SEI Insights

SEI Blog

The Latest Research in Software Engineering and Cybersecurity

Every day, analysts at major anti-virus companies and research organizations are inundated with new malware samples. From Flame to lesser-known strains, figures indicate that the number of malware samples released each day continues to rise. In 2011, malware authors unleashed approximately 70,000 new strains per day, according to figures reported by Eugene Kaspersky. The following year, McAfee reported that 100,000 new strains of malware were unleashed each day. An article published in the October 2013 issue of IEEE Spectrum, updated that figure to approximately 150,000 new malware strains. Not enough manpower exists to manually address the sheer volume of new malware samples that arrive daily in analysts' queues. In our work here at CERT, we felt that analysts needed an approach that would allow them to identify and focus first on the most destructive binary files. This blog post is a follow up of my earlier post entitled Prioritizing Malware Analysis. In this post, we describe the results of the research I conducted with fellow researchers at the Carnegie Mellon University (CMU) Software Engineering Institute (SEI) and CMU's Robotics Institutehighlighting our analysis that demonstrated the validity (with 98 percent accuracy) of our approach, which helps analysts distinguish between the malicious and benign nature of a binary file.

In October 2010, two packages from Yemen containing explosives were discovered on U.S.-bound cargo planes of two of the largest worldwide shipping companies, UPS and FedEx, according to reports by CNN and the Wall Street Journal. The discovery highlighted a long-standing problem--securing international cargo--and ushered in a new area of concern for such entities as the United States Postal Inspection Service (USPIS) and the Universal Postal Union (UPU), a specialized agency of the United Nations that regulates the postal services of 192 member countries. In early 2012, the UPU and several stakeholder organizations developed two standards to improve security in the transport of international mail and to improve the security of critical postal facilities. As with any new set of standards, however, a mechanism was needed to enable implementation of the standards and measure compliance to them. This blog post describes the method developed by researchers in the CERT Division at Carnegie Mellon University's Software Engineering Institute, in conjunction with the USPIS, to identify gaps in the security of international mail processing centers and similar shipping and transportation processing facilities.

The Architecture Analysis and Design Language (AADL) is a modeling language that, at its core, allows designers to specify the structure of a system (components and connections) and analyze its architecture. From a security point of view, for example, we can use AADL to verify that a high-security component does not communicate with a low-security component and, thus, ensure that one type of security leak is prevented by the architecture. The ability to capture the behavior of a component allows for even better use of the model. This blog post describes a tool developed to support the AADL Behavior Annex and allow architects to import behavior from Simulink (or potentially any other notation) into an architecture model.

Social engineering involves the manipulation of individuals to get them to unwittingly perform actions that cause harm or increase the probability of causing future harm, which we call "unintentional insider threat." This blog post highlights recent research that aims to add to the body of knowledge about the factors that lead to unintentional insider threat (UIT) and about how organizations in industry and government can protect themselves.

Although the CERT Secure Coding team has developed secure coding rules and guidelines for Java, prior to 2013 we had not developed a set of secure coding rules that were specific to Java's application in the Android platform. Android is an important area to focus on, given its mobile device market dominance (82 percent of worldwide market share in the third quarter of 2013) as well as the adoption of Android by the Department of Defense. This blog post, the first in a series, discusses the initial development of our Android rules and guidelines. This initial development included mapping our existing Java secure coding rules and guidelines to Android applicability and also the creation of new Android- only rules for Java secure coding.

To view a video of the introduction, please click here.
The Better Buying Power 2.0 initiative is a concerted effort by the United States Department of Defense to achieve greater efficiencies in the development, sustainment, and recompetition of major defense acquisition programs through cost control, elimination of unproductive processes and bureaucracy, and promotion of open competition. This SEI blog posting describes how the Navy is operationalizing Better Buying Power in the context of their Open Systems Architecture and Business Innovation initiatives.

According to a report issued by the Government Accountability Office (GAO) in February 2013, the number of cybersecurity incidents reported that could impact "federal and military operations; critical infrastructure; and the confidentiality, integrity, and availability of sensitive government, private sector, and personal information" has increased by 782 percent--from 5,503 in 2006 to 48,562 in 2012. In that report, GAO also stated that while there has been incremental progress in coordinating the federal response to cyber incidents, "challenges remain in sharing information among federal agencies and key private sector entities, including critical infrastructure owners."