
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Informatics for a New Century:
Computing Education for the 1990s and

Beyond

Mary Shaw

July 1990

CMU-CS-90-142 .

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3809

Prepared for IFIP Working Group 3.2 International Workshop
on Information Curricula for the 1990s

This report will also appear as Carnegie Mellon University, Software
Engineering Institute Technical Report CMU/SEI-90-TR-15, ESD-TR-90-142

Abstract

Information technology and computer science have not only reshaped computation,
communication, and commerce; they have expanded the basic models and paradigms
of many disciplines. Informatics education has obligations to all the communities that
rely on information technology, not just the computing professionals. Serving this
extended audience well requires changes in the content and presentation of
computing curricula. This paper sketches the coming needs for information processing
and analyzes the populations that will require informatics education. It considers
curriculum requirements through two examples, one outside the traditional boundary of
computer science and one inside.

Copyright © 1990 by Mary Shaw

This research is sponsored by the U.S. Department of Defense, in part by Contract
F19628-90-C0003 with the U.S. Air Force as the executive contracting agent and in
part by the Defense Advanced Research Projects Agency (DoD) and monitored by the
Avionics Laboratory, Air Force Wright Aeronautical Laboratories, Aeronautical Systems
Division (AFSC), Wright-Patterson AFB, Ohio 45433-6543 under Contract F33615-87-
C-1499, ARPA Order No. 4976, Amendment 20. M. Shaw was also sponsored in part
by the Software Engineering Institute under contract to the Department of Defense.

The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or
implied, of the Defense Advanced Research Projects Agency or the U. S. Government.

Keywords: Informatics education, computer science education, teaching programming, interdisciplinary
computing education.

Table of Contents

1. Information Processing in the 1990s 1
1.1. Information Processing as an Economic Force 1
1.2. Information Processing as a Shaper of Disciplines 3

2. Audiences for Computing Education 5
3. Two Examples 9

3.1. Computing Specialists in Disciplines Outside Information Technology 9
3.2. Software Developers 10

3.2.1. Routine and innovative design 10
3.2.2. A cry from the wilderness 11
3.2.3. The nature of expertise 11
3.2.4. Ways to get information 12
3.2.5. Flaws in current software curriculum and ways to improve the

situation 13
4. Conclusion: Adapt or Die 15
5. References * 7

I

UNIVERSITY LIBRARIES
CARNEGIE-MELLON UNIVERSITY

PITTSBURGH, PENNSYLVANIA ¡5213

M

Table of Figures

Figure 1 : Application Development Backlogs 5
Figure 2: Undergraduate Profile of the Early 1980s 7
Figure 3: Undergraduate Profile of the 1990s 7

iii

iv

List of Tables

Table 1: US Sales Forecasts, $ billions

Informatics for a New Century:
Computing Education for the 1990s and

Beyond

Abstract: Information technology and computer science have not only reshaped
computation, communication, and commerce; they have expanded the basic models and
paradigms of many disciplines. Informatics education has obligations to all the communities
that rely on information technology, not just the computing professionals. Serving this
extended audience well requires changes in the content and presentation of computing
curricula. This paper sketches the coming needs for information processing and analyzes
the populations that will require informatics education. It considers curriculum
requirements through two examples, one outside the traditional boundary of computer
science and one inside.

1. Information Processing in the 1990s

Over the four decades of modern computation, information technology has assumed
increasing significance as an economic force and a shaper of disciplines. Although the
computing disciplines have been able to develop systematic models, theories, and tools
at a quite respectable rate, the rapid growth of practical computing applications has
generated demand for computational capability far faster. Educators have usually
concentrated on the internal needs of the evolving discipline, often at the expense of the
mutual benefits that could accrue from interaction with application areas.

ThjMnaiQI tasks for computing education in the next decade will beQjpdating the |
i ^QSy l j^k 0 incorporate improved models and theories as they emerge, matching
content to changing needs, and expanding the communities served to include users of
varying degrees of sophistication in various application areas.

1.1. Information processing as an economic force
Information processing is a large sector in both United States and world markets. For
example, US industry sales forecasts were about $150 billion in 1989 and are projected
to exceed $230 billion by 1992. This figure includes computers, peripherals, packaged
software, and communication but does not include service, system integration software,
and in-house software development. Table 1 shows US forecasts in more detail [DAG
«Q1

1

Category 1989 1992 Annual % growth

Multi-user systems
Supercomputers
Single-user computers
Printers
Storage
Communication equipment
Packaged software
Mfg auto/CAD/CAM/CAE

38.0 47.1
1.9 3.5

31.8 52.4
9.3 12.6

21.1 32.1
8.6 11.4

23.7 37.5
24.7 35.5

7.4
22.9
18.1
10.6
15.1

9.7
16.6
12.9

Table 1: US Sales Forecasts, $ billions

The cost of in-house software in the US alone may be in the range $150-$200 billion
[CSTB 90]. It is not clear how much modification after release ("maintenance") is included
in this figure. Thus, when services, system integration, in-house development, and
maintenance are included, software now dominates the cost of information processing.

Assessment of the worldwide software market involves interpretation of varied and
uncertain data. Despite the uncertainties, projections have been made; for 1990 they
range from US$70 billion to US$180 billion, and projections for 1996 range up to
US$340 billion. Whether in response to such projections or independently, an increasing
number of countries are entering the international software market [World Bank 89].

The economic presence of information processing also makes itself known through the
opportunity costs of system developments that fail or are not even attempted. Examples of
costly system failures abound; less obvious are the costs of computing that is not even
attempted: software development backlogs so large as to discourage new requests,
gigabytes of unprocessed raw data from space, and so on. Despite very real (and quite
substantial) successes the litany of mismatches of cost, schedule, and expectations is a
familiar one.

The presence of information technology is qualitative as well as quantitative. For
example, the (US) National Academy of Engineering recently selected the ten
outstanding engineering achievements of the past 25 years [NAE 89]. Of the ten, three
are informatics achievements:

• communications and information-gathering satellites
• the microprocessor
• fiber optic communication

Two more are direct applications of computers:
• computer-aided design and manufacturing
• computerized axial tomography scan

And most of the rest are computer-intensive:
• the moon landing
• advanced composite materials
• the jumbo jet
• lasers
• the application of genetic engineering to produce new pharmaceuticals and

crops

2

1.2. Information processing as a shaper of disciplines
Information processing is both an amplifier of existing models and enabler of new ones.
At a recent conference on computational science, several speakers observed that there
are now three equal branches of science [Levin 89]:

• experimentation
• theory
• numerical simulation

All have the objective of providing insight and understanding; all complement each other.
More generally, computational paradigms are emerging as^alternatives to q[der scientific
paradigms. '

A National Research Council study on the impact of information technology on the
conduct of research drew several conclusions, including:

Information technology has already had a significant and widespread impact on the conduct
of research. For the future, that impact amounts to a revolution. Computer and
communication technologies are valuable to every scientific discipline and essential to a
growing number of them....

As the power and speed of computers have increased, numerical computations of
increasing complexity have become practical. The result has been more realistic
simulation of systems either physically impossible or too costly to study directly.

• Another consequence ... has been the capability to collect, store, retrieve, manipulate,
and analyze enormous quantities of information. ... Huge information archives are not
only feasible but also accessible ...

• An additional consequence ... has been the capability to present the results of numerical
computations as visual images, [which] allows speedier, more efficient interaction with
models...

• Computers [can] take over monitoring and control of scientific instruments. This makes
scientific observation more convenient, more reliable, and often lower in cost; in some
cases, it has led to new computer-based instruments that extend the bounds of
observation.
Information technology has greatly expanded the capabilities for communication among
researchers [COSEPUP 89].

Not only does information technology supply intellectual resources to other disciplines, it
also draws ideas, results, and problems from these areas. For example, numerical
analysis, transactions and synchronization, and graphics were at various times strongly
driven by application domains.

Because of the pervasive presence of software, the appropriate objective for its
developers should be the effective and economical delivery of computational capability to
real users in forms that match their needs. This objective requires computing to be
embedded in applications; it requires computing to be packaged to meet the user's
models and match his needs, and it requires computing that is comprehensible to its
users in actual operation. The distinction between the computational component of a
system and the application it serves is often very soft; the development of effective

software now often requires substantial application expertise. Satisfying this requirement
will require computing education for both the developers and the users.

4

2. Audiences for Computing Education

Personnel shortages in computing, and especially in software, are well documented A
study by the Office of Technology Assessment estimates a current shortfall of 50,000 to
1 0 M 0 0 software professjffl^Is, in the US alone. A World Bank study identifies personnel
shortfall as the number one software risk item [World Bank 89]. The same study shows
substantial backlogs in data processing departments, as shown in Figure 1.

Months

• 1988 Ü 1987 D1986

Figure 1 : Application Development Backlogs
(Months of Waiting Time)

As applications become more pervasive, computing becomes more accessible, and
developers become relatively scarcer, we are seeing shifts in traditional roles, especially
in the distinction between programmers and users. Three seem especially significant:

• Softening of distinction between programmer and user: Users are demanding
more control over their own information processing, and modern personal
computer systems such as spreadsheets, small databases, and text processing
make this possible. Computations that once required a programmer can now
be carried out by almost any user. The effect is simultaneously to make
computation more effectively available and to transfer to the user some of the
responsibility formerly held by the programmer.

• Specialization within computing: Enough technical knowledge is now needed
for some tasks that it is no longer reasonable to expect every developer to
master it all. This increase in the total of well-organized knowledge will surely
lead to specialization, as it has in other fields. However, the lines of
specialization are not yet clear. It could follow application lines, leading to
specialties such as real-time processing, communications, artificial intelligence,

5

and database management. Or it could follow functional lines, leading to
specialties such as security, reliability, and user interfaces.

• Computational specialists in disciplines other than computing: As disciplines
become more sophisticated in their use of computing, it no longer remains
possible to solve its computing problems with a disciplinary background and a
smattering of Basic programming, nor with a sophisticated knowledge of
computer science and superficial acquaintance with the application area.
Disciplinary specialists with considerable depth in computation will be
required.

These shifts in the relation between people and computers will affect the audiences for
computing education. We can identify four groups of computer users with different kinds
and intensities of involvement:

• Computer scientists: researchers, system developers, builders of the
computational infrastructure that supports many applications

• Computational specialists: specialists outside computer science who use
computational paradigms, application developers

• Light-duty developers: people who configure or adapt systems for personal
use, occasional programmers, hobbyists

• Casual users: "infórmate" citizens (not just literate and numerate ones), indirect
users (such as recipients of service or managers), users who aren't
programmers in traditional sense

The responsibility for education in computing will be distributed across a number of
institutions, including universities, grade schools, continuing education programs (both in-
house and commercial), and the public media. I will focus here on the role of universities.

In the early 1980s, curricula were largely tuned to a population that had emerged over the
previous decade or so. Many technical students and some nontechnical students took
some sort of introductory programming course. Some of these perhaps half or fewer -
went on to take a few more computer courses, usually in programming topics. Although
computer science majors were often popular, the absolute number of students who
pursued a major was modest. Departments were often most concerned with the courses
that supported the majors, offering few service courses beyond the introductory
programming course. Figure 2 suggests this pattern. The vertical axis represents
increasing technical depth in computing and the horizontal axis represents the relative
number of students involved [Shaw 84].

But the shifts in needs and audiences described above will lead to a different demand
profile in the course of the 1990s; Figure 3 suggests this new profile. Most students will
be involved in computing at least casually; the best introduction for these students is
almost certainly not the traditional first programming course. We can still expect students
(perhaps in increasing numbers) who need some expertise in information technology but
not enough to be professionals. The need for disciplinary computing specialists will
create a demand that is not now widely recognized; this is discussed in some detail
below. Finally, computer science majors will, of course, remain significant; it is possible
that recognition of the needs for disciplinary specialists may decrease their numbers.

6

None Degree of Involvement All

Figure 2: Undergraduate profile of the early 1980s

Figure 3: Undergraduate profile of the 1990s

Computer science departments have responsibilities to all these populations. They
retain, of course, a primary responsibility for graduate and undergraduate (both terminal
and non-terminal) education of professionals whose primary affiliation is with information
technology. They share responsibility for the remaining groups with other departments in
the university; this may take the form of consultation on curricula, of offering service
courses, or collaborative development and presentation of courses. In addition, computer
science departments must support the other kinds of institutions through teacher and
curriculum development.

7

8

3. Two Examples

Two examples provide concrete examples of the curriculum requirements implied by
these computing trends and the consequent shifts in student populations. The first lies
outside the traditional boundaries of computer science: the education of computational
specialists in disciplines other than information technology. The second lies within the
traditional boundaries: the education of software developers.

3.1. Computing specialists in disciplines outside information
technology
Computational subspecialties are emerging in many disciplines, including architecture,
astronomy, chemistry, economics, geography, geology, materials, physics, and
psychology. The computational paradigms in these fields are sufficiently sophisticated
that they require expertise in both the discipline itself and in computer science.

Mere programming skill will no longer suffice for these disciplinary specialists. Their
expertise must include core knowledge of both areas, some specific computational
models, and selected techniques from areas of computer science that depend on the
application but include computer systems, algorithms, artificial intelligence, graphics, and
theory.

There is a growing need for intermediate-to-advanced computer science education for
computational specialists in application areas. This will require genuine competence in
both fields, unlike simple application programming. Traditional mechanisms such a
minors and double majors are not sufficient; they can cover cores of both subjects, but by
their nature they fail to tie the two disciplines together. Further, they are likely to consume
most of a student's elective freedom. Although this is better than nothing, it should be
regarded as a basis for integration, not as a solution.

A joint degree program with close cooperation between computer science and the
disciplinary department offers an alternative. Such a program would cover much of the
cores of both fields but would likely require relaxation of some requirements in both
departments. It would also include advanced courses in computational techniques of the
discipline that relied substantively on prerequisites in both computer science and the
cooperating department; this makes sense only if the cooperating department has a
faculty member with professional interest in the computational specialty. The adaptation
of requirements must be tailored to each discipline, and some repackaging of the usual
courses may be appropriate.

Candidates for such joint programs might include network communications (with electrical
engineering), scientific computation (with mathematics or physics), human-computer
interaction (with psychology), music synthesis and composers' tools (with music),
computer-aided design (with design or architecture), and information systems (with
management). Programs of this kind are being developed at Carnegie Mellon University,
George Washington University, the University of Illinois, the University of Colorado, the
University of Toronto, and perhaps others [NSF 89, Shaw 84].

It is not always possible to include enough content in an undergraduate program to satisfy
the needs of a profession. When the professional requirements are high, the

9

undergraduate program should not be overloaded at the expense of liberal education or
at risk of premature specialization that could stifle professional growth. Instead, joint
programs leading to both bachelor's and master's degrees in five years could be
considered. Continuing education is another alternative, though the amount of material
involved is rather large for that medium.

3.2. Software developers
Even with the growth of applications, there will remain a market for system software. It
includes production of simple software components, standalone systems, operating
systems, the information processing infrastructure that supports applications, and some
parts of system integration. As discussed above, we can expect specialization of some
kind to emerge. This is likely to be coupled with a clarification of job categories that
recognizes different skill levels: system integration is more demanding than component
construction, and not every programmer should be called a software engineer.

These software developers who remain within the computing field need a sound basis in
computer science. Although software accounts for most of the cost of using computers, it
does not account for most of the substance of computer science. Students who expect to
become software developers should nevertheless acquire a firm grounding in computer
science, including its common core, the associated mathematics and engineering, and
perhaps a non-software sequence either within computer science or in some application
area. Potential software engineers are included among these students: an
undergraduate software engineering degree is not yet justified by substantive, durable
content.

The software content of the curriculum needs to be re-examined, both for topic selection
and for presentation. Both our current understanding of engineering design and
examination of the knowledge that programmers actually use suggest flaws in the
current software offerings. Undergraduates are being prepared to think about algorithms
and to write small programs, but they do not learn enough about existing software, about
the incorporation of small program elements into large systems, or about the problems of
long-lived software.

3.2.1. Routine and innovative design
Engineering design problems come in a number of forms; one of the most significant
distinctions separates routine from innovative design. Routine design involves solving
problems that resemble problems that have been solved before; it relies on reusing large
portions of those prior solutions. Innovative design, on the other hand, involves finding
new ways to solve unfamiliar problems. The need for innovative design is much rarer
than the need for routine design, so routine design is the bread and butter of engineering
practice. Most engineering disciplines capture, organize, and share design knowledge in
order to make routine design simpler. Handbooks and manuals are often the carriers of
this organized information [Marks 87, Perry 84].

Similarly, engineers distinguish designs created from scratch (so-called green-field
designs) from enhancements of existing systems; the latter are regarded as more
constrained and hence more difficult (contrast this with the software developer's view of
maintenance). Designs intended to be implemented once are also distinguished from
those with replicated instantiations, and designs done by individuals are distinguished
from large team designs.

10

Computer science teaching and research emphasizes innovative, green-field, once-used
designs created by individuals. Software development and software engineering
practice, however, involves work that frequently should be routine, that is most often
enhancement of previous work, that is normally instantiated in many variants, and that
involves large teams.

3.2.2. A cry from the wilderness
Practitioners recognize the need for mechanisms to share experience with good designs.
This quotation appeared in a software engineering news group:

In Chem E, when I needed to design a heat exchanger, I used a set of references that told
me what the constants were ... and the standard design equations ...

In general, unless I, or someone else in my engineering group, has read or remembers and
makes known a solution to a past problem, I'm doomed to recreate the solution.... I guess
... the critical difference is the ability to put together little pieces of the problem that are
relatively well known, without having to generate a custom solution for every application...

I want to make it clear that I am aware of algorithm and code libraries, but they are
incomplete solutions to what I am describing. (There is no Perry's Handbook for Software
Engineering.)

This chemical engineer-or former chemical engineer-is complaining that software lacks
the institutionalized mechanisms of a mature engineering discipline for recording and
disseminating demonstrably good designs and ways to choose among design
alternatives. Perry's Chemical Engineer's Handbook, by the way, is the standard design
handbook for chemical engineering; it is about 4 inches thick, 8-1/2 by 11 inches, and
printed in tiny type on tissue paper [Perry 84].

As this developer seems to understand, software development in most application
domains tends to be more often original than routine - certainly more often original than
would be necessary if we concentrated on capturing and organizing what is already
known. One path to increased productivity is identifying applications that should be made
routine and developing appropriate support. The current emphasis on reuse [Biggerstaff
89] emphasizes capturing and organizing existing knowledge. Indeed, subroutine
libraries -- especially libraries of operating system calls and general-purpose
mathematical routines - have been a staple of programming for decades. But this
knowledge cannot be useful if programmers do not know about it or are not encouraged
to use it, and library components require more care in design, implementation, and
documentation than similar components that are simply embedded in systems [CSTB89].

3.2.3. The nature of expertise
Proficiency in any field requires not only higher-order reasoning skills but also a large
store of facts, together with a certain amount of context about their implications and
appropriate use. This is true across a wide range of problem domains; studies
demonstrate it for medical diagnosis, physics, chess, financial analysis, architecture,
scientific research, policy decision making, and others [Reddy 88, pp 13-14; Simon 89

An expert in a field must know around 50,000 chunks of information, where a chunk is any
cluster of knowledge sufficiently familiar that it can be remembered rather than derived.

11

Furthermore, in domains where there are full-time professionals, it takes no less than ten
years for a world-class expert to achieve that level of proficiency [Simon 89 pp.2-4].

Thus, fluency in a domain requires content and context as well as skills. In the case of
natural language fluency, for example, Hirsch argues that abstract skills have driven out
content; students are expected (unrealistically) to learn general skills from a few typical
examples rather than by "piling up of information"; intellectual and social skills are
supposed to develop naturally without regard to the specific content [Hirsch 88].
However, says Hirsch, specific information is important at all stages. Not only are the
specific facts important in their own right, but they serve as carriers of shared culture and
shared values.

A software engineer's expertise includes facts about computer science in general,
software design elements, programming idioms, representations, and specific knowledge
about the program of current interest. In addition, it requires skill with tools: the language,
environment, and support software with which this program is implemented.

Hirsch provides a list of some 5,000 words and concepts that represent the information
actually possessed by literate Americans. The list goes beyond simple vocabulary to
enumerate objects, concepts, titles, and phrases that implicitly invoke cultural context
beyond their dictionary definitions. Whether or not you agree in detail with its composition,
the list and accompanying argument demonstrate the need for connotations as well as
denotations of the vocabulary. Similarly, a programmer needs to know not only a
programming language but also the system calls supported by the environment, the
general-purpose libraries, the application-specific libraries, and how to combine
innovations of these definitions effectively. Moreover, he or she must be familiar with the
global definitions of the program of current interest and the rules about their use.

The engineering of software would be better supported if we knew better what specific
detailed content a software engineer should know. We could then organize the teaching
of this material so that useful subsets are learned first, followed by progressively more
sophisticated subsets. We could also develop standard reference materials as carriers of
the content.

3.2.4. Ways to get information
Given that a large body of knowledge is important to a working professional, we turn now
to the question of how software engineers should acquire facts, either as students or as
working professionals. Generally speaking, there are three ways to obtain a piece of
information you need: you can remember it, you can look it up, or you can derive it. These
have different distributions of costs:

Infrastructure
Cost

Initial Learning
Cost

Cost of Use
In Practice

Memory
Reference
Derivation

low
high

medium-high

high
low

medium

low
medium

high

12

Memorization requires a relatively large initial investment in learning the material, which
is then available for instant use. Reference materials require a large investment by the
profession for developing both the organization and the content; each individual student
must then learn how to use the reference materials and take the time to do so as a
working professional. Deriving information may involve ad hoc creation from scratch, it
may involve instantiation of a formal model, or it may involve inferring meaning from other
available information; to the extent that formal models are available their formulation
requires a substantial initial investment. Students first learn the models, then apply them
in practice; since each new application requires the model to be applied anew, the cost in
use may be quite high [SGR 89].

Each professional's allocation of effort among these alternatives is driven by what he or
she has already learned, by habits developed during that education, and by the reference
materials available. At present, general-purpose reference material for software is scarce,
though documentation for specific computer systems, programming languages, and
applications may be quite extensive. Even when extensive documentation is available,
however, it may be under-used because it is poorly indexed or because software
developers have learned to prefer fresh derivation to use of existing solutions. The same
is true of subroutine libraries, though incorporation of a library in the programming
language (as in Common Lisp) provided better documentation and visibility to the
routines that are added to the language.

3.2.5. Flaws in current software curriculum and ways to improve the
situation

This examination of knowledge appropriate to a software developer suggests short
comings in the current software curriculum:

• Programming from scratch: Most courses teach program construction from a
blank sheet of paper, rather than by modifying existing programs or by working
from models of good solutions. Moreover, students rarely read good programs;
it is as if we asked students to write good English without reading good prose.

• Equating program text with software: A complete software product includes
also the analysis that led to the design, the user documentation, the test suites,
and records of design decisions that will be important to the maintainer.
Students too often focus on the code, do ad hoc testing, neglect the user
documentation, and fail to deal with anything else.

• Abstract skills at the expense of specific content: Our curricula are very strong
in techniques for formulating solutions from first principles. They present too
few well-known examples of good solutions for study and emulation.

• Programming before reasoning: Although the situation is improving, coding
and debugging still seems to win out over specification, analysis, and careful
construction or derivation.
Throwaway exercises: When assignments are discarded as soon as they are
graded, there is no clear incentive for creating comprehensible, well-
documented, maintainable software.

Some ways to remedy these flaws and improve the software curriculum include:
• Study good examples of software systems: To do this properly requires the

development of case studies intended for presentation. However, careful

13

guided reading of good code would be an improvement, as would assignments
that start from code distributed by the instructor.

• Learn more facts: Software developers will not use resources they do not
know about. We should teach more specific substance such as the available
subroutine libraries and interface standards; we should reinforce this with
assignments that require their use.

• Modify and combine programs as well as creating them: Students should learn
to work with program structures devised by others, to reuse components, to
adhere to standards, and to value good documentation.

• Incorporate reference material as it becomes available: There is currently a
dearth of good reference material to help software developers avoid re
invention. As such material becomes available, it should be incorporated.
Meanwhile, students should be taught to use reference manuals, library
documentation, and the like effectively. Plan for continuing improvement in this
area.

• Present theory and models in the context of practice: The curriculum should
emphasize durable ideas that will transcend a major shift of technology. These
ideas are often learned best when coupled with concrete examples of their
application; if the examples are selected well they may themselves be worth
remembering for reuse.

14

4. Conclusion: Adapt or Die

Examination of the roles of computing in the economy and society showed needs that
computing education must satisfy. Two examples elaborated those need in particular
areas. This led to specific recommendations for changes in the curriculum. We close with
a set of summary observations.

Information technology will continue to evolve. New theories and techniques will mature;
they will often be more concise than the material they replace. This kind of change is
inevitable. Not only will it affect our curriculum, it will affect our student's professional
growth. Thus we must not only be prepared to adopt new results ourselves; we must also
prepare our students to do so.

A curriculum design should be a document of aspiration, not merely documentation of the
status quo. It should say where we want to be, not just where we are. It may be
ambitious, but it must be at least moderately realistic. Design involves balancing
conflicting requirements for scarce resources -- in curriculum design the scarcest resource
is course time, or curriculum space. Hard decisions must be made; including too many
topics will have the effect of diluting attention, reducing the depth of each to superficial
survey. The core should be based on sound, durable fundamentals. The current fashion
will change, but students who have learned the fundamentals well will be equipped to
learn new fashions.

The packaging of material should match students' needs. Practitioners will apply their
knowledge to immediate problems, whereas researchers will build on their knowledge to
obtain new results. The same introductory courses may well serve both, but this may not
be true for all advanced courses.

Computation is joining the scientific paradigms of experimentation and theory. We should
present computation in its own terms; we have no need to disguise it in some other form.

Computer science departments have an obligation to help with the education of all the
audiences for computing education. This is not to say that they must assume sole
responsibility, except for their own majors. But if they fail to respond to the emerging
needs, they risk becoming irrelevant.

15

16

5. References

[Biggerstaff 89] Ted J. Biggerstaff and Alan J. Perlis. Software Reusability. Two
volumes, ACM Press, 1989.

[COSEPUP 89] Committee on Science, Engineering, and Public Policy, National
Research Council. Information Technology and the Conduct of
Research. National Academy Press, 1989.

[CSTB 89] Computer Science and Technology Board, National Research Council.
Scaling Up: A Research Agenda for Software Engineering. National
Academy Press, 1989.

[CSTB 90] Computer Science and Technology Board, National Research Council.
Keeping the US Computer Industry Competitive. National Academy
Press, 1990.

[DAG 89] Data Analysis Group. Computer Industry Forecasts, Fourth Quarter
1989.

[Hirsch §8] E. D. Hirsch, Jr. Cultural Literacy: What Every American Needs to
Know. Vintage Books 1988.

[Levin 89] Eugene r Levin, Grand Challenges to ̂ Computational Science.
Communications of tfieACM, 32, 12 (December 1989), pp. 1456-1457.

[Marks 87] L. S. Marks et al. Marks' Standard Handbook for Mechanical
Engineers. McGraw-Hill, 1987.

[Martin 71] William A. Martin. Sorting. ACM Computing Surveys, 3, 4 (December
1971), pp.147-174.

[NAE 89] National Academy of Engineering. Engineering and the Advancement
of Human Welfare: 10 Outstanding Achievements 1964-1989. National
Academy Press, 1989.

[NSF 89] National Science Foundation. Report on the National Science
Foundation Disciplinary Workshops on Undergraduate Education.
National Science Foundation, 1989.

[Perry 84} R. H. Perry et al. Perry's Chemical Engineer's Handbook. Sixth
Edition, McGraw-Hill, 1951.

[Reddy 88] Raj Reddy. Foundations and Grand Challenges of Artificial Intelligence.
Al Magazine, 9, 4 (Winter 1988), pp. 9-21 (1988 presidential address,
American Association for Artificial Intelligence).

[SGR 89] Mary Shaw, Dario Giuse, Raj Reddy. What A Software Engineer Needs
to Know I: Vocabulary. CMU-CS-89-180 and CMU/SEI-89-TR-30
ESD-TR-89-40 Tech reports, August 1989.

17

[Shaw 84] Mary Shaw (ed). The Carnegie Mellon Curriculum for Undergraduate
Computer Science. Springer-Verlag 1984.

[Simon 89] Herbert A. Simon. Human Experts and Knowledge-Based Systems.
Talk given at IFIP WG 10.1 Workshop on Concepts and Characteristics
of Knowledge-Based Systems, Mt Fuji Japan, November 9-12,1987.

[World Bank 89] Robert Schware. The World Software Industry and Software
Engineering: Opportunities and Constraints for Newly Industrialized
Economies. World Bank Technical Paper 104, August 1989.

18

