theory, but practice proceeds largely independently of this organized knowledge.
Given this track record, there are fundamental problems with the use of the term software
engineer.

1.1. Routine and Innovative Design
Engineering design tasks are of several kinds; one of the most significant distinctions
separates routine from innovative design. Routine design involves solving familiar prob-
lems, reusing large portions of prior solutions. Innovative design, on the other hand,
involves finding novel solutions to unfamiliar problems. Original designs are much more
rarely needed than routine designs, so the latter is the bread and butter of engineering.

2 CMU/SEI-90-TR-20

Most engineering disciplines capture, organize, and share design knowledge in order to
make routine design simpler. Handbooks and manuals are often the carriers of this
organized information [Marks 87, Perry 84]. But current notations for software designs are
not adequate for the task of both recording and communicating designs, so they fail to
provide a suitable representation for such handbooks.

Software in most application domains is treated more often as original than routine--
certainly more so than would be necessary if we captured and organized what we already
know. One path to increased productivity is identifying applications that could be routine
anddeveloping appropriate support. The current focus on reuse emphasizes capturing
and organizing existing knowledge of a particular kind: knowledge expressed in the form
of code. Indeed, subroutine librariesmespecially of system calls and general-purpose
mathematical routinesmhave been a staple of programming for decades. But this
knowledge cannot be useful if programmers do not know about it or are not encouraged
to use it. Further, library components require more care in design, implementation, and
documentation than similar components that are simply embedded in systems.

Practitioners recognize the need for mechanisms to share experience with good designs.
This cry from the wilderness appeared on a Software Engineering news groups:

"In Chem E, when I needed to design a heat exchanger, I used a set of references that told
me what the constants were ... and the standard design equations ...

"In general, unless I, or someone else in my engineering group, has read or remembers.,.
and makes known a solution to a past problem, I’m doomed to recreate the solution I
guess ... the critical difference is the ability to put together little pieces of the problem that
are relatively well known, without having to generate a custom solution for every
application...

"1 want to make it clear that I am aware of algorithm and code libraries, but they are
incomplete solutions to what I am describing. (There is no Perry’s Handbook for Software.:
Engineering.)"

This former chemical engineer is complaining that software lacks the institutionalized
mechanisms of a mature engineering discipline for recording and disseminating
demonstrably good designs and ways to choose among design alternatives. Perry’s
handbook is the standard design handbook for chemical engineering; it is about 4 inches
thick x 8-1/2" x 11", printed in tiny type on tissue paper [Perry 84].

1o2. A Model for the Evolution of an Engineering Discipline
Historically, engineering has emerged from ad hoc practice in two stages: First,
management and production techniques enable routine production. Later, the problems
of routine production stimulate the development of a supporting science; the mature
science eventually merges with established practice to yield professional engineering
practice. This model is depicted in Figure 1. The lower lines track the technology, and the
upper lines show how the entry of production skills and scientific knowledge contribute
new capability to the engineering practice.

CMU/SEI-90-TR-20 3

Science
Professional

Production Engineering

Commercial

Craft f

¯ Virtuosos and talented

amateurs
¯ Intuition and brute force
¯ Haphazard progress

¯ Casual transmission

¯ Extravagant use of

available materials

¯ Manufacture for use

rather than sale

¯ Skilled craftsmen

¯ Established procedure

¯ Pragmatic refinement
¯ Training in mechanics

¯ Economic concern for cost

and supply of materials

¯ Manufacture for sale

¯ Educated professionals

¯ Analysis and theory

¯ Progress relies on science

¯ Educated professional class

¯ Enabling new applications

through analysis "

¯ Market segmentation by

product variety

Figure 1: Evolution of an Engineering Discipline

Exploitation of a technology begins with craftsmanship: a set of problems must be solved,
and they get solved any-which-way. They are solved by talented amateurs and by
virtuosos, but no distinct professional class is dedicated to problems of this particular kind.
Intuition and brute force are the primary movers in design and construction. Progress is
haphazard, particularly before the advent of good communication; hence solutions are
invented and reinvented. The transmission of knowledge between craftsmen is slow, in
part because of underdeveloped communications, but also because the talented
amateurs often do not recognize any special need to communicate. Nevertheless, ad
hoc practice eventually moves into the folklore... This craft stage of development sees
extravagant use of available materials. Construction or manufacture is often for personal
or local use or for barter, but there is little or no large-scale production in anticipation of
resale. Community barn raisings are an example of this stage; so is software written by
application experts for their own ends.

At some point, the product of the technology becomes widely accepted and demand
exceeds supply. At that point, attempts are made to define the resources necessary for
systematic commercial manufacture and to marshal the expertise for exploiting these
resources. Capital is needed in advance to buy raw materials, so financial skills become
important, and the operating scale increases over time. As commercial practice
flourishes, skilled practitioners are required for. continuity and for consistency of effort.

4 Ci~iUiSEI-90-TR-20

They are trained pragmatically in established procedures. Management may not know
why these procedures work, but they know the procedures do work and how to teach
people to execute them. The procedures are refined, but the refinement is driven
pragmatically: a modification is tried to see if it works, then incorporated in standard
procedure if it is successful. Economic considerations lead to concerns over the efficiency
of procedures and the use of materials. People .begin to explore ways for production
facilities to exploit the technology base; economic issues often point out problems in
commercial practice. Management strategies for controlling software development fit at
this point of the model.

The problems of current practice often stimulate the development of a corresponding
science. There is frequently a strong productive interaction between commercial practice
and the emerging science. At some point the science becomes sufficiently mature to be a
significant contributor to the commercial practice. This marks the emergence of
engineering practice in the sense that we know it today--sufficient scientific basis to
enable a core of educated professionals to apply the theory to analysis of problems and
synthesis of solutions. In the 18th and early 19th centuries,

"what was happening was a gradual drawing together of the common interests in basic
physical understandings of natural science and engineering. On the one hand, the
reduction of many empirical engineering techniques to a more scientific basis was essential
to further engineering progress. On the other, this liaison was helpful and stimulating to.
further advances in natural science. An important and mutually stimulating tie-up between~
natural and engineering science, a development which had been discouraged for
centuries by the long dominant influence of early Greek thought, was at long last
consummated" [Finch 51, p.6].

The emergence of an engineering discipline allows technological development to pass
limits previously imposed by relying on intuition; progress frequently becomes dependent
on science as a forcing function. A scientific basis is needed to drive analysis, which
enables new applications and even market segmentation via product variety. Attempts
are made to gain enough control over design to target specific products on demand. ::

Thus, engineering emerges from the commercial exploitation that supplants craft; modern
engineering relies critically on adding scientific foundations to craft and
commercialization. Exploiting technology depends not only on scientific engineering but
also on management and the marshaling of resources. Engineering and science support
each other: Engineering generates good problems for science, and science, after finding
good problems in the needs of practice, returns workable solutions. Science is often not
driven by the immediate needs of engineering; however, good scientific problems often
follow from an understanding of the problems that the engineering side of the field is
coping with.

The engineering practice of software has recently come under criticism [Dijkstra 89,
Parnas 90]. Although current software practice does not match, the usual expectations of
an engineering discipline, the model described here suggests that vigorous pursuit of
applicable science and the reduction of that science to practice can lead to a sound
engineering discipline of software.

We turn now to two examples that serve to make this model concrete, then assess the
current state of software practice and its prospects for following this evolutionary path.

CMU/SEI-90-TR-20 5

6 CMU/SEI-90-TR-20

2. Examples from Traditional Engineering

The evolution of engineering disciplines is demonstrated by civil and chemical
engineering. The comparison of the two is also illuminating, because they have very
different basic organizations.

2.1. Civil Engineering: A Basis in Theory
Originally so-called .tO distinguish it from military engineeringl ¢ivi/engineering included
all of civilian engineering until the middle of the 19th century. Divergence of interests led
engineers specializing in other technologies to break away, and today civil engineers are
the technical experts of the construction industry. They are concerned primarily with
large-scale, capital-intensive construction efforts, such as buildings, bridges, dams,
tunnels, canals, highways, railroads, public water supplies, and sanitation. As a rule, civil
engineering efforts involve well-defined task groups who use appropriate tools and
technologies to execute well-laid plans.

2.1.1. Emergence of Civil. Engineering

Although large civil structures have been built since before recorded history, only in the
last few centuries has their design and construction been based on theoretical
understanding rather than on intuition and accumulated experience. Neither the Middle
Ages nor the Ancient World showed any signs of the deliberate quantitative application of
mathematics to determination of dimensions and shapes that characterizes modern civil
engineering. But even without formal understanding, pragmatic rules for recurring
elements were documented. Practical builders had highly developed intuitions about
statics and relied on a few empirical rules.

The scientific revolution of the Renaissance led to serious attempts by Galileo,
Brunelleschi, and others to explain structures and why they worked. Over a period of
about two hundred years there were attempts to explain the composition of forces and
bending of a beam. However, progress was slowed for a long time by problems in
formulating basic notions such as force, in particular the idea that gravity could be treated
as just another force like all the others. Until the basic concepts were sorted out, it was
not possible to do a proper analysis of the problem of combining forces (using vector
addition) which we now teach to freshmen, nor was it possible to deal with strengths of
materials.

About 1700 Varignon and Newton developed the theory of statics to explain the
composition of forces and Coulomb and Navier explained bending with the theory of
strength of materials. These now provide the basis for civil engineering. By the middle of
the 18th century civil engineers were tabulating properties of materials. The mid-18th
century also saw the first attempts to apply exact science to practical building. Pope
Benedict ordered an analysis of St. Peter’s dome in 1742 and 1743 to determine the
cause of cracks and propose repairs; the analysis was based on the Principle of Virtual
Displacement and was carried out precisely (though the model is now known to fail to
account properly for elasticity). By 1850 it was possible for Robert Stephenson’s Britannia
Tubular Bridge overthe Menai Strait to be subjected to a formal structural analysis. Thus
even after the basic theories were in hand, it took another 150 years before the theory
was rich enough and mature enough to be of direct utility at the scale of a bridge design.

CMU/SEI-90-TR-20 7

2.1.2. Structure of Civil Engineering

Civil engineering is thus rooted in two scientific theories, corresponding to two classical
problems. One problem is the composition of forces: finding the resultant force when
multiple forces are combined. The other is the problem of bending: determining the
forces within a beam supported at one end and weighted at the other. Two theories,
statics and strength of materials, solve these problems; both were developed around
1700. Modern civil engineering can be regarded as the application of these theories to
the problem of constructing buildings.

"For nearly two centuries, civil engineering has undergone an irresistible transition from a
traditional craft, concerned with tangible fashioning, towards an abstract science, based on
mathematical calculation. Every new result of research in structural analysis and
technology of materials signified a more rational design, more economic dimensions, or
entirely new structural possibilities. There were no apparent limitations to the possibilities
of analytical approach; there were no apparent problems in building construction which
could not be solved by calculation" [Straub 64 pp.236-241].

The transition from craft to commercial practice can be dated to the Romans’ extensive
transportation system of the 1st century. The underlying science emerged about 1700,
and it matured to successful application to practice sometime between the mid-18th
century and the mid-19th century. Figure 2 places the significant events on our model.

1700: statics
1700: strength of materials

Science

Production
Professional

=ineering

Craft

Commercial

1 st century

50: properties
of materials

1850: full analysis
of bridge

Figure 2: Evolution of Civil Engineering

2.2. Chemical Engineering: A Basis in Practice
The second example deals with a very different kind of engineering, chemical
engineering. This discipline is rooted in empirical observations rather than in a scientific
theory. It is concerned with practical problems of chemical manufacture; its scope covers
the industrial-scale production of chemical goods: solvents, pharmaceuticals, synthetic
fibers, rubber, paper, dyes, fertilizers, petroleum products, cooking oils, etc. Though
chemistry provides the specification and design of the basic reactions, the chemical
engineer is responsible for scaling the reactions up from laboratory scale to factory scale.

8 CMU/SEI-90-TR-20

As a result, chemical engineering depends heavily on mechanical engineering as well as
chemistry.

2.2ol. Emergence of Chemical Engineering

Until the late 18th century, chemical production was largely a cottage industry. The first
chemical produced at industrial scale was alkalL required for the manufacture of glass,
soap, and textiles. The first economical industrial process for alkali emerged in 1789, well
before the atomic theory of chemistry explained the underlying chemistry. By the mid-19th
century, industrial production of dozens of chemicals had turned the British Midlands into
a chemical manufacturing district. Laws were passed to control the resulting pollution,
and pollution-control inspectors, called alkafi inspectors, monitored plant compliance.

One of these alkali inspectors, G.E. Davis, worked in the Manchester area in the late
1880s. He realized that although the plants he was inspecting manufactured dozens of
different kinds of chemicals, there were not dozens of different procedures involved. He
identified a collection of functional operations that took place within those processing
plants and were used in the manufacture of different chemicals. He gave a series of
lectures in 1887 at the Manchester Technical School. The ideas in those lectures were
imported to the United States by MIT in the latter part of the century and form the basis of
chemical engineering as it is practiced today. This structure is called unit operations; the
term was actually coined in 1915 by Arthur D. Little.

2.2.2. Structure of Chemical Engineering

The fundamental problems of chemical engineering are the quantitative control of large
masses of material in reaction and the design of cost-effective industrial-scale processes
for chemical reactions.

The unit operations model asserts that industrial chemical manufacturing processes can
be resolved into a relatively small number of units, each of which has a definite function
and each of which is used repeatedly in different kinds of processes. The unit operations
are steps like filtration and clarification, heat exchange, distillation, screening, magnetic
separation, and flotation. The basis of chemical engineering is thus a pragmatically
determined collection of very high level functions that adequately and appropriately
describe the processes to be carried out.

This is a very different kind of structure from that of civil engineering. It is a pragmatic,
empirical structure, rather than a theoretical one.

"Chemical engineering as a science ... is not a composite of chemistry and mechanical and
civil engineering, but a science of itself, the basis of which is those unit operations which in
their proper sequence and coordination constitute a chemical process as conducted on
the industrial scale. These operations, as grinding, extracting, roasting, crystallizing,
distilling, air-drying, separating, and so on, are not the subject matter of chemistry as such
nor of mechanical engineering. Their treatment is in the quantitative way with proper
exposition of the laws controlling them and of the materials and equipment concerned in
them is the province of chemical engineering. It is this selective emphasis on the unit
operations, themselves in their quantitative aspects that differentiates the chemical
engineer from industrial chemistry, which is concerned primarily with general processes
and products" [AIChE Committee on Education, 1922, quoted in van Antwerpen pp.111-
12].

CMU/SEI-90-TR-20 9

The transition from craft to commercial practice can be dated to the introduction of the
LeBlanc process for alkali in 1789. The science emerged with Dalton’s atomic theory in
the early 19th century, and it matured to successful merger with large-scale mechanical
processes in the 1890s. Figure 3 places the significant events on our model.

Production

1800: atomic theory

Science

Commercial

1790: first industrial
alkali process

Figure 3:

Professional
Engineering

unit
operations

Evolution of Chemical Engineering

1 0 CMU/SEI-90-TR-20

3. Cu=’rent State of Software Technology

We turn now to software. We begin by establishing that the problem is appropriately
viewed as an engineering problem: creating cost-effective solutions to practical problems
... building things in the service of mankind. We then address the question of whether
software developers do or ever can do this by applying scientific knowledge. In the
process we position software engineering in the evolutionary model described earlier.

3.1. Information Processing as an Economic Force
The US computer business, including computers, peripherals, packaged software, and
communications, was about $150B in 1989 and is projected to be over $230B by 1992.

The packaged software component is projected to grow from $23.7B to $37.5B in this
period [DAG 89]. Services, including systems integration and in-house software
development, are not included in these figur.es.

Worldwide, software sales amounted to about $65B in 1989. This does not include the
value of in-house software development, which is a much larger activity. World figures
are hard to estimate, but the cost of in-house software in the U.S. alone may be in the
range $150B-$200B-[CSTB 90]. It is not clear how much modification after release
(so-called "maintenance") is included in this figure. Thus software is coming to dominate
the cost of information processing.

The economic presence of information processing also makes itself known through the
actual and opportunity costs of systems that do not work Examples of costly system
failures abound. Less obvious are the costs of. computing that is not even attempted:
software development backlogs so large as to discourage new requests, gigabytes of
unprocessed raw data from satellites and space probes, and so on. Despite very real
(and quite substantial) successes, the litany of mismatches of cost, schedule, and
expectations is a familiar one.

3.2. Growing Role of Software in Critical Applications
The (US) National Academy of Engineering recently, selected the ten greatest
engineering achievements of the last 25 years. Of the ten, three are informatics
achievements: communications and information-gathering satellites, the microprocessor,
and fiber optic communication. Two more are direct applications of computers: computer-
aided design and manufacturing and the computerized axial tomography scan. And most
of the rest are computer-intensive: the moon landing, advanced composite materials, the
jumbo jet, lasers, and the application of genetic engineering to produce new
pharmaceuticals and crops [NAE 89].

The conduct of science is increasingly driven by computational paradigms standing on
equal footing with theoretical and experimental paradigms. Both scientific and-
engineering disciplines require quite sophisticated computing. The demands are often
stated in terms of raw processing power--"an exaflop (10"’18) processor with teraword
memory," "a petabyte (10"’15) of storage" [Levin 89]--but the supercomputing community
is increasingly recognizing software development as a critical bottleneck.

CMU/SEI-90-TR-20 1 1

Because of software’s pervasive presence, the appropriate objective for its developers
should be the effective delivery of computational capability to real users in forms that
match their needs. The distinction between the computational component of a system
and the application it serves is often very soft; the development of effective software now
often requires substantial application expertise.

3.3. Maturity of Software Development Techniques
Our software development abilities have certainly improved over the 40 or so years of
programming experience. Progress has been both qualitative and quantitative.
Moreover, it has taken different forms in the worlds of research and of practice.

One of the most familiar characterizations of this progress has been the shift from
programming-in-the-small to programming-in-the-large. It is also useful to look at a shift
that took place 10 years before that, from programming-any-which-way to programming-
in-the-small. Figure 4 summarizes-these shifts, both of which describe the focus of
attention of the software research community.

Prior to about the mid-1960s, programming was substantially ad hoc; it was a significant
accomplishment to get a program to run at all. Complex software systems were created--
some performed quite well--but their construction was either highly empirical or a
virtuoso activity. To make programs intelligible, we used mnemonics, we tried to be
precise about writing comments, and we wrote prose specifications. Our emphasis was
on small programs, which was all we could handle predictably. We did come to
understand that computers are symbolic information processors, not just number
crunchersBa significant insight. -But the abstractions of algorithms and data structures did
not emerge until 1967, when Knuth showed the utility of thinking of them in isolation from
the particular programs that happened to implement them. A similar shift in attitudes
about specifications took place at about the same time, when Floyd showed how
attaching logical formulas to programs allows formal reasoning about the programs. Thus
the late 1960s saw a shift from crafting monolithic programs to emphasis on algorithms
and data structures, but the programs in question were still simple programs that execute
once and then terminate.

The shift that took place in the mid-1970s from programming-in-the,small to programming-
in-the-large can be viewed in much the same terms. Research attention turned to
complex systems whose specifications were concerned not only with the functional
relations of the inputs and outputs, but also with performance, reliability, and the states
through which the system passed. This led to a shift in emphasis to interfaces and the
management of the programming process. In addition, the data of complex systems often
outlives the programs and may be more valuable, so we have to worry about integrity and
consistency of databases. Many of our programs (for example, the telephone switching
system, or a computer operating system) should not terminate. These systems require a
different sort of reasoning than do programs that take input, compute, produce output, and
terminate: the sequence of system states is often much more important that the (possibly
undesirable) termination condition.

The tools and techniques that accompanied the shift from programming-any-which-way to
programming-in-the-small provided first steps toward systematic, routine development of
small programs; they also seeded the development of a science that has only matured in
the last decade. The tools and techniques that accompanied the shift from programming-

1 2 CMU/SEI-90-TR-20

in-the-small to programming-in-the-large were largely geared to supporting groups of
programmers working together in orderly ways and to providing management visibility
into production processes. This directly supports the commercial practice of software
development.

Attribute 1960+_5 years
programming-
any-which-way

1970+_5 years
programming-
in-the small

1980_+5 years
programming-
in-the-large

Characteristic
problems

Small programs Algorithms and
programming

Interfaces,
management system
structures

Data Representing Data structures and
issues structure and types

symbolic information

Control Elementary
issues understanding of

control flows

Specification
issues

Mnemonics precise
use of prose

Programs execute
once and terminate

Simple input-output
specifications

Long-lived data
bases, symbolic as
well as numeric

Program assemblies
execute continually

Systems with
complex
specifications

State State not well Small, simple state Large, structured
space understood apart space state space

from control

Management None
focus

Individual effort Team efforts, system
lifetime maintenance

Tools, Assemblers, core Programming Environments
methods dumps language, integrated tools,

compilers, linkers documents
loaders

Figure 4: Significant Shifts in Research Attention

Practical software development proceeded to large complex systems much faster than the
research community. For example, the SAGE missile defense system of the 1950s and
the Sabre airline reservation system of the 1960s were successful interactive systems on
a scale that far exceeded the maturity of the science. They appear to have been
developed by excellent engineers.who understood the requirements well and applied
design and development methods from other (e.g., electrical) engineering. Modern
software development methodologies can be viewed as management procedures
intended to guide large numbers of developers through similar disciplines.

The term software engineering was introduced in 1968 [NATO69]. In 1976 Boehm
proposed the definition, "the practical application of scientific knowledge in the design
and construction of computer programs and the associated documentation required to

CMU/SEI-90-TR-20 13

¯ developl operate, and maintain them" [Boehm76]. This definition is consistent with older
definitions of engineering, though Boehm noted the shortage of scientific knowledge to
apply.

Unfortunately, the term is now most often used to refer to life cycle models, routine
methodologies, cost estimation techniques, documentation frameworks, configuration
management tools, quality assurance techniques, and other techniques for standardizing
production activities. These technologies are characteristic of the commercial stage of
evolution; software management would be a much more appropriate term.

3.4. Scientific Basis for Engineering Practice
Engineering practice emerges from commercial practice by exploiting the results of a
companion science. The scientific results must be mature and rich enough to model
practical problems; they must also be organized in a form that is useful to practitioners.
Computer science has a few models and theories that are ready to support practice, but
packaging of these results for operational use is lacking.

3.4.1. Maturity of Supporting Science

Despite the criticism sometimes made by software producers that computer science is
irrelevant to practical software, good models and theories have been developed in areas
that have had enough time for the theories to mature.

In the early 1960s, algorithms and data structures were simply created as part of each
program. Some folklore grew up about good ways to do certain sorts of things, and it was
transmitted informally; by the mid-1960s good programmers shared the intuition that if you
get the data structures right, the rest of the program is much simpler. In the late-1960s
algorithms and data structures began to be abstracted from individual programs, and their
essential properties were described and analyzed. The 1970s saw substantial progress
in supporting theories, including performance analysis as well as correctness.
Concurrently, the programming implications of these abstractions were explored; abstract
data type research dealt with such issues as:

Specifications abstract models, algebraic axioms

Software structure bundling representation with algorithms

Language issues modules, scope, user-defined types

Information hiding protecting integrity of information-not in specification

Integrity constraints invariants of data structures

Rules for composition declarations

Both sound theory and language support were available by the early 1980s, and routine
good practice now depends on this support.

Compiler construction is another good example. In 1960 simply writing a compiler at all
was a major achievement; it is not clear that we really understood what a higher level
language was. Formal syntax was first used systematically for Algol 60, and tools for
processing it automatically (then called compiler-compilers, but now called parser
generators) were first developed in the mid-1960s and made practical in the 1970s. Also

1 4 CMU/SEI-90-TR-20

in the 1970s, we started developing theories of semantics and types, and the 1980s have
brought significant progress toward the automation of compiler construction.

Both of these examples have roots in the problems of the 1960s and became genuinely
practical in the 1980s. It takes a good twenty years from the time that work starts on a
theory until it provides serious assistance to routine practice. Development periods of
comparable length have also preceded the widespread use of systematic methods and
technologies such as structured programming, Smalltalk, and unix [Redwine 84]. But the
whole field of computing is only about 40 years old, and many theories are emerging in
the research pipeline.

3.4.2. Interaction Between Science and Engineering
The development of good models within the software domain follows the pattern of Figure
5. We begin by solving problems any way we can manage. After some time we
distinguish in those ad hoc solutions things that usually work and things that do not
usually work. The ones that do work enter the folklore: people tell each other about them
informally. As the folklore becomes more and more systematic, we codify it as written
heuristics and rules of procedure. Eventually that codification becomes crisp enough to
support models and theories, together with the associated mathematics. These can then
help to improve practice, and experience from that practice can sharpen the theories.
Further, the improvement in practice enables us to think about harder problems--which
we first solve ad hoc, then find heuristics, eventually develop new models and theories,
and so on. The models and theories do not have to be fully fleshed out for this process to
assist practice: the initial codification of folklore may be useful in and of itself.

Ad hoc solutions ~ Folklore

Systematic folklore

Codification

Codification, analysis

Models, theories

Models, theories

Experience from practice

Improved practice

New theories, principles

Figure 5: Codification Cycle for Science and Engineering

This progression is illustrated in the use of machine language for control flow in the
1960s. In the late 1950s and the early 1960s, we did not have crisp notions about what
an iteration or a conditional was, so we laid down special-purpose code, building each
structure individually out of test and branch instructions. Eventually a small set of patterns
emerged as generally useful, generally easy to get right, and generally at least as good
as the alternatives. Designers of higher-level languages explicitly identified the most
useful ones and codified them by producing special-purpose syntax. A formal result
about the completeness of the structured constructs provided additional reassurance.
Now, almost nobody believes that new kinds of loops should be invented as a routine
practice. A few kinds of iterations and a few kinds of conditionals are captured in the

CMU/SEI-90-TR-20 1 5

languages. They are taught as control concepts that go with the language; people use
them routinely, without concern for the underlying machine code. Further experience led
to verifiable formal specifications of the semantics of these statements and of programs
that used them. Experience with the formalization in turn refined the statements
supported in programming languages. In this way ad hoc practice entered a period of
folklore and eventually matured to have conventional syntax and semantic theories that
explain it.

Where, then, does current software practice lie on the path to engineering? As Figure 6
suggests, it is still in some cases craft and in some cases commercial practice. A science
is beginning to contribute results, and for isolated examples it is possible to argue that
professional engineering is taking place. That is not, however, the common case.

1965-70: algorithms,
data structures

Science

Production
Professional
Engineering

Craft

Figure 6:

Commercial

1980’s: software
development
methodologies

isolated examples
only (algorithms,
data structures,
compiler construction)

Evolution of Software Engineering

There are good grounds to expect that there will eventually be an engineering discipline
of software. Its nature will be technical, and it will be based in computer science. Though
we have not yet matured to that state, it is an achievable goal.

The next tasks for the software profession are to:

¯ pick an appropriate mix of short-term, pragmatic, possible purely
empirical contributions that help to stabilize commercial practice and

¯ invest in long term efforts to develop and make available basic scientific
contributions.

1 6 CMU/SEI-90-TR-20

4. Toward an Engineering Discipline of Software

4.1. Understand the Nature of Expertise
Proficiency in any field requires not only higher-order reasoning skills but also a large
store of facts together with a certain amount of context about their implications and
appropriate use. Studies demonstrate this across a wide range of problem domains,
including medical diagnosis, physics, chess, financial analysis, architecture, scientific
research, policy decision making, and others [Reddy 88, pp. 13-14; Simon 89, pp.1].

An expert in a field must know around 50,000 chunks of information, where a chunk is any
cluster of knowledge sufficiently familiar that it can be remembered rather than derived.
Furthermore, in domains where there are full-time professionals, it takes no less than ten
years for a world-class expert to achieve that level of proficiency [Simon 89, pp.2-4].

Thus, fluency in a domain requires content and context as well as skills. In the case of
natural language fluency, Hirsch argues that abstract skills have driven out content;
students are expected (unrealistically) to learn general skills from a few typical examples
rather than by a "piling up of information"; intellectual and social skills are supposed to
develop naturally without regard to the specific content [Hirsch 88]. However, says Hirsch,
specific information is important at all stages. Not only are the specific facts important in
their own right, but they serve as carriers of shared culture and shared values. A software
engineer’s expertise.includes facts about computer science in general, software design
elements, programming idioms, representations, and specific knowledge about the
program of current interest. In addition, it requ!res skill with tools: the language,
environment, and support so~vare with which this program is implemented.

Hirsch provides a list of some ~five thousand words and concepts that represent the
information actually possessed by literate Americans. The list goes beyond simple
vocabulary to enumerate objects, concepts, titles, and phrases that implicitly invoke
cultural context beyond their dictionary definitions. Whether or not you agree in detail with
its composition, the list and accompanying argument demonstrate the need for
connotations as well as denotations of the vocabulary. Similarly, a programmer needs to
know not only a programming language but also the system calls supported by the
environment, the general-purpose libraries, the application-specific libraries, and how to
combine invocations of these definitions effectively. He or she must be familiar with the
global definitions of the program of current interest and the rules about their use. In
addition, a developer of application software must understand application-area issues.

The engineering of software would be better supported if we knew better what specific
content a software engineer should know. We could organize the teaching of this material
so that useful subsets are learned first, followed by progressively more sophisticated
subsets. We could also develop standard reference materials as carriers of the content.

4.2. Recognize Different Ways to Obtain Information
Given that a large body of knowledge is important to a working professional, we must ask
how software engineers should acquire the knowledge, either as students or as working
professionals. Generally speaking, there are three ways to obtain a piece of information

CMU/SEI-90-TR-20 1 7

you need: you can remember it, you can look it up, or you can derive it. These have
different distributions of costs:

Infrastructure Initial Learning Cost of Use
Cost Cost In Practice

Memory low high low
Reference high low medium
Derivation medium-high medium high

Memorization requires a relatively large initial investment in learning the material, which
is then available for instant use. Reference materials require a large investment by the
profession for developing both the organization and the content; each individual student
must then learn how to use the reference materials and then do so as a working
professional. Deriving information may involve ad hoc creation from scratch, it may
involve instantiation of a formal model, or it may involve inferring meaning from other
available information; to the extent that formal models are available their formulation
requires a substantial initial investment. Students first learn the models, then apply them
in practice; since each new application requires the model to be applied anew, the cost in
use may be quite high [SGR 89].

Each professional’s allocation of effort among these alternatives is driven by what he or
she has already learned, by habits developed during that education, and by the reference
materials available. At present, general-purpose reference material for software is scarce,
though documentation for specific computer systems, programming languages, and
applications may be quite extensive. Even when documentation is available, however, it.
may be under-used because it is poorly indexed or because software developers have
learned to prefer fresh derivation to use of existing solutions. The same is true of
subroutine libraries.

Software engineering requires investment in the infrastructure cost--that is, in creating
the materials required to organize information, especially reference material for
practitioners.

4.3. Encourage Routine Practice
Good engineering practice for routine design depends on the engineer’s command of
factual knowledge and design skills and on the quality of reference materials available. It
also depends on the incentives and values associated with innovation.

Unfortunately, computer science education has prepared software developers with a
background that emphasizes fresh creation almost exclusively. Students learn to work
alone and to develop programs from scratch. They are rarely asked to understand
software systems they have not written° However, just as natural language fluency
requires instant recognition of a core vocabulary, programming fluency should require an
extensive vocabulary of definitions that the programmer can use. familiarly, without
repeated recourse to documentation.

Brooks argues that one of the great hopes for software engineering is the cultivation of
great designers [Brooks 86]. Indeed, innovative designs require great designers. But

1 8 CMU/SEI-90-TR-20

great designers are rare, and most designs-need not be innovative. Systematic
presentation of design fragments and techniques that are known to work can enable
designers of ordinary talent to produce effective results for a wide range of more routine
problems by using prior results (buying or growing, in Brooks’ terms) instead of always
building from scratch.

It is unreasonable to expect a software designer or developer to take advantage of
scientific theories or prior experience if the necessary information is not readily available.
Scientific results need to be recast in operational form; the important information from
prior experience must be extracted from particular examples. The content should include
design elements, components, interfaces, interchange representations, and algorithms. A
conceptual structure must be developed so that the information can be found when it is
needed. These facts must be augmented with analysis techniques or guidelines to
support selection of alternatives that best match the problem at hand [CSTB 89].

A few examples of well-organized reference materials already exist. For example, the
summary flowchart of Martin’s sorting survey [Martin 71] captured in one page the
information a designer needed to choose among the then-current sorting techniques.
Cody & Waite’s manual for implementing elementary mathematical functions [CW 80]
gives for each the basic strategy and special considerations needed to adapt that strategy
to various hardware architectures.

Although engineering has traditionally relied on handbooks published in book form, a
software engineers’ handbook must be on-line and interactive. No other alternative
allows for rapid distribution of updates at the rate this field changes, and no other
alternative has the potential for smooth integration with on-line design tools. The on-line
incarnation will require solutions to a variety of electronic publishing problems, including
distribution, validation, organization and search, and collection and distribution of
royalties.

Software engineering would benefit from a shift of emphasis in which both reference
materials and case studies of exemplary software designs are incorporated in the
curriculum. The discipline must find ways to reward preparation of material for reference
use and the development of good case studies.

4.4. Expect Professional Specializations

As software practice matures toward engineering, the body of substantive technical
knowledge required of a designer or developer continues to grow. In some areas it has
long since grown large enough to require specializationmfor example, database
administration was long ago separated from the corresponding programming. But
systems programming-has been resistant to explicit recognition of professional
specialties.

In the coming decade we can expect to see specialization of two kinds: internal
specialization as the technical content within the core of software grows deeper, and
external specialization with an increased range of applications that require both-
substantive application knowledge and substantive computing knowledge.

Internal specialties are already starting to be recognizable for communications, reliability,
real-time programming, scientific computing, and graphics, among others. Since these

CMU/SEI-90-TR-20 1 9

specialties rely critically on mastery of a substantial body of computer science, they may
be most appropriately organized as post-baccalaureate education.

External specialization is becoming common, but the required dual expertise is usually
acquired informally (and often incompletely). Computationa~ specializations in various
disciplines can be supported via joint programs involving both computer science and the
application department; this is being done at some universities [NSF 89].

Software engineering will require explicit recognition of specialties. Educational
opportunities should be provided to support them. This should not, however, be done at
the cost of a solid foundation in computer science and, in the case of external
specialization, in the application discipline.

4.5. Improve Coupling Between Science and Commercial
Practice
Good science is often based on problems underlying the problems of production. This
should be as true for computer science as for any other discipline.; it depends on strong
interactions between researchers and practitioners. However, cultural differences, lack of
access to large complex systems, and the sheer difficulty of understanding those systems
have interfered with the communication that supports these interactions. Similarly, the
adoption of results from the research community has been impeded by poor
understanding of how to turn a research result into a useful element of a production
environment. Some companies and universities are already developing cooperative
programs to bridge this gap, but the logistics are often daunting.

An engineering basis for software will evolve faster if constructive interaction between
research and production communities can be nurtured.

20 CMU/SEI-90-TR-20

Acknowledgements

This work was supported by the U.S. Department of Defense and a grant from Mobay
Corporation. The presentation benefitted from comments by Allen Newell, Norm Gibbs,
Frank Friedman, Tom Lane, and the authors of other papers in the special issue of IEEE
Software in which it appeared. Most importantly, Eldon Shaw fostered my appreciation
for engineer.ing; without his support this paper would not have been possible, and it is
dedicated to his memory.

CMU/SEI-90-TR-20 2 1

22 CMU/SEI-90-TR-20

References

[Armytage 61]

[Boehm 76]

[Brooks 86]

[CSTB 89]

[CSTB 90]

[cw 8o]

[DAG 89]

[Dijkstra 89]

[Finch 51]

[Florman 76]

[Furter 80]

[Hirsch 88]

[Levin 89]

[Marks 87.]

[Martin 71]

W.H.G. Armytage. A Social History of Engineering. Faber and
Faber 1961.

Barry Boehm. Software Engineering. IEEE TR on Computers, C-25,
12 (December 1976), pp. 1226-1241.

Frederick P. Brooks, Jr. No Silver Bullet: Essence and Accidents of
Software Engineering. Information Processing 86, pp. 1069-1076.
[Reprinted in IEEE Computer, 20, 4 (April 1987), pp. 10-19.]

Computer Science and Technology Board, National Research
Council. Scaling Up: A Research Agenda for Software Engineering.
National Academy Press 1989.

Computer Science and Technology Board, National Research
Council. Keeping the US Computer Industry Competitive. National
Academy Press, 1990.

William James Cody Jr. and William McCastline Waite. Software
Manual for the Elementary Functions. Prentice-Hall 1980.

Data Analysis Group. Computer Industry Forecasts, Fourth Quarter
1989.

Edsger W. Dijkstra. On the Cruelty of Really Teaching Computing
Science. Comm ACM, 32,12 (Dec 1989), pp.1398-1404.

James Kip Finch. Engineering and Western Civilization. McGraw-
Hill, 1951.

Samuel C. Florman. The Existential Pleasures of Engineering. St.
Martin’s Press, New York, 1976.

William F. Furter (ed). History of Chemical Engineering. American
Chemical Society 1980.

E. D. Hirsch, Jr. Cultural Literacy: What Every American Needs to
Know. Vintage Books 1988.

Eugene Levin. Grand Challenges to Computational Science.
Comm ACM, 32, 12 (December 1989), pp. 1456-1457.

Lionel S. Marks. Marks’ Standard Handbook for Mechanical
Engineers. McGraw-Hill 1987.

William A. Martin. Sorting. ACM Computing Surveys, 3,4 (Dec
1971), pp.147-174.

CMU/SEI-90-TR-20 23

[NATO 69]

[NAE 89]

[NSF 89]

[Parnas 90]

[Perry 84]

[Reddy 88]

[Redwine 84]

[SGR 89]

[Simon 89]

[Straub 64]

[van Antwerpen 80]

Peter Naur and Brian Randell (eds). Software Engineering: report
on a conference sponsored by the NATO Science Committee,
Garmisch Germany 1968. NATO 1969.

National Academy of Engineering. Engineering and the
Advancement of Human Welfare: 10 Outstanding Achievements
1964-1989. National Academy Press 1989.

Report on the National Science Foundation Disciplinary Workshops
on Undergraduate Education. National Science Foundation, 1989.

David Lorge Parnas. Education for Computing Professionals. IEEE
Computer 23,1 (Jan 1990) pp. 17-22.

Robert H. Perry. Perry’s Chemical Engineers’ Handbook. McGraw-
Hill 1984.

Raj Reddy. Foundations and Grand Challenges of Artificial
Intelligence. AI Magazine, vol 9, no 4 (Winter 1988), pp. 9-21
(1988 presidential address, American Association for Artificial
Intelligence).

Samuel T. Redwine et al. DoD Related Software Technology
Requirements, Practices, and Prospects for the Future. IDA Paper
P-1788, Institute for Defense Analysis, 1984.

Mary Shaw, Dario Giuse, Raj Reddy. What A Software Engineer
Needs to Know I: Vocabulary. CMU-CS and CMU/SEI-89-TR-30
Tech reports (DTIC No. ADA219064), August 1989.

Herbert Ao Simon. Human Experts and Knowledge-Based Systems.
Talk given at IFIP WG 10.1 Workshop on Concepts and
Characteristics of Knowledge-Based Systems, Mt Fuji Japan,
November 9-12, 1987.

Hans Straub. A History of Civil Engineering: An Outline from
Ancient to Modern Times. MIT Press, 1964.

F. Jo van Antwerpen. The Origins of Chemical Engineering.
[Furter 80], pp.1-14.

24 CMU/SEI-90oTR-20

UNLIMITED , UNCLASSIFIED
,ECU~IITV CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
REPORT SE CURl T Y’C L.AS$1F I~ATION

UNCLASSIFIED

N/A
OEC~SSI F ICATIOP~IOOWNG RAOING SCHEDULE

CMU/SEI-90-TR-20

SOFTWARE ENGINEERING INST.

OFFICE SYMBOt.

SEI

CARNEGIE-MELLON UNIVERSITY
PITTSBURGH, PA 15213

OFFICE SYMBOl.

ESD/AVS

NAME OF FUNOING/~PONSORING
ORGANIZATION

SEI JOINT PROGRAM OFFICE
ADDRESS (City. State =rod ZIP Code)

CARNEGIE M~LLON UNIVERSITY
PITTSBURGH, PA 15213

PROSPECTS FOR AN ENGINEERING DISCIPLINE OF SO;
lz. PERSONA~ AUTHOR(S)

Hary Shaw
13~. TYPE OF REPORT 13~. TINGE COVEREO

PTNAL PROM _ ~0
1�. SUPPlEMENTaRY NOTATION

!~ RESTRICTIVE MARKINGS

NONE
OISTRIBUTION/AVAILJ~81LI’TY OF REPORT

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED

S, MO~’ITORING ORGIANIZATION REP’ORT NuMBERIS|

ESD-TR-90-221
7L NA~E OF MONITORING ORGANIZATION

SEI JOINT PROGRAM OFFICE

ESD/AVS
HANSCOM AIR FORCE BASE
BFN~co~- Ha 017~!
PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER’

F1962890C0003

10. SOURCE OF FUNDING NO~.

PROGRAM PROJECT
ELEMENT NO. NO.

63752F N/A

’T~ARE

TASK WORK UNIT
NO. NO,

N/A N/A

14.0ATEOF REPORT(Y~.,Mo.,Dey;’ 1S. PAGECOU~T

September 1990 24

FIELD GROUP SUB. GR, software engineering
history of engineering
histor~ o~ software engineering

19. A~TRACT tCon~nu~ On ~uer~ il ~l~r’~ ~d i~n~ by ~ num~l

Software engineering is not yet a true engineering discipline, but it has the potential to
become one. Older engineering fields offer glimpses of the character software engineering
might have. From these hints and an assessment of the current state of software practice,
we can project some characteristics software engineering will have and suggest some steps
toward an engineering discipline of software.

The term software engineering was coined in 1968 as a statement of aspiration, a sort of
rallying cry. That year NATO convened a workshop by that name to assess the state and
prospects of software production (NATO 69). Capturing the imagination of software develop-
ers, the phrase achieved popularity during the 1970s. It now refers to a~collection of
management processes, software tooling, and design activities fo~ software development.
The resulting practice, however, differs significantly from the practice of older forms of
engineering.

~0. OISTRIBUTi~IN/AVAILASILITY OF ABSTRACT :21. AS~’~RACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITED ~] SAME~$ RPT. {~ OTICUSERS j~

22a. NAME OF RESPQN~IBLE INOIVIOUA~

DO FORM 473, ~ APR EDITION OF I JAN t3 IS OeSOLETE.

UNCLASSIFIED, UNLIMITED DISTRIBUTION

22~ TELEPHONE NUMBER 22c. OFFICE SYMeOI.

412 268-7630 SE~ JPO ,,
UNLIHITED~ UNCLASSIFIED

5FCuRITY CLASSiFICATiON OF TH~S PAGE

