SEI Insights

SEI Blog

The Latest Research in Software Engineering and Cybersecurity

Introducing new software languages, tools, and methods in industrial and production environments incurs a number of challenges. Among other necessary changes, practices must be updated, and engineers must learn new methods and tools. These updates incur additional costs, so transitioning to a new technology must be carefully evaluated and discussed. Also, the impact and associated costs for introducing a new technology vary significantly by type of project, team size, engineers' backgrounds, and other factors, so that it is hard to estimate the real acquisition costs. A previous post in our ongoing series on the Architecture Analysis and Design Language (AADL) described the use of AADL in research projects (such as System Architectural Virtual Integration (SAVI)) in which experienced researchers explored the language capabilities to capture and analyze safety-critical systems from different perspectives. These successful projects have demonstrated the accuracy of AADL as a modeling notation. This blog post presents research conducted independently of the SEI that aims to evaluate the safety concerns of several unmanned aerial vehicle (UAV) systems using AADL and the SEI safety analysis tools implemented in OSATE.

The Wireless Emergency Alerts (WEA) service went online in April 2012, giving emergency management agencies such as the National Weather Service or a city's hazardous materials team a way to send messages to mobile phone users located in a geographic area in the event of an emergency. Since the launch of the WEA service, the newest addition to the Federal Emergency Management Agency (FEMA) Integrated Public Alert and Warning System (IPAWS),"trust" has emerged as a key issue for all involved. Alert originators at emergency management agencies must trust WEA to deliver alerts to the public in an accurate and timely manner. The public must also trust the WEA service before it will act on the alerts. Managing trust in WEA is a responsibility shared among many stakeholders who are engaged with WEA. This blog post, the first in a series, highlights recent research aimed at enhancing both the trust of alert originators in the WEA service and the public's trust in the alerts it receives.

To maintain a competitive edge, software organizations should be early adopters of innovation. To achieve this edge, organizations from Flickr and IBM to small tech startups are increasingly adopting an environment of deep collaboration between development and operations (DevOps) teams and technologies, which historically have been two disjointed groups responsible for information technology development. "The value of DevOps can be illustrated as an innovation and delivery lifecycle, with a continuous feedback loop to learn and respond to customer needs," Ashok Reddy writes in the technical white paper, DevOps: The IBM approach.

The Government Accountability Office (GAO) recently reported that acquisition program costs typically run 26 percent over budget, with development costs exceeding initial estimates by 40 percent. Moreover, many programs fail to deliver capabilities when promised, experiencing a 21-month delay on average. The report attributes the "optimistic assumptions about system requirements, technology, and design maturity [that] play a large part in these failures" to a lack of disciplined systems engineering analysis early in the program. What acquisition managers do not always realize is the importance of focusing on software engineering during the early systems engineeringeffort. Improving on this collaboration is difficult partly because both disciplines appear in a variety of roles and practices. This post, the first in a series, addresses the interaction between systems and software engineering by identifying the similarities and differences between the two disciplines and describing the benefits both could realize through a more collaborative approach.

The Heartbleed bug, a serious vulnerability in the Open SSL crytographic software library, enables attackers to steal information that, under normal conditions, is protected by the Secure Socket Layer/Transport Layer Security(SSL/TLS) encryption used to secure the internet. Heartbleed and its aftermath left many questions in its wake:

  • Would the vulnerability have been detected by static analysis tools?
  • If the vulnerability has been in the wild for two years, why did it take so long to bring this to public knowledge now?
  • Who is ultimately responsible for open-source code reviews and testing?
  • Is there anything we can do to work around Heartbleed to provide security for banking and email web browser applications?

Software developers produce more than 100 billion lines of code for commercial systems each year. Even with automated testing tools, errors still occur at a rate of one error for every 10,000 lines of code. While many coding standards address code style issues (i.e., style guides), CERT secure coding standards focus on identifying unsafe, unreliable, and insecure coding practices, such as those that resulted in the Heartbleed vulnerability. For more than 10 years, the CERT Secure Coding Initiative at the Carnegie Mellon University Software Engineering Institutehas been working to develop guidance--most recently, The CERT C Secure Coding Standard: Second Edition--for developers and programmers through the development of coding standards by security researchers, language experts, and software developers using a wiki-based community process. This blog post explores the importance of a well-documented and enforceable coding standard in helping programmers circumvent pitfalls and avoid vulnerabilities.

This blog post is co-authored by Lori Flynn.

Although the Android Operating System continues to dominate the mobile device market (82 percent of worldwide market share in the third quarter of 2013), applications developed for Android have faced some challenging security issues. For example, applications developed for the Android platform continue to struggle with vulnerabilities, such as activity hijacking, which occurs when a malicious app receives a message (in particular, an intent) that was intended for another app but not explicitly designated for it. The attack can result in leakage of sensitive data or loss of secure control of the affected apps. Another vulnerability is exploited when sensitive information is leaked from a sensitive source to a restricted sink. This blog post is the second in a series that details our work to develop techniques and tools for analyzing code for mobile computing platforms. (A previous blog post, Secure Coding for the Android Platform, describes our team's development of Android rules and guidelines.)