

Combining Architecture-Centric
Engineering with the Team Software
Process

Robert L. Nord, James McHale, Felix Bachmann

December 2010

TECHNICAL REPORT
CMU/SEI-2010-TR-031
ESC-TR-2010-031

Research, Technology, and System Solutions (RTSS)
Software Engineering Process Management (SEPM)
Unlimited distribution subject to the copyright.

http://www.sei.cmu.edu

http://www.sei.cmu.edu

This report was prepared for the

SEI Administrative Agent
ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a federally
funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2010 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED
TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE
ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for
internal use is granted, provided the copyright and "No Warranty" statements are included with all reproductions
and derivative works.

External use. This document may be reproduced in its entirety, without modification, and freely distributed in
written or electronic form without requesting formal permission. Permission is required for any other external
and/or commercial use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 252.227-7013.

mailto:permission@sei.cmu.edu

i | CMU/SEI-2010-TR-031

Table of Contents

Acknowledgments vii

Abstract ix

1 Introduction 1

2 ACE and TSP 3
2.1 Architecture-Centric Engineering Practices: A Brief Overview 3
2.2 The Team Software Process: A Brief Overview 4

3 TSP with ACE Practices 5
3.1 Software Development Context 5
3.2 Architecture Design Strategy 6
3.3 Launching the Architecture Phase 7
3.4 Executing the Plan 18
3.5 Reviewing the Plan 22
3.6 Launching the Developer Team 22

4 Pilot Application Experience of the Combined Approach 25
4.1 Project Summary (to Date) 25
4.2 Important Lessons Learned (So Far) 27

5 Summary 31

Appendix Recommended Training 33

References 35

ii | CMU/SEI-2010-TR-031

iii | CMU/SEI-2010-TR-031

List of Figures

Figure 1: Architecture-Centric Engineering 3

Figure 2: TSP Iterative Development 4

Figure 3: ADD Conceptual Flow of a Single Iteration 19

Figure 4: Sample Availability Scenario 20

Figure 5: A Template for Documenting a View 21

iv | CMU/SEI-2010-TR-031

v | CMU/SEI-2010-TR-031

List of Tables

Table 1: Goals and Objectives for the First Architecture Iterations 6

Table 2: Overview of the TSP Launch for the Architecture Phase 8

Table 3: Role of the Lead Architect 9

Table 4: Role of the TSP Managers 11

Table 5: Scenario / Component Mapping 12

Table 6: Effort Estimation Table 14

Table 7: Example Scenario Effort Estimation Table 15

Table 8: TSP Quality Guidelines Standard Planning Factors 17

Table 9: ACE and TSP Principles 27

vi | CMU/SEI-2010-TR-031

vii | CMU/SEI-2010-TR-031

Acknowledgments

The authors would like to thank Bursatec for providing the opportunity to validate our ideas and
the other members of the team for their technical contributions to the integration effort:
• Dr. Enrique Ibarra, Director General of Bursatec

• Luis Carballo, Manager of Software Engineering at Bursatec

• Greg Such, Carnegie Mellon® Software Engineering Institute (SEI) Business Manager

• John Klein, SEI Architecture-Centric Engineering (ACE) Initiative

• Gabriel Moreno, SEI ACE Initiative

• Andres Diaz-Pace, SEI ACE Initiative

• Jim Over, SEI Team Software Process (TSP) Initiative Manager

The authors also thank Nanette Brown, John Klein, Mark Klein, William Nichols, Jim Over, Lin-
da Northrop, and Luis Carballo for their careful review of drafts of this report that helped to im-
prove its content.

® Carnegie Mellon is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

viii | CMU/SEI-2010-TR-031

ix | CMU/SEI-2010-TR-031

Abstract

This report contains a description of an architecture-centric life-cycle model that uses the Carne-
gie Mellon Software Engineering Institute’s architecture-centric engineering (ACE) methods em-
bedded in a Team Software Process (TSP) framework and of our experience in piloting the ap-
proach in an actual development effort. Combining ACE and TSP provides an iterative approach
for delivering quality systems on time and within budget. TSP provides the infrastructure in esti-
mation, planning, measurement, and project management. ACE provides the means for designing,
evaluating, and implementing a system so that it will satisfy its business and quality goals. Bring-
ing these approaches together results in something that is much more than the sum of the parts.
The combined approach offers help to organizations to set an architecture/developer team in mo-
tion using mature, disciplined engineering practices that produce quality software quickly.

x | CMU/SEI-2010-TR-031

1 | CMU/SEI-2010-TR-031

1 Introduction

In their keynote address on “Starting Right” at SEPG 2003 Europe, Watts Humphrey and Linda
Northrop established the vision to combine the Team Software Process (TSP) with sound archi-
tecture-centric engineering (ACE) practices to accelerate projects and to produce better products.

The Carnegie Mellon® Software Engineering Institute (SEI) had the opportunity to realize this
vision beginning in summer of 2009. At that time, the SEI began a project with Bursatec, the IT
arm of La Bolsa Mexicana de Valores (the Mexican Stock Exchange), to replace its main online
stock trading engine with one that would also incorporate trading of other financial instruments
such as options and futures. The project had aggressive goals for performance and delivery, and as
the face of Mexico’s financial markets to the world, the new trading engine needed to function
flawlessly.

The SEI answer to this challenge was to blend its ACE and TSP technologies. The TSP is a
process for software teams. Its purpose is to build high-performance teams that plan, manage, and
own their commitments; produce quality products at lower cost; and achieve their best perfor-
mance. ACE is the discipline of using architecture as the focal point for performing ongoing ana-
lyses to gain increasing levels of confidence that systems will support their business goals. The
combination of these two technologies creates a development environment in which teams can
successfully build quality systems on time and within budget.

Combining ACE practices with TSP is now in the pilot stage. Similar approaches are also being
piloted by others. Humberto Cervantes and his colleagues from Quarksoft and CIMAT have re-
cently reported on their experiences in “Introducing Software Architecture Development Methods
into a TSP-based Development Company” [Cervantes 2010]. The presentation describes an ongo-
ing project whose aim is to introduce software architecture development methods inside Qua-
rksoft, a leading Mexican software development company certified at CMMI® level 3.

The purpose of this report is to provide the description of an architecture-centric development
process using TSP. This report is geared towards organizations that are starting a product devel-
opment project that includes architecture and implementation activities, whether evolving an ex-
isting product or starting a new product.

This report begins by providing a summary of ACE methods and the role of TSP in Section 2.
Background information is included to provide the reader with the necessary context; more de-
tailed information about architecture practices [Bass 2003, Clements 2002, Clements 2003] and
TSP [Humphrey 2002, Humphrey 2005, Humphrey 2006a, Humphrey 2006b, Nichols 2009] is
described elsewhere. Section 3 provides the details of the combined approach and describes the
architecture-related activities that are necessary during the architecture launch (executing and re-
viewing the plan for the architecture phase) and during the implementation launch. Section 4 ex-
plores the piloting of the approach in a project at Bursatec. Section 5 is a summary. Recommend-
ed training is described in the appendix.

® Carnegie Mellon and CMMI are registered in the U.S. Patent and Trademark Office by Carnegie Mellon Univer-

sity.

2 | CMU/SEI-2010-TR-031

3 | CMU/SEI-2010-TR-031

2 ACE and TSP

We begin by providing an overview of the ACE practices and the TSP iterative development
model as context for understanding the combined approach.

2.1 Architecture-Centric Engineering Practices: A Brief Overview

ACE is the discipline of effectively using architecture(s) to guide system development.

Figure 1: Architecture-Centric Engineering

Figure 1 shows the role architecture plays in ensuring that a system satisfies its business and mis-
sion goals during implementation and evolution. ACE analysis and design methods guide the cre-
ation of an architecture that successfully addresses the desired system qualities. The methods of
interest for this report include:
• The Quality Attribute Workshop (QAW) [Barbacci 2003], to guide elicitation of quality

attribute requirements from business and mission goals to the architecture. Quality attribute
requirements are elicited from the system’s stakeholders and are captured as quality attribute
scenarios. Those scenarios are used as the driving force for architecture activities.

• The Attribute Driven Design (ADD) method [Wojcik 2006], to guide design from business
and mission goals to the architecture. The ADD method provides a practical approach for de-
veloping an architecture to meet its quality attribute requirements. In architecture design, the
defined quality attribute scenarios are used to iteratively decompose the system into an archi-
tecture that will fulfill the business goals.

• The View and Beyond (V&B) approach to documenting the architecture [Clements 2003], to
guide the architecture team in producing architecture documentation that is useful to its
stakeholders, easy to navigate, and practical to create.

IMPLEMENT AND EVOLVE

SATISFY

DESIGN IMPLEMENT

SATISFY CONFORM

ARCHITECTURE SYSTEM
BUSINESS AND
MISSION GOALS

4 | CMU/SEI-2010-TR-031

• The Architecture Tradeoff Analysis Method® (ATAM®) [Clements 2002], to ensure the archi-
tecture satisfies the business and mission goals. The ATAM assesses the designed architec-
ture with input from the system’s stakeholders to uncover possible issues in the architecture
early, before they create costly problems.

• Active Reviews for Intermediate Designs (ARID) [Clements 2002], to help hand off the ar-
chitecture to the team implementing the system. The review focuses on whether the design is
sufficient for the developers who will use it.

2.2 The Team Software Process: A Brief Overview

TSP is a development process enabling engineering teams to meet planned commitments, produce
high-quality products, and deliver working software on time and within budget. TSP provides
framework and a process structure for building and guiding self-directed teams.

Figure 2: TSP Iterative Development

Figure 2 shows how TSP supports an iterative or cyclic development strategy. Products are devel-
oped over several cycles. Cycles may be organized into phases, according to the particular life-
cycle development process in which TSP is used. TSP can be introduced at any phase or cycle.
Each cycle starts with a launch or re-launch and ends with a postmortem. After each launch, TSP
continues to provide guidance in managing the team through weekly meetings, checkpoints, and a
postmortem.

The TSP coach guides the team through each launch, re-launch, and postmortem, and provides
weekly coaching support during the cycle.

® Architecture Tradeoff Analysis Method and ATAM are registered in the U.S. Patent and Trademark Office by

Carnegie Mellon University.

Development
phase

or cycle
Development

phase
or cycle

Phase or Cycle
Postmortem

Development
phase

or cycle

Launch

Re-launch

Project
Postmortem

Lessons, new
goals, new

requirements,
new risk, etc.

Business
and

technical
goals Estimates, plans,

process, commitment

Work products,
status, metrics,

results

Development
Phase

or Cycle

5 | CMU/SEI-2010-TR-031

3 TSP with ACE Practices

This section describes the approach to using the TSP with ACE practices to guide the architecture
team in elaborating the architecture. We describe how to add architecture-related activities into a
TSP development project that includes architecture design, detailed design, implementation, and
testing.

TSP projects begin with a launch to build the team. Completing this launch requires some under-
standing of the number of teams that will be involved. Will one team do everything or will several
teams do different tasks, such as an architecture team and a developer team. If the number of
teams is not clear at the beginning of the launch, it will be clear after the launch is completed. The
TSP launch described here is for a team whose responsibility is, among other things, to define or
evolve the architecture of the product to be developed.

We describe in this section the architecture-related activities that are necessary during the launch
performed by a team that is tasked with the architecture design. A TSP team manages itself ac-
cording to the plan developed during the launch, so we describe how architecture influences the
team members as they conduct their work. We also describe how the plan is reviewed and ad-
justed. Finally, we return to the concept of the TSP launch, only this time using it to transition
from elaborating the architecture to constructing the implementation of the system.

3.1 Software Development Context

TSP can be used to manage all software development phases, from requirements elicitation to
implementation and testing. Here we focus on the architecture phase with the launch of the team
developing the architecture, the execution of the plan during that phase, and the handoff of the
architecture to the developer team responsible for implementing the system.

The TSP launch for the architecture phase can be done when the following conditions are true:
• The team responsible for executing the architecture activities is defined. This includes the

assignment of the team leader and the lead architect of the system. For small projects, the
team leader might also assume the role of the lead architect.

• The major quality attribute scenarios are defined. This is usually done by executing a QAW.

• The major functions of the system are defined.

• The initial version of an architecture design strategy is defined.

The launch is led by the team coach. The team leader and coach understand TSP as well as the
architecture methods. The team leader and coach have complementary roles to play in forming the
team and in guiding the team members to carry out their work. The team leader is responsible for
the project, leading the team to deliver a quality product on time and within budget. The team
coach provides training, guidance, and feedback based on monitoring data and the process.

The requirements phase may still be underway, but enough work has been done to establish the
vision of the future system, the business context, key system functions, and quality attribute re-
quirements.

6 | CMU/SEI-2010-TR-031

If different teams are responsible for the architecture design and implementation work, then there
will be multiple handoffs of the architecture increments to the developer team. There also will be
conformance checks of implementation products as architecture and implementation activities
proceed in parallel.

3.2 Architecture Design Strategy

The goal of the TSP architecture phase launch is to plan the architecture activities in the context
of supporting the organization's business goals and considering the existing time and budget con-
straints. Achieving that goal requires some initial understanding of the major components most
likely to be included in the architecture, as well as an agreement on the major tasks needed to suc-
cessfully design the architecture.

A default strategy that works in many cases and can be adjusted if no other strategy is available is
to conduct the architecture design and implementation in iterations. The duration of an iteration
depends on the complexity of the system to be developed. Six weeks per iteration can be used as a
starting point. Table 1 shows the goals of the first five iterations of architecture and implementa-
tion activities, which may be performed by one or multiple teams.

Table 1: Activities and Goals for the First Architecture Iterations

Iteration Architecture Activities and Goals Implementation Activities and Goals

1 Create a candidate design using ADD with the major
scenarios to structure the architecture.
Conduct periodic ATAM-style peer reviews.
At the end of the iteration, the problem areas in the
architecture that require more detailed investigation
and/or prototyping are identified.

Not applicable since architecture activities need
one iteration of lead time in order to initiate
implementation activities.

2 Use ADD to specify the well-understood areas of the
architecture in sufficient detail that the architecture
can be given to the developer team.
Conduct periodic ATAM-style peer reviews.
At the end of this iteration, the well-understood areas
of the architecture are defined in sufficient detail.

Create prototypes to provide insight into the
problem areas of the architecture.
At the end of this iteration, data is available that
helps design the problematic areas of the archi-
tecture.

3 Hand off the well-defined parts of the architecture for
implementation to the developer team using ARID-
style peer reviews.
Use ADD to specify the remaining parts of the archi-
tecture, taking into account the results of the proto-
typing effort.
Conduct periodic ATAM-style peer reviews.
At the end of this iteration, all areas of the architec-
ture are defined in sufficient detail and available for
review.

Implement one function of the system in a par-
tial skeleton system [Wojcik 2006] with the well-
defined components.
At the end of this iteration, the first system func-
tion can be shown to stakeholders.

4 Hand off the entire architecture for implementation by
the developer team using ARID-style peer reviews.
Conduct an architecture evaluation using ATAM.
Refine the architecture to mitigate the risks unco-
vered by the ATAM.
At the end of the iteration, version 1.0 of the architec-
ture is available.

Implement a second function by implementing
the whole skeleton system and the functionality
required to provide the chosen system function.
At the end of this iteration, a complete skeleton
system with the additional running function can
be shown to the stakeholders.

7 | CMU/SEI-2010-TR-031

If no major road blocks are encountered, the remaining iterations follow the schema as shown for
Iteration 5.

3.3 Launching the Architecture Phase

During a TSP launch, the team reaches a common understanding of the work and the approach it
will take and produces a detailed plan to guide its work.

The TSP launch is organized as a set of nine meetings over four days. The TSP launch process
produces necessary planning artifacts (e.g., goals, roles, estimates, task plan, milestones, quality
plan, and risk mitigation plan). The most important outcome is a committed team.

Table 2 shows an overview of the launch meetings and the architecture-related activities that are
unique for launching a team at this phase in the life cycle. The team typically conducts detailed
planning for the short term and overall planning for the entire lifespan of the project. The launch
establishes a common team understanding of the project. During the launch, the role of Meeting 3
is enhanced since there is more information about the architecture design strategy to work with.
Meetings 5 and 7 are streamlined since many of the issues they address are not known this early
in the life of the project. Meeting 6 is streamlined since the investment made in Meeting 3 in un-
derstanding the architecture pays off when it comes time to use it in formulating the detailed next-
phase plan.

5 Refine the architecture and/or documentation to ac-
commodate issues uncovered during the confor-
mance review (see at right).
At the end of this iteration, a stable architecture with
sufficient documentation is available.

Conduct a conformance review with the archi-
tecture team members.
Fix issues in the code uncovered by the con-
formance review and implement the next set of
system functions.
At the end of this iteration, the next functions
can be shown to the stakeholders

8 | CMU/SEI-2010-TR-031

Table 2: Overview of the TSP Launch for the Architecture Phase
Launch Meeting Activities

1. Establish Product and Business Goals The marketing or customer representative describes the desired
product including the quality attribute characteristics.

2. Assign Roles and Define Team Goals The team establishes goals that include building a system that meets
the architecturally significant requirements.
The team introduces new manager roles or modifies existing ones to
incorporate architecture-related activities.

3. Produce Development Strategy The team reviews the architecture design strategy of the desired
product.
The team establishes the project strategy; the results include explicit
architecture deliverables.
The team defines the development process; the process plan in-
cludes architecture design and evaluation activities and an architec-
ture documentation strategy.

4. Build Overall and Next-Phase Plans The team estimates the size of the architecture, taking into account
quality attribute scenarios, views, models/prototypes, and iterations.
The team includes peer reviews and tracking architectural risks in the
project tasks.

5. Develop the Quality Plan The team checks the quality plan against the quality-attribute-related
team goals and the top-down plan to ensure consistency.

6. Build Detailed and Consolidated Plans The team produces a near-term plan to determine and assign con-
crete architectural tasks and deliverables to team members and the
team as a whole.

7. Conduct Risk Assessment The team considers technical risks that inform the release plan and
development strategies (e.g., prototypes, early development, and
incremental versions).

8. Prepare Management Briefing The team prepares the management briefing that includes quality
attribute goals, architecture views, and risks and links them to the
business goals and project schedule.

9. Hold Management Review The team leader speaks to slides related to architecture:
• Goals: design an architecture that meets the quality attribute goals
• Deliverables: quality attribute scenarios, architecture documenta-

tion
• Plan: based on ADD
• Conclusions: role of architecture providing value

Meeting 1: Establish Product and Business Goals

The purpose of Meeting 1 is to review management goals and product objectives. Senior man-
agement and a marketing representative tell the team what they want the team to develop, when
the product is needed, the resources available to the team, why the job is important, and how
management will measure success.

Activities include the following:
• A senior management representative takes a more expansive view of the business goals to

include all project stakeholders; the team listens for quality attribute goals of the development
organization (e.g., strategic reuse, product lines, and buildability).

• A marketing or customer representative takes a more expansive view of the users’ needs to
include all product stakeholders and describes the quality attribute characteristics of the de-
sired product when presenting the product objectives; the team listens for runtime and support
quality attribute goals (e.g., performance, availability, and maintainability).

9 | CMU/SEI-2010-TR-031

• The launch coach reviews the TSP team roles, including the role of the lead architect.

Functionality is often the primary focus when describing the characteristics of the product, and
quality attributes are either implicit or taken for granted. Systems are frequently redesigned not
because they are functionally deficient, but because they are difficult to maintain, or are too slow,
or have been compromised by hackers. An explicit focus on quality attributes, such as maintaina-
bility, throughput, or security, during the launch sets in place the means to achieve them through-
out design, implementation, and deployment of the product.

The team reviews the defined quality attribute scenarios to determine if they are still aligned with
the business goals. If adjustments are made, the team defines some new scenarios and might drop
others. At the end, the team has a set of scenarios that, if implemented successfully, will support
the business goals. These scenarios form the basis for the planning activities in the next meetings.

TSP teams are self-directed with a leader whose role is to build, motivate, and maintain the team.
On a project combining architecture practices and TSP, the lead architect works with the team
leader. The lead architect’s goals are to lead the team in producing the architecture, fully utilize all
the team’s skills and ideas in producing this design, and ensure that the architecture and its docu-
mentation are of high quality. The lead architect needs to be assigned prior to the launch, since
this role is vital to forming the architecture design strategy for the project. The lead architect is a
full-time job, more like a team leader role than a team manager role that requires a couple of
hours over the course of the week. See Table 3 for details.1

Table 3: Role of the Lead Architect

1 This table is modeled after the templates for the TSP team leader and design manager roles and responsibili-

ties. In those templates, the rows labeled objective, goals, role characteristics, team member responsibilities,
and principal lead activities are standard fields; others are included where they are specific to the role. Further-
more the description text for the objective and team member responsibilities is prefilled from the template and
common for all roles.

Objective When all team members consistently meet their roles’ responsibilities, follow the defined
process, and work to agreed goals and specification, the team will be most efficient and
effective.

Goals The lead architect’s goals are to
• Lead the team in producing the architecture
• Fully utilize all the team’s skills and ideas in producing this design
• Ensure that the architecture and its documentation are of high quality

Role Characteristics The characteristics most helpful to the lead architect are
• Naturally assumes a technical leadership role
• Is able to think in abstractions
• Is able to identify the key technical issues and objectively make architecture decisions
• Likes to design and build software-reliant systems
• Has experience with architecture analysis and design
• Has expertise in the domain and technology

Team Member
Responsibilities

All team members, including the lead architect, are responsible for meeting their respon-
sibilities as team members.
• Meeting their team member commitments
• Following a disciplined personal process
• Planning, managing, and reporting on their personal work
• Cooperating with the team and all team members to maintain an effective and produc-

tive working environment

10 | CMU/SEI-2010-TR-031

Meeting 2: Assign Roles and Define Team Goals

The purpose of Meeting 2 is to set team goals and establish roles. The team reviews the manage-
ment goals presented in Meeting 1 and derives a collection of measurable team goals. The team
assigns the team management tasks among the team members.

Activities include the following:
• The team sets goals that include building a system that meets the architecturally significant

requirements.

• The team reviews team manager roles that include architecture-related responsibilities.

The team starts with the business and product goals that management stated explicitly in Meeting
1. The team reviews and refines these goals, adding those implied by management. The team also
adds team-specific goals. Management ultimately desires a product that produces some value and
accomplishes that by managing the primary project factors of quality, function, cost, and sche-
dule. If the product goals are not explicit, the team can look for those implied by the quest for
quality and verify these when reporting back to management. These might be properties of the
product itself, of developing the product, or of operating/managing the product. Goals need to be
specified in enough detail that the team has confidence they can be accomplished in the plan.

Depending on its number of members and the scope of the project, the team may organize in a
number of ways: a single team, a group of sub-teams, or multiple teams. An architecture design
team is needed at a minimum. During design, it is common to spin off technology investigations
to consider the selection of vendor-provided components or prototyping efforts to understand
risks as they are uncovered.

In TSP, routine team management tasks are assigned to eight team member roles. Team members
have TSP manager roles in addition to their team member responsibilities. The team divides the
management roles, so that each member has at least one role responsibility. Every team goal
needs to be allocated to a manager role to ensure that the goal is met. As a result, usual TSP roles
may need to be tailored to ensure that the architecture-related goals are fulfilled. Activities related

Lead the Architecture The lead architect maintains a focus on architectural issues throughout the project and
leads the team to
• Identify and resolve all architectural issues
• Document and confirm architectural issue resolution
• Focus on anticipating and addressing quality attribute issues
• Produce, refine, and verify the product architecture
• Use analyses, prototypes, or experiments as appropriate, to ensure that all the archi-

tecture issues and assumptions are identified, documented, and resolved
• Ensure conformance of the implementation to the architecture

Manage Architecture
Changes

The lead architect provides the team focus on anticipating likely change scenarios and
designing for change as appropriate, balancing short-term needs with longer-term goals.

Establish and
Manage Architecture
Standards

The lead architect establishes the standards and procedures the team will use to produce
the architecture design artifacts.

Principal Lead
Architect Activities

The lead architect works with the team to perform their design tasks and resolve architec-
tural issues.
The lead architect reports at the weekly team meeting on the status of architecture stan-
dards and product design work.

11 | CMU/SEI-2010-TR-031

to TSP manager roles should not take more than one to two hours per week. The person assigned
a role is responsible for ensuring that the team addresses issues relevant to the role and reports on
these during the weekly team meetings. Existing TSP roles have a different emphasis when in-
cluding architecture-related activities (see Table 4).

Table 4: Role of the TSP Managers

Meeting 3: Produce Development Strategy

The purpose of Meeting 3 is to produce the development strategy, development process, and sup-
port plan. The team members define the product that they will build and how to build it.

Activities include the following:
• The lead architect describes the architecture design strategy for the desired product.

• The team leader leads the team in establishing the project strategy with explicit architecture
deliverables.

• The process manager leads the team in defining the development process with explicit archi-
tecture design activities.

• The support manager leads the team in reviewing development and process support tools and
facilities and in defining usage conventions of the tools that may include architecture guide-
lines.

TSP Manager Role Architecture-Related Responsibilities

Customer Interface
Manager

• Understands the business goals of the customer and the development organization
and their priorities, understands the quality attribute requirements necessary to support
those goals, and maintains traceability between the business goals and the quality
attribute requirements

• Manages quality attribute requirements issues and changes
• Ensures all quality attribute requirements assumptions are verified

Design Manager • Participates in technology investigations and on prototyping teams
• Leads the design work and the design changes for the prototyping efforts

Implementation
Manager

• Leads the implementation work for the prototyping efforts
• Ensures that buildability issues are identified
• Supports efforts for ensuring the implementation conforms to the architecture design

Test Manager • Ensures that testing issues are considered in the architecture phase
• Ensures that sufficient test cases are created to check the fulfillment of the quality

attribute scenarios

Planning Manager • Assists the team in using the appropriate architecture views (e.g., work assignment
view, module view) to help in planning

• Establishes the standard planning framework including architecture-related work prod-
ucts

Process Manager • Leads the definition of the development process including architecture design and
analysis activities

• Supports transitioning architecture and TSP practices within the organization

Support Manager • Establishes the development infrastructure (aligned with the implementation and install
views of the architecture)

• Oversees tools to support architecture design as part of the development support sys-
tem

Quality Manager • Ensures that the quality attribute requirements are well specified
• Tracks architectural issues and risks in addition to defects

12 | CMU/SEI-2010-TR-031

The lead architect leads the team in discussing or producing the conceptual architecture design
with just enough detail to support project planning during the launch. While a detailed system
architecture might not exist, it is typical that high-level system descriptions, context drawings, or
other artifacts have been created that describe some of the system’s technical details. In this case,
rather than starting from scratch, the lead architect presents and builds on the system architecture
descriptions as they stand with respect to these early documents.

Often, the existing context diagrams or high-level system diagrams describe a deployment view
showing the system and how software is allocated in the computing environment or a conceptual
layered view showing major software modules within the system and opportunities for reuse. Ei-
ther of these may be used for planning purposes.

The lead architect leads the team in making a gross effort estimate for the architecture design.
Architecture design activities fall into two broad categories that need to be estimated differently.
The first category of activities is designing and analyzing an architecture to fulfill the quality
attribute scenarios. The second category of activities is to specify the architectural elements (typi-
cally modules) in sufficient detail for the team members tasked with implementing the architec-
ture. At the beginning of the architecture design phase, the first category of tasks usually will re-
ceive emphasis; towards the end of that phase, the second set of activities will be more prevalent.

Estimating architecture design tasks

Architecture design tasks can be estimated using quality attribute scenarios and the architecture
components shown in the conceptual design. The quality attribute scenarios are classified by how
difficult it will be to design a solution that will satisfy those scenarios in terms of high, medium,
or low (H/M/L). The architecture components are classified by size (H/M/L). For every scenario,
the team will determine which architecture components most likely need to be adjusted when they
design for the scenario (see Table 5 for an example).

Table 5: Scenario / Component Mapping
 Component A (H) Component B (L) Component C (M) Component D (L)

Scenario 1 (M) X X

Scenario 2 (L) X X X

Scenario 3 (H) X X

Estimating module specification tasks

Architectural tasks focusing on designing for the specified quality attribute scenarios are not like-
ly to produce architecture documentation that is sufficient for the developers. For example, neither
concrete definition of responsibilities for each module nor specification of detailed interfaces for
the modules is usually required to ensure that the architecture fulfills the quality attribute scena-
rios. But responsibilities and interfaces are very important to coordinating the effort of develop-
ment teams to produce code that can be integrated and will run as expected.

Use cases help to discover module responsibilities and interfaces. However, producing good ar-
chitecture documentation for developers does not require describing all use cases; it is sufficient
to focus on the major ones. Major uses cases specify the main functions of the system. To identify
those use cases, as a rule of thumb, check the following four categories:

13 | CMU/SEI-2010-TR-031

• Operational—use cases that specify the purpose of the system (e.g., in a communication sys-
tem, connecting and disconnecting; in a reporting system, creating a report)

• Administrative—use cases that specify major administration functions (e.g., administering
settings for the application)

• Monitoring—use cases that specify monitoring function (e.g., current users online)

• Startup/shutdown—use cases that specific initialization and clean up functions

The team classifies those use cases according to complexity (H/M/L).

Establishing exit criteria for architectural tasks

Exit criteria that define when an architectural task is done promote a common understanding of
the effort required to execute the task. For the two categories of architectural tasks—architecture
design and module specification—two different exit criteria have to be established.

The exit criteria for the architecture design tasks need to define when a quality attribute scenario
can be considered to be done. This can be achieved by peer reviews utilizing ATAM techniques.
As soon as the architecture team thinks that a scenario is done, a peer review using at least one
architect not involved in this project is conducted. The peer review results in a list of risks and
possibly action items. The risks need to be mitigated, and the action items need to be executed.
The design for a scenario is considered to be completed if all uncovered risks are mitigated and
there are no open action items. A risk mitigation of “ignore this risk” is acceptable, if this designa-
tion is agreeable to the stakeholders.

The exit criteria for the module specification tasks need to define when the description of a mod-
ule is good enough. This depends on the knowledge and skills of the developers charged with im-
plementing the defined modules. This can be achieved using the ARID-style peer review, where
the developers are tasked to sketch the solution for one or two use cases, using the provided archi-
tecture description. The result of the peer review is a number of suggestions for improvements.
The module specification tasks are considered to be completed when all the suggestions that af-
fect the documentation are resolved.

Remaining activities in Meeting 3

Estimating architecture design and module specification tasks, as well as exit criteria, are aspects
of the architecture design strategy—one of the activities in Meeting 3. In the other activities

• The team leader leads the team in using the task classification to establish the development
strategy, making the incremental architecture deliverables explicit.

• The team leader also leads the team in defining the work products. Associated documentation
artifacts include quality attribute scenarios, use cases, architecture views, and supporting dia-
grams, descriptions, and analysis results. Manuals, training, and demos are among the other
deliverables in which the architecture may be described for use by stakeholders to drive
downstream life-cycle activities (e.g., testing, installation, monitoring, and operations).

• The process manager leads the team in elaborating the development process. The process plan
includes a strategy and guidelines for architecture design, architecture documentation, and ar-
chitecture evaluation.

14 | CMU/SEI-2010-TR-031

Meeting 4: Build the Overall and Next-Phase Plans

The purpose of Meeting 4 is to produce the overall plan. The team builds a top-down plan for the
entire job. It does this by estimating the size of the products to be produced, identifying the tasks
needed to do the work, and estimating their effort.

Activities include the following:
• The lead architect leads the team in estimating the size of each work product. Sizing estimates

for the architecture-related work products take into account quality attribute scenarios, archi-
tecture, analysis models/prototypes, and the iterative nature of design.

• The team leader leads the team in producing a task plan. The plan includes project tasks for
periodic architecture peer reviews, tracking of architectural risks, and a final architecture
evaluation. The lead architect has a role in carrying out project tasks throughout the overall
development plan.

Tasks are defined for the duration of the project. They follow the team’s process, include all
products, and are detailed for the next phase. The time estimates for each task are based on size
and productivity data or past experience.

Sizing and planning for the overall project can be done by revisiting the gross software sizing es-
timates of the principal product components that were inferred from the conceptual design in
Meeting 3. Previously, the sizes of artifacts were estimated in terms of small to very large size,
and low to high complexity. These estimates need to be translated into more precise numbers and
assigned to a release cycle in the overall plan.

Estimating architecture design tasks

The use of historical data is recommended to estimate the effort for designing a quality attribute
scenario according to the classification established during Meeting 3. If no historical data is avail-
able, the following rule of thumb can be used as a starting point. If a simple scenario (difficulty L)
requires a small component (size L) to change, then this can probably be done within one day of
effort. A complicated scenario (difficulty H) requiring a large component to be changed (size H)
most likely requires one order of magnitude higher effort, that is 10 days. Other combinations fall
in-between, as illustrated in Table 6.

Table 6: Effort Estimation Table (Days)

 Components

L M H

Sc
en

ar
io

s H 5 8 10

M 3 5 8

L 1 3 5

The purpose of these numbers is to provide a starting point. Historical data can support more ac-
curate estimating. In any event, the real numbers will vary and depend on many factors such as
the size of the project, the number of teams involved, whether development is distributed, and the
skill level of the available staff.

15 | CMU/SEI-2010-TR-031

Assigning effort numbers to the scenarios and their mapping onto components (shown in Table 5)
would result in an effort estimation table like the one shown in Table 7.

Table 7: Example Scenario Effort Estimation Table (Days)
 Component A (H) Component B (L) Component C (M) Component D (L) Sum

Scenario 1 (M) 8 N/A 5 N/A 13

Scenario 2 (L) N/A 1 3 1 5

Scenario 3 (H) 10 N/A 8 N/A 18

An architecture team usually works together; therefore the tasks cannot be executed in parallel by
different team members. As a result, the effort numbers have to be multiplied by the number of
team members working on those tasks.

Estimating module specification tasks

Historical data is also useful to estimate the effort for specifying modules with use cases accord-
ing to the classification established during Meeting 3. If no historical data is available, the follow-
ing effort estimations for use cases can be used:
• Easy use case—0.5 days

• Medium complex use case—1.5 days

• Complex use case—3 days

Typically two team members are assigned to a use case. Therefore the effort numbers have to be
multiplied by two. Should historical data become available, these numbers can be adjusted accor-
dingly.

Accounting for rework

When the architecture team designs the architecture for the second, third, and so on scenario, the
design for the earlier scenarios probably will need to be adjusted. When following the default ar-
chitecture design strategy (see Section 3.2), the following percentages of the overall effort for an
iteration should be allocated to the rework of the existing architecture documentation, as a rule of
thumb:
• 10% of the effort for Iteration 2 to adjust the scenarios from Iteration 1

• 20% effort for Iteration 3 to adjust the scenarios from Iterations 1 and 2

A recommendation is to plan at a gross level, and distribute the effort over the first two cycles and
the remainder of the project life cycle.

Note that sizing the elements in this way does not explicitly account for infrastructure as separate
elements; these are distributed among the other elements.

Sizing and planning for the work products of the near-term architecture phase of the project can
be done more precisely by estimating the time needed to create the architecture documentation
artifacts. These artifacts can be eventually translated into some size measures (e.g., pages of archi-
tecture documentation, number of artifacts in an architecture description), and effort can be allo-
cated for producing them.

16 | CMU/SEI-2010-TR-031

Documentation artifacts include views and supporting models. ADD suggests the design of the
system will be represented using views from two or three categories (e.g., components and con-
nectors, modules, or deployment). The Views and Beyond approach describes how each view is
documented, with multiple diagrams to represent structure and behavior and text to describe the
element catalog, rationale, traceability, and the like. To estimate the needed artifacts, the follow-
ing rules of thumb can be used if historical data is not available:
• One quality attribute scenario used in Meeting 3 requires the creation or refinement of two

structural diagrams, such as a component and connector view and a module view.

• One quality attribute scenario usually is refined into four more specific scenarios.

• Each specific scenario is described with three sequence diagrams.

• Each sequence diagram will require the definition or refinement of five architectural ele-
ments.

• Each architectural element has its own diagram showing its context.

Therefore, a quality attribute scenario from Meeting 3, on average, is described by two structural
diagrams, twelve sequence diagrams, and five architectural element diagrams. The term diagram
here is used to mean a visual representation of architecture elements and all necessary textual de-
scriptions.

The design process may involve building analysis models and/or prototypes to understand and
validate design concepts for important quality attribute requirements such as performance and
availability. Once the models exist, architecture alternatives can be analyzed to determine the ap-
propriate solution. The effort for building models and/or prototypes is not included in the estima-
tion above.

The design process is iterative and incremental. After the initial handful of scenarios is addressed,
a few more will be added to verify and extend the design. Accordingly, effort needs to be allo-
cated for modifying the design decisions taken to address the initial scenarios and for adding a
few more scenarios.

Finally, time needs to be factored into the plan for inspection every two weeks and a final evalua-
tion when the architecture is stable.

When generating the overall plan, tasks continue for the architect throughout the development life
cycle to maintain the architecture, guide the developers in using the architecture, ensure the im-
plementation conforms to the architecture, and so on.

Meeting 5: Develop the Quality Plan

The purpose of Meeting 5 is to guide the team in producing the quality plan. The quality plan
shows how the team will achieve its product quality goal. In TSP, software quality during product
development is measured by counting defects and normalizing by the appropriate size measure.

Activities include the following:
• The team looks back at the quality attribute related team goals established in Meeting 1.

• The team checks the quality plan against the quality attribute goals and the top-down plan to
ensure they are consistent and looks for needed adjustments.

17 | CMU/SEI-2010-TR-031

There are two parts to producing the quality plan: (1) estimating where defects will be injected
and (2) estimating where they will be removed. In the absence of historical data, TSP quality
guidelines provide the standard planning factors shown in Table 8.

Table 8: TSP Quality Guidelines Standard Planning Factors

 Defects Injected /
Hour

Defects Removed /
Hour

Phase Yield

Requirements and Architecture 0.25 0.5 by inspection 70%

Detailed Design 0.75
1.5 by review

0.5 by inspection
70%

Code 2.00 4.0 by review 70%

Phase yield is the percentage of defects entering and injected in a phase that are removed in that phase.

Depending on the estimates, more- or less-aggressive inspections can be planned. The team can
control certain activities (architecture design, inspection, tracking risks) and adjust them in accor-
dance with quality goals.

Meeting 6: Build Detailed and Consolidated Plans

The purpose of Meeting 6 is to produce a balanced next-phase plan. The tasks for the next phase
are allocated to the team members. The members build their own work plans using the estimation
schema established in Meeting 4. The team balances the workload so that everyone completes
their next-phase tasks at approximately the same time. The team merges the individual work plans
to form a consolidated team plan.

Activities include the following:
• The team allocates the tasks for the next phase to individual team members using the follow-

ing guideline: during the architecture phase, the team plans to work together as a group
through the early stages of requirements analysis, architecture design, and review. This plan is
used by the team to guide and track its work during the upcoming project phase.

The architecture team works as a group during the early iterations of design, since it analyzes the
global factors that influence the architecture and makes decisions that affect the structure of the
product solution. Once enough of the structure is realized, there will be more opportunities to di-
vide the work of pursuing the decomposition of identified subsystems, mitigating risks by build-
ing prototypes, completing the documentation of the design concept, and so on.

Meeting 7: Conduct Risk Assessment

The purpose of Meeting 7 is to conduct a project risk assessment. The team identifies and assesses
the risks to its project plan. Risks are analyzed to determine impact and likelihood and assigned an
owner for investigation and tracking. Also, a mitigation strategy is noted for high and medium
priority risks.

Activities include the following:
• The team considers technical risks and their impact on the business goals of the project.

• For the higher priority risks, the team identifies mitigation actions that impact the develop-
ment strategies (e.g., prototypes, early development, and incremental versions). The devel-
opment strategies will inform the release plan.

18 | CMU/SEI-2010-TR-031

Some architecture-related risks can be identified at this point and are relevant to the project risks
that are reported during this meeting. These architectural risks may pertain to organizational
awareness of the activities needed to support architecture, architecture support for the achieve-
ment of qualities, uncertainty over requirements or the scope of the product [Bass 2006]. Making
risks explicit enables them to be discussed, so that they can be properly managed.

Meeting 8: Prepare Management Briefing & Meeting 9: Hold Management Review

The purpose of Meetings 8 and 9 is to prepare for and conduct the final launch management meet-
ing. The team prepares and delivers a presentation of the project plan to management. Manage-
ment probes the team’s plan to assess the quality of the team’s work and decides if the plan is ac-
ceptable.

One activity enhances Meeting 8 and Meeting 9 of the TSP launch: The team considers additions
to existing templates to report on quality attribute goals that support management’s overall goals,
architecture deliverables that support monitoring of progress, and any identified architecture-
related risks and their impact on business goals.

Architecture topics of interest to management include the following:
• Goals—design an architecture that meets the quality attribute goals

• Deliverables—quality attribute scenarios, architecture design and documentation, analysis
models and prototypes

• Plan—based on using ADD and building models/prototypes, on peer reviews, and on evalua-
tion using the ATAM

• Conclusions—role of the architecture in contributing value to the project

Documenting architecture views is one of the activities yet to be performed by the architecture
team; however, some documentation is likely to be done at this point, such as a top-level context
diagram showing the relationship of the system of interest to its environment, a conceptual
layered diagram showing major elements of the system from a marketing point of view and op-
portunities for reuse (some call this a “marketecture”), or a view showing the major work prod-
ucts and their assignment to teams.

The ultimate purpose of including information about the architecture in the presentation is to in-
crease management confidence that the business goals can be achieved given the time and re-
sources allotted in the project schedule. The architecture artifacts serve two purposes, as a design
artifact that can be analyzed to demonstrate support for the business goals and as a blueprint that
guides development activities within the constraints of the project schedule.

3.4 Executing the Plan

The team manages itself according to the plan developed during the launch. ACE techniques—the
ADD method, Views and Beyond approach, and ATAM—supplement and strengthen the archi-
tecture phase.

During a TSP cycle, there are shorter time periods of work. According to TSP guidelines, the
team meets for one hour weekly to review the past week and plan for the week to come. In addi-
tion to the weekly planning meeting, a regular team meeting is useful for architecture design dis-

19 | CMU/SEI-2010-TR-031

cussions. The team reviews the evolving design concept, using peer review based on the architec-
ture analysis activity of the ATAM, to analyze the current architecture design with respect to the
quality attribute scenarios that are the focus of concern [Edmondson 2007, Forstrom 2008]. One
team member explains the architecture and the others on the team play the role of the evaluation
team, asking questions and probing for risks. It is always a good idea to include an ATAM-trained
architect, not involved in this project, in the peer review. The team then looks ahead to plan for
the next interval of design work, working through the issue list and revisiting the plan. They de-
cide on the problem to tackle next, sketching some design alternatives, all the while making sure
that progress is being made.

To guide its work, the team uses the ADD, a decomposition method based on transforming quality
attribute scenarios into an appropriate design (Figure 3). The architecture team scrutinizes the re-
quirements (including constraints, functional requirements, and quality attributes) to identify the
candidate architectural drivers. Typically there are a handful of drivers; these are the quality
attributes scenarios that reflect the highest priority business goals and that have the most impact
on the decomposition of the architecture. The number of iterations (influencing the depth of the
decomposition) and the order of in which the decomposition tree is developed will vary based on
the business context, domain knowledge, technology, and so on.

Figure 3: ADD Conceptual Flow of a Single Iteration

The early steps of ADD are driven by the quality attribute scenarios that influence the architecture
design concept. The architecture design concept consists of the major types of elements that will
appear in the architecture and the types of relationships between them. Often these are in the form
of patterns or architecture styles.

Quality attribute requirements are an important input to architecture design. Quality attribute re-
quirements are represented as six-part quality attribute scenarios so they are clear and unambi-
guous. The six parts are as follows: what condition arrives at the system (stimulus), who generates
it (source), what it stimulates (artifact), what is going on at the time (environment), and the sys-
tem’s reaction to the stimulus (response) expressed in a measurable way (response measure).

Figure 4 shows a diagrammatic representation of the six parts of the following availability scena-
rio: An unanticipated external message is received by a process during normal operation. The
process informs the operator of the receipt of the message and the system continues to operate
with no downtime [Bass 2003].

20 | CMU/SEI-2010-TR-031

Figure 4: Sample Availability Scenario

During later steps, the focus turns to more fully documenting the design. When a scenario is
achieved, it is documented with views for that scenario along with the rationale. Justification may
include the results of any analysis models or prototypes. The goal is to add detail to the patterns
established in the previous iteration, complete the documentation package, and validate the design
with the remaining requirements. The architecture of the product must be documented in a way
that is helpful to the development organization. The Views and Beyond approach to documenting
software architecture provides examples of architecture views and design templates to guide the
work. It can be used to define what needs to be documented in a format that is helpful to the
stakeholders of the system, including developers, testers, project manager, and steering commit-
tee.

Using the Views and Beyond approach, documenting a software architecture is a matter of docu-
menting the relevant views and then adding information that applies to more than one view. Fig-
ure 5 shows that to document a view, use a standard organization consisting of six sections [Cle-
ments 2003].
1. The primary presentation shows the elements and relationships among them that populate the

portion of the view shown.
2. The element catalog details those elements depicted in the primary presentation.
3. A context diagram shows how the part of the system represented in the view relates to its

environment.
4. A variability guide shows how to exercise any variation points that are a part of the architec-

ture.
5. Architecture background explains why the design reflected in the views came to be.
6. Other information will vary according to the standard practices of the organization or the

needs of the project.

Stimulus:
Unanticipated

Message

Response:
Inform Operator

Continue to Operate
Source:
External

to System

Artifact:
Process

Environment:
Normal

Operation

Response
Measure:

No Downtime

3
21

4

21 | CMU/SEI-2010-TR-031

Figure 5: A Template for Documenting a View

The results of each iteration of the ADD method can be captured in the view template. At the be-
ginning of an iteration, a blank view template is used that includes pointers to the view’s chrono-
logical predecessor, parents, and siblings, if any. In the Design Rationale section, the require-
ments are documented with an explanation for why this element was chosen to be designed when
it was. Also, in that section, the drivers for this element are documented with the motivation for
the selection of the pattern/tactics. The instantiated pattern/tactics are documented in the primary
presentation and the element catalog. The elements’ interfaces are sketched in the interface sec-
tion of the element catalog.

As soon as the architecture begins to stabilize, it is reviewed with input from the broad stakehold-
er community to uncover possible issues in the architecture before they create costly problems.
An evaluation of the architecture by an external team is an important capstone event in the life of
the project. The previous peer review evaluations were done with internal team members. The
complete evaluation at the end of the architecture phase is designed to give the stakeholder com-
munity confidence that their concerns are understood by the architecture team and that the archi-
tecture addresses them. Other benefits include additional identified risks, clarified quality attribute
requirements, and increased communication among the stakeholders.

The ATAM relies on enlisting stakeholders to help analyze the architecture. The ATAM evalua-
tion team guides the stakeholders in elaborating the business drivers and quality attributes of the
system in the form of scenarios. The scenarios are used to analyze the architecture to understand
tradeoffs, sensitivity points, non-risks, and risks. Risks are distilled into risk themes, so that their
impact on the architecture and the business drivers can be understood.

The evaluation portion of the ATAM is conducted in two phases at the customer site. The phases
are distinguished according to the class of participants needed and the way quality attribute scena-

22 | CMU/SEI-2010-TR-031

rios are elicited. Phase 1, the initial evaluation, involves a small group of predominantly technical-
ly-oriented stakeholders. This phase is architecture centric, focused on eliciting detailed architec-
ture information and top-down analysis. Phase 2, the complete evaluation, involves a larger group
of stakeholders. It is stakeholder centric, focused on eliciting points of view of diverse stakehold-
ers and verifying the Phase 1 results.

The outcome of Phase 1 has been achieved during the peer reviews. Given this context, the archi-
tecture evaluation can be streamlined and focus on ATAM Phase 2 activities.

When the documentation package is sufficiently complete, it can be used by the developer team.

3.5 Reviewing the Plan

TSP concludes each phase or cycle with a postmortem to assess progress against the plan; discern
lessons learned; and gather new business goals, requirements, and risks that are input into the
launch of the next phase. This cycle post-mortem is a comprehensive study of team performance
and data and includes recommendations or proposals for changes that can assist team performance
improvement.

Following the postmortem, the coach guides the team through the re-launch for the next cycle.
TSP re-launches have two fewer formal meetings than do launches. Meetings 8 and 9 are not in-
cluded in the TSP re-launch, although the team leader typically summarizes re-launch results to
management in private. Primarily because those meetings are not included, re-launches are nomi-
nally scheduled for three days rather than the four allotted for initial project launches. Another
reason for the shorter re-launch schedule is that Meeting 1 tends to require less time than in a
launch since it is mainly a status report by the team leader.

A TSP re-launch can be as straightforward as doing detailed planning for the next phase of a
project that already has a well-structured overall plan developed during a previous launch. It can
also be as complicated as throwing out the previous plan based on current, presumably superior,
understanding of the project’s requirements, constraints, and other realities. Most often, the reality
is somewhere between those two extremes.

For architecture re-launch planning, new scenarios extending the original scenarios can be identi-
fied for in-depth analysis and architectural refinement. The team uses the estimated number of
new scenarios and the task-hour data from the previous cycle to develop a plan that includes a
realistic schedule, while working to keep better track of reworked elements.

3.6 Launching the Developer Team

Prior to the implementation launch, some effort is needed to transition the existing architecture
artifacts to the developer team for use in planning. An ARID-style peer review serves this pur-
pose. ARID is a use case/scenario-based, stakeholder-centric review of a portion of an architec-
ture, typically a software-invocable service. The ARID facilitator guides the developers in elabo-
rating and applying scenarios to understand whether the architecture design is sufficient for the
developers of the software that will use it.

First, a member of the architecture team gives an architecture presentation and traces scenarios
through the architecture to illustrate key features. Developers read the documentation from the

23 | CMU/SEI-2010-TR-031

point of view of the groups they are assigned to and the modules they will be responsible for de-
veloping.

Second, developers meet in their assigned groups to analyze a scenario with respect to their as-
signed modules. Members of the architecture team join the development groups to observe how
the documentation is being used and to answer questions if the developers get stuck. Developers
refer to the documentation and sketch a design that would fulfill the scenario as pseudo code, se-
quence diagrams, or language-specific interfaces. They can communicate with other teams as
needed to negotiate interfaces. They are directed to try to use the documentation and to ask a
member of the architecture team for help if they get stalled. In addition to answering questions,
members of architecture team act as observers and write down all questions, interventions, and
communications.

After the allotted time, the groups reconvene and present results to one another. The architects
check to see that the pieces fit into a global solution that satisfies the scenario. The issues that sur-
face are reviewed and feedback is given to the architecture team for improving the architecture.

Now that the architecture is well understood, it can serve as the blueprint for what parts are to be
estimated during the implementation launch. The core of the launch consists of Meeting 3, Meet-
ing 4, and Meeting 6, as successive estimations are made for the architectural modules. The par-
ticipation of the team leader is key to providing critical information as to how each module is tar-
geted for implementation over the next development cycle. The team estimates the entire
remaining development and refines the estimates in detail for the next cycle. If the information is
uncertain, the team iterates through the parts of Meeting 4 and Meeting 6 that deal with the next-
cycle team and individual plans.

24 | CMU/SEI-2010-TR-031

25 | CMU/SEI-2010-TR-031

4 Pilot Application Experience of the Combined Approach

This section relates the experience of using TSP and ACE together in a project at Bursatec.

4.1 Project Summary (to Date)

In early 2009 Bursatec, the IT development organization of the Bolsa Mexicana de Valores
(BMV)—the Mexican Stock Exchange—began planning a project to replace its electronic stock
trading engine, which despite long and satisfactory service was beginning to show the pressure of
rapidly expanding trading activity (daily average transaction volume more than tripled in 2009)
and of being implemented on legacy and increasingly more expensive hardware.

The project had significant objectives and challenges from the start. The overall objective was
simply stated: Implement a world-class trading system. A significant and expensive upgrade to
the existing system had reduced transaction times, but the organization saw that additional im-
provements were needed to remain competitive with modern systems in the U.S., Europe, and
Asia that have a lower processing latency. In addition to delivering transaction speed, the system
must work flawlessly and unceasingly through the trading day. If that weren’t enough, the stock
exchange wanted to combine stock market trading with derivative market trading on the same
platform to reduce operating costs and to provide a single high-throughput, low-latency, high-
confidence interface to the outside financial world, increasing the overall availability of BMV and
therefore Mexican companies to foreign capital.

The project challenges, though perhaps less quantifiable than the objectives, were no less signifi-
cant. For one, the few remaining experienced developers from the existing system had either
moved into management or possessed technical skills out of date with modern development tech-
nologies; the other developers available internally, while competent, were relatively inexpe-
rienced. For another, Bursatec wanted to adjust its management mechanisms and technical
processes to cope with this project. For still another, there were significant voices within the or-
ganization in favor of outsourcing the development or even purchasing an existing trading engine.

Bursatec produced a plan and successfully made the case to its management to put the capabilities
in place to execute the project internally. It brought in world-class management consultants to
help create a project management office and contracted with the SEI for technical help in imple-
menting ACE practices using TSP. Even though these two technologies have been highly success-
ful on their own, they have no track record of being used together. Bursatec management recog-
nized that it needed capabilities of both technologies in order to be successful, and there would be
no second chance for this project. Bursatec had to get it right the first time.

The SEI began by focusing the organization on the expression of its business objectives in terms
of quality attribute scenarios in a QAW and ensuring that the quality attributes were understood in
the proper business context in a related Business Thread Workshop (BTW). The scenarios devel-
oped formally captured the non-functional requirements for high performance (transaction time),
high availability (throughout the trading day), scalability (to allow for future growth), rapid mod-
ifiability (to allow for changes in business rules), and testability (to confirm proper function prior
to deployment) that would be crucial to the project’s success. Achievement of these quality

26 | CMU/SEI-2010-TR-031

attributes would then be the driving factors for the activity of a small architecture team. In turn,
this team would drive the entire development and testing effort.

In parallel with QAW/BTW preparations, managers and developers were trained in role-
appropriate aspects of the Personal Software Process (PSP, mainly for developers but also a few
key, technically-capable managers) and the TSP. The formal TSP launch of the architecture phase
of the project was held the week following the QAW/BTW.

At the launch, an experienced TSP coach helped a talented but inexperienced architecture team
bring together the various technical and business threads into an executable development plan.
The project followed an iterative and incremental approach to software development. The quality
attributes were used in the context of the ADD method to produce a software architecture that
meets both functional and non-functional requirements using, in this instance, readily available
commodity hardware and software. The design was documented with the Views and Beyond ap-
proach using an UML-based tool. In parallel, an implementation team was launched to develop an
automated test framework and to evaluate a message communication bus that would provide the
necessary backbone of the system.

The initial quality attribute scenarios, five in all, were used in combination with the ADD method
to structure an iteration of 3 two-week bursts of activity for the architecture team. This pattern
was based on an iterative development plan featuring 3 six-week iterations, with two-week “mini-
iterations” built in to focus the team on short-term technical objectives. The team would focus on
two scenarios over two weeks, formulating and elaborating architecture views to address current
scenarios while remaining consistent with previous ones and capturing the results in preparation
for a visit from an experienced architecture coach. The coach critiqued the current product using
ATAM-based analysis techniques, prodded the team to capture critical decisions while guiding
them to properly capture critical architectural information, and then helped to elaborate the details
of the plan for the following two weeks. The third such iteration elaborated architectural elements
for the last of the five major scenarios and also elaborated various sub-scenarios rooted in the ini-
tial five.

These sub-scenarios were then used in a planned “re-planning” session, a common activity for a
TSP team, to revise the plan for the next six-week iteration that would result in a Version 1 of the
architecture—something fit for initial use by the implementation team and eventually a formal
architecture evaluation. This iteration was spread over end-of-year holidays, so instead of the ear-
lier two-week intervals between visits by the architecture coach, more than a month passed. When
the coach arrived early in the new year for his next session, he recognized a difference in his team.
They were no longer just good young developers learning architectural methods on the job, they
were architects.

The Version 1 architecture was used to launch the implementation phase of the project. ARID-
based peer reviews served to transition the architecture to the developer team. Under SEI guid-
ance, elements of the ARID method were used to put the architecture documentation in the hands
of the developers, ensure that the documents were fit for development use, and provide feedback
to the architecture team. This initial use of the architecture documentation by the people who
would develop this world-class trading engine was followed immediately by a launch of the initial
implementation phase of the project. This phase developed the basic data and communication in-
frastructure for using the commodity communications product. The architecture team meanwhile

27 | CMU/SEI-2010-TR-031

launched its last cycle of activity principally as architects, as this group would essentially merge
into the implementation team in the next cycle. The principle objectives of this phase were to pro-
duce the Version 2 architecture ready for review by a formal evaluation using the ATAM.

The evaluation using the ATAM showed that that architecture design was remarkably successful.
The ATAM is focused on identifying and surfacing architectural risks, yet this evaluation identi-
fied fewer risks than expected for a project of this size and scope. The architecture documentation,
often cited as a shortcoming in ATAMs, was instead identified as a particular strength, most likely
because the architecture coach had put the team through “boot camp” for the previous few
months, carefully setting the scope and incrementally documenting the architecture during each
visit. This method, while particularly intensive in the use of a scarce architecture coach resource,
was very effective in producing a complete and thorough architecture document, in addition to a
team of competent architects.

The next launch marked the merging of the architecture and implementation teams into a single
team with a common launch. The main objective of this phase was highly visible and likely to be
indicative of ultimate success—namely, the implementation of the main trading mechanism on
top of the data and communications infrastructure. This cycle was finished on time with a mini-
mum of extra effort (defined as very late nights and weekends). Early testing results indicate ex-
cellent performance on the examples.

As of this writing, the team has completed planning for the implementation of the majority of re-
maining functions as well as the other critical quality attribute, high availability. Also, more per-
formance tuning is in the plan, based on recommendations from an outside expert and in response
to the implementation of a new requirement that potentially touches every part of the processing
cycle for trades.

4.2 Important Lessons Learned (So Far)

TSP and ACE are different disciplines founded on core principles (see Table 9). TSP is a self-
directed management and measurement process. ACE is the discipline of using architecture as the
focal point for performing ongoing analyses to gain increasing levels of confidence that systems
will support their missions.

Table 9: ACE and TSP Principles
ACE Principles TSP Principles

A software architecture should be defined in terms of
elements that are coarse enough for human intellectual
control and specific enough for meaningful reasoning.

High-performance teams plan, manage, and own their
commitments.

Business goals determine quality attribute requirements;
quality attribute requirements guide the design and anal-
ysis of software architectures.

A disciplined planning and measurement framework
with personal reviews and team inspections helps en-
gineers ensure quality software products.

Architecture-centric activities drive the software system
life cycle.

TSP provides a disciplined framework for measuring
and managing any structured intellectual activity.

In combination, TSP and ACE principles are supported by common techniques that emphasize
business and quality goals, engineering excellence, defined processes and process discipline, and
teamwork. They allow TSP and ACE to work well together.

28 | CMU/SEI-2010-TR-031

TSP guides the team in putting the planning and measurement framework in place. Without ACE
practices, the team would have likely proceeded directly from the conceptual design to detailed
design and coding, without the benefit of the software architecture to reason about design quality
early in the life cycle. The team would not have had the benefit of using the quality attributes ear-
ly to structure the design and using the design to drive the downstream life-cycle activities of im-
plementation, test, integration, and validation.

ACE practices guide the team in putting the architecture in place. Without TSP, the lead architect
would likely have had to shoulder more responsibility for developing the architecture and would
not have had the benefit of the TSP coach and framework to help guide and train the rest of the
architecture team. The team would not have had the benefit of using the framework to show
progress to management and to show how the architecture artifacts relate to the broader software
development plan. The following lessons have been learned so far:
• TSP and ACE played complementary roles. TSP and ACE provided a disciplined approach

across the life cycle for developing software that meets its business goals and quality attribute
requirements. TSP brought discipline and measurement to a set of robust architectural tech-
niques that are focused on meeting business goals and quality requirements. ACE provided
clear direction for architecture-related activities early in a project life cycle, whereas TSP has
traditionally focused on implementation later in the life cycle.

• An architecture coach complemented the TSP coach. Just as TSP has a role of a team coach to
help the team get started and to participate in weekly meetings, there was a need for a similar
role of architecture coach. The architecture coach helped the team get started during the
launch and participated in the biweekly meetings. Coaching consisted of two parts—asking
questions to review progress and pushing the team in the right direction to tackle the next
problem.

• The combined approach helped guide and train the junior architects. Initially, the roles of
team leader and lead architect were assigned to the single individual who had the needed
skills and experience. Over the course of the architecture design, the three architects-in-
training developed their architecture skills and assumed more responsibility. At the architec-
ture team re-launch, the architecture lead maintained team leader responsibility and took the
role of architecture coach, with the junior architects assuming the lead architect role.

• The combined approach facilitated an iterative and incremental approach to design and im-
plementation. Starting the development cycles early forced the architecture team to quickly
produce a description of architecture elements that would be understandable by the develop-
ers. This kept the architects focused on the needs of developers, one of their important stake-
holder groups. This interaction broke down barriers between the architects and the develop-
ers, enabled early feedback from the developers and ensured that architecture documentation
was developed naturally and not as a separate task.

• Architecture embedded in the TSP framework provided management early visibility into the
team progress. TSP’s planning and measurement framework provided a disciplined approach
to roll out architecture practices, help engineers ensure quality software products, and provide
senior management and the program office with visibility into architecture progress and quali-
ty during early stages of the project.

29 | CMU/SEI-2010-TR-031

• An architecture-centric approach provided early measures of quality. The peer reviews that
were integrated into the design process by the architecture coach helped keep the design on
track in meeting its quality attribute goals and resulted in finding more non-risks than risks
during the evaluation using the ATAM.

30 | CMU/SEI-2010-TR-031

31 | CMU/SEI-2010-TR-031

5 Summary

TSP and ACE are different disciplines. TSP is a self-directed management and measurement
process, while ACE is a collection of technical development practices. However, shared emphasis
on business and quality goals, engineering excellence, defined processes and process discipline,
and teamwork allow TSP and ACE to work well together.

Combining ACE and TSP provides an iterative approach for delivering high quality systems on
time and within budget. TSP provides the infrastructure in estimation, planning, measurement,
and project management. ACE provides the means for designing, evaluating, and implementing a
system so that it will satisfy its business and quality goals. The combined approach offers help to
organizations that have a need to set an architecture/developer team in motion using mature, dis-
ciplined engineering practices that produce quality software quickly.

The approach has been piloted on a project at Bursatec where teams continue to follow this dis-
ciplined process of planning, tracking, and gathering data as development continues. They have
used initial data to adjust the plan and meet interim commitments and milestones. The customer is
pleased with the integration of ACE and TSP methods and will similarly launch additional project
teams this year.

32 | CMU/SEI-2010-TR-031

33 | CMU/SEI-2010-TR-031

Appendix Recommended Training

One way to gain knowledge of ACE practices and TSP is through training from the SEI or its li-
censed partners. Different pathways through the courses are available depending on the role of the
individual with respect to the project.

Software architecture training begins with courses for the lead architect, technical managers, and
engineers on a path to improve their architecting skills.
1. Course: Software Architecture: Principles and Practices. Required course introduces the

essential concepts of architecture.
2. Course: Software Architecture Design and Analysis. Required instruction that explores de-

sign and analysis in-depth through the application of the three methods that are used by the
architecture team, the QAW, the ADD method, and the ATAM.

TSP training begins with courses for executives, middle and line managers, and members of the
development teams involved in the initial pilot projects. Three classes are delivered in preparation
for the implementation of TSP:
1. Course: TSP/PSP Executive Overview and Planning Session. Required session to introduce

senior management to the key concepts, benefits and requirements of the PSP/TSP and pre-
pare senior management to plan and implement TSP.

2. Course: Leading TSP Development Teams. Required instruction for all managers who direct-
ly manage software development: software project managers, software team managers, and
supervisors. This course introduces the quantitative TSP project management and quality
management concepts that managers use to build high-performance TSP teams.

3. Course: PSP Fundamentals. Required instruction for all engineers who will be on a software
development team using TSP. This course introduces both PSP and TSP methods that devel-
opment team members need to apply TSP.

The SEI recommends that organizations using architecture and TSP develop their own coaches.
Coach development begins with advanced courses and includes an observation component to en-
sure candidates have the necessary qualifications.

Architecture coach development follows the path:
1. Certificate: Software Architecture Professional. Two additional courses (beyond those pre-

viously mentioned for software architecture training) in the software architecture curriculum
provide the architect with exposure to needed skills, Documenting Software Architecture and
Software Product Lines.

2. Certification: ATAM Leader Certification. Provides a training path for someone in the role of
architecture coach. Three additional courses (beyond those previously mentioned for soft-
ware architecture training) provide the architect with exposure to needed skills, Documenting
Software Architecture, ATAM Evaluator Training and ATAM Leader Training. Candidate
leaders who successfully complete the ATAM Leader training must also complete the ATAM
Leader Observation in order to become an SEI-certified ATAM Leader. The ability to ana-

34 | CMU/SEI-2010-TR-031

lyze architecture is one of the two essentials skills of a coach. The other is the ability to de-
sign, for which there is no classroom substitute for substantive experience in the field.

TSP coach development follows the path:
1. Certification: PSP Developer. Prior to entering the coach training program, the candidate

coach must become a PSP certified developer by taking either PSP Fundamentals and PSP
Advanced or PSP I and PSP II followed by the PSP Certification examination.

2. It is strongly recommended the candidate TSP coach also take the course Leading a Devel-
opment Team and participate on a TSP team as either a developer or team lead.

3. Course: TSP Coach Training. Required instruction that prepares the participant to coach
teams using TSP and to become a Provisional TSP Coach.

4. Certification: TSP Coach. Candidate coaches who successfully complete the TSP Coach
training must then coach a team through a launch, checkpoint, and post mortem under the
guidance of an SEI-certified Mentor Coach. Finally, the Provisional Coach must successfully
complete the TSP Coach Certification examination in order to become an SEI-certified TSP
Coach.

35 | CMU/SEI-2010-TR-031

References

URLs are valid as of the publication date of this document.

[Barbacci 2003]
Barbacci, M. R., Ellison, R., Lattanze, A. J., Stafford, J. A., Weinstock, C. B., & Wood, W. G.
Quality Attribute Workshops (QAWs), Third Edition (CMU/SEI-2003-TR-016, ADA418428).
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University, 2003.
http://www.sei.cmu.edu/library/abstracts/reports/03tr016.cfm

[Bass 2003]
Bass, L., Clements, P., & Kazman R. Software Architecture in Practice, Second Edition. Boston,
MA: Addison-Wesley, 2003.

[Bass 2006]
Bass, L., Nord, R., Wood, W., & Zubrow, D. Risk Themes Discovered Through Architecture
Evaluations (CMU/SEI-2006-TR-012). Pittsburgh, PA: Software Engineering Institute, Carnegie
Mellon University, 2006.
http://www.sei.cmu.edu/library/abstracts/reports/06tr012.cfm

[Cervantes 2010]
Cervantes, H., Martinez Aceves, I., Castillo, J., & Montes de Oca, C. “Introducing Software Ar-
chitecture Development Methods into a TSP-based Development Company.” SEI Architecture
Technology User Network (SATURN) Conference, 2010. Minneapolis, MN, May 17-21, 2010.
http://www.sei.cmu.edu/library/abstracts/presentations/cervantes-saturn2010.cfm.

[Clements 2002]
Clements, P., Kazman, R., & Klein, M. Evaluating Software Architectures: Methods and Case
Studies. Boston, MA: Addison-Wesley, 2002.

[Clements 2003]
Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R., & Stafford, J. Do-
cumenting Software Architectures: Views and Beyond. Boston, MA: Addison-Wesley, 2002.

[Edmondson 2007]
Edmondson, J. S., Lee, E., & Kille, C. G. “A Light-weight Architecture Trade Off Process Based
on ATAM.” SEI Architecture Technology User Network (SATURN) Conference, 2007. Pittsburgh,
PA: May 14-16, 2007.
http://www.sei.cmu.edu/library/abstracts/presentations/ATO-Lite-for-SATURN-2007-2.cfm

[Forstrom 2008]
Forstrom, H. “Inexpensive ATAM-Peer Review Detects and Fixes Architecture Problems Early.”
SEI Architecture Technology User Network (SATURN) Conference, 2008. Pittsburgh, PA: April
30-May 1, 2008.
http://www.sei.cmu.edu/library/abstracts/presentations/ATAM-peer-review-SATURN-2008.cfm

http://www.sei.cmu.edu/library/abstracts/reports/03tr016.cfm
http://www.sei.cmu.edu/library/abstracts/reports/06tr012.cfm
http://www.sei.cmu.edu/library/abstracts/presentations/cervantes-saturn2010.cfm
http://www.sei.cmu.edu/library/abstracts/presentations/ATO-Lite-for-SATURN-2007-2.cfm
http://www.sei.cmu.edu/library/abstracts/presentations/ATAM-peer-review-SATURN-2008.cfm

36 | CMU/SEI-2010-TR-031

[Humphrey 2002]
Humphrey, W. S. Winning with Software: An Executive Strategy. Boston, MA: Addison-Wesley,
2002.

[Humphrey 2005]
Humphrey, W. S. PSP: A Self-Improvement Process for Software Engineers. Boston, MA: Addi-
son-Wesley, 2005.

[Humphrey 2006a]
Humphrey, W. S. TSP: Leading a Development Team. Boston, MA: Addison-Wesley, 2006.

[Humphrey 2006b]
Humphrey, W. S. TSP: Coaching Development Teams. Boston, MA: Addison-Wesley, 2006.

[Kazman 2004]
Kazman, R., Kruchten, P., Nord, R. L., & Tomayko, J. E. Integrating Software-Architecture-
Centric Methods into the Rational Unified Process (CMU/SEI-2004-TR-011). Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University, 2004.
http://www.sei.cmu.edu/ library/abstracts/reports/04tr011.cfm

[Nichols 2009]
Nichols, W.R. & Salazar, R. Deploying TSP in a National Scale: An Experience Report from Pilot
Projects in Mexico (CMU/SEI-2009-TR-011). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 2009. http://www.sei.cmu.edu/library/abstracts/reports/09tr011.cfm

[Nord 2004]
Nord, R. L., Tomayko, J. E., & Wojcik, R. Integrating Software-Architecture-Centric Methods
into Extreme Programming (XP) (CMU/SEI-2004-TN-036). Pittsburgh, PA: Software Engineer-
ing Institute, Carnegie Mellon University, 2004.
http://www.sei.cmu.edu/library/abstracts/reports/04tn036.cfm

[Wojcik 2006]
Wojcik, R., Bachmann, F., Bass, L., Clements, P., Merson, P., Nord, R., & Wood, W. Attribute-
Driven Design (ADD), Version 2.0 (CMU/SEI-2006-TR-023). Pittsburgh, PA: Software Engineer-
ing Institute, Carnegie Mellon University, 2006.
http://www.sei.cmu.edu/library/abstracts/reports/06tr023.cfm

http://www.sei.cmu.edu/
http://www.sei.cmu.edu/library/abstracts/reports/09tr011.cfm
http://www.sei.cmu.edu/library/abstracts/reports/04tn036.cfm
http://www.sei.cmu.edu/library/abstracts/reports/06tr023.cfm

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

December 2010

3. REPORT TYPE AND DATES
COVERED

Final

4. TITLE AND SUBTITLE

Combining Architecture-Centric Engineering with the Team Software Process

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

Robert L. Nord, James McHale, Felix Bachmann

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2010-TR-031

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

ESC-TR-2010-031

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

This report contains a description of an architecture-centric life-cycle model that uses the Carnegie Mellon Software Engineering Insti-
tute’s architecture-centric engineering (ACE) methods embedded in a Team Software Process (TSP) framework and our experience in
piloting the approach in an actual development effort. Combining ACE and TSP provides an iterative approach for delivering quality sys-
tems on time and within budget. TSP provides the infrastructure in estimation, planning, measurement, and project management. ACE
provides the means for designing, evaluating, and implementing a system so that it will satisfy its business and quality goals. Bringing
these approaches together results in something that is much more than the sum of the parts. The combined approach offers help to or-
ganizations to set an architecture/developer team in motion using mature, disciplined engineering practices that produce quality software
quickly.

14. SUBJECT TERMS

Architecture-centric engineering, Team Software Process, ACE, TSP

15. NUMBER OF PAGES

48

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18

298-102

	Combining Architecture-Centric Engineering with the Team Software Process
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgments
	2 ACE and TSP
	3 TSP with ACE Practices
	4 Pilot Application Experience of the Combined Approach
	5 Summary
	Appendix Recommended Training
	References

