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Abstract 

Information technology and computer science have not only reshaped computation, 
communication, and commerce; they have expanded the basic models and paradigms 
of many disciplines. Informatics education has obligations to all the communities that 
rely on information technology, not just the computing professionals. Serving this 
extended audience well requires changes in the content and presentation of 
computing curricula. This paper sketches the coming needs for information processing 
and analyzes the populations that will require informatics education. It considers 
curriculum requirements through two examples, one outside the traditional boundary of 
computer science and one inside. 
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Informatics for a New Century: 
Computing Education for the 1990s and 

Beyond 

Abstract: Information technology and computer science have not only reshaped 
computation, communication, and commerce; they have expanded the basic models and 
paradigms of many disciplines. Informatics education has obligations to all the communities 
that rely on information technology, not just the computing professionals. Serving this 
extended audience well requires changes in the content and presentation of computing 
curricula. This paper sketches the coming needs for information processing and analyzes 
the populations that will require informatics education. It considers curriculum 
requirements through two examples, one outside the traditional boundary of computer 
science and one inside. 

1. Information Processing in the 1990s 

Over the four decades of modern computation, information technology has assumed 
increasing significance as an economic force and a shaper of disciplines. Although the 
computing disciplines have been able to develop systematic models, theories, and tools 
at a quite respectable rate, the rapid growth of practical computing applications has 
generated demand for computational capability far faster. Educators have usually 
concentrated on the internal needs of the evolving discipline, often at the expense of the 
mutual benefits that could accrue from interaction with application areas. 

ThjMnaiQI tasks for computing education in the next decade will beQjpdating the | 
i ^QSy l j^k 0 incorporate improved models and theories as they emerge, matching 
content to changing needs, and expanding the communities served to include users of 
varying degrees of sophistication in various application areas. 

1.1. Information processing as an economic force 
Information processing is a large sector in both United States and world markets. For 
example, US industry sales forecasts were about $150 billion in 1989 and are projected 
to exceed $230 billion by 1992. This figure includes computers, peripherals, packaged 
software, and communication but does not include service, system integration software, 
and in-house software development. Table 1 shows US forecasts in more detail [DAG 
«Q1 
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Category 1989 1992 Annual % growth 

Multi-user systems 
Supercomputers 
Single-user computers 
Printers 
Storage 
Communication equipment 
Packaged software 
Mfg auto/CAD/CAM/CAE 

38.0 47.1 
1.9 3.5 

31.8 52.4 
9.3 12.6 

21.1 32.1 
8.6 11.4 

23.7 37.5 
24.7 35.5 

7.4 
22.9 
18.1 
10.6 
15.1 

9.7 
16.6 
12.9 

Table 1: US Sales Forecasts, $ billions 

The cost of in-house software in the US alone may be in the range $150-$200 billion 
[CSTB 90]. It is not clear how much modification after release ("maintenance") is included 
in this figure. Thus, when services, system integration, in-house development, and 
maintenance are included, software now dominates the cost of information processing. 

Assessment of the worldwide software market involves interpretation of varied and 
uncertain data. Despite the uncertainties, projections have been made; for 1990 they 
range from US$70 billion to US$180 billion, and projections for 1996 range up to 
US$340 billion. Whether in response to such projections or independently, an increasing 
number of countries are entering the international software market [World Bank 89]. 

The economic presence of information processing also makes itself known through the 
opportunity costs of system developments that fail or are not even attempted. Examples of 
costly system failures abound; less obvious are the costs of computing that is not even 
attempted: software development backlogs so large as to discourage new requests, 
gigabytes of unprocessed raw data from space, and so on. Despite very real (and quite 
substantial) successes the litany of mismatches of cost, schedule, and expectations is a 
familiar one. 

The presence of information technology is qualitative as well as quantitative. For 
example, the (US) National Academy of Engineering recently selected the ten 
outstanding engineering achievements of the past 25 years [NAE 89]. Of the ten, three 
are informatics achievements: 

• communications and information-gathering satellites 
• the microprocessor 
• fiber optic communication 

Two more are direct applications of computers: 
• computer-aided design and manufacturing 
• computerized axial tomography scan 

And most of the rest are computer-intensive: 
• the moon landing 
• advanced composite materials 
• the jumbo jet 
• lasers 
• the application of genetic engineering to produce new pharmaceuticals and 

crops 
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1.2. Information processing as a shaper of disciplines 
Information processing is both an amplifier of existing models and enabler of new ones. 
At a recent conference on computational science, several speakers observed that there 
are now three equal branches of science [Levin 89]: 

• experimentation 
• theory 
• numerical simulation 

All have the objective of providing insight and understanding; all complement each other. 
More generally, computational paradigms are emerging as^alternatives to q[der scientific 
paradigms. ' 

A National Research Council study on the impact of information technology on the 
conduct of research drew several conclusions, including: 

Information technology has already had a significant and widespread impact on the conduct 
of research. For the future, that impact amounts to a revolution. Computer and 
communication technologies are valuable to every scientific discipline and essential to a 
growing number of them.... 

As the power and speed of computers have increased, numerical computations of 
increasing complexity have become practical. The result has been more realistic 
simulation of systems either physically impossible or too costly to study directly. 

• Another consequence ... has been the capability to collect, store, retrieve, manipulate, 
and analyze enormous quantities of information. ... Huge information archives are not 
only feasible but also accessible ... 

• An additional consequence ... has been the capability to present the results of numerical 
computations as visual images, [which] allows speedier, more efficient interaction with 
models... 

• Computers [can] take over monitoring and control of scientific instruments. This makes 
scientific observation more convenient, more reliable, and often lower in cost; in some 
cases, it has led to new computer-based instruments that extend the bounds of 
observation. 
Information technology has greatly expanded the capabilities for communication among 
researchers [COSEPUP 89]. 

Not only does information technology supply intellectual resources to other disciplines, it 
also draws ideas, results, and problems from these areas. For example, numerical 
analysis, transactions and synchronization, and graphics were at various times strongly 
driven by application domains. 

Because of the pervasive presence of software, the appropriate objective for its 
developers should be the effective and economical delivery of computational capability to 
real users in forms that match their needs. This objective requires computing to be 
embedded in applications; it requires computing to be packaged to meet the user's 
models and match his needs, and it requires computing that is comprehensible to its 
users in actual operation. The distinction between the computational component of a 
system and the application it serves is often very soft; the development of effective 



software now often requires substantial application expertise. Satisfying this requirement 
will require computing education for both the developers and the users. 
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2. Audiences for Computing Education 

Personnel shortages in computing, and especially in software, are well documented A 
study by the Office of Technology Assessment estimates a current shortfall of 50,000 to 
1 0 M 0 0 software professjffl^Is, in the US alone. A World Bank study identifies personnel 
shortfall as the number one software risk item [World Bank 89]. The same study shows 
substantial backlogs in data processing departments, as shown in Figure 1. 

Months 

• 1988 Ü 1987 D1986 

Figure 1 : Application Development Backlogs 
(Months of Waiting Time) 

As applications become more pervasive, computing becomes more accessible, and 
developers become relatively scarcer, we are seeing shifts in traditional roles, especially 
in the distinction between programmers and users. Three seem especially significant: 

• Softening of distinction between programmer and user: Users are demanding 
more control over their own information processing, and modern personal 
computer systems such as spreadsheets, small databases, and text processing 
make this possible. Computations that once required a programmer can now 
be carried out by almost any user. The effect is simultaneously to make 
computation more effectively available and to transfer to the user some of the 
responsibility formerly held by the programmer. 

• Specialization within computing: Enough technical knowledge is now needed 
for some tasks that it is no longer reasonable to expect every developer to 
master it all. This increase in the total of well-organized knowledge will surely 
lead to specialization, as it has in other fields. However, the lines of 
specialization are not yet clear. It could follow application lines, leading to 
specialties such as real-time processing, communications, artificial intelligence, 
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and database management. Or it could follow functional lines, leading to 
specialties such as security, reliability, and user interfaces. 

• Computational specialists in disciplines other than computing: As disciplines 
become more sophisticated in their use of computing, it no longer remains 
possible to solve its computing problems with a disciplinary background and a 
smattering of Basic programming, nor with a sophisticated knowledge of 
computer science and superficial acquaintance with the application area. 
Disciplinary specialists with considerable depth in computation will be 
required. 

These shifts in the relation between people and computers will affect the audiences for 
computing education. We can identify four groups of computer users with different kinds 
and intensities of involvement: 

• Computer scientists: researchers, system developers, builders of the 
computational infrastructure that supports many applications 

• Computational specialists: specialists outside computer science who use 
computational paradigms, application developers 

• Light-duty developers: people who configure or adapt systems for personal 
use, occasional programmers, hobbyists 

• Casual users: "infórmate" citizens (not just literate and numerate ones), indirect 
users (such as recipients of service or managers), users who aren't 
programmers in traditional sense 

The responsibility for education in computing will be distributed across a number of 
institutions, including universities, grade schools, continuing education programs (both in-
house and commercial), and the public media. I will focus here on the role of universities. 

In the early 1980s, curricula were largely tuned to a population that had emerged over the 
previous decade or so. Many technical students and some nontechnical students took 
some sort of introductory programming course. Some of these perhaps half or fewer -
went on to take a few more computer courses, usually in programming topics. Although 
computer science majors were often popular, the absolute number of students who 
pursued a major was modest. Departments were often most concerned with the courses 
that supported the majors, offering few service courses beyond the introductory 
programming course. Figure 2 suggests this pattern. The vertical axis represents 
increasing technical depth in computing and the horizontal axis represents the relative 
number of students involved [Shaw 84]. 

But the shifts in needs and audiences described above will lead to a different demand 
profile in the course of the 1990s; Figure 3 suggests this new profile. Most students will 
be involved in computing at least casually; the best introduction for these students is 
almost certainly not the traditional first programming course. We can still expect students 
(perhaps in increasing numbers) who need some expertise in information technology but 
not enough to be professionals. The need for disciplinary computing specialists will 
create a demand that is not now widely recognized; this is discussed in some detail 
below. Finally, computer science majors will, of course, remain significant; it is possible 
that recognition of the needs for disciplinary specialists may decrease their numbers. 
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None Degree of Involvement All 

Figure 2: Undergraduate profile of the early 1980s 

Figure 3: Undergraduate profile of the 1990s 

Computer science departments have responsibilities to all these populations. They 
retain, of course, a primary responsibility for graduate and undergraduate (both terminal 
and non-terminal) education of professionals whose primary affiliation is with information 
technology. They share responsibility for the remaining groups with other departments in 
the university; this may take the form of consultation on curricula, of offering service 
courses, or collaborative development and presentation of courses. In addition, computer 
science departments must support the other kinds of institutions through teacher and 
curriculum development. 
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3. Two Examples 

Two examples provide concrete examples of the curriculum requirements implied by 
these computing trends and the consequent shifts in student populations. The first lies 
outside the traditional boundaries of computer science: the education of computational 
specialists in disciplines other than information technology. The second lies within the 
traditional boundaries: the education of software developers. 

3.1. Computing specialists in disciplines outside information 
technology 
Computational subspecialties are emerging in many disciplines, including architecture, 
astronomy, chemistry, economics, geography, geology, materials, physics, and 
psychology. The computational paradigms in these fields are sufficiently sophisticated 
that they require expertise in both the discipline itself and in computer science. 

Mere programming skill will no longer suffice for these disciplinary specialists. Their 
expertise must include core knowledge of both areas, some specific computational 
models, and selected techniques from areas of computer science that depend on the 
application but include computer systems, algorithms, artificial intelligence, graphics, and 
theory. 

There is a growing need for intermediate-to-advanced computer science education for 
computational specialists in application areas. This will require genuine competence in 
both fields, unlike simple application programming. Traditional mechanisms such a 
minors and double majors are not sufficient; they can cover cores of both subjects, but by 
their nature they fail to tie the two disciplines together. Further, they are likely to consume 
most of a student's elective freedom. Although this is better than nothing, it should be 
regarded as a basis for integration, not as a solution. 

A joint degree program with close cooperation between computer science and the 
disciplinary department offers an alternative. Such a program would cover much of the 
cores of both fields but would likely require relaxation of some requirements in both 
departments. It would also include advanced courses in computational techniques of the 
discipline that relied substantively on prerequisites in both computer science and the 
cooperating department; this makes sense only if the cooperating department has a 
faculty member with professional interest in the computational specialty. The adaptation 
of requirements must be tailored to each discipline, and some repackaging of the usual 
courses may be appropriate. 

Candidates for such joint programs might include network communications (with electrical 
engineering), scientific computation (with mathematics or physics), human-computer 
interaction (with psychology), music synthesis and composers' tools (with music), 
computer-aided design (with design or architecture), and information systems (with 
management). Programs of this kind are being developed at Carnegie Mellon University, 
George Washington University, the University of Illinois, the University of Colorado, the 
University of Toronto, and perhaps others [NSF 89, Shaw 84]. 

It is not always possible to include enough content in an undergraduate program to satisfy 
the needs of a profession. When the professional requirements are high, the 
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undergraduate program should not be overloaded at the expense of liberal education or 
at risk of premature specialization that could stifle professional growth. Instead, joint 
programs leading to both bachelor's and master's degrees in five years could be 
considered. Continuing education is another alternative, though the amount of material 
involved is rather large for that medium. 

3.2. Software developers 
Even with the growth of applications, there will remain a market for system software. It 
includes production of simple software components, standalone systems, operating 
systems, the information processing infrastructure that supports applications, and some 
parts of system integration. As discussed above, we can expect specialization of some 
kind to emerge. This is likely to be coupled with a clarification of job categories that 
recognizes different skill levels: system integration is more demanding than component 
construction, and not every programmer should be called a software engineer. 

These software developers who remain within the computing field need a sound basis in 
computer science. Although software accounts for most of the cost of using computers, it 
does not account for most of the substance of computer science. Students who expect to 
become software developers should nevertheless acquire a firm grounding in computer 
science, including its common core, the associated mathematics and engineering, and 
perhaps a non-software sequence either within computer science or in some application 
area. Potential software engineers are included among these students: an 
undergraduate software engineering degree is not yet justified by substantive, durable 
content. 

The software content of the curriculum needs to be re-examined, both for topic selection 
and for presentation. Both our current understanding of engineering design and 
examination of the knowledge that programmers actually use suggest flaws in the 
current software offerings. Undergraduates are being prepared to think about algorithms 
and to write small programs, but they do not learn enough about existing software, about 
the incorporation of small program elements into large systems, or about the problems of 
long-lived software. 

3.2.1. Routine and innovative design 
Engineering design problems come in a number of forms; one of the most significant 
distinctions separates routine from innovative design. Routine design involves solving 
problems that resemble problems that have been solved before; it relies on reusing large 
portions of those prior solutions. Innovative design, on the other hand, involves finding 
new ways to solve unfamiliar problems. The need for innovative design is much rarer 
than the need for routine design, so routine design is the bread and butter of engineering 
practice. Most engineering disciplines capture, organize, and share design knowledge in 
order to make routine design simpler. Handbooks and manuals are often the carriers of 
this organized information [Marks 87, Perry 84]. 

Similarly, engineers distinguish designs created from scratch (so-called green-field 
designs) from enhancements of existing systems; the latter are regarded as more 
constrained and hence more difficult (contrast this with the software developer's view of 
maintenance). Designs intended to be implemented once are also distinguished from 
those with replicated instantiations, and designs done by individuals are distinguished 
from large team designs. 
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Computer science teaching and research emphasizes innovative, green-field, once-used 
designs created by individuals. Software development and software engineering 
practice, however, involves work that frequently should be routine, that is most often 
enhancement of previous work, that is normally instantiated in many variants, and that 
involves large teams. 

3.2.2. A cry from the wilderness 
Practitioners recognize the need for mechanisms to share experience with good designs. 
This quotation appeared in a software engineering news group: 

In Chem E, when I needed to design a heat exchanger, I used a set of references that told 
me what the constants were ... and the standard design equations ... 

In general, unless I, or someone else in my engineering group, has read or remembers and 
makes known a solution to a past problem, I'm doomed to recreate the solution.... I guess 
... the critical difference is the ability to put together little pieces of the problem that are 
relatively well known, without having to generate a custom solution for every application... 

I want to make it clear that I am aware of algorithm and code libraries, but they are 
incomplete solutions to what I am describing. (There is no Perry's Handbook for Software 
Engineering.) 

This chemical engineer-or former chemical engineer-is complaining that software lacks 
the institutionalized mechanisms of a mature engineering discipline for recording and 
disseminating demonstrably good designs and ways to choose among design 
alternatives. Perry's Chemical Engineer's Handbook, by the way, is the standard design 
handbook for chemical engineering; it is about 4 inches thick, 8-1/2 by 11 inches, and 
printed in tiny type on tissue paper [Perry 84]. 

As this developer seems to understand, software development in most application 
domains tends to be more often original than routine - certainly more often original than 
would be necessary if we concentrated on capturing and organizing what is already 
known. One path to increased productivity is identifying applications that should be made 
routine and developing appropriate support. The current emphasis on reuse [Biggerstaff 
89] emphasizes capturing and organizing existing knowledge. Indeed, subroutine 
libraries -- especially libraries of operating system calls and general-purpose 
mathematical routines - have been a staple of programming for decades. But this 
knowledge cannot be useful if programmers do not know about it or are not encouraged 
to use it, and library components require more care in design, implementation, and 
documentation than similar components that are simply embedded in systems [CSTB89]. 

3.2.3. The nature of expertise 
Proficiency in any field requires not only higher-order reasoning skills but also a large 
store of facts, together with a certain amount of context about their implications and 
appropriate use. This is true across a wide range of problem domains; studies 
demonstrate it for medical diagnosis, physics, chess, financial analysis, architecture, 
scientific research, policy decision making, and others [Reddy 88, pp 13-14; Simon 89 

An expert in a field must know around 50,000 chunks of information, where a chunk is any 
cluster of knowledge sufficiently familiar that it can be remembered rather than derived. 
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Furthermore, in domains where there are full-time professionals, it takes no less than ten 
years for a world-class expert to achieve that level of proficiency [Simon 89 pp.2-4]. 

Thus, fluency in a domain requires content and context as well as skills. In the case of 
natural language fluency, for example, Hirsch argues that abstract skills have driven out 
content; students are expected (unrealistically) to learn general skills from a few typical 
examples rather than by "piling up of information"; intellectual and social skills are 
supposed to develop naturally without regard to the specific content [Hirsch 88]. 
However, says Hirsch, specific information is important at all stages. Not only are the 
specific facts important in their own right, but they serve as carriers of shared culture and 
shared values. 

A software engineer's expertise includes facts about computer science in general, 
software design elements, programming idioms, representations, and specific knowledge 
about the program of current interest. In addition, it requires skill with tools: the language, 
environment, and support software with which this program is implemented. 

Hirsch provides a list of some 5,000 words and concepts that represent the information 
actually possessed by literate Americans. The list goes beyond simple vocabulary to 
enumerate objects, concepts, titles, and phrases that implicitly invoke cultural context 
beyond their dictionary definitions. Whether or not you agree in detail with its composition, 
the list and accompanying argument demonstrate the need for connotations as well as 
denotations of the vocabulary. Similarly, a programmer needs to know not only a 
programming language but also the system calls supported by the environment, the 
general-purpose libraries, the application-specific libraries, and how to combine 
innovations of these definitions effectively. Moreover, he or she must be familiar with the 
global definitions of the program of current interest and the rules about their use. 

The engineering of software would be better supported if we knew better what specific 
detailed content a software engineer should know. We could then organize the teaching 
of this material so that useful subsets are learned first, followed by progressively more 
sophisticated subsets. We could also develop standard reference materials as carriers of 
the content. 

3.2.4. Ways to get information 
Given that a large body of knowledge is important to a working professional, we turn now 
to the question of how software engineers should acquire facts, either as students or as 
working professionals. Generally speaking, there are three ways to obtain a piece of 
information you need: you can remember it, you can look it up, or you can derive it. These 
have different distributions of costs: 

Infrastructure 
Cost 

Initial Learning 
Cost 

Cost of Use 
In Practice 

Memory 
Reference 
Derivation 

low 
high 

medium-high 

high 
low 

medium 

low 
medium 

high 
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Memorization requires a relatively large initial investment in learning the material, which 
is then available for instant use. Reference materials require a large investment by the 
profession for developing both the organization and the content; each individual student 
must then learn how to use the reference materials and take the time to do so as a 
working professional. Deriving information may involve ad hoc creation from scratch, it 
may involve instantiation of a formal model, or it may involve inferring meaning from other 
available information; to the extent that formal models are available their formulation 
requires a substantial initial investment. Students first learn the models, then apply them 
in practice; since each new application requires the model to be applied anew, the cost in 
use may be quite high [SGR 89]. 

Each professional's allocation of effort among these alternatives is driven by what he or 
she has already learned, by habits developed during that education, and by the reference 
materials available. At present, general-purpose reference material for software is scarce, 
though documentation for specific computer systems, programming languages, and 
applications may be quite extensive. Even when extensive documentation is available, 
however, it may be under-used because it is poorly indexed or because software 
developers have learned to prefer fresh derivation to use of existing solutions. The same 
is true of subroutine libraries, though incorporation of a library in the programming 
language (as in Common Lisp) provided better documentation and visibility to the 
routines that are added to the language. 

3.2.5. Flaws in current software curriculum and ways to improve the 
situation 

This examination of knowledge appropriate to a software developer suggests short
comings in the current software curriculum: 

• Programming from scratch: Most courses teach program construction from a 
blank sheet of paper, rather than by modifying existing programs or by working 
from models of good solutions. Moreover, students rarely read good programs; 
it is as if we asked students to write good English without reading good prose. 

• Equating program text with software: A complete software product includes 
also the analysis that led to the design, the user documentation, the test suites, 
and records of design decisions that will be important to the maintainer. 
Students too often focus on the code, do ad hoc testing, neglect the user 
documentation, and fail to deal with anything else. 

• Abstract skills at the expense of specific content: Our curricula are very strong 
in techniques for formulating solutions from first principles. They present too 
few well-known examples of good solutions for study and emulation. 

• Programming before reasoning: Although the situation is improving, coding 
and debugging still seems to win out over specification, analysis, and careful 
construction or derivation. 
Throwaway exercises: When assignments are discarded as soon as they are 
graded, there is no clear incentive for creating comprehensible, well-
documented, maintainable software. 

Some ways to remedy these flaws and improve the software curriculum include: 
• Study good examples of software systems: To do this properly requires the 

development of case studies intended for presentation. However, careful 
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guided reading of good code would be an improvement, as would assignments 
that start from code distributed by the instructor. 

• Learn more facts: Software developers will not use resources they do not 
know about. We should teach more specific substance such as the available 
subroutine libraries and interface standards; we should reinforce this with 
assignments that require their use. 

• Modify and combine programs as well as creating them: Students should learn 
to work with program structures devised by others, to reuse components, to 
adhere to standards, and to value good documentation. 

• Incorporate reference material as it becomes available: There is currently a 
dearth of good reference material to help software developers avoid re
invention. As such material becomes available, it should be incorporated. 
Meanwhile, students should be taught to use reference manuals, library 
documentation, and the like effectively. Plan for continuing improvement in this 
area. 

• Present theory and models in the context of practice: The curriculum should 
emphasize durable ideas that will transcend a major shift of technology. These 
ideas are often learned best when coupled with concrete examples of their 
application; if the examples are selected well they may themselves be worth 
remembering for reuse. 
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4. Conclusion: Adapt or Die 

Examination of the roles of computing in the economy and society showed needs that 
computing education must satisfy. Two examples elaborated those need in particular 
areas. This led to specific recommendations for changes in the curriculum. We close with 
a set of summary observations. 

Information technology will continue to evolve. New theories and techniques will mature; 
they will often be more concise than the material they replace. This kind of change is 
inevitable. Not only will it affect our curriculum, it will affect our student's professional 
growth. Thus we must not only be prepared to adopt new results ourselves; we must also 
prepare our students to do so. 

A curriculum design should be a document of aspiration, not merely documentation of the 
status quo. It should say where we want to be, not just where we are. It may be 
ambitious, but it must be at least moderately realistic. Design involves balancing 
conflicting requirements for scarce resources -- in curriculum design the scarcest resource 
is course time, or curriculum space. Hard decisions must be made; including too many 
topics will have the effect of diluting attention, reducing the depth of each to superficial 
survey. The core should be based on sound, durable fundamentals. The current fashion 
will change, but students who have learned the fundamentals well will be equipped to 
learn new fashions. 

The packaging of material should match students' needs. Practitioners will apply their 
knowledge to immediate problems, whereas researchers will build on their knowledge to 
obtain new results. The same introductory courses may well serve both, but this may not 
be true for all advanced courses. 

Computation is joining the scientific paradigms of experimentation and theory. We should 
present computation in its own terms; we have no need to disguise it in some other form. 

Computer science departments have an obligation to help with the education of all the 
audiences for computing education. This is not to say that they must assume sole 
responsibility, except for their own majors. But if they fail to respond to the emerging 
needs, they risk becoming irrelevant. 

15 



16 



5. References 

[Biggerstaff 89] Ted J. Biggerstaff and Alan J. Perlis. Software Reusability. Two 
volumes, ACM Press, 1989. 

[COSEPUP 89] Committee on Science, Engineering, and Public Policy, National 
Research Council. Information Technology and the Conduct of 
Research. National Academy Press, 1989. 

[CSTB 89] Computer Science and Technology Board, National Research Council. 
Scaling Up: A Research Agenda for Software Engineering. National 
Academy Press, 1989. 

[CSTB 90] Computer Science and Technology Board, National Research Council. 
Keeping the US Computer Industry Competitive. National Academy 
Press, 1990. 

[DAG 89] Data Analysis Group. Computer Industry Forecasts, Fourth Quarter 
1989. 

[Hirsch §8] E. D. Hirsch, Jr. Cultural Literacy: What Every American Needs to 
Know. Vintage Books 1988. 

[Levin 89] Eugene r Levin, Grand Challenges to ̂ Computational Science. 
Communications of tfieACM, 32, 12 (December 1989), pp. 1456-1457. 

[Marks 87] L. S. Marks et al. Marks' Standard Handbook for Mechanical 
Engineers. McGraw-Hill, 1987. 

[Martin 71] William A. Martin. Sorting. ACM Computing Surveys, 3, 4 (December 
1971), pp.147-174. 

[NAE 89] National Academy of Engineering. Engineering and the Advancement 
of Human Welfare: 10 Outstanding Achievements 1964-1989. National 
Academy Press, 1989. 

[NSF 89] National Science Foundation. Report on the National Science 
Foundation Disciplinary Workshops on Undergraduate Education. 
National Science Foundation, 1989. 

[Perry 84} R. H. Perry et al. Perry's Chemical Engineer's Handbook. Sixth 
Edition, McGraw-Hill, 1951. 

[Reddy 88] Raj Reddy. Foundations and Grand Challenges of Artificial Intelligence. 
Al Magazine, 9, 4 (Winter 1988), pp. 9-21 (1988 presidential address, 
American Association for Artificial Intelligence). 

[SGR 89] Mary Shaw, Dario Giuse, Raj Reddy. What A Software Engineer Needs 
to Know I: Vocabulary. CMU-CS-89-180 and CMU/SEI-89-TR-30 
ESD-TR-89-40 Tech reports, August 1989. 

17 



[Shaw 84] Mary Shaw (ed). The Carnegie Mellon Curriculum for Undergraduate 
Computer Science. Springer-Verlag 1984. 

[Simon 89] Herbert A. Simon. Human Experts and Knowledge-Based Systems. 
Talk given at IFIP WG 10.1 Workshop on Concepts and Characteristics 
of Knowledge-Based Systems, Mt Fuji Japan, November 9-12,1987. 

[World Bank 89] Robert Schware. The World Software Industry and Software 
Engineering: Opportunities and Constraints for Newly Industrialized 
Economies. World Bank Technical Paper 104, August 1989. 

18 


