SEI Insights

SEI Blog

The Latest Research in Software Engineering and Cybersecurity

Happy Memorial Day. As part of an ongoing effort to keep you informed about our latest work, I'd like to let you know about some recently published SEI technical reports and notes. These reports highlight the latest work of SEI technologists in architecture analysis, patterns for insider threat monitoring, source code analysis and insider threat security reference architecture. This post includes a listing of each report, author(s), and links where the published reports can be accessed on the SEI website.

Our modern data infrastructure has become very effective at getting the information you need, when you need it. This infrastructure has become so effective that we rely on having instant access to information in many aspects of our lives. Unfortunately, there are still situations in which the data infrastructure cannot meet our needs due to various limitations at the tactical edge, which is a term used to describe hostile environments with limited resources, from war zones in Afghanistan to disaster relief in countries like Haiti and Japan. This blog post describes our ongoing research in the Advanced Mobile Systems initiative at the SEI on edge-enabled tactical systems to address problems at the tactical edge.

According to the 2011 CyberSecurity Watch Survey, approximately 21 percent of cyber crimes against organizations are committed by insiders. Of the 607 organizations participating in the survey, 46 percent stated that the damage caused by insiders was more significant than the damage caused by outsiders. Over the past 11 years, researchers at the CERT Insider Threat Center have documented incidents related to malicious insider activity. Their sources include media reports, the courts, the United States Secret Service, victim organizations, and interviews with convicted felons.

Common operating platform environments (COPEs) are reusable software infrastructures that incorporate open standards; define portable interfaces, interoperable protocols, and data models; offer complete design disclosure; and have a modular, loosely coupled, and well-articulated software architecture that provides applications and end users with many shared capabilities. COPEs can help reduce recurring engineering costs, as well as enable developers to build better and more powerful applications atop a COPE, rather than wrestling repeatedly with tedious and error-prone infrastructure concerns.

Mission-critical operations in the Department of Defense (DoD) increasingly depend on complex software-reliant systems-of-systems (abbreviated as "systems" below). These systems are characterized by a rapidly growing number of connected platforms, sensors, decision nodes, and people. While facing constrained budget, expanded threat, and engineering workforce challenges, the DoD is trying to obtain greater efficiency and productivity in defense spending needed to acquire and sustain these systems. This blog posting--the first in a three-part series--motivates the need for DoD common operating platform environmentsthat can help collapse today's stove-piped solutions to decrease costs, spur innovation, and increase acquisition and operational performance.

According to the 2011 CyberSecurity Watch Survey, approximately 21 percent of cyber crimes against organizations are committed by insiders. Of the 607 organizations participating in the survey, 46 percent stated that the damage caused by insiders was more significant than the damage caused by outsiders. Over the past 11 years, CERT Insider Threat researchers have collected incidents related to malicious activity by insiders obtained from a number of sources, including media reports, the courts, the United States Secret Service, victim organizations, and interviews with convicted felons.

Many modern software systems employ shared-memory multi- threading and are built using software components, such as libraries and frameworks. Software developers must carefully control the interactions between multiple threads as they execute within those components. To manage this complexity, developers use information hiding to treat components as "black boxes" with known interfaces that explicitly specify all necessary preconditions and postconditions of the design contract, while using an appropriate level of abstraction to hide unnecessary detail.

New acquisition guidelines from the Department of Defense (DoD) aimed at reducing system lifecycle time and effort are encouraging the adoption of Agile methods. There is a general lack, however, of practical guidance on how to employ Agile methods effectively for DoD acquisition programs. This blog posting describes our research on providing software and systems architects with a decision making framework for reducing integration risk with Agile methods, thereby reducing the time and resources needed for related work.