
Technical Report

CMU/SEI-90-TR-19
ESD-90-TR-220

An Analysis of
Input/Output Paradigms
for Real-Time Systems

Mark H. Klein
Thomas Ralya

July 1990

An Analysis
of Input/Output Paradigms

for Real-Time Systems

��

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Technical Report
CMU/SEI-90-TR-19

ESD-90-TR-220
July 1990

Mark H. Klein
Real-Time Scheduling in Ada Project

Thomas Ralya
IBM Federal Sector Division

Unlimited distribution subject to the copyright.

This report was prepared for the SEI Joint Program Office HQ ESC/AXS

5 Eglin Street

Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is
published in the interest of scientific and technical information exchange.

FOR THE COMMANDER

(signature on file)

Thomas R. Miller, Lt Col, USAF, SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright 1990 by Carnegie Mellon University.

Permission to reproduce this document and to prepare derivative works from this document for internal use is granted, provided the copyright and

\‘No Warranty\’ statements are included with all reproductions and derivative works. Requests for permission to reproduce this document or to

prepare derivative works of this document for external and commercial use should be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN \‘AS-IS\’ BASIS.

CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER

INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTIBILITY, EXCLUSIVITY, OR RESULTS

OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH

RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with Carnegie Mellon University for the

operation of the Software Engineering Institute, a federally funded research and development center. The Government of the United States has a

royalty-free government-purpose license to use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit

others to do so, for government purposes pursuant to the copyright license under the clause at 52.227-7013.

This document is available through Research Access, Inc. / 800 Vinial Street / Pittsburgh, PA 15212. Phone: 1-800-685-6510. FAX: (412)

321-2994. RAI also maintains a World Wide Web home page at http://www.rai.com

Copies of this document are available through the National Technical Information Service (NTIS). For information on ordering, please contact

NTIS directly: National Technical Information Service / U.S. Department of Commerce / Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides acess to and transfer of scientific and

technical information for DoD personnel, DoD contractors and potential con tractors, and other U.S. Government agency personnel and their

contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information Center / 8725 John J. Kingman Road / Suite 0944 /

Ft. Belvoir, VA 22060-6218. Phone: 1-800-225-3842 or 703-767-8222.

1

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

CMU/SEI-90-TR-19 1

An Analysis
of Input/Output Paradigms

for Real-Time Systems

Abstract: The correctness of a real-time system with hard deadline requirements
depends both on the logical correctness and on the timing correctness of the sys-
tem. The principles of rate monotonic scheduling have proven to be very useful in
providing a framework for designing, analyzing, and modifying the timing and con-
currency aspects of real-time systems. This paper illustrates how to build a math-
ematical model of the schedulability of a real-time system, taking into considera-
tion such factors as preemption, synchronization, non-preemptibility, interrupts,
and process idle time. In particular, this paper illustrates how these principles can
be applied to input/output interfaces (e.g., to devices or local area networks) to
predict the timing behavior of various design alternatives.

1. Introduction

The primary characteristic that distinguishes real-time systems from non-real-time systems
is the importance of time. The correctness of a real-time system depends not only upon its
logical correctness but also its timing correctness [11, 15]. System complexity tends to com-
promise correctness unless there are techniques and methods for managing the complexity.
Basic software engineering principles such as abstraction, encapsulation, and information
hiding form the basis of methods and techniques that are used to manage logical complexity
[13]. Rate monotonic scheduling theory offers a set of engineering principles for managing

timing complexity [11].

A real-time program may be comprised of many processes (i.e., threads of execution) and
the timing relationships between processes may be complex. The responsibility for im-
plementing a set of processes may be held by one individual or, more likely, by many in-
dividuals possibly in different organizations. Further, the set of processes may change
during the course of the development effort. Ultimately, the set of processes must be in-
tegrated to form a program that satisfies a set of real-time performance requirements.

A central focus of the Real-Time Scheduling in Ada (RTSIA) Project at the Software En-
gineering Institute (SEI) is to explore the use of rate monotonic scheduling theory for
managing timing complexity and for understanding the timing behavior of realistic real-time
problems. Input/output (I/O) processing plays an important role in real-time systems and, at
the same time, poses several interesting problems for rate monotonic scheduling theory.
The purpose of this report is to illustrate how to apply rate monotonic principles systemati-
cally to commonly used I/O paradigms.

2 CMU/SEI-90-TR-19

1.1. An Analytical Framework

The notion of rate monotonic scheduling was first introduced by Liu and Layland in 1973 [5].
The term rate monotonic derives from a method of assigning priorities to a set of processes:
assigning priorities as a monotonic function of the rate of a (periodic) process. Given this
simple rule for assigning priorities, rate monotonic scheduling theory provides a simple
inequality—comparing total processor utilization to a theoretically determined bound—that
serves as a sufficient condition to ensure that all processes will complete their work by the
end of their periods.

This fundamental theoretical result is the underpinning of a fairly comprehensive theory for
analyzing the timing behavior and designing the concurrency structure of a real-time system.
Liu and Layland’s original result applied only to a set of non-interacting periodic processes.
Subsequent work extended the applicability of rate monotonic scheduling to processes that
synchronize to share data [10], to systems with aperiodic processing [4, 14], and to systems
with mode change requirements [12]. As a result, the theory can be used to build a math-
ematical model that describes the ability of a system to meet its timing requirements. We
refer to this as a schedulability model.

1.2. Considerations for Input/Output

One of the benefits of developing a schedulability model is that it requires a precise charac-
terization of the execution timing behavior of a set of processes in terms of the parameters
needed by the model. For example, to build a schedulability model that includes the effects
of sharing data between processes, we must understand the circumstances under which
lower priority processes can block higher priority processes by requiring exclusive access to
the data. In order to build schedulability models for I/O paradigms we must precisely
characterize input/output processing, explore relevant theoretical results, and then in-
crementally use the theory to understand how to model various aspects of different I/O
paradigms.

In Chapter 2 we define a general model of processing that basically divides a process’s
work into three stages: input, processing, and output. We also define a classification of I/O
devices. Two parameters are used to differentiate between device types: whether or not
the device can handle more than one client process at a time and whether or not the device
requires that the CPU participate in data movement. In Section 2.3 we develop notation that
will be useful in performing analyses in the remainder of the paper. The theoretical results
relevant to this paper are then summarized in Chapter 3.

Chapter 4 forms the heart of the paper. In this section we demonstrate how to apply the
principles of rate monotonic scheduling theory to the general model of processing outlined
earlier in the paper. First, we consider synchronous I/O paradigms. When synchronous I/O
paradigms are used, control is not returned to the calling process until the operation is com-
plete. Therefore, a process that uses synchronous I/O will perform one I/O operation at a

CMU/SEI-90-TR-19 3

time; I/O operations do not overlap in time. On the other hand, asynchronous I/O operations
may overlap since the calling process may start other work concurrent with the initiated I/O.
We will explore the schedulability tradeoffs between these two paradigms by comparing
their schedulability models. We will also explore other issues that impact the timing be-
havior of a set of processes including non-preemptible sections, interrupt processing, and
process idle time (depending on the device, a process may be inactive during an I/O opera-
tion). Throughout Chapter 4 we develop a schedulability analysis of each situation that is
presented.

4 CMU/SEI-90-TR-19

CMU/SEI-90-TR-19 5

2. Processing Model

The context of the discussion in this paper is real-time systems with hard deadlines. A hard
deadline is a deadline that must be met; the software is considered to be malfunctioning if
such a deadline is missed. We confine our discussion to uni-processor systems that employ
logical concurrency. The term process will denote a unit of concurrency. We will further
restrict our attention to periodic processes.1 By periodic we mean that a process is initiated
at regular intervals (periods) and has a deadline that is one period after it is initiated.

2.1. Input/Output Paradigms

We assume a general processing model that endlessly cycles through the following three
stages as shown in Figure 2-1:

1. Input: Read data from one or more sources of input, which may be devices
and/or data in main memory.

2. Processing: Compute output values, which are functions of all of the
gathered input values.

3. Output: Write the results of the computations to one or more sinks, which may
be devices and/or main memory.

The input and output resources (devices and/or memory storage) may be shared between
processes in the system, and in that case will require mutually exclusive access.

Input OutputProcessing

Figure 2-1: General Model for a Process

The input (output) stage of a process is simply a sequence of individual input (output) opera-
tions. We model an individual input (output) operation as occurring in three phases as il-
lustrated in Figure 2-2.2

1. Start I/O (St): The time interval in which device interactions necessary to start
an I/O operation are performed.

1It may seem overly restrictive to focus on periodic processing. However, much of the analysis is applicable to
aperiodic processing. See [14] for a description of how to use the sporadic server algorithm to guarantee hard
deadlines for aperiodic processes.

2Note that the ideas presented in this report are not limited to this particular model of processing. Arbitrary
sequences of input operations, processing, and output operations can also be analyzed using the principles of
rate monotonic scheduling theory.

6 CMU/SEI-90-TR-19

2. I/O Service (Srv): The time interval in which the data is actually manipulated
and/or moved.

3. I/O Completion (Cpt): The time interval which starts when the device signals
that I/O has completed and ends when control is returned to the initiating
process.

When considering shared data in main memory as the resource, the I/O service phase is the
only relevant phase. In this case, this phase reflects the amount of time it takes to perform
an operation on the shared data. When considering devices, the I/O service phase reflects
the amount of time it takes to move data between main memory and another destination.

Input
Operation 1

Srv Cpt Srv Cpt Srv Cpt

Input Stage

St St St

Input
Operation 2

Input
Operation 3

Figure 2-2: Input Stage in Detail

We will consider variations of two common I/O paradigms: synchronous and
asynchronous. When a synchronous I/O operation is performed, control is returned to the
calling process only after the entire I/O operation is complete. A process that employs
synchronous I/O completes all phases of an I/O operation before it starts the next I/O opera-
tion. When asynchronous I/O is performed, control is returned to the calling process im-
mediately after the operation is started, enabling the calling process to perform other work
concurrent with the I/O. In particular, the asynchronous paradigms perform the Start-IO
phase of several distinct I/O operations, allowing the I/O-service phase of several I/O opera-
tions to proceed concurrently. The characteristics of the I/O device and the software inter-
face to the device are factors to be considered when choosing between synchronous and
asynchronous paradigms.

We frequently refer to a process that makes I/O requests as the client process. We will
assume that I/O capabilities are provided to the client via a software interface. The syntactic
details of the I/O interface are not of concern to us; instead, we are interested in the seman-
tics of the interaction between the client and the device. The following issues have an im-
pact upon the analysis of various paradigms:

• Non-preemptible sections. Is any portion of the I/O operation non-
preemptible?

• Non-interruptible sections. Are interrupts disabled for any portion of the I/O
operation?

CMU/SEI-90-TR-19 7

• Idle time. Is the client process inactive3 for any portion of the I/O operation?

• Mutual exclusion. Does the I/O operation provide mutually exclusive access to
the device?

• Interrupts. Is the device operating in an interrupt-driven mode or in a polling
mode?

The properties of the I/O service will have an impact on the client’s ability to satisfy its timing
constraints and may impact other processes as well. Characteristics of the device naturally
determine the nature of the client’s interaction with the device. Thus, it is important to un-
derstand certain aspects of a device’s behavior in order to understand the timing behavior of
an I/O process.

2.2. Models of Device Interactions

To be clear about the assumptions that we are making concerning device behavior, several
classes of devices are described below.

• CPU Dependent. This class of device requires the CPU to be active in moving
the data. The Motorola Z8530 [6] serial interface, commonly used on Motorola
single board computers, falls into this class.

• Single Request. This class of device does not require the CPU to be active in
moving the data. The I/O device operates physically concurrent with the CPU.
Devices in this class only support one outstanding I/O request at a time. Most
direct memory access (DMA) controllers fall into this class.

• Multiple Request. This class of device does not require the CPU for data
movement and also operates physically concurrent with the CPU. However,
devices in this class support multiple outstanding I/O requests. Some local
area network adapters fit into this class.

Performing an I/O operation using a device in any of the above classes involves the use of
many resources. Cognizance of and planning for resource contention is important in deter-
mining whether or not a process will be able to meet its deadline. For example, before a
process can perform an I/O operation it must acquire the CPU. The process may then need
to acquire several I/O buffers. If memory is a scarce resource, this may cause the process
to wait. The I/O device itself may be a shared resource. If the device is being used by a
lower priority process, a higher priority process may be delayed. A common backplane bus
may be used to facilitate communication between the CPU and devices. Bus arbitration
protocols may have an impact on a process’s ability to meet its deadline. For example, bus

3An idling (or inactive) process in this context is waiting for an I/O service to be completed. Lower priority
tasks have an opportunity to execute when the client is inactive.

8 CMU/SEI-90-TR-19

cycles may be lost to DMA devices in the presence of I/O activity. This effectively reduces
the number of cycles available to a process that also needs access to the bus and con-
sequently introduces delays in the process’s I/O stages. (See [8] for a comprehensive dis-
cussion of "cycle stealing.") For multiple-request devices, scheduling of requests within the
device itself is also an issue. Additionally, multiple-request devices are likely to have a limit
for the number of outstanding I/O requests. Another factor when considering the timing be-
havior of processes performing I/O is the interrupt control logic of the processor. In this
paper we focus on issues concerning the use of devices and memory-resident data by one
or more processes. We assume that there is no contention for the other resources men-
tioned above (i.e., I/O buffers are readily available, cycle stealing is negligible, and multi-
request devices support a large number of outstanding requests).

Section 2.3 introduces some notation and terminology.

2.3. Notation and Terminology

In general, we assume that there are n processes on a uni-processor. One or more of these
processes may be a process that performs I/O as described in the previous section. Any
given process i will be denoted by τi.

The term schedulability means the ability of a process or a set of processes to meet dead-
lines. We explore later how various characteristics of a client process’s interactions with
different types of resources affect its schedulability.

There are several parameters of a process that we refer to many times in later sections. Ci
and Ti represent the execution time and period, respectively, associated with process τi.
Assume that the numbering of the processes is such that the following relationship holds:

T1 ≤ T2 ≤ ⋅ ⋅ ⋅ ≤ Tn

The CPU utilization of process τi is the ratio of a process’s execution time to its period. The
CPU utilization of a set of processes is the sum of the utilizations of the individual
processes.

CPU Utilization of a Set of Processes = + + ⋅ ⋅ ⋅ +
C1

T1

C2

T2

Cn

Tn

Let Res(τi) be the set of resources that process τi uses (which includes both devices and
shared data) and let Dev(τi) be the subset of those resources that are devices. The follow-
ing expression summarizes this relationship:

Dev(τi) ⊆ Res(τi)

Devices may be used in the input and/or output stages. Therefore, let the set of devices
that are used for input and output by process τi be denoted by InpDev(τi) and OutDev(τi)

CMU/SEI-90-TR-19 9

respectively.4 The following expression summarizes this relationship:

InpDev(τi) ∪ OutDev(τi) = Dev(τi)

As previously stated, the execution time of process τi is represented by Ci. There are also
subcomponents of execution time that are of interest. Let r ∈ Res(τi) denote a resource that
is used by τi. The amount of time that process τi spends performing an I/O operation with
resource r is Ci,r. Additionally, Ci,p is the amount of time that τi spends in its processing
stage. Therefore, we have the following relationship:5

Ci = Ci,p + Ci,r∑
r ∈ Res(τi)

This expression states that the total execution time for τi is the sum of the execution times
associated with performing I/O with all resources used by τi, plus the execution time as-
sociated with the τi’s processing stage. Note that process τi may use the same resource
more than once per period and may use it for input and output. If it is necessary to distin-
guish between multiple uses of the same resource, we will let Ci,r,k denote the k’th use of
resource r by process τi during any given period. Otherwise, the third subscript will be
omitted.

In the previous section, we subdivided a client process’s interaction with a device into
phases: start I/O, I/O service, and I/O completion. Let d ∈ Dev(τi) denote a device that is
used by τi.

• St(Ci,d,k) denotes the amount of time process τi spends in the start I/O phase of
an individual I/O operation using device d.

• Srv(Ci,d,k) denotes the amount of time process τi spends in the I/O service
phase of an individual I/O operation using device d.

• Cpt(Ci,d,k) denotes the amount of time process τi spends in the I/O completion
phase of an individual I/O operation using device d.

When certain paradigms are used, the client process will not actually be executing during
the service time phase; execution will be suspended and the client will be inactive while the
device is performing I/O. We will refer to this time as idle or inactive time. If a process is
inactive, it will be inactive during the I/O service phase of I/O operations. Therefore, if an
individual I/O operation is not inactive, the execution time associated with the operation is:

Ci,d,k = St(Ci,d,k) + Srv(Ci,d,k) + Cpt(Ci,d,k)

4Note that an individual device may be used for both input and output. In this case the device would be a
member of both InpDev(τi) and OutDev(τi).

5We will assume that the amount of computation that a process performs between individual I/O operations is
negligible.

10 CMU/SEI-90-TR-19

On the other hand, if an individual I/O operation is inactive during its I/O service phase then:

Ci,d,k = St(Ci,d,k) + Cpt(Ci,d,k)

Finally, let LowRes(τi) denote the set of resources that are used by processes with priorities
less than τi’s priority and HiRes(τi) denote the set of resources used by processes that have
a priority which is greater than or equal to τi’s priority.

CMU/SEI-90-TR-19 11

3. Review of Rate Monotonic Theory

The analysis of the schedulability of various I/O paradigms will be performed by using a
theory of real-time systems which is based on rate monotonic scheduling theory. Rate
monotonic scheduling theory provides analytical mechanisms for understanding and predict-
ing the execution timing behavior of real-time systems. The basic theory, introduced in a
seminal paper written by Liu and Layland [5], gives us a rule for assigning priorities to peri-
odic processes and a formula for determining if a set of periodic processes will meet all of
their deadlines. A large body of work resulting from the Advanced Real-Time Technology6

and the Real-Time Scheduling in Ada7 Projects at Carnegie Mellon University extends this
basic result so that the theory addresses process synchronization, aperiodic processing,
mode change, and other practical issues that contribute to the complexity of the timing be-
havior of real-time systems [3, 4, 10, 14]. This section reviews some of the relevant results
that are used later in the paper.

3.1. Basic Results of Rate Monotonic Scheduling

Our examination of the schedulability of various I/O paradigms addresses the following two
questions about a process that performs I/O:

1. How do other processes affect the schedulability of the process?

2. How does the process affect the schedulability of other processes?

These questions serve as a starting point to introduce rate monotonic theory.

First, note that we assume a priority-based preemptive scheduling discipline.8 Initially, con-
sider a set of independent periodic processes, where independent means that the
processes do not have synchronization requirements and periodic means the processes are
initiated at regular periods and have deadlines at the end of the period. Under these as-
sumptions, only higher priority processes can affect the schedulability of a particular
process. Higher priority processes delay a process’s completion time by preempting it. This
is reflected in the following theorem [5].

Theorem 1: The rate monotonic algorithm assumes priority-based preemptive
scheduling, where a process’s priority is based on its period; processes with
shorter periods (i.e., higher frequencies) are assigned higher priorities. A set of n
independent periodic processes scheduled by the rate monotonic algorithm will
always meet their deadlines, for all task phasings, if

6A project in Carnegie Mellon University’s School of Computer Science.

7A project in Carnegie Mellon University’s Software Engineering Institute.

8Rate monotonic principles have been used to analyze non-preemptive scheduling disciplines as well.

12 CMU/SEI-90-TR-19

+ ⋅ ⋅ ⋅ + ≤ U(n) = n(21/n−1)
C1

T1

Cn

Tn

Basically, if the utilization of the process set is less than a theoretically determined bound,
then the set of processes is guaranteed to meet all of its deadlines.

Corollary 2: Given a set of n independent periodic processes scheduled by the
rate monotonic algorithm, a particular process, τk, k ≤ n , will always meet its
deadline if:

+ ⋅ ⋅ ⋅ + ≤ U(k) = k(21/k−1)
C1

T1

Ck

Tk

From this result we can see that the only factors that determine the schedulability of process
τk are the utilization of higher priority tasks and the utilization of the process τk itself.

As indicated above, there is a set of assumptions that are prerequisites for this result (see
[1]):

• Process switching is instantaneous.

• Processes account for all execution time (i.e., the operating system does not
usurp the CPU to perform functions such as time management, memory
management, or I/O).

• Process interactions are not allowed.

• Processes become ready to execute precisely at the beginning of their periods.

• Process deadlines are always the start of the next period.

• Processes with shorter periods are assigned higher priorities; the criticality of
processes is not considered.

The following set of results allows us to relax these assumptions and thus apply the
scheduling theory to a wide class of realistic real-time problems, such as the analysis of
various I/O paradigms.

Corollary 3: Let worst-case context switching time between processes be
denoted by Cs. Also, define C = Ci+2Cs. A set of n independent periodic′

i
processes with worst-case context switching time of Cs that is scheduled by the
rate monotonic algorithm will always meet its deadlines, for all task phasings, if:

+ ⋅ ⋅ ⋅ + ≤ n(21/n − 1)
C′

1

T1

C′
n

Tn

The execution time of process τi is effectively being inflated to include context switching
overhead. As described in [1], when a process preempts a lower priority process, the ex-

CMU/SEI-90-TR-19 13

ecution state of the lower priority process is saved and the execution state of the higher
priority process is established. When the higher priority process completes its processing
and relinquishes the CPU to a lower priority process, its execution state is saved and the
state of the lower priority process is reestablished. The context switches for (1) preemption
of the lower priority process and subsequent (2) resumption of its execution account for the
2Cs added to the execution time of the preempting process.

The discussion up to this point assumes that a process’s execution is always consistent with
its rate monotonic priority. Consider the following example:

Example 1: Two processes have been assigned rate monotonic priorities with
process τ1 the highest priority. Process τ2 starts to execute and calls a system
service, a portion of which involves a non-preemptible section of code. Im-
mediately after this call, τ1 becomes ready to execute but cannot preempt τ2 while
it is in this non-preemptible section. Thus, the higher priority process has to wait
until the system service completes before it can preempt the lower priority
process.

This example illustrates one way in which a process that has been assigned a higher rate-
monotonic priority can be delayed by a lower priority process. This delay time is known as
priority inversion or blocking. Interrupts represent another potential source of blocking. The
following result generalizes the previous results to include the effects of blocking.

Corollary 4: Given a set of n independent periodic processes scheduled by the
rate monotonic algorithm, let Bk be the worst-case total amount of blocking that
process τk can incur during any period. Process τk will always meet its deadline if:

+ ⋅ ⋅ ⋅ + + ≤ k(21/k − 1)
C′

1

T1

C′
k

Tk

Bk

Tk

The following lemma is a generalization of the above corollary.

Lemma 5: Given a set of n independent periodic processes scheduled by the rate
monotonic algorithm, let Bi be the worst-case total amount of blocking that
process τi can incur during any period. The set of processes will meet all dead-
lines for all phasings if:

+ ≤ 1(21/1 − 1) and
C′

1

T1

B1

T1

+ + ≤ 2(21/2 − 1) and
C′

1

T1

C′
2

T2

B2

T2
⋅ ⋅ ⋅

+ + ⋅ ⋅ ⋅ + + + ≤ k(21/k − 1) and
C′

1

T1

C′
2

T2

C′
k

Tk

Bk

Tk
⋅ ⋅ ⋅

+ + ⋅ ⋅ ⋅ + + ≤ n(21/n − 1)
C′

1

T1

C′
2

T2

C′
n

Tn

14 CMU/SEI-90-TR-19

The inequalities explicitly show how blocking affects the schedulability of a set of processes
and why it is desirable to minimize blocking.

Process synchronization is another common source of blocking. When more than one
process requires mutually exclusive access to a resource, processes must synchronize. If a
lower priority process has locked a resource and is then preempted by a higher priority
process which executes until it needs to access the resource but is then forced to wait, the
higher priority process is blocked. The priority ceiling protocol (PCP), first described in [10],
is one of a class of inheritance protocols; PCP reduces the effects of blocking and prevents
mutual deadlock.

The PCP employs two concepts: priority inheritance and the priority ceiling. When a high
priority process is waiting for a lower priority process to relinquish access to a shared
resource, priority inheritance comes into play. Priority inheritance prohibits a medium
priority process from prolonging the actual amount of time a resource is locked by a lower
priority process. Without priority inheritance, a medium priority process can preempt the
lower priority critical section and prolong the period of blocking. To prevent this, priority
inheritance allows the lower priority process to inherit the blocked process’s higher priority
for the duration of the critical section. Thus, priority inheritance prevents the medium priority
process from preempting the critical section, which is now executing at a high priority. The
basic priority inheritance protocol is described in [10]. Priority inheritance leads to the fol-
lowing result [10]:

Theorem 6: Under the basic priority inheritance protocol, if a process shares m
resources with lower priority processes, then it can be blocked at most m times
per period due to process synchronization (provided that the process does not
become inactive).

It is not hard to imagine that a high priority process requires data from several resources
that are all locked at the time it preempts and tries to acquire the data. The low priority
process locks a resource, is then preempted by a slightly higher priority process that locks
another resource, and so on. The high priority process will execute until it needs data from
the first resource and then it will be blocked. The blocking process will inherit the blocked
process’s priority and, after its critical section, relinquish the resource. The high priority
process will use the resource and then be forced to wait for access to the second resource
that it needs and so on. The PCP reduces this blocking time [10].

Theorem 7: Under the priority ceiling protocol, a process which shares resources
with lower priority processes can be blocked only once per period (provided it
does not become inactive when it is not accessing a resource) for the duration of
a single critical section.

One can get an intuitive understanding of this property by examining the sources of blocking
for any process, τi. Process τi can be blocked by any lower priority process with which it
shares a resource (this is referred to as direct blocking). It can also be blocked by any lower
priority process that shares a resource with a higher priority process. The lower priority
process can inherit a higher priority when it is blocking a higher priority process, thereby

CMU/SEI-90-TR-19 15

delaying process τi (this is known as push-through blocking). We will call the set of
processes that can block process τi its blocking set. The PCP allows only one process in
τi’s blocking set to be locking resources at any given time. Therefore, when τi preempts a
lower priority process it can only be blocked once due to process synchronization. The con-
cept of a priority ceiling is used to accomplish this.

Associated with every semaphore or monitor that protects a shared resource is an attribute
known as the priority ceiling. The priority ceiling is the highest priority at which a critical
section associated with the resource can be executed, which is also the priority of the
highest priority process that uses the resource. The priority ceiling rule of the priority ceiling
protocol prohibits a process from locking a resource unless the process’s priority is strictly
greater than the priority ceiling of all semaphores locked by other processes. The blocking
set of any process is the set of processes that use semaphores (or monitors) that have a
priority ceiling greater than or equal to the process’s priority. Effectively, the priority ceiling
rule allows only one process in the blocking set to have locks at any given time.

Lemma 8: One can emulate the priority ceiling protocol by ensuring that critical
sections are executed at the ceiling priority.

If a critical section is executed (without becoming inactive) at the priority of the priority ceil-
ing of the protected resource, then no other processes in the blocking set will be permitted
to preempt the critical section. This effectively emulates the priority ceiling rule.

Another phenomenon that affects the schedulability of a process is idle time. Clearly when
a process becomes inactive this has a direct impact on the schedulability of this process
(see Figure 3-1). Another term is needed in the scheduling inequality for this process to
account for the idle time. A much less obvious effect is that idle time can also reduce the
schedulability of lower priority processes. This is known as the deferred execution effect,
since execution is deferred for the duration of the idle time. This is discussed in [9, 4].
When a higher priority process’s execution is deferred, there is a window of time where a
lower priority process experiences more preemption than is normally permitted under rate
monotonic scheduling. One can imagine that all of the higher priority process’s execution is
deferred so that the process completes its execution at the end of its period and then im-
mediately resumes execution at the beginning of its next period (see Figure 3-2).

Lemma 9: The deferred execution effect caused by a higher priority process can
be accounted for by adding a blocking term to the inequalities of lower priority
processes. This term is the minimum between the duration of idle time and the
amount of execution time that has been deferred [9].

Consider, for example, Figure 3-2(a). Without idle time, process τ2 has 5 units of execution
time available that it can use without missing a deadline. In this case, the minimum between
the duration of idle time (4 units) and the amount of execution time that was deferred (1 unit)
is 1 unit. Figure 3-2(a) illustrates that process τ2 has only 4 units of available execution time
(a schedulability penalty of 1 unit) when the higher priority process idles. Figure 3-2(b) also
illustrates a deferred execution penalty. In this case, the penalty is equal to the duration of
execution, whereas in Figure 3-2(a) the penalty is equal to the amount of execution time that
is deferred.

16 CMU/SEI-90-TR-19

Without Idle Time

With Idle Time

I

τ 1

2τ

τ 1

2τ

I = Idle time

Figure 3-1: Effects of Idle Time

3.2. Schedulability Models

The following set of inequalities can be thought of as a mathematical model of the timing
behavior of a set of n periodic processes.

CMU/SEI-90-TR-19 17

1 2 3 4

1 2

1

τ 1

1 2 3 4 52τ

T 1

T 2

T 1

T 2

T 1

T 2

T 2

T 1

(A)

(B)

Idle time = 0

Units available = 5

Idle time = 4

Units available = 4

Idle time = 0

Units available = 4

Idle time = 2

Units available = 2

τ 1

2τ

τ 1

2τ

τ 1

2τ

Penalty = 1

Penalty = 22

3 4

Figure 3-2: Deferred Execution Effect

18 CMU/SEI-90-TR-19

+ ≤ 1(21/1 − 1) and
C′

1

T1

X1

T1

+ + ≤ 2(21/2 − 1) and
C′

1

T1

C′
2

T2

X2

T2
⋅ ⋅ ⋅

+ + ⋅ ⋅ ⋅ + + + ≤ k(21/k − 1) and
C′

1

T1

C′
2

T2

C′
k

Tk

Xk

Tk
⋅ ⋅ ⋅

+ + ⋅ ⋅ ⋅ + + + ≤ n(21/n − 1)
C′

1

T1

C′
2

T2

C′
n

Tn

Xn

Tn

Xi is a term that contains all of the process-specific effects for process τi, which include
blocking time (due to synchronization, interrupts, and other sources), idle time, and the
deferred execution penalty. It is a model in the sense that it predicts the schedulability of
the set of processes given a set of parameters, namely execution times, periods, and
process-specific effects. Building a schedulability model for a set of processes necessitates
understanding how to address the two questions at the beginning of Section 3.1 for each
process, which allows one to build the set of inequalities one process at a time.

3.3. Example Problem

In order to illustrate the application of rate monotonic theory to several I/O paradigms, we
use an example set of five processes. A data-flow diagram is shown in Figure 3-3. Devices
are denoted as di and data stores as si. Table 3-1 shows the resources that are used by
each process.9 The example as a whole involves five different devices and four different
data stores. Recall that we assume that the numbering of the processes is such that τ1 has
the shortest period and consequently has been assigned the highest priority. In general, the
priority of process τi is higher than the priority of process τi+1. Assume that the priority ceil-
ing protocol is in effect unless otherwise stated.

1. Process τ1 does not use any resources. Even though it is an independent
periodic process, there are circumstances under which its ability to meet its
deadline is affected by lower priority processes.

2. Process τ2 gathers data first from a device (d1) and then from a data store
(s1), processes the data, and then writes the results to s1.

9Since it will be useful to be able to look at the figure and the table while reading the examples later in the
paper, the table and the figure have been duplicated in Appendix B.

CMU/SEI-90-TR-19 19

3. Process τ3 gathers data from the three resources: s1, d2, and then d3. It then
performs calculations on the data and writes results to s2 and sends output to
device d4. Note that this process shares data stores with processes τ2 and τ5
and shares a device with process τ4.

4. Process τ4 gathers data from two data stores that are not shared with any
other processes in this example and writes to device d4, which it shares with
τ3.

5. Process τ5 gathers data from two data stores that are shared with higher
priority processes and sends output to device d5, which is dedicated to this
process.

τ2

τ1

d1

s1

s1

τ3

d3

s1 s2

τ4

s4

s3

τ5 d5

s2

s1

d2

d4

d4
processes

data flow

device

data store

Figure 3-3: Process/Resource Relationships in the Example Problem

20 CMU/SEI-90-TR-19

d1 d2 d3 d4 d5 s1 s2 s3 s4

τ1

τ2 x x

τ3 x x x x x

τ4 x x x

τ5 x x x

Table 3-1: Process/Resource Relationships in the Example Problem

CMU/SEI-90-TR-19 21

4. Input/Output Paradigms

This chapter shows how to apply the theoretical results of the previous section to a set of
processes, a subset of which perform I/O. Additionally, we hope to illustrate how the theory
can be used to elucidate the tradeoffs between using various I/O paradigms. Basically, we
will present variations of synchronous and asynchronous I/O paradigms.

When considering the variety of cases presented in this section, we always focus on a
single period of a single I/O process, τk. We then strive to answer two fundamental ques-
tions:

1. How do other processes affect the schedulability of the performing I/O process
τk?

2. How does the performing I/O process τk affect the schedulability of other
processes?

In effect, answering these two questions is like specifying a schedulability interface for
process τk: importing the information needed to determine its schedulability and exporting
the information needed to determine the schedulability of other processes. This approach
facilitates a separation of concerns, allowing us to focus our attention on a single process as
we vary different aspects of its execution.

4.1. Synchronous I/O

4.1.1. Preemptible Service
In this first case the client process (i.e., the process making I/O requests) employs
synchronous I/O (i.e., the client process waits for completion of the I/O operation).
Moreover, the client process does not experience idle time (i.e., lower priority processes are
not given an opportunity to execute) and the process is completely preemptible. Each
resource is locked for the entire duration of the I/O request. Figure 4-1 illustrates an im-
plementation paradigm10 for this type of I/O service using Ada pseudo-code.

10By implementation paradigm we mean a specification for the characteristics of an implementation but not the
implementation per se.

22 CMU/SEI-90-TR-19

package IO_Services is
procedure Read(<Buffer>);
procedure Write(<Buffer>);

end IO_Services;

package body IO_Services is
procedure Read(<Buffer>) is
begin

IO_Monitor.Read(<Buffer>);
end Read;

procedure Write(<Buffer>) is
begin

IO_Monitor.Write(<Buffer>);
end Write;

end IO_Services;

task body IO_Monitor is
begin

loop
select
accept Read(<Buffer>) do

Start IO;
Poll device for I/O Completion;
I/O Completion;

end Read;
or

accept Write(<Buffer>) do
Start IO;
Poll device for I/O Completion;
I/O Completion;

end Write;
end select;

end loop;
end IO_Monitor;

Figure 4-1: Synchronous Service with No Idle Time

CMU/SEI-90-TR-19 23

One situation where this model applies is when the CPU polls the device to determine when
the device has completed an I/O request (i.e., completed its I/O service phase). This is
illustrated in Figure 4-1. The three phases are explicitly shown for the Read and Write
operations. Requisite buffer manipulation and device control are implicit in the Start-IO and
I/O-completion phases of the Read and Write operations. This example assumes a
single-request device where both I/O operations poll to determine when the device has
finished moving data from an external source to processor memory or vice versa. This I/O
paradigm is also applicable in the case where the device is CPU dependent (i.e., the CPU is
involved in the movement of data), as described in Section 2.2. Under these circumstances,
a request to acquire data from a device has the same schedulability properties as a request
to read/write memory-resident shared data. In the previous section we explained that the
following generic inequality is used to model the schedulability of a particular process:

+ ⋅ ⋅ ⋅ + + + ≤ k(21/k − 1)
C′

1

T1

C′
k−1

Tk−1

C′
k

Tk

Xk

Tk

Assuming that the priority ceiling protocol has been implemented or is being emulated for all
processes, then

X = B = max(Cj,r | j = k+1, ... ,n; r ∈ DB(τk) ∪ PTB(τk))k k
where
DB(τk) = Res(τk) ∩ LowRes(τk)

PTB(τk) = { r | r ∉ Res(τk) ∧ r ∈ HiRes(τk) ∧ r ∈ LowRes(τk) }

This means that the process-specific (Xk) term in the inequality is solely comprised of block-
ing time. Blocking time may be direct blocking and/or push-through blocking (see page 15).
The set DB(τk) is the set of resources that may cause direct blocking and PTB(τk) is the set
of resources that may cause push-through blocking.

24 CMU/SEI-90-TR-19

Example 2: Referring to the example problem introduced in Section 3.3, we will
focus on process τ3. Recall that the general set of inequalities that models this
set of processes is:

+ ≤ 1(21/1 − 1) and
C′

1

T1

X1

T1

+ + ≤ 2(21/2 − 1) and
C′

1

T1

C′
2

T2

X2

T2

+ + + ≤ 3(21/3 − 1) and
C′

1

T1

C′
2

T2

C′
3

T3

X3

T3

+ + + + ≤ 4(21/4 − 1) and
C′

1

T1

C′
2

T2

C′
3

T3

C′
4

T4

X4

T4

+ + + + + ≤ 5(21/5 − 1)
C′

1

T1

C′
2

T2

C′
3

T3

C′
4

T4

C′
5

T5

X5

T5

In this example, processes are affected only by preemption and blocking due to
shared resources. Process τ3 shares resources with both lower and higher
priority processes.

Res(τ3) ∩ LowRes(τ3) = {d4, s1, s2}
Res(τ3) ∩ HiRes(τ3) = {s1 }

Since we are assuming that the PCP is in effect, τ3 can be blocked for at most the
duration of a single critical section of a lower priority process. Therefore, the
blocking incurred by τ3 is:

B3 = max(C4,d4, C5,s1, C5,s2)

The contribution of τ3 to the blocking of higher priority processes is C3,s1; process
τ3’s contribution must be combined with other sources of blocking. The entire set
of blocking terms for this example is:

X1 = B1 = 0
X2 = B2 = max(C3,s1, C5,s1)
X3 = B3 = max(C4,d4, C5,s1, C5,s2,)
X4 = B4 = max(C5,s1, C5,s2)
X5 = B5 = 0

Notice that the source of blocking for process τ4 is push-through blocking.

4.1.2. Considerations for Non-Preemptibility
Non-preemptible sections can result in blocking. Consider the case where I/O service is
not only performed in a mutually exclusive manner, but is also non-preemptible. Perhaps
the service is non-preemptible because of device requirements or merely because the I/O
service was implemented in this manner. All other assumptions remain the same. As we
illustrated in Section 3.1, non-preemptible sections represent a source of blocking to higher
priority tasks. The following example illustrates the analysis for this case.

CMU/SEI-90-TR-19 25

Example 3: Assume that I/O service for all devices is non-preemptible. Once
again, we first consider τ3.

In addition to the blocking term in the previous example there is another source of
blocking for τ3; τ5 accesses d5 in a non-preemptible section. Non-preemptibility is
similar, in effect, to PCP. When a client is accessing a resource in a non-
preemptible section, higher priority processes are prevented from executing and
thus are prevented from locking other resources. The same effect would be ach-
ieved if the priority ceiling associated with the resource was set to be the highest
priority in the system (independent of the clients that use the resource).11 Of
course, this causes blocking not caused by PCP; however, PCP’s "blocked at
most once" property is preserved. Therefore, the blocking term for process τ3 is:

B3 = max(max(C4,d4, C5,s1, C5,s2), C5,d5))
Since τ3 accesses devices d2, d3, and d4 in a non-preemptible manner, it be-
comes a source of blocking to higher priority processes. Its contribution to block-
ing resulting from non-preemptibility is max(C3,d2, C3,d3, C3,d4). The entire set of
blocking terms for this example becomes:

B1 = max(C2,d1, C3,d2, C3,d3, C3,d4, C4,d4, C5,d5)

B2 = max(max(C3,s1, C5,s1), C3,d2, C3,d3, C3,d4, C4,d4, C5,d5)
B3 = max(max(C4,d4, C5,s1, C5,s2), C5,d5))
B4 = max(max(C5,s1, C5,s2), C5,d5)
B5 = 0

Notice that in two of the blocking terms nested max functions were used. This is
to emphasize the different sources of blocking and the composition of those dif-
ferent sources of blocking.

4.1.3. Considerations for Idle Time
The single-request and multiple-request devices (described in Section 2.2) allow for physical
concurrency between the CPU and the device. This allows the client to relinquish the CPU
to lower priority processes while awaiting I/O completion. Recall that this period of time
when the client is not executing is referred to as idle time or inactive time. This section
addresses the schedulability ramifications of process idle time.

Assume that I/O completion is signalled by a device interrupt which terminates the period of
client inactivity and eventually results in control being returned to the client. Additionally,
assume that the CPU is non-preemptible from the time the interrupt occurs until control is
returned to the client process (i.e., the client is non-preemptible during the I/O completion
phase of the I/O request). Figure 4-2 illustrates an implementation paradigm for the
IO_Monitor for this case. Notice that this monitor waits for an interrupt to signal the comple-

11Actually, the effect is identical to using PCP emulation but setting the server’s priority to be higher than any
clients in the system. (Recall, when PCP emulation is used the critical section is executed at a priority which is
equal to the priority ceiling of the semaphore.)

26 CMU/SEI-90-TR-19

tion of the I/O service phase, whereas the monitor illustrated in Figure 4-1 polls the device.
Now consider the schedulability characteristics of this type of interaction with a device.

task body IO_Monitor is
begin

loop
select
accept Read(<Buffer>) do

Start IO;
Wait for I/O Interrupt;
I/O Completion;

end Read;
or

accept Write(<Buffer>) do
Start IO;
Wait for I/O Interrupt;
I/O Completion;

end Write;
end select;

end loop;
end IO_Monitor;

Figure 4-2: Synchronous Service with Idle Time

Idle time will have a direct impact on the client process’s ability to meet its deadline.
The idle time must be accounted for in the process’s inequality in the same manner as
blocking. Additionally, each time the client process becomes idle and then resumes execu-
tion, it incurs two additional context switches (2Cs), which must be accounted for.

Example 4: Assume that all of the devices that τ3 uses (i.e., d2, d3, and d4) are
single-request devices and that the I/O service for these devices is synchronous.
Also assume that the client process becomes idle for the duration of the I/O ser-
vice phase (i.e., interrupts are used to signal I/O completion).

The components of execution for the input, processing, and output stages are:

(C3,s1 + C3,d2+2Cs + C3,d3+2Cs) + C3,p + (C3,s2 + C3,d4+2Cs) + 2Cs

There are three devices which cause process idle time and potentially two context
switches for each. Thus, the execution time component of the inequality is
(C +6Cs). The inequality for this process is:′

3

+ + + ≤ 3(21/3 − 1)
C′

1

T1

C′
2

T2

(C + 6Cs)
′
3

T3

X3

T3

Note that Xk includes components from the I/O service phase of each device that
process τ3 uses. In the previous example, this component of time was included in
the execution time term. (See page 9 for difference between the components of
execution time for I/O operations with and without idle time.) Basically, the net
effect of idle time on the schedulability of process τ3 is additional context switch-
ing overhead.

Idle time has an effect on the blocking time components of higher priority processes.

CMU/SEI-90-TR-19 27

If lower priority processes become idle and use interrupts as means of signalling I/O
completion, then the period of non-preemptibility that starts with the interrupt is treated as
blocking time for higher priority processes.

Idle time may also affect the blocking properties of the process that experiences in-
activity. The priority ceiling protocol’s "blocked at most once" property is preserved if a
process is idle while a resource is locked. When the resource is locked, another process
must have a priority that is strictly greater than the priority ceiling of all other locked
resources in order to lock any resource. Consequently, lower priority processes will not be
allowed to lock other resources while the client is idle.12

Idle time also affects the properties of PCP emulation (discussed in Section 3.1). Since
clients use one resource at a time and then release it, there is no hold and wait condition
and consequently deadlock is not a problem [7]. However, inactivity can allow queues to
form. If queues are FIFO rather than prioritized, blocking time for higher priority processes
will be increased.

Example 5: This example is the same as the previous one except that in addition
to devices d2, d3, and d4, the I/O service to device d5 also involves idle time.
Once again we are faced with two problems in calculating the blocking term for
τ3: finding the various sources of blocking and determining the right function for
combining the various forms of blocking.

12If, however, the client has not locked a resource when it becomes idle, the client is no longer protected by
the priority ceiling protocol and a lower priority process may lock a resource that the inactive client will eventually
need. In this case, the client may be blocked once for each time it idles, in addition to being blocked once before
it idles. This situation may arise when the process is using a dedicated single-request device. Since the device
is dedicated, mutual exclusion is not needed and thus the PCP does not come into play. One might entertain
protecting the resource with a semaphore or monitor so that the PCP could be used to avoid multiple blocking.

28 CMU/SEI-90-TR-19

One source of blocking to τ3 is due to resource sharing:

max(C4,d4, C5,s1, C5,s2)

Another source of blocking is due to the interrupt associated with device d5:

Cpt(C5,d5)

Recall that Cpt(C5,d5) is the non-preemptible duration of the I/O-completion phase
of process τ5’s I/O operation using device d5. In order for this interrupt to cause
blocking, d5 must be locked by τ5 when τ3 preempts. Since the use of the
synchronous paradigm implies that only one device is locked by any given client
at one time, we know that s1 and s2 are not locked when d5 is locked. For this
reason, simply adding together the above two blocking terms is overly pessimistic.
For example, if we set the blocking term to be:

B3 = max(C5,s1, C5,s2, C4,d4) + Cpt(C5,d5)

and

max(C4,d4, C5,s1, C5,s2) = C5,s1
then

B3 = C5,s1 + Cpt(C5,d5)

However, since s1 and d5 cannot be simultaneously locked, the blocking contribu-
tions are not additive.

On the other hand, consider the following case: τ5 locks d5; τ5 is then preempted
by τ4, which locks d4; d4 is in turn preempted by τ3. At this point, d5 completes,
resulting in an interrupt and consequently blocking time for τ3. When τ3 resumes
it attempts to lock d4 and is blocked again. The blocking term for this scenario is:

Cpt(C5,d5) + C4,d4

Therefore, the blocking term for τ3 is:

B3 = max(max(C4,d4, C5,s1, C5,s2), (Cpt(C5,d5) + C4,d4))
which can be reduced to:

B3 = max(C5,s1, C5,s2, (Cpt(C5,d5) + C4,d4))
The point of the exercise is to explicate the factors that contribute to blocking and
to show how to reason about combining the various factors.

Idle time can also affect lower priority processes. The idle time of a higher priority
process offers a lower priority process an opportunity to execute. However, additional
context-switching overhead due to this inactivity is one cost that weighs against the benefit
of less preemption time. A more subtle cost is the cost due to deferred execution. The
deferred execution effect due to the inactivity of the higher priority process must be ac-
counted for in the schedulability inequality of lower priority processes.

CMU/SEI-90-TR-19 29

Example 6: In this example let device d1 be the only resource that involves idle
time. The purpose of this example is to analyze the tradeoffs in determining the
schedulable utilization of process τ3 when a higher priority process becomes in-
active.

Process τ2 is the only process that uses device d1. The inequality for process τ2
has to account for idle time and hence X2 will include a term Srv(C2,d1). The
inequality for process τ3 does not have to include Srv(C2,d1) as preemption time,
but additional context switching must be accounted for, and the effects of deferred
execution must be included. The inequality that models this situation is:

+ + + ≤ 3(21/3 − 1)
C′

1

T1

(C + 2Cs)
′
2

T2

C′
3

T3

B3+D

T3

D is the additional term that is needed to model the deferred execution effect due
to process τ2. B3 is blocking due to lower priority processes. Recall from Section
3.1 that the deferred execution effect can be modeled by adding a term to lower
priority processes to account for the effect. The term is the minimum of the
amount of execution time that is deferred and the duration of the period of in-
activity. Referring to Figure 4-3, it can be seen that the term in this case is:

D = min(Srv(C2,d1), (C + 2Cs) − (St(C2,d1) + 2Cs))′
2

which reduces to

D = min(Srv(C2,d1), C −St(C2,d1))′
2

2, d1St(C)

2, d1)Srv(C

2, d1)Cpt(C

2,s1,1C 2,s1,2CCs Cs Cs Cs2,pC

T2

Figure 4-3: Deferred Execution

Now we will assess the schedulability benefits of process τ2’s idle time for
process τ3.

30 CMU/SEI-90-TR-19

First assume that the idle time is relatively short compared to the deferred execu-
tion time:

min(Srv(C2,d1), C −St(C2,d1)) = Srv(C2,d1)′
2

Without idle time (i.e., if polling is used), the inequality for process τ3 is:

+ + + ≤ 3(21/3 − 1)
C′

1

T1

(C + Srv(C)′
2 2,d1

T2

C′
3

T3

B3

T3

With idle time, the inequality for process τ3 is:

+ + + ≤ 3(21/3 − 1)
C′

1

T1

(C + 2Cs)
′
2

T2

C′
3

T3

B3+Srv(C2,d1)

T3

From the above inequalities we can see that if the following inequality is satisfied,
then the schedulable utilization of process τ3 has improved due to idle time of
process τ2.

>
Srv(C) − 2Cs2,d1

T2

Srv(C2,d1)

T3

Basically the inequality tells us that if context switching is small relative to idle
time, then idle time is beneficial to the lower priority process.

Now assume that the idle time is large relative to the execution time that is
deferred:

min(Srv(C2,d1), C −St(C2,d1)) = C −St(C2,d1)′
2

′
2

The following inequality governs the tradeoff in this case:

>
Srv(C) − 2Cs2,d1

T2

C −St(C2,d1)′
2

T3

The inequality tells us that if idle time is significantly greater than the deferred
execution time (i.e., idle time minus context switching overhead is greater than
deferred execution time), then idling is beneficial to the lower priority process. In
both cases, analysis confirms intuition.

4.2. Asynchronous I/O

The previous sections analyze the effects of non-preemptibility and idle time. In particular,
the circumstances under which lower priority processes could increase their schedulable
utilization by taking advantage of idle time in higher priority processes are examined. The
essence of this section is to explore how a process can take advantage of its own idle time
to increase its schedulable utilization. We first investigate asynchronous I/O in the context
of devices that can only handle one I/O request at a time, the so-called single-request
devices.

CMU/SEI-90-TR-19 31

4.2.1. Single-Request Devices
Total process idle time can be reduced by allowing the process to perform other work
while the I/O service is in progress, thus effectively increasing its own schedulable
utilization. Consider Figures 4-4 and 4-5 for an illustration of the differences between
synchronous and asynchronous idle time. First notice that in the synchronous case, all idle
times contribute in an additive manner to execution time. The idle time component in the
process τk’s inequality is:

Idle Time = Srv(Ck,r)∑
r ∈ Dev(τk)

Consider the asynchronous paradigm (Figure 4-5). Idle time for the input stage cannot be
any longer than the maximum idle time for all of the input operations. The same is true for
the output stage. Therefore, the worst-case idle time for the asynchronous paradigm is:

Worst−Case Idle Time = max(Srv(Ck,r) | r ∈ InpDev(τk)) +
max(Srv(Ck,r) | r ∈ OutDev(τk))

Idle time can be further reduced by placing I/O requests involving CPU-dependent devices
and/or shared data after I/O requests that involve idle time. The idea is to attain maximal
CPU utilization during idle time.

Also notice that the asynchronous paradigm offers the opportunity to totally eliminate idle
time from the output stage. Effectively, the I/O-completion phase of all output operations
can be viewed as a check for successful I/O completion. This could easily be checked at
the beginning of the following period as shown in Figure 4-6. An implementation paradigm
for the client process performing synchronous I/O is shown in Figure 4-7 and for the two
asynchronous alternatives in Figures 4-8 and 4-9.

I

O

P

Input

Output

Idle time

Processing

I I I P O O O1 2 3 1 2 3

I/O

St Srv Cpt

Figure 4-4: Synchronous Idle Time

32 CMU/SEI-90-TR-19

Input Processing Output

I/O

St Srv Cpt

Figure 4-5: Asynchronous Idle Time

Input Processing Output

I/O

St Srv Cpt

Cpt for
previous
period

Figure 4-6: Optimized Asynchronous Idle Time

CMU/SEI-90-TR-19 33

While asynchronous I/O paradigms allow total idle time to be reduced (when com-
pared with synchronous paradigms), the blocking that the process causes to higher
priority processes due to interrupts is worse for the asynchronous paradigms than
for the synchronous paradigms. Consider the synchronous case for a moment. A lower
priority process employing synchronous I/O will only have one outstanding I/O request at
any given time. A higher priority process suffers blocking when it preempts the lower priority
process while an I/O request is outstanding, since the device interrupts the CPU to signal
the completion of the lower priority I/O operation while the higher priority process is still ex-
ecuting. Therefore, in the synchronous case the blocking contribution for higher priority
processes due to interrupts related to process τk’s I/O is:

max(Cpt(Ck,d) | d ∈ Dev(τk))

In the asynchronous case there can be multiple outstanding I/O requests when a higher
priority process preempts. The worst case occurs when the lower priority process is
preempted after it has issued all of its requests for input or all of its requests for output. The
equivalent blocking contribution for higher priority processes in this case is:

max(Cpt(Ck,r,l) , Cpt(Ck,r,l))∑
r ∈ InpDev(τk)

∑
l

∑
r ∈ OutDev(τk)

∑
l

task body Client is
begin

IO_Services_Device_a.Read; -- Input Stage
IO_Services_Device_b.Read;
IO_Services_Device_c.Read;

Processing_Stage; -- Processing Stage

IO_Services_Device_1.Write; -- Output Stage
IO_Services_Device_2.Write;
IO_Services_Device_3.Write;

end Client;

Figure 4-7: Synchronous I/O: Client

Implementation paradigms for asynchronous I/O require careful consideration to en-
sure that the benefits of the priority ceiling protocol are preserved.13 Given the im-
plementation paradigms for client processes for the synchronous and asynchronous cases
as shown Figures 4-7 and 4-8 respectively, we now turn to the associated implementation
paradigms for the monitor processes.

13In general, the implementation paradigms are illustrated using an Ada-like syntax but are not meant to be
Ada-specific. However, in this section we couch our discussion specifically in terms of Ada, since the application
of the priority ceiling protocol to Ada has already been defined in [2].

34 CMU/SEI-90-TR-19

task body Client is
begin

IO_Services_Device_a.Asyn_Read; -- Input Stage
IO_Services_Device_b.Asyn_Read;
IO_Services_Device_c.Asyn_Read;

IO_Services_Device_c.Wait_Read(<Buffer>);
IO_Services_Device_b.Wait_Read(<Buffer>);
IO_Services_Device_a.Wait_Read(<Buffer>);

Processing_Stage; -- Processing Stage

-- Output Stage
IO_Services_Device_1.Asyn_Write(<Buffer>);
IO_Services_Device_2.Asyn_Write(<Buffer>);
IO_Services_Device_3.Asyn_Write(<Buffer>);

IO_Services_Device_3.Wait_Write;
IO_Services_Device_2.Wait_Write;
IO_Services_Device_1.Wait_Write;

end Client;

Figure 4-8: Asynchronous I/O: Client

task body Client is
begin

IO_Services_Device_3.Wait_Write; -- Finish Output Stage
IO_Services_Device_2.Wait_Write; -- from previous period
IO_Services_Device_1.Wait_Write;

IO_Services_Device_a.Asyn_Read; -- Input Stage
IO_Services_Device_b.Asyn_Read;
IO_Services_Device_c.Asyn_Read;

IO_Services_Device_c.Wait_Read(<Buffer>);
IO_Services_Device_b.Wait_Read(<Buffer>);
IO_Services_Device_a.Wait_Read(<Buffer>);

Processing_Stage; -- Processing Stage

-- Output Stage
IO_Services_Device_1.Asyn_Write(<Buffer>);
IO_Services_Device_2.Asyn_Write(<Buffer>);
IO_Services_Device_3.Asyn_Write(<Buffer>);

end Client;

Figure 4-9: Optimized Asynchronous I/O: Client

Recall that we are assuming the devices are single-request devices and thus can handle
only one outstanding request. Hence, the devices require mutually exclusive access. The
IO_Monitors in Figures 4-1 and 4-2 enforce mutually exclusive access in the synchronous
case. Notice that the PCP rules, as applied to monitor processes [2], will ensure the
"blocked at most once property" in this case.

CMU/SEI-90-TR-19 35

package IO_Services_Device_n is
procedure Asyn_Read;
procedure Wait_Read(<Buffer>);

procedure Asyn_Write(<Buffer>);
procedure Wait_Write;

end IO_Services;

package body IO_Services_Device_n is
procedure Asyn_Read is
begin

IO_Monitor.Asyn_Read;
end Asyn_Read;

procedure Wait_Read(<Buffer>) is
begin

IO_Monitor.Wait_Read(<Buffer>);
end Wait_Read;

procedure Asyn_Write(<Buffer>) is
begin

IO_Monitor.Write(<Buffer>);
end Asyn_Write;

procedure Wait_Write is
begin

IO_Monitor.Wait_Write;
end Wait_Write;

end IO_Services;

Figure 4-10: Asynchronous I/O: Interface

Asynchronous I/O requires an implementation paradigm that facilitates mutual exclusion in a
manner similar to that shown via the synchronous monitor (Figure 4-2), but must allow the
client process to start the I/O operation and then have control returned to perform other
work. One option for an implementation paradigm is shown in Figures 4-10 and 4-11.
However, this structure violates Ada coding restrictions for server tasks outlined in [2]. The
coding restrictions developed in [2] were motivated by the need to preserve the desirable
properties of the priority ceiling protocol, which was originally defined in terms of rules for
locking binary semaphores [10]. In order to use asynchronous I/O and continue to benefit
from the desirable properties of the PCP, the asynchronous I/O services must be im-
plemented in a manner that is consistent with the PCP. One approach is to incorporate a
semaphore into the asynchronous I/O services. Specifically, implement the Asyn_Read
(Asyn_Write) so that P operation is performed in addition to the Start I/O request and
implement Wait_Read (Wait_Write) so that a V operation is performed during I/O
Completion. The semaphore operations that are embedded in the I/O services must con-
form to the semaphore locking rules of the PCP.

36 CMU/SEI-90-TR-19

task body IO_Monitor is
begin

loop
select

accept Read do
Start IO;

end Read;

Wait for I/O Interrupt;

accept Wait_Read(<Buffer>) do
Data movement or pointer manipulation;

end Wait_Read;

or
accept Write(<Buffer>) do

Data movement or pointer manipulation;
Start IO;

end Write;

Wait for I/O Interrupt;

accept Wait_Write;

end select;
end loop;

end IO_Monitor;

Figure 4-11: Asynchronous I/O: Monitor

4.2.2. Considerations for Multi-Request Devices
There are several noteworthy considerations for devices that support multiple outstanding
requests. One consideration is that the implementation paradigm for supporting this type of
device is slightly more complicated. This is discussed Appendix A.

It is also important to know the mechanism the device uses to manage multiple re-
quests. A simple model of this type of device involves a simple processor and a queue
manager. The device queues requests from the CPU and works to empty the queue. The
issue of concern is the queuing discipline. If the queue is a FIFO queue, low priority re-
quests may be serviced before higher priority requests and consequently the device has
introduced another source of blocking. FIFO queues in devices can be a serious bottleneck
for high priority tasks.

4.2.3. Considerations for Emulating Multi-Request Devices
Blocking time associated with accessing a single-request device can be reduced by
emulating a multi-request device. Consider the client process illustrated in Figure 4-8 and
the associated monitor process in Figure 4-11. Once this client process issues its request to
start the first read operation using device a, the device is locked until both the data has been
moved and the client process issues a call to Wait_Read for device a. The worst-case

CMU/SEI-90-TR-19 37

blocking time for a higher priority client process that shares the device is the duration of time
from the Asyn_Read to the Wait_Read. However, the device may have completed data
movement before the lower priority client gets to the point in its processing where it can
execute the call to Wait_Read. If this is the case, the higher priority client is blocked longer
than necessary. This points out a fundamental difference between using devices and
memory-resident shared resources. When using devices that operate physically concurrent
with the CPU, the resource may be ready for the next client before the current client is ready
for the results of the I/O operation. Emulating a multi-request device by creating a queue of
I/O requests allows the high priority client to use the single-request device as soon as data
movement is completed.

In this case, an application can submit multiple asynchronous requests for I/O without
having to lock the device (i.e., only having to the lock the device for the duration of the
request, as opposed to the duration of the I/O service). This abstraction also requires a
queue of outstanding I/O requests. However, in this case the queue is managed by the
executive. This raises two important concerns:

• Once again, a FIFO queuing discipline will result in blocking.

• Even if a priority queue is used, queue management may result in blocking if it
is performed within the executive at effectively a higher priority.

4.2.4. Pipelining of I/O Requests
Pipelining is used to take maximal advantage of idle time at the cost of introducing
latency in the results. The sequential paradigms require that the input stage complete
before the processing stage commences and that the processing stage complete before the
output stage commences. Pipelining allows these stages to overlap. For example, the
processing stage can take advantage of idle time in the input stage.

In order to allow the processing stage to capitalize on the idle time in the input stage,
processing must commence before input is completed. This means that the processing per-
formed during a given period must use input collected during the previous period, as shown
in Figure 4-12. This is known as double-buffered input.

38 CMU/SEI-90-TR-19

Input

Output

Processing

Cpt for
previous
period

I/O

St Srv Cpt

Figure 4-12: Pipelining

CMU/SEI-90-TR-19 39

A consequence of this paradigm is latency. The output generated during any given period
reflects the input from one period before it. This is illustrated in Figure 4-13. The input from
period i-1, denoted as (Inp i-1), is processed in period i, denoted as (Proc i-1), and is output
during period i, denoted as (Out i-1). Notice that even though the data that is output is
essentially one period old, new output is generated every period. Therefore (if the latency
can be tolerated), this paradigm is suitable for generating periodic output.

Period
i - 1

Period
i

Inp
i - 1

Out
i - 2

Inp
i

Out
i - 1

Proc
i - 2

Proc
i - 1

Figure 4-13: Latency Due to Pipelining

40 CMU/SEI-90-TR-19

This paradigm effectively reduces the deferred execution effects of service time to zero; all
of the idle time occurs after all of the non-idle time. If one avoids waiting for I/O completions
at the end of the period and instead checks for completion at the beginning of the following
period, this paradigm avoids the context switching penalty that other paradigms pay for idle
time. This is illustrated in the sample client in Figure 4-14. Since there is no idle time, there
also is no deferred execution penalty for lower priority tasks.

task body Client is
begin
-- Assuming this is period i:

-- Gather data from Asyn_Read initiated in period i-1
IO_Services_Device_a.Wait_Read(<Inp i-1>);
IO_Services_Device_b.Wait_Read(<Inp i-1>);
IO_Services_Device_c.Wait_Read(<Inp i-1>);

-- Confirm completion of Asyn_Write initiated in period i-1
IO_Services_Device_3.Wait_Write;
IO_Services_Device_2.Wait_Write;
IO_Services_Device_1.Wait_Write;

-- Initiate Asyn_Read for period i
IO_Services_Device_a.Asyn_Read;
IO_Services_Device_b.Asyn_Read;
IO_Services_Device_c.Asyn_Read;

-- Initiate processing using data gather above
Processing_Stage(<Inp I-1>, <Out I-1>);

-- Initiate Asyn_Write using data from above processing
IO_Services_Device_1.Asyn_Write(<Out I-1>);
IO_Services_Device_2.Asyn_Write(<Out I-1>);
IO_Services_Device_3.Asyn_Write(<Out I-1>);

end Client;

Figure 4-14: Asynchronous I/O with Pipelining: Client

This paradigm also results in a blocking penalty that is due to interrupts. Recall that
the blocking time for the asynchronous-sequential paradigm was:

max(Cpt(Ck,r,l) , Cpt(Ck,r,l))∑
r ∈ InpDev(τk)

∑
l

∑
r ∈ OutDev(τk)

∑
l

The blocking penalty for higher priority tasks in this case is:

Cpt(Ck,r,l)∑
r ∈ Device(τk)

∑
l

CMU/SEI-90-TR-19 41

5. Summary and Conclusion

This report illustrates how the principles of rate monotonic scheduling theory can be
methodically applied to variations of synchronous and asynchronous I/O paradigms. We
have varied the characteristics of synchronous I/O operations to explore:

1. Effects of non-preemptibility. Non-preemptibility is a source of blocking.
When calculating worst-case blocking effects due to non-preemptibility, one
can use a "blocked at most once" rule like that used for the priority ceiling
protocol.

2. Effects of idle time. Idle time potentially affects the schedulability of the id-
ling process as well as higher and lower priority processes. The scheduling
inequality for the process itself must include a term to account for this gap in
execution and additional context switching. Higher priority processes will be
affected by interrupts that signal I/O completion. Interrupts on behalf of an
idling process represent blocking time to higher priority processes. Lower
priority processes must account for the deferred execution effect. A lower
priority process benefits from a higher priority process’s idle time if one of the
following conditions is true:

• Idle time is small relative to the execution time that is deferred and con-
text switching time is small relative to the idle time.

• Idle time is significantly larger than the execution time that is deferred.

Asynchronous I/O was then introduced as a means of reducing a process’s idle time. We
explored asynchronous I/O in the context of:

1. Single-request devices. We explored two paradigms for implementing
mutual exclusion for this type of device. The first mechanism was very similar
to a semaphore and required locking rules that adhered to the priority ceiling
protocol. This paradigm requires that the client process retain the lock for the
duration of the I/O operation. However, it is possible for the I/O operation to
complete before the client process can reach the point in its execution where it
can release the lock, thus locking out other potential clients longer than is
necessary. Emulating multi-request devices represents a paradigm that
avoids this problem.

2. Multi-request devices. One must be aware of the discipline used to queue
multiple requests. FIFO queues in software and in devices can be a serious
bottleneck.

3. Pipelining. This technique further reduces idle time at the cost of introducing
latency into the results. Also, a price paid for reducing idle time using
asynchronous paradigms is increased blocking to higher priority process due
to interrupts.

We have also explored the notion of incrementally constructing a schedulability model of a

42 CMU/SEI-90-TR-19

real-time system, where the schedulability model is a mathematical model of the timing and
concurrency structure of the system. A schedulability model can be built incrementally by
considering each process and determining all of the factors that influence its schedulability
and how it influences the schedulability of other processes.

There are several areas that were not discussed. We assumed all processes were periodic.
Extending the general model of I/O-related processing to incorporate aperiodic events is
natural. We also feel that the techniques presented in this report are naturally extensible to
the situation where the processing stage is dispersed throughout a process’s execution.

We encourage the reader to apply the presented analysis techniques to problems not ex-
plicitly addressed in this report.

CMU/SEI-90-TR-19 43

Acknowledgements

The authors would like to express appreciation to the following individuals for their insightful
comments: Mark Borger, Mike Gagliardi, John Goodenough, Keith Kohout, B. Craig
Meyers, Lui Sha and to Lisa Jolly for her assistance in creating figures for the report.

44 CMU/SEI-90-TR-19

CMU/SEI-90-TR-19 45

Appendix A: Implementation Paradigm for
Multi-Request Devices

Multi-request devices, by definition, support multiple outstanding I/O requests. Since there
can be multiple outstanding I/O requests, a mechanism is needed for associating an I/O
completion with the corresponding client process that started the I/O operation. The
mechanism used is similar to the mechanism used by a pizza shop. The customer
(analogous to the client process) places his or her order (analogous to making an I/O re-
quest) and receives a ticket with a number (analogous to the I/O identification number
returned to the client process), which is called when the pizza is ready. The customer either
waits for his or her number to be called or leaves the pizza shop for a short period of time
and then returns to present his or her number and ask if the pizza is ready.

A procedural interface for this type of I/O paradigm is shown in Figure A-1. When
Asyn_Read and Asyn_Write are called to request an I/O operation, they return to the
client an I/O identification number (ID). When Wait_Read and Wait_Write are called to
wait for completion of an I/O operation, they require use of the I/O ID.

package IO_Services is
subtype ID_type is range 1..Max_IDs;
type Buffer_Type is ...

procedure Asyn_Read(ID: out ID_type);
procedure Asyn_Write(ID: out ID_type; Buffer: out Buffer_Type);

procedure Wait_Read(ID: in ID_type; Buffer: in Buffer_Type);
procedure Wait_Write(ID: in ID_type);

end IO_Services;

Figure A-1: Multi-Request Interface

Figure A-2 illustrates that procedures Asyn_Read and Asyn_Write are simply procedural
interfaces to the associated entries of the monitor process shown in Figure A-3.

The monitor reserves the I/O ID through a call to Reserve_Completion_ID and starts the
I/O operation in a critical section. Since multi-request devices do not require mutually ex-
clusive access for the entire duration of an I/O operation, mutual exclusion is provided for
only the start I/O phase. This is illustrated in Figure A-3.

Reserve_Completion_ID searches the IO_Waiter array shown in Figure A-4 for an ele-
ment that satisfies IO_Waiter(ID).Reserved = FALSE. The I/O ID is simply an index
into an array of records. There is a one-to-one relationship between tickets in the above
analogy, I/O ID’s, and elements in the array of records.

46 CMU/SEI-90-TR-19

procedure Asyn_Read(ID: out ID_type) is
begin

IO_Monitor.Read(ID);
end Asyn_Read;

procedure Asyn_Write(ID: out ID_type) is
begin

IO_Monitor.Write(ID);
end Asyn_Write;

procedure Wait_Read(ID: in ID_type; Buffer: out Buffer_Type) is
begin

IO_Waiter(ID).Wait_For_IO_Completion(Buffer_Pointer);
Release_Completion_ID(ID);

end Wait_Read;

procedure Wait_Write(ID: in ID_type) is
begin

IO_Waiter(ID).Wait_For_IO_Completion(Buffer_Pointer);
Release_Completion_ID(ID);

end Wait_Write;

Figure A-2: Multi-Request Procedural Interface

task IO_Monitor is
begin

loop
select

accept Read(ID: out ID_type) do
Reserve_Completion_ID(ID);
Start_IO_for_Read;

end Read;
or

accept Write(ID: out ID_type) do
Reserve_Completion_ID(ID);
Start_IO_For_Write;

end Write;
end select;

end loop;
end IO_Monitor;

Figure A-3: Multi-Request Monitor for Requesting I/O

The I/O ID is then used by Wait_Read and Wait_Write, as shown in Figure A-2, as a
means to indicate the I/O operation for which it is waiting. An interrupt service routine
shown in Figure A-5 also uses the I/O ID to notify the right client of I/O completion, as shown
in Figure A-4.

CMU/SEI-90-TR-19 47

Before returning to the client process, Wait_Read and Wait_Write call
Release_Completion_ID to release the identifier for subsequent use.14

14Note that if this paradigm were implemented as part of the executive or runtime system, information such as
process-ID would be readily available, obviating the need to explicitly pass an ID back to the client process.

48 CMU/SEI-90-TR-19

package body IO_Services is

type Buffer_Pointer_Type is ...

task type IO_Wait_Task_Type is
entry IO_Complete

(Buffer_Pointer: in Buffer_Pointer_Type);
entry Wait_for_IO_Completion

(Buffer_Pointer: out Buffer_Pointer_Type);
end IO_Wait_Task_Type

task body IO_Wait_Task_Type is
begin

loop
accept IO_Complete

(Buffer_Pointer: in Buffer_Pointer_Type);

accept Wait_For_IO_Completion
(Buffer_Pointer: out Buffer_Pointer_Type) do

end loop;
end IO_Wait_Type;

type IO_Wait_Type is
record

Reserved : BOOLEAN;
IO_Wait_Task : IO_Wait_Task_Type;

end record;

type IO_Wait_Array_Type is array(ID_type) of IO_Wait_Type;
IO_Waiter : IO_Wait_Array_Type;

procedure Reserve_Completion_ID(ID: out ID_type) is
begin

Find a Completion_ID;
IO_Waiter(ID).Reserved := TRUE;

end Reserve_Completion_ID;

procedure Release_Completion_ID(ID: in ID_type) is
begin

IO_Waiter(ID).Reserved := FALSE;
end Release_Completion_ID;

-- See Figure A-2 for other procedures.
-- See Figure A-3 for the monitor task.
-- See Figure A-5 for the interrupt service routine.

end IO_Services;

Figure A-4: Multi-Request Completion_ID Management

CMU/SEI-90-TR-19 49

task body Interrupt_Service_Routine is
begin

loop
accept Interrupt do

Determine ID and Buffer_Pointer of completed I/O.
end Interrupt;

IO_Waiter(ID).IO_Complete(Buffer_Pointer);
end loop;

end Interrupt_Service_Routine;

Figure A-5: Interrupt Service Routine

50 CMU/SEI-90-TR-19

CMU/SEI-90-TR-19 51

Appendix B: Figures for Example Problem

τ2

τ1

d1

s1

s1

τ3

d3

s1 s2

τ4

s4

s3

τ5 d5

s2

s1

d2

d4

d4
processes

data flow

device

data store

Figure B-1: Process/Resource Relationships in the Example Problem

d1 d2 d3 d4 d5 s1 s2 s3 s4

τ1

τ2 x x

τ3 x x x x x

τ4 x x x

τ5 x x x

Table B-1: Process/Resource Relationships in the Example Problem

52 CMU/SEI-90-TR-19

CMU/SEI-90-TR-19 53

References

1. Borger, M. W., Klein, M. H., Veltre, R. A. "Real-Time Software Engineering in Ada: Ob-
servations and Guidelines". Software Engineering Institute Technical Review (1988).

2. Goodenough, J. B., Sha, L. The Priority Ceiling Protocol: A Method for Minimizing the
Blocking of High Priority Ada Tasks. Proceedings of the International Workshop of Real-
Time Ada Issues, June, 1988.

3. Lehoczky, J. P., Sha, L. "Performance of Real-Time Bus Scheduling Algorithms". ACM
Performance Evaluation Review, Special Issue 14, 1 (May, 1986).

4. Lehoczky, J. P., Sha, L., Strosnider, J. Enhancing Aperiodic Responsiveness in A Hard
Real-Time Environment. IEEE Real-Time System Symposium, December, 1987.

5. Liu, C.L., Layland, J.W. "Scheduling Algorithms for Multi-Programming in a Hard-Real-
Time". Journal of the Association for Computing Machinery Vol. 20, 1 (January 1973), pp.
46-61.

6. VMEbus Products: Selector Guide. Motorola, Inc., Tempe, Arizona, 1989.

7. Peterson, James L. and Silberschatz, Abraham. Operating System Concepts. Addison
Wesley, 1986.

8. Rajkumar, R., Sha, L., Lehoczky, L. "On Countering The Effect of Cycle Stealing in A
Hard Real-Time Environment". IEEE Real-Time System Symposium (December 1987).

9. Rajkumar, R., Sha, L., Lehoczky, J.P. Real-Time Synchronization Protocols for Mul-
tiprocessors. IEEE Real-Time Systems Symposium, December, 1988.

10. Sha, L., Rajkumar, R., Lehoczky, J. P. Priority Inheritance Protocols: An Approach to
Real-time Synchronization. Tech. Rept. (CMU-CS-87-181), Department of Computer
Science, Carnegie Mellon Uniersity, 1987.

11. Sha, L., Goodenough, J. B. Real-Time Scheduling Theory and Ada. Tech. Rept.
CMU/SEI-89-TR-14, ADA211397, Software Engineering Institute, April 1989. Also in
Computer, Vol. 23, No. 4, (April 1990), pp. 53-62, .

12. Sha, L., Rajkumar, R., Lehoczky, J.P., Ramamritham, K. Mode Changes in a Prioritized
Preemptive Scheduling Environment. Tech. Rept. CMU/SEI-88-TR-34, ADA207544,
Software Engineering Institute, November 1989.

13. Shaw, Mary. "Abstraction Techniques in Modern Programming Languages". IEEE
Software, Vol. 4, (October 1984).

14. Sprunt, B., Sha, L., Lehoczky, J. P. "Aperiodic Task Scheduling for Hard Real-Time
Systems". The Journal of Real-Time Systems Vol. 1 (1989), pp. 27-60.

15. Stankovic, John A. "Misconceptions About Real-Time Computing". Computer Vol. 21,
No. 10 (October 1988), pp. 10-19.

54 CMU/SEI-90-TR-19

CMU/SEI-90-TR-19 i

Table of Contents

1. Introduction 1
1.1. An Analytical Framework 2
1.2. Considerations for Input/Output 2

2. Processing Model 5
2.1. Input/Output Paradigms 5
2.2. Models of Device Interactions 7
2.3. Notation and Terminology 8

3. Review of Rate Monotonic Theory 11
3.1. Basic Results of Rate Monotonic Scheduling 11
3.2. Schedulability Models 16
3.3. Example Problem 18

4. Input/Output Paradigms 21
4.1. Synchronous I/O 21

4.1.1. Preemptible Service 21
4.1.2. Considerations for Non-Preemptibility 24
4.1.3. Considerations for Idle Time 25

4.2. Asynchronous I/O 30
4.2.1. Single-Request Devices 31
4.2.2. Considerations for Multi-Request Devices 36
4.2.3. Considerations for Emulating Multi-Request Devices 36
4.2.4. Pipelining of I/O Requests 37

5. Summary and Conclusion 41

Acknowledgements 43

Appendix A. Implementation Paradigm for Multi-Request Devices 45

Appendix B. Figures for Example Problem 51

References 53

ii CMU/SEI-90-TR-19

CMU/SEI-90-TR-19 iii

List of Figures

Figure 2-1: General Model for a Process 5
Figure 2-2: Input Stage in Detail 6
Figure 3-1: Effects of Idle Time 16
Figure 3-2: Deferred Execution Effect 17
Figure 3-3: Process/Resource Relationships in the Example Problem 19
Figure 4-1: Synchronous Service with No Idle Time 22
Figure 4-2: Synchronous Service with Idle Time 26
Figure 4-3: Deferred Execution 29
Figure 4-4: Synchronous Idle Time 31
Figure 4-5: Asynchronous Idle Time 32
Figure 4-6: Optimized Asynchronous Idle Time 32
Figure 4-7: Synchronous I/O: Client 33
Figure 4-8: Asynchronous I/O: Client 34
Figure 4-9: Optimized Asynchronous I/O: Client 34
Figure 4-10: Asynchronous I/O: Interface 35
Figure 4-11: Asynchronous I/O: Monitor 36
Figure 4-12: Pipelining 38
Figure 4-13: Latency Due to Pipelining 39
Figure 4-14: Asynchronous I/O with Pipelining: Client 40
Figure A-1: Multi-Request Interface 45
Figure A-2: Multi-Request Procedural Interface 46
Figure A-3: Multi-Request Monitor for Requesting I/O 46
Figure A-4: Multi-Request Completion_ID Management 48
Figure A-5: Interrupt Service Routine 49
Figure B-1: Process/Resource Relationships in the Example Problem 51

iv CMU/SEI-90-TR-19

CMU/SEI-90-TR-19 v

List of Tables

Table 3-1: Process/Resource Relationships in the Example Problem 20
Table B-1: Process/Resource Relationships in the Example Problem 51

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.2
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

