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ADVANCES IN SOFTWARE ENGINEERING 
AND ARTIFICIAL INTELLIGENCE (AI) 
are providing critical and innovative 
capabilities across almost every domain, 
but the potential remains to do far more, 
particularly for applications that demand 
high levels of trustworthiness. To inform 
a community strategy for building and 
maintaining U.S. leadership in software 
engineering and AI engineering, the 
Software Engineering Institute (SEI) and the 
Networking and Information Technology 
Research and Development (NITRD) 
Program in the White House Office of 
Science and Technology Policy co-hosted 
a workshop at the National Science 
Foundation on June 20–21, 2023. 

The event gathered thought leaders from federal research 
funding agencies, research laboratories, mission agencies, and 
commercial organizations to explore the fundamental research 
needed to support progress toward this goal. The workshop 
used the SEI’s Architecting the Future of Software Engineering: 
A National Agenda for Software Engineering Research and 
Development1 as a starting point because the areas of focus 
identified in the study have been confirmed as even more critical 
and urgent, particularly due to the rapid advances of generative 
AI in the two years since its release. Specifically, three research 
areas from the study were identified by participants as having 
direct relevance: AI-Augmented Software Development, Assuring 
Continuously Evolving Software Systems, and Engineering 
AI-Enabled Software Systems. Speakers and participants at 
the event worked to explore software-related challenges that 
are critical for multidisciplinary research across domains of 
importance to the nation as well as the promising research that 
is needed to engineer the necessary systems reliably and well.

WORKSHOP GOALS AND MOTIVATION

The workshop organizers brought together participants to 
encourage new partnerships that will advance U.S. leadership 
and national interests through the disciplines of software and AI 
engineering, and positively impact progress across virtually all 
scientific domains. Specific objectives for the workshop included 

• Characterize how software engineering capabilities are 
having a direct impact on the future of our nation.

1  See https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=741193  
to download a copy of the study.

• Inform a community strategy for building and maintaining 
U.S. leadership in software engineering and AI engineering. 

• Produce a report that summarizes challenges, opportunities, 
and strategic priorities.

• Identify research questions that energize the computing 
community and spark new collaborations.

• Identify updates to the Carnegie Mellon University (CMU) SEI 
National Agenda for Software Engineering National Study and 
Roadmap.

Executing and advancing the closely related disciplines of 
software engineering and AI engineering are indispensable 
to our ability to develop and deploy intelligent software 
systems effectively and rapidly. While the engineering of AI 
capabilities has unique and challenging requirements, these 
capabilities are implemented in software. To date, there has 
been significant research within software engineering on the 
technologies and practices needed to build such AI-enabled 
systems with confidence.  While comparatively more recent, 
the fundamental theories, practices, and knowledge base for 
AI engineering are receiving significant research attention to 
ensure that AI capabilities are incorporated into systems with 
expected trustworthiness and responsibility.  

There has also been considerable excitement around the 
idea of using AI to help in the engineering of software 
systems at scale. Approaches exploiting large language 
models (LLMs) are already automating some tasks that were 
thought to require human creativity, including some aspects 
of software engineering. As the boundaries of software and 
AI engineering blend, the tools and techniques available 
to engineers to develop top-priority capabilities are also 
changing. The rapidly changing technical environment creates 
further urgency to prioritize areas of most critical need and 
allocate multidisciplinary resources to the most challenging 
and essential areas of concern.   
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CRITICAL NEEDS AND PRIORITIES: FIVE PRIMARY THEMES

In keynote speeches, breakout sessions, and lightning talks, 
participants almost unanimously remarked on the rapid 
acceleration of new technologies in the software development 
lifecycle and the role of AI in shaping the future of software 
systems. As the critical need for new approaches to navigate 
both the opportunities and the challenges was discussed, five 
main themes emerged. 

1. AI is transforming the software engineering process 
and how we engineer software systems. The increasing 
symbiosis of humans and machines is transforming 
every phase of the software development lifecycle.

In software engineering, we are witnessing the emergence of a 
symbiotic workforce, where autonomous, intelligent assistants 
will work with software engineers to develop systems. This 
revolution in the way we approach software development 
will reshape the entire lifecycle, giving rise to approaches 
that promise to enhance productivity, quality, and efficiency. 
Software engineering should utilize AI tools and technology 
in the lifecycle, and software engineering principles should 
serve as a foundation for the development, evolution, and 
evaluation of AI-enabled software. The use of AI will likely 
make it possible to automate much harder programming and 
software-quality problems. While we recognize that tasks, 
skills, and tools will inevitably undergo transformation in this 
new paradigm, the specifics are not yet fully evident. 

Current technological advances, especially those related to 
AI and machine learning (ML) tools, will fundamentally alter 
the ways in which applications are built—from design-to-code 
platforms and tools, to ML models that automatically generate 
code, to models that automate elements of application testing. 
ML-generated code is already in commercial codebases, and 
the overall percentage is already rapidly growing. 

In fact, the experimental application of LLMs shows promise 
across the entire lifecycle. Effective application of LLMs may 
enable the ultimate “shift left” approach, where tasks that are 
traditionally done at a later stage of the process, such as testing 
or performance evaluation, can be done early, often before any 
code is written, or incorporated effectively throughout software 
development. Design-to-code platforms and tools could make it 
easier for developers to bring their ideas to fruition as models 
automatically generate code and streamline repetitive coding 
tasks. Leveraging advanced automation techniques, including 
AI- and LLM-enabled capabilities for everything from coding 
and code review to deployment at scale, integration test, and 
debugging, could streamline workflows, improve code quality, 
and accelerate the development cycle. Research exploring how 
to apply LLMs is only in its early phases, however, and many 
potential issues must be addressed, including the following:

• A substantial number of solutions have been trained on a 
single proprietary data source or on proprietary algorithms, 
and, as a result, it is not clear how robust their inferences 
and conclusions are.

• Filtering issues can make conclusions hard to replicate, 
especially since it is not always clear what kind of filtering has 
been done. Some models are trained on data that specifically 
omits some knowledge, and in other instances, the companies 
that own the models decide to censor some results.

• More diversity in models, systems, and applications is 
needed, and the research community should not put too 
much trust in a single model. Public funding might help 
address this issue by generating models and software/
hardware infrastructures that remove the proprietary or 
black-box decision making that influences results. 

• Given the speed with which innovations can be developed 
in this space, the software research community has become 
increasingly focused on quick prototypes as opposed to 
long-term, systematic research.

• Most effective techniques will likely be based on hybrid 
solutions, that is, a combination of LLMs, other AI, and data-
driven automation approaches. Investigations of hybrid 
solutions should be accelerated. 

While these new technologies promise to bring many benefits, 
they also have the potential to quickly multiply negative 
effects, such as security problems and AI debt (i.e., the cost 
of the complex mix of processes and procedures needed to 
discover, train, and deploy predictive models that are accurate 
and dependable). We need to develop sound and empirically 
based methods now for determining what approaches are 
considered successful and how to guide future software 
development lifecycle optimizations. Moreover, successful 
integration of AI in software development also relies on 
many non-technical factors, including the need for a “smart 
assistant” that understands team dynamics and roles and 
responds appropriately to human interactions and needs. 

2. While generative AI has reached a level of 
sophistication that may seem to resemble human 
intelligence, it is considerably harder to determine the 
level of trust that should be placed in the outputs.

The assurance of mission- and safety-critical cyber-physical 
systems (CPS) has become increasingly challenging due to the 
growing complexity of these systems. The introduction of AI 
elements further compounds these difficulties because they 
can create large bodies of new code quickly, complicate the 
understanding of system behavior, and introduce new attack 
vectors, including the poisoning of training data and prompt 
injection, in which AI prompts can include code to generate 
pernicious behaviors.
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As a result, while it is already clear that generative AI can 
make software developers more productive (in terms of 
producing code), there are well-founded worries about 
the quality and sustainability of the code produced. These 
new AI tools may already be producing a huge wave of 
technical debt that could overwhelm downstream software 
engineering efforts. In some studies, generative AI tools 
regurgitated old defects as often as they produced good fixes. 
Novice developers may lack the expertise to understand the 
limitations of the code being produced. AI-produced code will 
coexist alongside human-built code for a long time. We have 
few options to help end users and developers decide whether 
to trust code generated by tools and how this trust should 
compare to the trust in human-written code. Do we trust an 
AI tool more or less than a human, even if humans may make 
more mistakes? Where do we address trust: in the ML models 
themselves, in the software engineering, in testing, in how 
users interact with the system, or all of the above? 

Research has already begun to identify the factors that can 
increase software developers’ trust in AI tools. Key factors 
include source reputation, interaction (e.g., validation support 
and feedback loops), control (e.g., degree of ownership and 
autonomy), system features (e.g., ease of installation and 
performance measures), and expectations (e.g., how well the 
tool fits the style/goal of the developers). Explainability is not a 
proxy for trustability. By their nature, many AI systems cannot 
cogently explain why they arrive at their conclusions. 

One goal should be increasing our ability to build trustable 
systems out of untrusted components. A second goal to 
explore is adopting AI to generate evidence about a resulting 

system that can be independently verified (e.g., analogous 
to the development of proof-carrying code or AI-generated 
code that comes with its own evidence). Another aspect 
of trust that requires research is whether AI tools leak 
intellectual property. It is possible that a model might learn 
on a proprietary codebase and then recommend pieces of 
that codebase to inappropriate users. Today we do not trust 
AI—but we do not always trust humans either. Rather than 
focusing on making AI trustworthy, we could use it to help us 
increase trust, using techniques such as generating evidence 
and incorporating AI into software testing and reviews.

Data assurance is another new frontier in the assurance of AI. 
In fact, it is one of the key components that makes assurance 
hard for AI, given the difficulty of understanding how data 
affects the final behavior of the system. The scalability of 
assurance for large AI models also poses a significant hurdle. 
Although some verification techniques have improved, the 
rapid increase in model size outpaces these approaches, 
which can render current verification methods inadequate 
from the outset.

3. Redefining the discipline of software engineering to 
encompass the use of new technologies (including 
but not limited to generative AI), is imperative along 
with rethinking the associated curricula, tools, and 
technologies. This effort is key to designing and 
building, evolving, and evaluating trustworthy software 
systems in a responsible, ethical way. 
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Redefining the software engineering discipline with AI is leading 
toward a revolution that changes how engineering solutions 
are explored, systems are built, and AI aids in the operation of 
systems. Education is a crucial aspect of any transformation 
effort brought about by AI, with new degrees and curricula 
incorporating AI into various engineering disciplines. 

To keep up with the rapid advancement of AI technologies, 
software engineering curricula must include instruction on both 
the application of AI in the software engineering lifecycle and 
on how tools can facilitate the design, development, training, 
testing, and authorization of AI-enabled software. This evolution 
of software engineering curricula, both at the undergraduate 
and graduate levels, requires a dynamic component to ensure 
that the workforce is well equipped to effectively use these tools 
in supporting the development lifecycle. 

Care must also be taken to make curricula equitable. Some 
initial observations as AI tools start to be used in software 
classes indicate that groups that are underrepresented 
in technology disciplines are also less comfortable using 
these technologies. This factor and others like it should be 
considered to avoid creating an environment where people 
with access to AI tools have clear advantages, and other 
groups without equitable access get left behind. Retaining 
talent in academia is also a concern. PhD students and faculty 
often face financial challenges due to the demanding nature 
of research and the need to secure funding. Efforts to make 
PhD programs more attractive, reduce funding restrictions, 
and provide sustained funding can help address these issues. 
The cost of an undergraduate education is also a significant 
concern. Government involvement in addressing the 
educational system’s challenges can contribute to producing a 
workforce better equipped to address the nation’s challenges 
effectively.

Enhancing fluidity between academia and other sectors can 
promote knowledge exchange. Incentivizing collaboration 
among universities and industry is crucial to address 
important research needs effectively. Key elements in 
fostering such collaboration include establishing public-
modeled problems, data repositories, and testbeds to 
facilitate joint research efforts. Government agencies can 
also play a role by effectively utilizing commercial solutions 
and services where they prove beneficial and identifying 
bottlenecks that hinder progress.

4. New technologies, including generative AI, seem 
to hold the promise of making almost everyone 
a programmer. As a result, AI literacy and the 
development of new skills are needed throughout  
the workforce.

The landscape of programming is evolving dramatically. 
Instead of relying solely on those with traditional technical 

skills and expertise in software, systems, and AI engineering, 
new tools promise to enable almost everyone to become a 
“programmer.” For this approach to be successful, new skills 
and abilities must be cultivated across a much wider range of 
people. These new skills and abilities include problem solving, 
critical thinking, and a general understanding of AI and ML. 

The skills needed by professionally trained software 
programmers and engineers will also shift. While many 
traditional software engineering skills will likely become less 
valuable given AI tool capabilities, the value of the remaining 
skills may increase dramatically. For example, research results 
from Microsoft about its Copilot tool that generates code via 
LLMs indicate that users need to spend less time writing code 
but more time understanding and reasoning about code. 

Software engineers will need a firm grasp of uncertainty 
and probabilistic reasoning, an increased capacity to detect 
problems and make informed design decisions, strong 
systems-thinking skills, and a keen awareness of the ethics of 
AI. The discipline of prompt engineering is beginning to gain 
traction, which involves programming in natural language 
and has potential applications in various stages of software 
development. Different prompts given to code models result 
in the generation of different code, highlighting the challenge 
of obtaining trustworthy output from these models.

Moreover, the potential impact on society and the economy 
of using AI in software systems necessitates that decision-
makers and leaders in all domains comprehend the 
fundamental principles of AI and be competent in asking the 
critical questions to enable their trustworthy development 
and responsible use. Initiatives can be launched to provide 
training, workshops, and resources to ensure that individuals 
in positions of influence and authority are equipped to make 
informed decisions regarding AI technologies and their 
applications. By empowering leaders with AI literacy, we can 
foster the responsible and beneficial integration of AI in our lives.

5. The use of AI tools such as LLMs can mask the tradeoffs 
being made between the functionality of software 
systems and their safety and security. Research 
is needed to identify and make explicit the key 
engineering tradeoffs being made during the design, 
development, training, testing, and authorization of 
systems that include AI components.

Trust, trustworthiness, and confidence in software systems 
that include or are developed using AI components are top 
priority considerations. To achieve trustworthiness, engineers 
must navigate key tradeoffs in system development, ensuring 
the system performs as intended without overstepping its 
boundaries. This trust should extend as the system inevitably 
changes over time, providing measurable confidence in the 
system’s evolving performance. Research is essential to 
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enable this outcome by providing mechanisms for identifying 
engineering tradeoffs throughout the specification, design, 
training, testing, and authorization of critical systems. 

Explicit tradeoffs that set limits on AI systems are also 
needed to address concerns for both direct users and others 
potentially impacted by the system’s actions or data. Although 
technologies like ChatGPT currently implement some features 
that prevent harm at the expense of performance, explicit 
engineering tradeoffs are needed during system development 
to clarify the relationship between functionality and safety/
security. Research in AI-enabled systems must identify and 
analyze these tradeoffs explicitly to maintain safety and 
security throughout the software engineering lifecycle. 

Additionally, AI-enabled tools should be designed to explicitly 
show the tradeoffs involved in developing a system instead 
of obfuscating or concealing them from key decision makers. 
Transparency in engineering tradeoffs is especially critical 
when incorporating technologies like smart coding assistants 
to ensure the development of robust and trustworthy 
systems.

RESEARCH NEEDS

Software and AI capabilities are advancing rapidly around 
the world and not just in high-resource nation states. They 
will continue to advance in complexity and sophistication 
without bound for the foreseeable future. To bolster U.S. 
leadership in this incredibly competitive domain, participants 
at the workshop identified a need to focus on research 
breakthroughs and development in software engineering and 
AI engineering, system architectures, and defining trustable 
systems. Presentations and discussions from multiple federal 
agencies showed the extent to which their plans for executing 
their missions rely on advanced software and AI capabilities. 

Workshop participants also discussed the importance of 
improving collaboration mechanisms among academia, 
industry, and the federal space, including suggestions to invest 
in operationally relevant data sets and testbeds to enhance 
collaboration. Likewise, participants highlighted the need for 
open access to resources, such as models and data sets, in 
software engineering and the importance of breaking down 
large models into smaller pieces for better understanding and 
progress. The significance of social factors, access, and soft skills 
in AI and the importance of taking a multi-disciplinary approach 
were also acknowledged. The high-priority themes we identified 
also revealed a significant need for intentional crosscutting 
progress in data, standards, and all tradeoffs and aspects of 
trust. Specific areas of needed research discussed included:

• Software architectures for modern software needs. 
Architectures for AI-based systems should be developed so 
that they are resilient to attack and support federated data 
sources. The development of modeling and analysis techniques 
is needed to guide early design decisions, facilitate downstream 
test and evaluation (T&E), and enable evidence creation.

• AI engineering practices for trustworthy use of ML and LLM 
capabilities. Research is needed to enable the development 
of trustworthy systems to mitigate weaknesses in ML and 
LLMs and support ongoing updates to ML- and LLM-based 
capabilities as algorithms and training improve.

• Data-intensive software engineering. Software repositories 
have a wealth of information regarding current and older 
projects. There is a need to support repository mining 
for defect repair, API compliance, refactoring, synthesis, 
transformation, and evidence-based T&E. Data federation, 
privacy protection, and multi-institutional data collaboration 
are important challenges in integrating various types of data, 
such as health and environmental data.

• Diverse, advanced technical models and analyses to support 
development, evolution, and T&S. The use of modeling 
and analysis is essential in modern practice. Modeling and 
analysis must be integrated into practice in a way that allows 
a diversity of tools. More robust code models must be built 
by considering different code properties, such as syntax, 
semantics, and evolution, and incorporating them into the 
model’s design and loss functions.

• Cybersecurity considerations for AI-reliant and software-
reliant systems. Systems are growing in complexity and 
the number of interconnections, with larger external and 
internal attack surfaces, including AI attack surfaces. A 
focus on cyber risk is needed, including how to measure 
and manage attack surfaces, since threats are growing in 
sophistication and scale. Architectures devised for security 
and resiliency are needed as well as models and tools to 
enhance cybersecurity.

• Clear standards and guidance. There is a need for clarity 
in the development of standards for AI systems, as they 
are often asked to meet a large and varied number of 
requirements related to trustworthiness, security, privacy, 
and ethical considerations.
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CONCLUSION AND NEXT STEPS 

This workshop delved into various aspects of software and 
AI engineering, addressing challenges, opportunities, and 
ethical considerations. It highlighted the paradigm shift 
brought about by AI and LLMs, requiring alignment between 
models, researchers, and diverse user groups. Participants 
emphasized the need for transparency, trustworthiness, and 
collaboration across different sectors to effectively navigate 
the evolving landscape of AI technology. 

The workshop also highlighted the impact of AI on various 
domains, including the workforce, cybersecurity, and 
autonomous systems, and the importance of collaboration 
and engagement with stakeholders was emphasized. The 
growing influence of AI in society, along with the acceleration 
of technology in general, demands interdisciplinary 
collaboration, technical advocacy for broader use cases, and 
policy development informed by the research community. 

Making investment decisions in the right technical domains 
and fostering powerful partnerships is key to meeting the 
critical needs and priorities of the U.S. for software and AI 
engineering.  For example, Figure 1 shows the actions taken 
to avoid the risks of a U.S. economy dependent on foreign 
chip manufacturing, which involves industry investments of 
around $50 billion and a proposed government investment 
of another $50 billion. AI technology investment followed a 
similar path, where a possible U.S. technology gap motivated 
major government and industry investment. The increasing 
awareness of the risks to national security and the U.S. 
economy motivated action in those cases, and those concerns 
also underscore the importance of making a similar strategic 
investment in software engineering research. 

Chip Manufacturing

Risk: The U.S. economy has 
become dependent on foreign chip 
manufacturing.

• U.S. capacity fell to ~13% in 2015, 
compared to 30% in 1990 and 42%  
in 1980.

• 2020–2021: There were worldwide 
shortages related to COVID-19 
pandemic.

AI Technology

Risk: The U.S. AI technology gap 
compares negatively to other nation 
states.

• Many nations are interested, but it is 
primarily a two-nation race.

• Multiple nations are announcing multi-
billion-dollar investments in AI.

Software Engineering Research

Risk: Software engineering advances 
have not kept up with the critical nature 
of software for U.S. national security and 
competitiveness.

This is important because

• Software is the backbone of  
critical systems.

• Software includes complex  
supply chains.

• Software is infrastructure.

U.S. Actions

• 2017: The President’s Council of 
Advisors on Science and Technology 
(PCAST) reported on U.S. Leadership 
in Semiconductors.

• 2020–2021: Intel’s $20 billion+ Taiwan 
Semiconductor Manufacturing 
Company represented $30 billion+ in 
U.S. fabrication investments.

• 2022: The CHIPS Act was signed 
into law, including $52.7 billion for 
American semiconductor research, 
development, manufacturing, and 
workforce development.

U.S. Actions

• 2018: The DARPA “AI Next” Campaign 
invested $2 billion.

• 2019: The Executive Order on AI was 
released.

• 2021: NITRD investment #1 of 12  
was made.

• 2021: The National Artificial 
Intelligence Initiative (NAII) was 
established through bipartisan 
legislation.

• 2023: The White House announced 
a $140 million investment to create 
seven AI research hubs.

Initial U.S. Actions

• 2019–2020: The NITRD Future 
Computing Community of Interest; 
National Strategic Computing Initiative 
Update; and Software Productivity, 
Sustainability, and Quality Working 
Group were formed.

• 2021: CMU SEI’s A National Agenda 
for Software Engineering Research and 
Development study was published.

• 2023: U.S. Leadership in Software 
Engineering and AI Engineering: Critical 
Needs & Priorities Workshop was held.

Figure 1. Landscape of U.S. Investment in Critical Technologies
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