
Android Taint Flow
Analysis for App Sets

Will Klieber*, Lori Flynn,
Amar Bhosale , Limin Jia, and Lujo Bauer

Carnegie Mellon University

*presenting

Presenter Notes
Presentation Notes
Welcome!

“Android Taint Flow Analysis for App Sets” Accepted at ACM SIGPLAN International Workshop on
the State Of the Art in Java Program Analysis (SOAP 2014)

Motivation

 Detect malicious apps that leak sensitive data.

 E.g., leak contacts list to marketing company.

 “All or nothing” permission model.

 Apps can collude to leak data.

 Evades precise detection if only analyzed individually.

 We build upon FlowDroid.

 FlowDroid alone handles only intra-component flows.

 We extend it to handle inter-app flows.

2

Presenter Notes
Presentation Notes

Introduction: Android

 Android apps have four types of components:
 Activities (our focus)
 Services
 Content providers
 Broadcast receivers

 Intents are messages to components.
 Explicit or implicit designation of recipient

 Components declare intent filters to receive implicit intents.

 Matched based on properties of intents, e.g.:
 Action string (e.g., “android.intent.action.VIEW ”)
 Data MIME type (e.g., “image/png”)

3

Presenter Notes
Presentation Notes
An explicit intent designates its recipient by name.
An implicit intent allows the Android OS to try to find a suitable component from among those installed on the device.

Introduction

 Taint Analysis tracks the flow of sensitive data.
 Can be static analysis or dynamic analysis.
 Our analysis is static.

 We build upon existing Android static analyses:
 FlowDroid [1]: finds intra-component information flow
 Epicc [2]: identifies intent specifications

4

[1] S. Arzt et al., “FlowDroid: Precise Context, Flow, Field, Object-sensitive and
Lifecycle-aware Taint Analysis for Android Apps”. PLDI , 2014.

[2] D. Octeau et al., “Effective inter-component communication mapping in
Android with Epicc: An essential step towards holistic security analysis”.
USENIX Security, 2013.

Presenter Notes
Presentation Notes
These tools are the state of the art for the problems they intend to solve

FD: State of art for taint flow analysis for intra-component

Epicc: State of the art for identifying intent specifications

Our Contribution

 We developed a static analyzer called “DidFail”
(“Droid Intent Data Flow Analysis for Information Leakage”).
 Finds flows of sensitive data across app boundaries.
 Source code and binaries available at: (or google “DidFail SOAP”)
http://www.cert.org/secure-coding/tools/didfail.cfm

 Two-phase analysis:
1. Analyze each app in isolation.
2. Use the result of Phase-1 analysis to determine inter-app flows.

 We tested our analyzer on two sets of apps.

5

Terminology

Definition. A source is an external resource (external to the app,
not necessarily external to the phone) from which data is read.

Definition. A sink is an external resource to which data is written.

For example,

 Sources: Device ID, contacts, photos, current location, etc.

 Sinks: Internet, outbound text messages, file system, etc.

6

Motivating Example

 App SendSMS.apk sends an intent (a message) to Echoer.apk,
which sends a result back.

7

 SendSMS.apk tries to launder the taint through Echoer.apk.

 Existing static analysis tools cannot precisely detect such inter-app data flows.

setResult()

getIntent()

onActivityResult()

Echoer.apk
Device ID
(Source)

SendSMS.apk

Text Message

startActivityForResult()

(Sink)

Analysis Design

 Phase 1: Each app analyzed once, in isolation.
 FlowDroid: Finds tainted dataflow from sources to sinks.

 Received intents are considered sources.
 Sent intent are considered sinks.

 Epicc: Determines properties of intents.
 Each intent-sending call site is labelled with a unique intent ID.

8

 Phase 2: Analyze a set of apps:
 For each intent sent by a component,

determine which components can
receive the intent.

 Generate & solve taint flow equations.

Running Example

9

Three components: C1, C2, C3.
C1 = SendSMS
C2 = Echoer
C3 is similar to C1

C1

C3

C2

src1

src3

sink1

sink3

I1

I3

• sink1 is tainted with only src1.
• sink3 is tainted with only src3.

Running Example

10

Notation:

C1

C3

C2

src1

src3

sink1

sink3

I1

I3

Presenter Notes
Presentation Notes
We write “source arrow sink” to denote that information flows from src to sink in component C. We write the name of the component above the arrow.
We identify a component of tuple of (the sending component C_TX, the receiving component C_RX, and the intent ID).
We write “R of I” to denote the response (result) for intent I.
Given a source or sink s, we write “T of s” to denote the set of sources from which s has tainted information.

Running Example

11

Notation:

C1

C3

C2

src1

src3

sink1

sink3

I1

I3

Running Example

12

C1

C3

C2

src1

src3

sink1

sink3

I1

I3

Final Sink Taints:
• T(sink1) = {src1}
• T(sink3) = {src3}

Notation:

C1

C3

src1

src3

sink1

sink3

Phase-1 Flow Equations

C2

13

Analyze each component separately.

Notation

• An asterisk (“∗”) indicates an unknown component.

Phase 1 Flow Equations:

Presenter Notes
Presentation Notes
Speak about construction of first 3 equations in phase 1.

Each call site (for an intent-sending method) is assigned a unique intent id.

14

Phase 1 Flow Equations: Phase 2 Flow Equations:

Phase-2 Flow Equations

Notation

Instantiate Phase-1 equations for all
possible sender/receiver pairs.

C1

C3

C2

src1

src3

sink1

sink3

I1

I3

Presenter Notes
Presentation Notes
(‘Flow equations’, versus next part of phase 2 which is ‘taint equations’.)

Notation

Phase-2 Taint Equations

15

Phase 2 Flow Equations: Phase 2 Taint Equations:

For each flow equation “src → sink”,
generate taint equation “T(src) ⊆ T(sink)”.

C1

C3

C2

src1

src3

sink1

sink3

I1

I3

If s is a non-intent source,
then T(s) = {s}.

Presenter Notes
Presentation Notes
(‘Taint equations’, versus previous part of phase 2 which was ‘flow equations’.)�
The flow eqns are isomorphic to the taint eqns.

16

TransformAPK
FlowDroid
(modified)

Epicc

Original APK

Extract manifest

Phase 1

Presenter Notes
Presentation Notes
In Phase 1, we first transform the APK to add intent IDs for call sites of methods that send intents. We then run Epicc and FlowDroid on the transformed APK. We also extract the manifest, to get the intent filters of each component.

The Phase-2 analysis takes the output of the Phase-1 analysis and produces the final graph of information flows within the set of apps.

Implementation: Phase 1

 APK Transformer
 Assigns unique Intent ID to each call site of intent-sending methods.

 Enables matching intents from the output of FlowDroid and Epicc

 Uses Soot to read APK, modify code (in Jimple), and write new APK.

 Problem: Epicc is closed-source. How to make it emit Intent IDs?
 Solution (hack): Add putExtra call with Intent ID.

17

TransformAPK
FlowDroid
(modified)

Epicc

Original APK

Extract manifest

Phase 1

Implementation: Phase 1

 FlowDroid Modifications:
 Extract intent IDs inserted by APK Transformer, and include in output.
 When sink is an intent, identify the sending component.

 In base.startActivity, assume base is the sending component.
(Soundness?)

 For deterministic output: Sort the final list of flows.

18

TransformAPK
FlowDroid
(modified)

Epicc

Original APK

Extract manifest

Phase 1

Presenter Notes
Presentation Notes
Sources/sinks: Added missing intent sending/receiving methods.

Implementation: Phase 2

 Phase 2
 Take the Phase 1 output.
 Generate and solve the data-flow equations.
 Output:

1. Directed graph indicating information flow between
sources, intents, intent results, and sinks.

2. Taintedness of each sink.

19

Testing DidFail analyzer: App Set 1

 SendSMS.apk
 Reads device ID, passes through Echoer,

and leaks it via SMS
 Echoer.apk

 Echoes the data received via an intent
 WriteFile.apk

 Reads physical location (from GPS),
passes through Echoer, and writes it to a file

20

Presenter Notes
Presentation Notes
App Set 1 corresponds to the running example discussed on previous slides.

Testing DidFail analyzer: App Set 2 (DroidBench)

21

Some taint flows:

Int3 = I(IntentSink2.apk, IntentSource1.apk, id3)
Int4 = I(IntentSource1.apk, IntentSink1.apk, id4)
Res8 = R(Int4)

Src15 = getDeviceId

Snk13 = Log.i

Graph generated using GraphViz.

Presenter Notes
Presentation Notes
The yellow highlighted nodes are along three possible taintflow paths between source 15 and sink 13.
Those paths are written on the bottom of the slide.
The white nodes and all the other links can be used for additional taintflow paths (to both sink 13 and sink 11).

Limitations

 Unsoundness
 Inherited from FlowDroid/Epicc

 Native code, reflection, etc.
 Shared static fields
 Implicit flows
 Currently, only activity intents
 Bugs

 Imprecision
 Inherited from FlowDroid/Epicc
 DidFail doesn’t consider permissions when matching intents
 All intents received by a component are conflated together as a single

source

22

Presenter Notes
Presentation Notes
Our analyzer does not consider permissions which can be used to restrict intent data flow.
If two running instances of a component use shared static fields to communicate, we miss these flows.
We miss implicit flows, such as where the mere receipt of an intent conveys tainted information, even if the intent itself doesn’t contain any tainted data.

If received intents with different properties (e.g., action string) have different taints, then we could be more precise by distinguishing between these intents.

Use of Two-Phase Approach in App Stores

 We envision that the two-phase analysis can be used as follows:
 An app store runs the phase-1 analysis for each app it has.
 When the user wants to download a new app, the store runs the phase-2

analysis and indicates new flows.
 Fast response to user.

23

DidFail vs IccTA

 IccTA was developed (at roughly the same time as DidFail) by:
 Li Li, Alexandre Bartel, Jacques Klein, Yves Le Traon (Luxembourg);
 Steven Arzt, Siegfried Rasthofer, Eric Bodden (EC SPRIDE);
 Damien Octeau, Patrick McDaniel (Penn State).

 IccTA uses a one-phase analysis
 IccTA is more precise than DidFail’s two-phase analysis.
 Two-phase DidFail analysis allows fast 2nd-phase computation.

 Future collaboration between IccTA and DidFail teams?

24

Conclusion

 We introduced a new analysis that integrates and enhances existing
Android app static analyses.

 Demonstrated feasibility by implementing a prototype and testing it.

 Two-phase analysis can be used by app store to provide fast response.

 Future work:
 Implicit flows
 Static fields
 Distinguish different received intents
 Other data channels (file system, non-activity intents)
 Etc.

25

Thank You

	Android Taint Flow�Analysis for App Sets
	Motivation
	Introduction: Android
	Introduction
	Our Contribution
	Terminology
	Motivating Example
	Analysis Design
	Running Example
	Running Example
	Running Example
	Running Example
	Phase-1 Flow Equations
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Implementation: Phase 1
	Implementation: Phase 1
	Implementation: Phase 2
	Testing DidFail analyzer: App Set 1
	Testing DidFail analyzer: App Set 2 (DroidBench)
	Limitations
	Use of Two-Phase Approach in App Stores
	DidFail vs IccTA
	Conclusion
	Thank You

