
U.S. Leadership
in Software and
AI Engineering
Workshop
Executive Summary
OCTOBER 2023

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2 [DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

ADVANCES IN SOFTWARE ENGINEERING
AND ARTIFICIAL INTELLIGENCE (AI)
are providing critical and innovative
capabilities across almost every domain,
but the potential remains to do far more,
particularly for applications that demand
high levels of trustworthiness. To inform
a community strategy for building and
maintaining U.S. leadership in software
engineering and AI engineering, the
Software Engineering Institute (SEI) and the
Networking and Information Technology
Research and Development (NITRD)
Program in the White House Office of
Science and Technology Policy co-hosted
a workshop at the National Science
Foundation on June 20–21, 2023.

The event gathered thought leaders from federal research
funding agencies, research laboratories, mission agencies, and
commercial organizations to explore the fundamental research
needed to support progress toward this goal. The workshop
used the SEI’s Architecting the Future of Software Engineering:
A National Agenda for Software Engineering Research and
Development1 as a starting point because the areas of focus
identified in the study have been confirmed as even more critical
and urgent, particularly due to the rapid advances of generative
AI in the two years since its release. Specifically, three research
areas from the study were identified by participants as having
direct relevance: AI-Augmented Software Development, Assuring
Continuously Evolving Software Systems, and Engineering
AI-Enabled Software Systems. Speakers and participants at
the event worked to explore software-related challenges that
are critical for multidisciplinary research across domains of
importance to the nation as well as the promising research that
is needed to engineer the necessary systems reliably and well.

WORKSHOP GOALS AND MOTIVATION

The workshop organizers brought together participants to
encourage new partnerships that will advance U.S. leadership
and national interests through the disciplines of software and AI
engineering, and positively impact progress across virtually all
scientific domains. Specific objectives for the workshop included

• Characterize how software engineering capabilities are
having a direct impact on the future of our nation.

1 See https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=741193
to download a copy of the study.

• Inform a community strategy for building and maintaining
U.S. leadership in software engineering and AI engineering.

• Produce a report that summarizes challenges, opportunities,
and strategic priorities.

• Identify research questions that energize the computing
community and spark new collaborations.

• Identify updates to the Carnegie Mellon University (CMU) SEI
National Agenda for Software Engineering National Study and
Roadmap.

Executing and advancing the closely related disciplines of
software engineering and AI engineering are indispensable
to our ability to develop and deploy intelligent software
systems effectively and rapidly. While the engineering of AI
capabilities has unique and challenging requirements, these
capabilities are implemented in software. To date, there has
been significant research within software engineering on the
technologies and practices needed to build such AI-enabled
systems with confidence. While comparatively more recent,
the fundamental theories, practices, and knowledge base for
AI engineering are receiving significant research attention to
ensure that AI capabilities are incorporated into systems with
expected trustworthiness and responsibility.

There has also been considerable excitement around the
idea of using AI to help in the engineering of software
systems at scale. Approaches exploiting large language
models (LLMs) are already automating some tasks that were
thought to require human creativity, including some aspects
of software engineering. As the boundaries of software and
AI engineering blend, the tools and techniques available
to engineers to develop top-priority capabilities are also
changing. The rapidly changing technical environment creates
further urgency to prioritize areas of most critical need and
allocate multidisciplinary resources to the most challenging
and essential areas of concern.

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 3

CRITICAL NEEDS AND PRIORITIES: FIVE PRIMARY THEMES

In keynote speeches, breakout sessions, and lightning talks,
participants almost unanimously remarked on the rapid
acceleration of new technologies in the software development
lifecycle and the role of AI in shaping the future of software
systems. As the critical need for new approaches to navigate
both the opportunities and the challenges was discussed, five
main themes emerged.

1. AI is transforming the software engineering process
and how we engineer software systems. The increasing
symbiosis of humans and machines is transforming
every phase of the software development lifecycle.

In software engineering, we are witnessing the emergence of a
symbiotic workforce, where autonomous, intelligent assistants
will work with software engineers to develop systems. This
revolution in the way we approach software development
will reshape the entire lifecycle, giving rise to approaches
that promise to enhance productivity, quality, and efficiency.
Software engineering should utilize AI tools and technology
in the lifecycle, and software engineering principles should
serve as a foundation for the development, evolution, and
evaluation of AI-enabled software. The use of AI will likely
make it possible to automate much harder programming and
software-quality problems. While we recognize that tasks,
skills, and tools will inevitably undergo transformation in this
new paradigm, the specifics are not yet fully evident.

Current technological advances, especially those related to
AI and machine learning (ML) tools, will fundamentally alter
the ways in which applications are built—from design-to-code
platforms and tools, to ML models that automatically generate
code, to models that automate elements of application testing.
ML-generated code is already in commercial codebases, and
the overall percentage is already rapidly growing.

In fact, the experimental application of LLMs shows promise
across the entire lifecycle. Effective application of LLMs may
enable the ultimate “shift left” approach, where tasks that are
traditionally done at a later stage of the process, such as testing
or performance evaluation, can be done early, often before any
code is written, or incorporated effectively throughout software
development. Design-to-code platforms and tools could make it
easier for developers to bring their ideas to fruition as models
automatically generate code and streamline repetitive coding
tasks. Leveraging advanced automation techniques, including
AI- and LLM-enabled capabilities for everything from coding
and code review to deployment at scale, integration test, and
debugging, could streamline workflows, improve code quality,
and accelerate the development cycle. Research exploring how
to apply LLMs is only in its early phases, however, and many
potential issues must be addressed, including the following:

• A substantial number of solutions have been trained on a
single proprietary data source or on proprietary algorithms,
and, as a result, it is not clear how robust their inferences
and conclusions are.

• Filtering issues can make conclusions hard to replicate,
especially since it is not always clear what kind of filtering has
been done. Some models are trained on data that specifically
omits some knowledge, and in other instances, the companies
that own the models decide to censor some results.

• More diversity in models, systems, and applications is
needed, and the research community should not put too
much trust in a single model. Public funding might help
address this issue by generating models and software/
hardware infrastructures that remove the proprietary or
black-box decision making that influences results.

• Given the speed with which innovations can be developed
in this space, the software research community has become
increasingly focused on quick prototypes as opposed to
long-term, systematic research.

• Most effective techniques will likely be based on hybrid
solutions, that is, a combination of LLMs, other AI, and data-
driven automation approaches. Investigations of hybrid
solutions should be accelerated.

While these new technologies promise to bring many benefits,
they also have the potential to quickly multiply negative
effects, such as security problems and AI debt (i.e., the cost
of the complex mix of processes and procedures needed to
discover, train, and deploy predictive models that are accurate
and dependable). We need to develop sound and empirically
based methods now for determining what approaches are
considered successful and how to guide future software
development lifecycle optimizations. Moreover, successful
integration of AI in software development also relies on
many non-technical factors, including the need for a “smart
assistant” that understands team dynamics and roles and
responds appropriately to human interactions and needs.

2. While generative AI has reached a level of
sophistication that may seem to resemble human
intelligence, it is considerably harder to determine the
level of trust that should be placed in the outputs.

The assurance of mission- and safety-critical cyber-physical
systems (CPS) has become increasingly challenging due to the
growing complexity of these systems. The introduction of AI
elements further compounds these difficulties because they
can create large bodies of new code quickly, complicate the
understanding of system behavior, and introduce new attack
vectors, including the poisoning of training data and prompt
injection, in which AI prompts can include code to generate
pernicious behaviors.

4 [DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

As a result, while it is already clear that generative AI can
make software developers more productive (in terms of
producing code), there are well-founded worries about
the quality and sustainability of the code produced. These
new AI tools may already be producing a huge wave of
technical debt that could overwhelm downstream software
engineering efforts. In some studies, generative AI tools
regurgitated old defects as often as they produced good fixes.
Novice developers may lack the expertise to understand the
limitations of the code being produced. AI-produced code will
coexist alongside human-built code for a long time. We have
few options to help end users and developers decide whether
to trust code generated by tools and how this trust should
compare to the trust in human-written code. Do we trust an
AI tool more or less than a human, even if humans may make
more mistakes? Where do we address trust: in the ML models
themselves, in the software engineering, in testing, in how
users interact with the system, or all of the above?

Research has already begun to identify the factors that can
increase software developers’ trust in AI tools. Key factors
include source reputation, interaction (e.g., validation support
and feedback loops), control (e.g., degree of ownership and
autonomy), system features (e.g., ease of installation and
performance measures), and expectations (e.g., how well the
tool fits the style/goal of the developers). Explainability is not a
proxy for trustability. By their nature, many AI systems cannot
cogently explain why they arrive at their conclusions.

One goal should be increasing our ability to build trustable
systems out of untrusted components. A second goal to
explore is adopting AI to generate evidence about a resulting

system that can be independently verified (e.g., analogous
to the development of proof-carrying code or AI-generated
code that comes with its own evidence). Another aspect
of trust that requires research is whether AI tools leak
intellectual property. It is possible that a model might learn
on a proprietary codebase and then recommend pieces of
that codebase to inappropriate users. Today we do not trust
AI—but we do not always trust humans either. Rather than
focusing on making AI trustworthy, we could use it to help us
increase trust, using techniques such as generating evidence
and incorporating AI into software testing and reviews.

Data assurance is another new frontier in the assurance of AI.
In fact, it is one of the key components that makes assurance
hard for AI, given the difficulty of understanding how data
affects the final behavior of the system. The scalability of
assurance for large AI models also poses a significant hurdle.
Although some verification techniques have improved, the
rapid increase in model size outpaces these approaches,
which can render current verification methods inadequate
from the outset.

3. Redefining the discipline of software engineering to
encompass the use of new technologies (including
but not limited to generative AI), is imperative along
with rethinking the associated curricula, tools, and
technologies. This effort is key to designing and
building, evolving, and evaluating trustworthy software
systems in a responsible, ethical way.

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 5

Redefining the software engineering discipline with AI is leading
toward a revolution that changes how engineering solutions
are explored, systems are built, and AI aids in the operation of
systems. Education is a crucial aspect of any transformation
effort brought about by AI, with new degrees and curricula
incorporating AI into various engineering disciplines.

To keep up with the rapid advancement of AI technologies,
software engineering curricula must include instruction on both
the application of AI in the software engineering lifecycle and
on how tools can facilitate the design, development, training,
testing, and authorization of AI-enabled software. This evolution
of software engineering curricula, both at the undergraduate
and graduate levels, requires a dynamic component to ensure
that the workforce is well equipped to effectively use these tools
in supporting the development lifecycle.

Care must also be taken to make curricula equitable. Some
initial observations as AI tools start to be used in software
classes indicate that groups that are underrepresented
in technology disciplines are also less comfortable using
these technologies. This factor and others like it should be
considered to avoid creating an environment where people
with access to AI tools have clear advantages, and other
groups without equitable access get left behind. Retaining
talent in academia is also a concern. PhD students and faculty
often face financial challenges due to the demanding nature
of research and the need to secure funding. Efforts to make
PhD programs more attractive, reduce funding restrictions,
and provide sustained funding can help address these issues.
The cost of an undergraduate education is also a significant
concern. Government involvement in addressing the
educational system’s challenges can contribute to producing a
workforce better equipped to address the nation’s challenges
effectively.

Enhancing fluidity between academia and other sectors can
promote knowledge exchange. Incentivizing collaboration
among universities and industry is crucial to address
important research needs effectively. Key elements in
fostering such collaboration include establishing public-
modeled problems, data repositories, and testbeds to
facilitate joint research efforts. Government agencies can
also play a role by effectively utilizing commercial solutions
and services where they prove beneficial and identifying
bottlenecks that hinder progress.

4. New technologies, including generative AI, seem
to hold the promise of making almost everyone
a programmer. As a result, AI literacy and the
development of new skills are needed throughout
the workforce.

The landscape of programming is evolving dramatically.
Instead of relying solely on those with traditional technical

skills and expertise in software, systems, and AI engineering,
new tools promise to enable almost everyone to become a
“programmer.” For this approach to be successful, new skills
and abilities must be cultivated across a much wider range of
people. These new skills and abilities include problem solving,
critical thinking, and a general understanding of AI and ML.

The skills needed by professionally trained software
programmers and engineers will also shift. While many
traditional software engineering skills will likely become less
valuable given AI tool capabilities, the value of the remaining
skills may increase dramatically. For example, research results
from Microsoft about its Copilot tool that generates code via
LLMs indicate that users need to spend less time writing code
but more time understanding and reasoning about code.

Software engineers will need a firm grasp of uncertainty
and probabilistic reasoning, an increased capacity to detect
problems and make informed design decisions, strong
systems-thinking skills, and a keen awareness of the ethics of
AI. The discipline of prompt engineering is beginning to gain
traction, which involves programming in natural language
and has potential applications in various stages of software
development. Different prompts given to code models result
in the generation of different code, highlighting the challenge
of obtaining trustworthy output from these models.

Moreover, the potential impact on society and the economy
of using AI in software systems necessitates that decision-
makers and leaders in all domains comprehend the
fundamental principles of AI and be competent in asking the
critical questions to enable their trustworthy development
and responsible use. Initiatives can be launched to provide
training, workshops, and resources to ensure that individuals
in positions of influence and authority are equipped to make
informed decisions regarding AI technologies and their
applications. By empowering leaders with AI literacy, we can
foster the responsible and beneficial integration of AI in our lives.

5. The use of AI tools such as LLMs can mask the tradeoffs
being made between the functionality of software
systems and their safety and security. Research
is needed to identify and make explicit the key
engineering tradeoffs being made during the design,
development, training, testing, and authorization of
systems that include AI components.

Trust, trustworthiness, and confidence in software systems
that include or are developed using AI components are top
priority considerations. To achieve trustworthiness, engineers
must navigate key tradeoffs in system development, ensuring
the system performs as intended without overstepping its
boundaries. This trust should extend as the system inevitably
changes over time, providing measurable confidence in the
system’s evolving performance. Research is essential to

6 [DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

enable this outcome by providing mechanisms for identifying
engineering tradeoffs throughout the specification, design,
training, testing, and authorization of critical systems.

Explicit tradeoffs that set limits on AI systems are also
needed to address concerns for both direct users and others
potentially impacted by the system’s actions or data. Although
technologies like ChatGPT currently implement some features
that prevent harm at the expense of performance, explicit
engineering tradeoffs are needed during system development
to clarify the relationship between functionality and safety/
security. Research in AI-enabled systems must identify and
analyze these tradeoffs explicitly to maintain safety and
security throughout the software engineering lifecycle.

Additionally, AI-enabled tools should be designed to explicitly
show the tradeoffs involved in developing a system instead
of obfuscating or concealing them from key decision makers.
Transparency in engineering tradeoffs is especially critical
when incorporating technologies like smart coding assistants
to ensure the development of robust and trustworthy
systems.

RESEARCH NEEDS

Software and AI capabilities are advancing rapidly around
the world and not just in high-resource nation states. They
will continue to advance in complexity and sophistication
without bound for the foreseeable future. To bolster U.S.
leadership in this incredibly competitive domain, participants
at the workshop identified a need to focus on research
breakthroughs and development in software engineering and
AI engineering, system architectures, and defining trustable
systems. Presentations and discussions from multiple federal
agencies showed the extent to which their plans for executing
their missions rely on advanced software and AI capabilities.

Workshop participants also discussed the importance of
improving collaboration mechanisms among academia,
industry, and the federal space, including suggestions to invest
in operationally relevant data sets and testbeds to enhance
collaboration. Likewise, participants highlighted the need for
open access to resources, such as models and data sets, in
software engineering and the importance of breaking down
large models into smaller pieces for better understanding and
progress. The significance of social factors, access, and soft skills
in AI and the importance of taking a multi-disciplinary approach
were also acknowledged. The high-priority themes we identified
also revealed a significant need for intentional crosscutting
progress in data, standards, and all tradeoffs and aspects of
trust. Specific areas of needed research discussed included:

• Software architectures for modern software needs.
Architectures for AI-based systems should be developed so
that they are resilient to attack and support federated data
sources. The development of modeling and analysis techniques
is needed to guide early design decisions, facilitate downstream
test and evaluation (T&E), and enable evidence creation.

• AI engineering practices for trustworthy use of ML and LLM
capabilities. Research is needed to enable the development
of trustworthy systems to mitigate weaknesses in ML and
LLMs and support ongoing updates to ML- and LLM-based
capabilities as algorithms and training improve.

• Data-intensive software engineering. Software repositories
have a wealth of information regarding current and older
projects. There is a need to support repository mining
for defect repair, API compliance, refactoring, synthesis,
transformation, and evidence-based T&E. Data federation,
privacy protection, and multi-institutional data collaboration
are important challenges in integrating various types of data,
such as health and environmental data.

• Diverse, advanced technical models and analyses to support
development, evolution, and T&S. The use of modeling
and analysis is essential in modern practice. Modeling and
analysis must be integrated into practice in a way that allows
a diversity of tools. More robust code models must be built
by considering different code properties, such as syntax,
semantics, and evolution, and incorporating them into the
model’s design and loss functions.

• Cybersecurity considerations for AI-reliant and software-
reliant systems. Systems are growing in complexity and
the number of interconnections, with larger external and
internal attack surfaces, including AI attack surfaces. A
focus on cyber risk is needed, including how to measure
and manage attack surfaces, since threats are growing in
sophistication and scale. Architectures devised for security
and resiliency are needed as well as models and tools to
enhance cybersecurity.

• Clear standards and guidance. There is a need for clarity
in the development of standards for AI systems, as they
are often asked to meet a large and varied number of
requirements related to trustworthiness, security, privacy,
and ethical considerations.

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 7

CONCLUSION AND NEXT STEPS

This workshop delved into various aspects of software and
AI engineering, addressing challenges, opportunities, and
ethical considerations. It highlighted the paradigm shift
brought about by AI and LLMs, requiring alignment between
models, researchers, and diverse user groups. Participants
emphasized the need for transparency, trustworthiness, and
collaboration across different sectors to effectively navigate
the evolving landscape of AI technology.

The workshop also highlighted the impact of AI on various
domains, including the workforce, cybersecurity, and
autonomous systems, and the importance of collaboration
and engagement with stakeholders was emphasized. The
growing influence of AI in society, along with the acceleration
of technology in general, demands interdisciplinary
collaboration, technical advocacy for broader use cases, and
policy development informed by the research community.

Making investment decisions in the right technical domains
and fostering powerful partnerships is key to meeting the
critical needs and priorities of the U.S. for software and AI
engineering. For example, Figure 1 shows the actions taken
to avoid the risks of a U.S. economy dependent on foreign
chip manufacturing, which involves industry investments of
around $50 billion and a proposed government investment
of another $50 billion. AI technology investment followed a
similar path, where a possible U.S. technology gap motivated
major government and industry investment. The increasing
awareness of the risks to national security and the U.S.
economy motivated action in those cases, and those concerns
also underscore the importance of making a similar strategic
investment in software engineering research.

Chip Manufacturing

Risk: The U.S. economy has
become dependent on foreign chip
manufacturing.

• U.S. capacity fell to ~13% in 2015,
compared to 30% in 1990 and 42%
in 1980.

• 2020–2021: There were worldwide
shortages related to COVID-19
pandemic.

AI Technology

Risk: The U.S. AI technology gap
compares negatively to other nation
states.

• Many nations are interested, but it is
primarily a two-nation race.

• Multiple nations are announcing multi-
billion-dollar investments in AI.

Software Engineering Research

Risk: Software engineering advances
have not kept up with the critical nature
of software for U.S. national security and
competitiveness.

This is important because

• Software is the backbone of
critical systems.

• Software includes complex
supply chains.

• Software is infrastructure.

U.S. Actions

• 2017: The President’s Council of
Advisors on Science and Technology
(PCAST) reported on U.S. Leadership
in Semiconductors.

• 2020–2021: Intel’s $20 billion+ Taiwan
Semiconductor Manufacturing
Company represented $30 billion+ in
U.S. fabrication investments.

• 2022: The CHIPS Act was signed
into law, including $52.7 billion for
American semiconductor research,
development, manufacturing, and
workforce development.

U.S. Actions

• 2018: The DARPA “AI Next” Campaign
invested $2 billion.

• 2019: The Executive Order on AI was
released.

• 2021: NITRD investment #1 of 12
was made.

• 2021: The National Artificial
Intelligence Initiative (NAII) was
established through bipartisan
legislation.

• 2023: The White House announced
a $140 million investment to create
seven AI research hubs.

Initial U.S. Actions

• 2019–2020: The NITRD Future
Computing Community of Interest;
National Strategic Computing Initiative
Update; and Software Productivity,
Sustainability, and Quality Working
Group were formed.

• 2021: CMU SEI’s A National Agenda
for Software Engineering Research and
Development study was published.

• 2023: U.S. Leadership in Software
Engineering and AI Engineering: Critical
Needs & Priorities Workshop was held.

Figure 1. Landscape of U.S. Investment in Critical Technologies

About the SEI
Always focused on the future, the Software Engineering Institute (SEI) advances software
as a strategic advantage for national security. We lead research and direct transition
of software engineering, cybersecurity, and artificial intelligence technologies at the
intersection of academia, industry, and government. We serve the nation as a federally
funded research and development center (FFRDC) sponsored by the U.S. Department of
Defense (DoD) and are based at Carnegie Mellon University, a global research university
annually rated among the best for its programs in computer science and engineering.

Contact Us
CARNEGIE MELLON UNIVERSITY
SOFTWARE ENGINEERING INSTITUTE
4500 FIFTH AVENUE; PITTSBURGH, PA 15213-2612

sei.cmu.edu
412.268.5800 | 888.201.4479
info@sei.cmu.edu

Copyright 2023 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense
under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of
the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s)
and should not be construed as an official Government position, policy, or decision,
unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release
and unlimited distribution. Please see Copyright notice for non-US Government use
and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works
from this material for internal use is granted, provided the copyright and “No Warranty”
statements are included with all reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification,
and freely distributed in written or electronic form without requesting formal permission.
Permission is required for any other external and/or commercial use. Requests for
permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

*These restrictions do not apply to U.S. government entities.

DM23-0890

©2023 Carnegie Mellon University | 6156 | C 10.04.2023 | S. 04.23.2024

http://sei.cmu.edu
mailto:info%40sei.cmu.edu?subject=

