
Software Architecture cont’d
Table of Contents

Welcome ... 3

Ian Gorton ... 4

Scale changes everything .. 5

What is Big DatA? from a software Architecture Perspective… ... 7

Some Big Data… .. 8

Not so successful… .. 10

Big Data Survey ... 11

Big Data – State of the practice “The problem is not solved” ... 13

Polling Question #1 ... 15

NoSQL – Horizontally-scalable database technology ... 16

NoSQL Landscape .. 18

Horizontal Scaling Distributes Data (and adds complexity) .. 19

Rule of Thumb: Scalability reduces as implementation complexity grows 21

Big Data – A complex software engineering problem .. 24

Software Engineering at Scale .. 25

Polling Question #2 ... 27

So what are we doing at the SEI? ... 28

Enhancing Design Knowledge for Big Data Systems ... 29

LEAP4BD .. 31

Some Example Scalability Prototypes - Cassandra ... 34

QuA Base – A Knowledge Base for Big Data System Design ... 38

Polling Question #3 ... 40

Page 1 of 64

QuABase Demo ... 41

QuABase Demo 1 .. 42

QuABase Demo 2 .. 44

QuABase Demo 3 .. 46

QuABase Demo 4 .. 48

QuABase Demo 5 .. 49

QuABase Demo 6 .. 50

QuABase Demo 7 .. 51

Status .. 53

Thank you! .. 55

Copyright ... 64

Page 2 of 64

Welcome

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

**083 Shane: Hi and welcome
back to the SEI virtual event,
Software Architecture Trends and
New Directions. Again, we have Ian
Gorton with us now, going to give
our next talk on software architecture
for big data systems.

Page 3 of 64

Ian Gorton

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Software Architecture for Big Data Systems

Ian Gorton
Senior Member of the Technical Staff - Architecture Practices

Ian Gorton is investigating issues related to software architecture at scale. This
includes designing large scale data management and analytics systems, and
understanding the inherent connections and tensions between software, data and
deployment architectures in cloud-based systems.

I've written a book in 2006, Essential Software Architecture, published by Springer-
Verlag. It sold well and has had several excellent reviews in Dr Dobbs and ACM's
QUEUE Magazine. A 2nd Edition was published in 2011. I also co-edited 'Data
Intensive Systems' which was published by Cambridge University Press in 2012. I've
also published 34 refereed journal and 100 refereed international conference and
workshop papers, with an h-index of 28.

**048 Ian Gorton is investigating issues
related to software architecture at
scale. This includes designing a large
scale data management and analytic
systems and understanding the
inherent connections intentions
between software, data, and
deployment architectures in cloud
based systems. Since obtaining his
PhD in 1998, Ian has worked in
academia, industry, and government.
In 2006, he wrote Essential Software
Architecture. A second edition was
published in 2011. He also co-edited
Data Intensive Systems, which was
published by Cambridge University
Press in 2012. Ian, all yours.

Page 4 of 64

Ian Gorton: Thanks, Shane. And
good morning to everybody
Pittsburgh time. Thanks for hanging
in on the webinar this far. As I'm sure
many of you have been involved in,
in the last decade we've seen an
unprecedented growth in the scale of
the systems that we've been building.

Scale changes everything

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Scale changes everything

**050 While the most prominent examples
of this have been the leading Internet
organizations, the pressures of scale
are being felt at systems of all levels
within business, within governments,
and within the Department of
Defense.

Page 5 of 64

When we build these scalable, just
like urban planners who designed the
massive urban connobations such as
New York or Shanghai, we need to
think differently about our solutions
and to adopt software architectures,
methods, and mechanisms that can
ensure the scalability that our
systems require. Of course, one of
the driving forces behind the need for
scalability is data. And I'm sure most
of you have seen a chart such as this
that describes the big data problem
using the three Vs of volume, the size
of data which is continually growing,
the velocity of data, the speed at
which it arrives and which it changes,
and the variety of the data, the
heterogeneity of the data types that
many solutions are forced to store
and fuse to come up with meaningful
solutions. So, big data is really a
driving force behind the scalability
that many systems need today.

Page 6 of 64

What is Big DatA? from a software Architecture Perspective…

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

WHAT IS BIG DATA?
FROM A SOFTWARE ARCHITECTURE
PERSPECTIVE …

**051 And in this talk, what we're
going to do is initially just look at the
big data problem from a software
architecture perspective, look at
some of the quirks that big data
brings to the design of systems at
this scale. And then I'll briefly
describe some of the work that we're
doing at the SEI to extend the
knowledge base and the approaches
that have been developed here over
the last two decades into the realm
of big data.

Page 7 of 64

Some Big Data…

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Some Big Data …

Google:
• Gmail alone is in the exabyte range

Salesforce.com
• Handles 1.3 billion transactions per day

Pinterest.com
• 0 to 10s of billions of page views a month in two

years,
• from 2 founders and one engineer to over 40

engineers,
• from one MySQL server to 180 Web Engines,

240 API Engines, 88 MySQL DBs + 1 slave
each, 110 Redis Instances, and 200 Memcache
Instances.

http://highscalability.com/blog/2014/2/3/how-google-backs-up-the-internet-along-with-exabytes-of-othe.html

http://highscalability.com/blog/2013/9/23/salesforce-architecture-how-they-handle-13-billion-transacti.html

http://highscalability.com/blog/2013/4/15/scaling-pinterest-from-0-to-10s-of-billions-of-page-views-a.html

**052 So, just to calibrate what we
mean by big data, it's very hard to
get these numbers. A lot of them are
commercially in confidence. But if
you dig around a website such as
highscalability.com, which is a
valuable source of information in this
area, you'll find information such as
this. So, Google's Gmail alone now
extends into the Exabyte range for
data storage. That's just Gmail, no
search information, none of the other
services that Google offer. That's a
lot of data.

Salesforce.com, one of the leading
businesses on the Internet, handles
one point three billion transactions a

Page 8 of 64

day. And they have a lot of data. We
don't really know how much.

Pinterest, a social media site, which,
if you're not familiar with, I
guarantee your teenage children will
be, is an interesting case study. It
grew in two years from a couple of
engineers and one MySQL server to
now, or when this report was written
anyway, a hundred and eight
webservers, two hundred and forty
API engines serving business logic,
and eighty-eight MySQL databases
instances all with slaves, plus in
memory databases, Redis, a hundred
and ten instances of that, and two
hundred Memcached instances. This
is just to serve location data, not just
pins on Facebook. So, it's a lot of
infrastructure there, a lot of software.

But like any good story, there's two
sides to it. This is high scalability
expresses many of the success
stories.

Page 9 of 64

Not so successful…

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Not so successful ….

**053 But the world is not full of
success stories. And if you dig around
a little bit more, you'll find lots of
information like this. On the left hand
side, for example, a report from
Deloitte which emphasizes the
complexity of adopting the new open
source technologies that are available
for building big data systems. As the
quote says, it's not that the open
source technologies themselves are
particularly frail or imperfect. They're
actually very good, solid
technologies. It's just that they're
complex to use. And the community
of software engineers are just not
used to this level of complexity with
their technologies.

Page 10 of 64

This is emphasized on the right hand
side where it mentions exponential
growth of data as being a major
problem, and in the bottom where
the lack of knowledge of software
engineers in deal with the problems
that scalability brings are at the core
of the problems that we have in
building these software systems and
the failures that people have.

Big Data Survey

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Big Data Survey
http://visual.ly/cios-big-data

**054 This is emphasized again in a
survey from the end of last year, if I
remember correctly. The URL's on
the slide there, that emphasizes that
fifty-five percent of big data projects
are not completed. The scope of the
systems is obviously difficult to

Page 11 of 64

derive. Requirements gathering
becomes difficult at scale. But also
the technological road blocks and
access to data become key issues
when building big data systems.

The most significant challenges,
eighty percent of organizations
reported that finding talent was the
most significant challenge that they
had. And also the use of technologies
is a major one. And what are the
major drivers? For solutions, ease of
management because when you're
building a very large distributed data
system, you need to be able to
manage it effectively and evolve it
and grow it and handle failures, but
also the ability to scale. In this realm,
if your system can't scale to handle
the influx of data and workload that's
put on it as time evolves, then it's
just not going to succeed. And the
underlying fabric to your system has
to be scalable.

Page 12 of 64

Big Data – State of the practice
“The problem is not solved”

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Big Data – State of the practice
“The problem is not solved”
Building scalable, assured big data systems is hard

• Healthcare.gov
• Netflix – Christmas Eve 2012 outage
• Amazon – 19 Aug 2013 – 45 minutes of downtime = $5M lost revenue
• Google – 16 Aug 2013 - homepage offline for 5 minutes
• NASDAQ – June 2012 – Facebook IPO

Building scalable, assured big data systems is expensive
• Google, Amazon, Facebook, et al.

– More than a decade of investment
– Billions of $$$

• Many application-specific solutions that exploit problem-specific properties
– No such thing as a general-purpose scalable system

• Cloud computing lowers cost barrier to entry – now possible to fail cheaper
and faster

**055 So, despite organizations
such as Google, and Amazon, and
Facebook investing we don't know
how much, but billions of dollars is
likely in building their solutions that
serve as information on the Internet,
the problem of building big data
systems is far from solved. A few
instances mentioned on this slide
here, even Netflix, and Amazon, and
Google have outages. It happens
reasonably regularly and is quite
widely reported.

We're probably all familiar with the
problems of healthcare.gov at the
end of last year. Some of these

Page 13 of 64

stemmed from integration into
backend data sources, from changes
in workload from read heavy to more
write workload late in the project.
And also the use of technologies, a
technology that was offering certain
services that just didn't scale as well
as expected when the system went
live.

We also are familiar with things like
the NASDAQ failures during the
Facebook IPO, again caused by the
scale of the load exerted on the
systems. So, one of the bonuses of
the Internet organizations investing
so much time and effort and money
in these big data solutions is that
there's now a bunch of technologies
available for us to exploit in our
systems as we build our solutions.

Page 14 of 64

Polling Question #1

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Polling Question #1

Are you using NoSQL technologies in your current systems?

**056 And here you'll see first
polling questions. So, if you can
answer these, that'd be great. And
are you using NoSQL technologies in
your current solutions?

Page 15 of 64

NoSQL – Horizontally-scalable database technology

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

NoSQL – Horizontally-scalable database
technology
Designed to scale horizontally and provide
high performance for a particular type of
problem

• Most originated to solve a particular system
problem/use case

• Later were generalized (somewhat) and
many are available as open-source
packages

Large variety of:
• Data models
• Query languages
• Scalability mechanisms
• Consistency models, e.g.

– Strong
– Eventual

**057 Because no SQL technologies
have rippled down from many of the
innovations from the Internet
organizations. Amazon with their
Dynamo DB work, Cassandra has
come out of Facebook. And there are
now open source technologies that
we can use to build very highly
scalable data systems.
They don't make the whole solution
simpler, though, because there's first
of all a very large variety of data
models. No longer do we just have
relational models to consider and
SQL. We have key value stores and
graph stores and column stores and
document stores to consider. And all
of these different underlying data

Page 16 of 64

models. They have different
underlying query languages. The
technologies are designed to scale in
different ways.

And they offer different levels of
consistency. We're very used to, in
the relational world, having strong
consistency. When we make an
update to data item, that update is
visible subsequently to all other
queries. In scalable systems,
sometimes this just isn't possible to
achieve. And we have to settle for
weaker eventual consistency whereby
we make an update to an instance of
a data item, and other instances that
replicated for availability purposes
are not instantly updated.

You'll see this if you go to Facebook
all the time. I see eventual
consistency when I log on to
Facebook all the time because I'll
have emails telling me that
someone's commented on a post. But
when I look on my homepage,
there's no instances of that comment
for few minutes until Facebook
updates.

Page 17 of 64

NoSQL Landscape

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

NoSQL Landscape

https://blogs.the451group.com/information_management/files/2013/02/db_Map_2_13.jpg

**058 This evolution of technologies
in the database world has created
this complex landscape for
organizations to choose the
technological fabric from for the data
layer. We jokingly call this the Tokyo
subway map. And it's probably far
too small for most of you to read, but
it really does express the complexity
of the database world now and how
it's evolving in many different
directions with different models,
different query languages, and a
whole bunch of different technologies
to work with.

Page 18 of 64

Horizontal Scaling Distributes Data (and adds complexity)

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Horizontal Scaling Distributes Data
(and adds complexity)

Distributed systems theory is hard but well-established
• Lamport’s “Time, clocks and ordering of events” (1978),

“Byzantine generals” (1982), and “Part-time parliament” (1990)
• Gray’s “Notes on database operating systems” (1978)
• Lynch’s “Distributed algorithms” (1996, 906 pages)

Implementing the theory is hard, but possible
• Google’s “Paxos made live” (2007)

Introduces fundamental tradeoff among “CAP” qualities
• Consistency, Availability, Partition tolerance (see Brewer)
• “When Partition occurs, tradeoff Availability against Consistency,

Else tradeoff Latency against Consistency” (PACELC, see Abadi)

“A distributed system is one in which the failure of a computer
you didn’t even know existed can render your own computer
unusable”

**059 But all of these technologies
introduce horizontal distribution to
achieve scalability. So, essentially,
we're taking our database which
we're familiar with being on one
machine, and we're horizontally
distributing it, basically breaking it up
into chunks and running it on clusters
of low cost machines. And by doing
this, we create a distributed system.
And for many of you, this is a bunch
of theory listed on this slide which
you'll be familiar with. Or for some
people quite often, like myself, it's
theory that you once knew and then forgot.

It's complex stuff. Building distributed
systems has never been easy

Page 19 of 64

because there's difficult fundamental
problems associated with distribution.
The CAP theory from Brewer at
Berkeley kind of nicely encapsulates
some of the tradeoffs that we have
to make when designing a big data
system. Whereas if we have our data
replicated, and there's a break in the
network connectivity, we have to
make a tradeoff between having the
data still available and having it
consistent if it's replicated across the partition.

And there's a very nice example of
the complexity of translating theory
into practice in the paper from some
folks at Google, "Paxos made live" in
2007. Paxos is a distributed
consensus algorithm for achieving
consistency. And it's expressed in the
original paper in about a page or so
of pseudo-code, looks pretty
straightforward to understand once
you get your head around it.

The Google guys tried to implement
this algorithm in their infrastructure.
And their paper beautifully describes
the complexities of translating a very
clear expression of an algorithm into
a system of the scale that Google
were deploying and how, two years
later, they were still seeing failures in
their implementation because of the
complexity, and who it was designed
to mask failures.

So, building distributed systems is
just not easy. And it's something that
many of us in the software world are
just not intimately familiar with
because it's just not been something
we've had to work on so far.

Page 20 of 64

Rule of Thumb: Scalability reduces as implementation complexity grows

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Rule of Thumb:
Scalability reduces as implementation
complexity grows
Workload

• # of concurrent sessions and operations
• Operation mix (create, read, update, delete)
• Generally, each system use case represents a

distinct and varying workload
Data Sets

• Number of records
• Record size
• Record structure (e.g., sparse records)
• Homogeneity/heterogeneity of structure/schema
• Consistency

Complexity
of Solution

Scalability

X Eventual Consistency

Strong
Consistency
X

X Simple queries

Machine
Learning

X

**060 There's one rule of thumb
which is definitely worth considering
when you're building these systems.
Scalability has many dimensions,
workload, increasing the workload,
read and write workload, increasing
the size of the data, the size of the
files, the handling of consistency
across all of the instances of the
data. But if you think of scalability in
general, you can essentially say that
the more complex your solution to a
problem, the less it's going to scale.

So, let's take a couple of examples
here. So, if I have a system that has
eventual consistency, I may have
three replicas of my data, when I

Page 21 of 64

make an update, I just update one of
them instantly and wait for the
updates to the other instances to
ripple through in the background
controlled asynchronously by my
database. That's going to be fast
because I'm just doing one update.

If I require strong consistency such
as in acid transactions that we're
familiar with in relational
technologies, and also in some
NoSQL technologies, this is going to
be slower. It may be implemented
beautifully and reliably and as
efficient as possible. But the
underlying mechanism to replicate
and ripple the updates through to the
replicas in an assured way so that
strong consistency is achieved
requires more communications, more
logic, more ability to handle failures.
It's going to be slower. And there's
very little you can do about that. It's
a fundamental tenet of software.

Another example would be answering
simple queries. Again, think when
you go to Facebook to your
homepage, essentially what's
happening is a lot of very simple
queries are being fired off to
Facebook's infrastructure. Results are
coming back. And they're being
aggregated to form your webpage.
All this happens very quickly.

But if you're then going to do some
complex analysis of machine learning
such as Netflix's recommendation
engine for finding the movies that
you're most likely to want to watch,
then this isn't going to be as quick

Page 22 of 64

because it has to do queries and
smart statistical algorithms across
very large collections of data. And so,
that sort of query is not going to
respond quickly. Hence, the solution
is going to be less scalable. And you
think about ways you can maybe
cache the results so that when you
want to do a recommendation, you
don't actually use the machine
learning algorithm, you use the
results of it that were generated a
few minutes or hours ago.

So, there's this complexity here to
the solutions. But the simpler your
solution, the more your system is
going to scale.

Page 23 of 64

Big Data – A complex software engineering problem

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Big Data –
A complex software engineering problem
Big data technologies implement data
models and mechanisms that:

• Can deliver high performance, availability and
scalability

• Don’t deliver a free lunch
– Consistency
– Distribution
– Performance
– Scalability
– Availability
– System management

• Major differences between big data
models/technologies introduce complexity

**061 So, the big data problem is a
difficult software engineering
problem. Many of the building blocks
are starting to become available in
the open source world and available
commercially. And we can use these
to compose our systems, pull
different pieces of software together
to build solutions. But don't expect to
have a free lunch. You've still got to
think very carefully about
consistency, distribution, how fast
your system's going to perform and
scale, what happens when failures
occur so that you can ensure
availability of your data. And then
how you manage this complex
collection of nodes that form your

Page 24 of 64

distributed system, how you manage,
evolve, move data around, back data
up, etc. So, this is not an easy world
to build solutions for.

Software Engineering at Scale

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Software Engineering at Scale
Key Concept:

• system capacity must scale faster than
cost/effort
– Adopt approaches so that capacity

scales faster than the effort needed to
support that capacity.

– Scalable systems at predictable costs

Approaches:
• Scalable software architectures
• Scalable software technologies
• Scalable execution platforms

Time

Capacity

Cost

**062 Let me just finish this section
with one more insight that's worthy
of consideration. If you look on the
graph on the right hand side there,
you see that capacity of the system is
going to grow over time. And in
many systems, this grows with some
exponential function. So, as time
continues, then the rate of growth
accelerates. So, this is what's to be
expected of a big data system that
can scale.

Page 25 of 64

However, it's really important that as
you build these systems and their
capacity grows exponentially over
time, your costs don't. If your costs
grow exponentially over time, then
you're in trouble because it's going to
cost you an awful lot of money to
deliver these systems. So, we want a
solution that can grow the capacity
exponentially, but our costs grow
linearly and hopefully at a nice low
angled slope such as on this slide
here.

And to do this means that you have
to adopt approaches in your solutions
that can scale your system's capacity
without a great deal of effort being
exerted on those scalability
mechanisms. And the approaches to
do this are all related to building
scalable software architectures that
can be easily extended without
massive code changes, adopting the
right technologies that enable you to
scale things easily without doing
massive reconfigurations of your
system. And also, acquiring and
deploying your system on scalable
execution platforms such as cloud
technologies whereby you can
elastically grow your demand instead
of having to have engineers come in
and install systems for you. So, this is
a real key factor with any massively
scalable system is that they
engineering approach that you follow
must ensure that your costs are
controlled so that you can build a
scalable system with predictable
costs.

Page 26 of 64

Polling Question #2

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Polling Question #2

Are you planning to evaluate or adopt No SQL databases in the
next 12 months?

**063

Page 27 of 64

So what are we doing at the SEI?

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

SO WHAT ARE WE DOING
AT THE SEI?

**064 So, let me tell you a little bit
about what we're doing at the SEI in
the world of big data and scalable
systems.

Page 28 of 64

Enhancing Design Knowledge for Big Data Systems

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Enhancing Design Knowledge for Big Data
Systems

Design knowledge repository
for big data systems

• Navigate
• Search
• Extend
• Capture Trade-offs

Technology selection method
for big data systems

• Comparison
• Evaluation Criteria
• Benchmarking

Scale

Design
Expertise

Knowledge

Technology

QuABase

LEAP4BD

**065 As I've already kind of eluded
to on the earlier slides, two of the
major issues that are facing
organizations when building big data
systems revolve around the design
expertise that's required to build
systems that scale, and also the
technologies that you need to deeply
to build big data systems because
many of these technologies are new
and have mechanisms in them that
people aren't familiar with.

So, as the scale of your solution
grows, then this design knowledge
become more and more critical. Very
small areas of your architecture may
introduce bottlenecks which are

Page 29 of 64

exposed as the scale of your system
grows. Or you may find that small
failures can ripple through and cause
very large failures or backlogs
unexpectedly as your workload or
your data size grows. So, the
knowledge becomes critical as your
systems grow in scale.

But you can have the best theoretical
knowledge of building distributed
systems and big data systems in the
world, but if you then choose
inappropriate technology to build
your system on, technology that's not
designed to scale to support the
scalability that you need, then your
system's not going to succeed. And
it's this confluence of knowledge,
design knowledge and technology
knowledge, where we're starting to
do some work in this space.

And so, in the rest of this talk, I'll
briefly design our work in the
QuABase which is a knowledge
repository of design expertise for big
data systems that we're developing
this year, and also our approach
called Leap4BD, which is a
technology selection method that can
be used for big data systems. And I'll
start with Leap4BD first.

Page 30 of 64

LEAP4BD

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

LEAP4BD
Lightweight Evaluation and Architecture
Prototyping for Big Data (LEAP4BD)

Aims
• Risk reduction
• Rapid, streamlined selection/acquisition

Steps
1. Assess the system context and landscape
2. Identify the architecturally-significant requirements

and decision criteria
3. Evaluate candidate technologies against quality

attribute decision criteria
4. Validate architecture decisions and technology

selections through focused prototyping

Quality
Requirements

Evaluation
Criteria

Candidate(s)
Selection

Prototyping

LEAP4BD
Kbase

**066 So, the easiest way to think
about Leap4BD if you're familiar with
some of the SEI's methods is as an
evolution of the ATAM method for big
data systems, but with two real key
differences. The first is that it's
targeted only at the data layer. So,
ATAM is a method that will enable
you to assess the whole architecture
of your system. Leap4BD is much
more lightweight in that it focuses
very much on the data layer of your
system and enabling you to choose
solutions for that layer that are
appropriate to achieve your scalability
aims.

Page 31 of 64

So, any system is going to need a set
of quality requirements in terms of
scalability, consistency, availability,
system management, etc. that are
going to drive the selection of a
database technology. And in
Leap4BD, what we've done is we've
built a canned set of evaluation
criteria for big data systems. And
there's just the major headings are
on the slide there next to the quality
requirements box.

So, we have I think it's ten major
criteria. And within each of those
areas, there's very extensive lists of
detailed evaluation features that you
can look at when you're trying to
choose a database system and map
these back to the quality
requirements for performance and
scalability in consistency that your
solution needs.

In Leap4BD, what we're doing is
we're building a knowledge base so
that, as we work with big data
technologies, we assess each of
these technologies against the
criteria in the Leap4BD framework.
And so, right now the evolving
knowledge base has evaluations of
technologies such as Cassandra,
MongoDB, Riak, Neo for J. And other
technologies we'll be working with
soon will be incorporated into this
reusable knowledge base that an
organization can just pick up, relate
their quality requirements to the
detailed criteria, and very quickly
choose some candidate technologies
that might be suitable for their
solution.

Page 32 of 64

What's very important at that stage is
that because of the complexities of
scale is that you don't just work it on
paper and choose your solution. It's
that you do some prototyping. And in
Leap4BD, we have a prototyping
phase where we're working on
developing some technologies that
make it easy to prototype, build very
quick performance and scalability
prototypes that can be deployed on a
cloud such as Amazon's EC2 or Open
Stack, and run real benchmarks
against the technologies that you've
deemed as appropriate candidates for
your solution.

So, to do this, we're actually right
now leveraging a technology called
YCSB, the Yahoo Cloud Server
Benchmark. And we're extending that
to provide much more custom
features for big data systems.

Let me just show you some of the
importance of prototyping in this
space.

Page 33 of 64

Some Example Scalability Prototypes - Cassandra

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Some Example Scalability Prototypes - Cassandra

**067 This is just some work we've
done with Cassandra, a column
oriented database from Facebook
which is widely used in a lot of
systems. This is a plot of
performance in terms of throughput
and transactions per second,
requests per second. As the load on
the x-axis grows from one client to a
thousand simultaneous clients all
firing off requests continuously, as
soon as one set of results is received,
a client sends that next request. So,
a thousand clients are actually
generating a lot of load. The
Cassandra instance in this case is a
single instance serving just ready
only loads. So, this is a read only

Page 34 of 64

test. And it's comparing a single
instance against an instance of
Cassandra which is using three
nodes. So, we're replicating the data
across three different nodes in an
Amazon EC2 cloud.

And here you can see, this is a fairly
straightforward plot. It's exactly what
you'd expect to see with a good
technology. As the load increases on
the x-axis, the throughput increases
until at around, I think it's hundred
and twenty-eight, you're starting to
see saturation of the server or
network capacity, of some elements
of the system. This is why you're
seeing a straight line.

At lower loads, one server is actually
quicker than three, which you'd
expect because there's complexity in
managing replicas in Cassandra. Your
request may be sent to a replica that
doesn't own the data, for example. It
has to be redirected. But as the load
increases past like two fifty-six or five
twelve, we see the benefits of having
three servers rather than one. The
performance of our single server is
starting to decrease, whereas the
performance of our three servers is
pretty much leveling out.

What happens past a thousand
clients, we don't know. The only way
to know that is to test. But you can
pretty much guarantee that the
single server is going to start to
decrease in performance. And
hopefully, the three servers will just
level out for a long time until they are
eventually saturated in capacity and

Page 35 of 64

start to fall off. So, that's a really plot
showing what you would expect from
a good technology.

This is showing a similar load. I think
this is a write-- a read/write test, or a
write test. I forget which. Again,
comparing three servers against one
server. And here you can see a very
different performance characteristic
profile. The three servers again is a
little bit slower at low loads because
of the overhead of managing three.
But very quickly, around thirty-two
clients requests, simultaneous client
requests, we see the capacity of a
single server is overloaded.

It levels out here quite nicely. So, it's
still serving a reasonable amount of
throughput as load increases. But it
can't go any further. It's got no more
power left. Whereas, the three
servers, again, scale quite nicely. And
again that line would hopefully
extend far to the right in a flat profile
until again it's capacity is saturated.

The third one shows another
Cassandra test, but in this one we've
configured it to be essentially three
data centers. So, even though the
three data centers are living on the
same EC2 instance, deployment,
we've configured Cassandra so that it
will actually think each is
geographically replicated. So, that
when we do a write in one of the
lines where we just have a
consistency level of one, if we make
an update to one of the instances,
then the update is recognized at one
data center and then eventually

Page 36 of 64

replicated to the others using an
asynchronous eventual consistency
mechanism. Whereas in the other
plot, we actually require all of the
data centers to be updated when we
make an update to one.

And here again you see the benefits
of having a simpler solution. You get
much higher performance. Both seem
to scale reasonably well. But the
simpler solution, again, with lower
consistency levels gives you much
higher performance.

So, this is the sort of insights we can
derive through fairly simple
prototyping. Doing this kind of work
with the automated tools that we're
starting to develop, it is not that
complex. And it's essential for
organizations to do this to gain deep
insights into the technologies they're
considering and confidence that
they're choosing technologies that
can actually be assured to provide
the performance and scalability they
require.

Page 37 of 64

QuA Base – A Knowledge Base for Big Data System Design

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

QuABase –
A Knowledge Base for Big Data System Design

Semantics-based Knowledge Model

• General model of software architecture
knowledge

• Populated with specific big data
architecture knowledge

Dynamic, generated, and queryable content

Knowledge Visualization

**069 Our other area of work is
what we've called QuABase or the
Quality Attribute Knowledgebase for
big data systems. So, one of the
things that's been reasonably
revolutionary in the world in the last
fifteen years or so is Wikipedia. Many
years, old people like me are used to
having encyclopedias that we looked
at. But now, we just go to Wikipedia
twenty times a day and refuse to pay
for our access when they ask us for
it. But it's been an absolute
revolution to the world in the fact
that it's built up this knowledgebase
of information.

Page 38 of 64

But Wikipedia is still very
unstructured. And what we're trying
to do with QuABase is extend the
Wikipedia approach into the realm of
big data architecture design. And to
do this, we're using a much more
rigorous approach. We're extending
the core Wiki technologies through
extensions to provide an underlying
semantic data model, knowledge
model, which captures the
relationships between design
concepts for big data systems. And
we're then populating this model with
knowledge about design principles
and technologies that support those
design principles. And the whole
system is built so it can be
dynamically queried and much of the
content is generated dynamically.

So, in Wikipedia, people go in and
they type all of the pages pretty
much. In our QuABase, you put in
some core information. And then
much of the information required is
generated dynamically in response to
queries. And you can see a very small
depiction of our idealized knowledge
model in the bottom right hand
corner there. And this underpins the
knowledge that's in the wiki.

Page 39 of 64

Polling Question #3

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Polling Question #3

Would you be interested in a training course on software architectures
for big data systems?

**070 So, let me give you some
examples of what this system looks
like.

Page 40 of 64

QuABase Demo

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

QuABase Demo

**071 And as the slide says,
"Warning, this is very much under
development." So, we hope to have
this finished by the end of summer,
at least the first version. So, you'll
see little bits of this are obviously
unfinished.

Page 41 of 64

QuABase Demo 1

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

QuABase Demo 1

**072 So, this is what the main
page of QuABase looks like. And you
can see it just looks like a wiki. And
there's two areas which correspond
to the chart I had earlier about
design knowledge in terms of
satisfying quality attributes for
scalable architectures, and also
database technologies. So, we have a
list there of the six databases that
we're initially using to populate the
knowledgebase with evaluations of
their features.

But if you look at what's underneath
this page, you don't see text. You see
a couple of queries. And these are
known as semantic queries. We're

Page 42 of 64

using an extension to Wikipedia,
media wiki, I should say, called
Semantic Media Wiki, which enables
us to implement our knowledge
model in the wiki pages. And then
using the query language that it
supplies, the ASK query language, we
can dynamically build pages based on
the underlying content.

So, on this page for example, if we
were to add information about
another database such as, I don't
know, HBase, when a user goes to
this new page, we don't have to
change this query at all. The new
data about HBase would
automatically be retrieved and
displayed for people to navigate.

So, this is an underlying principle of
the design of the QuABase. We're
using dynamically generated
technology where-- content wherever
possible.

Page 43 of 64

QuABase Demo 2

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

QuABase Demo 2

**073 So, let me just delve a little
bit more deeply into the pages
related to consistency. So,
consistency is a big issue in
distributed big data systems because
we have multiple replicas of data
objects so that we can have
availability and high performance. But
keeping these replicas consistent is a
problem. And in some systems, it's a
much bigger problem than other
systems, obviously. In banking, it's a
bigger problem than in social media,
for example.

So, here again we're leveraging some
of the SEI's innovations in software
architecture over the years in terms

Page 44 of 64

of describing architectural qualities
using scenarios. We have a general
scenario for consistency that
enumerates the elements of
consistency. And from that, you can
compose more specific quality
attribute scenarios that are more
relevant to a particular system.

And here we're doing the
composition of the quality attribute
scenario. It's in a more abstract way
than you would typically would
during an ATAM. So, you can see on
the slide there, the table at the
bottom is generated dynamically.
That's based on a query. And we've
basically enumerated a number of
quality attribute scenarios that are
relevant to consistency. And each of
these has a set of tactics, again, built
dynamically that are associated with
supplying that quality attribute
scenario in a system.

So, one of them, it talks about
updating single objects and providing
this with strong consistency. And one
of the tactics is ensure read/write
quorums. So, let's dig into that page.

Page 45 of 64

QuABase Demo 3

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

QuABase Demo 3

**074 Ensuring read/write quorums
is essentially an approach for
providing strong consistency in
distributed data systems. If I have
three replicas of an object, a data
object, and I want to make an
update to it logically, if I make an
update to two of those replicas, then
I'm guaranteed to get consistency
because if at exactly the same time
another client was trying to make a
request to update the same object, ti
would fail because it wouldn't be able
to update two of them because I'm
updating two of them. So, this
guarantees that you get strong
consistency. But you have to set up
the configuration of your system correctly.

Page 46 of 64

So, the page here just quickly defines
the theory behind quorums and
providing strong consistency. And
then again, it shows you the qualities
that this supports, i.e. strong
consistency, but the things that it
also trades off against. Quorums
mean that your system is slower
because you have to update more
replicas to ensure consistency.

It can also affect availability because
if you get a partition, and you don't
have enough replicas available to
satisfy your quorum, your query will
fail. So, there's a tradeoff here. And
the wiki captures these tradeoffs
dynamically. Again, this is all built
through queries.

At the bottom there is where you'll
see that we also mock up the pages
with the technologies that support
quorum type consistency. So, you
can see there we've got Cassandra
and Riak and Mongo. So, again, all of
this is built dynamically.

Page 47 of 64

QuABase Demo 4

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

QuABase Demo 4

**075 And this is what the page
underlying that looks like when we
build it. There's essentially a set of
forms for every single page. And so,
to construct a page, there's
essentially a format that you must
follow. This cannot-- these pages
can't be constructed using random
formats such is normal within normal
wikis.

So, we fill in the forms. Some of it's
just textual. Other elements of the
form have selections from dropdown
boxes that force you to provide
information in the correct format.
And so, underlying this again is the
semantic model that we're

Page 48 of 64

populating. So, when you fill in this
page, you're actually populating the
semantic model without knowing it.
And once we have this information in
the wiki, we can query based on that
semantic model and build pages. So,
it's a very rigorous controlled way of
constructing this knowledge.

QuABase Demo 5

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

QuABase Demo 5

**076 So, again, back to the page
here. This is the same page as I had
earlier. We can see that there's three
technologies that support quorum
based consistency. One of them is
Riak. So, let's just assume I'm
interested in Riak.

Page 49 of 64

QuABase Demo 6

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

QuABase Demo 6

**077 How does this work? So, I
click on the Riak page. And again,
this is under development so the list
of Riak features is minimal at the
moment because we just haven't
entered all the data or built the
forms. But you can see that there's a
visualization on the Riak page of the
qualities that it supports, consistency,
performance, availability and how it
supports them through the tactics.
And the tactics are actually related to
the qualities in two ways, either in
supporting or trading off.

And that's a live visualization. So, if
you're on the webpage, you could
click on the visualization to go to any

Page 50 of 64

of the links that it displays. It's not
just an image.

So, this gives me a visualization of
the capabilities of Riak and its
tradeoffs and its connections to
providing the qualities I might be
interested in. If I click on the
consistencies features box towards
the top there, I see a page that right
now looks a little bit like this.

QuABase Demo 7

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

QuABase Demo 7

LEAP4BD

Evaluation

Features

**078 And it's basically an
enumeration of generic consistency
features that are important within
building these systems and how Riak
supports them or, in many cases,
doesn't support them which would be

Page 51 of 64

expected because these are generic
capabilities. And not every database
is going to support them.

So, this is how we're building up the
knowledgebase. Essentially, there's a
set of features associated with
databases that can be related to
tactics. And the tactics, the solutions
to particular qualities, can be
dynamically related to the quality
attribute scenarios.

What's important though, and this is
where we go back to the slide I had
earlier with the technology and
knowledge overlapping, is this page
is the confluence of that. This is
where the Leap4BD evaluation
criteria and the QuABase wiki
approach come together. So, we
basically can support people going in
and understanding what databases
they might be able to use to support
their quality attribute requirements
through going in through the quality
attribute path. Or people can say,
"Hey man, I'm just interested in Riak.
What can I do with it because I've
already got it here already?" and I
can go into Riak and then I can
navigate back through to understand
the design knowledge that's
associated with using Riak.

So, this is the work we're actually
involved in right now.

Page 52 of 64

Status

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Status

LEAP4BD
• Initial trial with DoD client near completion
• Rolling out as an SEI service

QuABase
• Design/development in progress
• Validation/testing over summer

Software Engineering for Big Data Course (1 day) and tutorial (1/2 day)
• SATURN 2014 in Portland, May 2014

• http://www.sei.cmu.edu/saturn/2014/courses/
• WICSA in Sydney, Australia April 2014
• Both available on request

**079 Leap4BD is actually in a pilot
with one of our clients. And we
should be completing that pilot
relatively soon. The knowledgebase is
pretty much populated for the
databases that we've been working
with. And so, we'll then be rolling this
out as an SEI service for people who
are interested in doing detailed
evaluations of big data technologies
to provide high levels of assurance
that their solutions will scale over
time.

For the QuABase, we're actually
actively developing the content right
now. Developing the wiki pages
actually involves quite a lot of code

Page 53 of 64

development and query
development. We hope to have a first
version of this finished by the end of
summer ready for validation and
testing with some friendly users.

And in terms of rolling out this
information to broader audiences, at
Saturn, as you've all heard about this
morning, we actually have a one day
course in Portland. I forget the exact
day. But we've already got quite a
few people enrolled in that course
now. So, if you're interested in this
information and understanding the
quality attributes and the
mechanisms associated with building
big data systems, this would be a
great course to attend.

We also have a stripped down
version of the course as a half day
tutorial which I'll be presenting in
Sydney at the working International
Conference on Software Architecture
in a couple of weeks. So, if any of
you happen to be Australia, come on
down. And of course, both of these
would be available on request in the-
- the near future.

Page 54 of 64

Thank you!

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Thank you!

http://blog.sei.cmu.edu/

This document is available in the event console materials widget

**080 So, that's pretty much it.
Thanks for listening. If you're
interesting in some of the work that
we're doing, there's a couple of blog
posts that we've put on the SEI blog
quite recently. And there's a paper
which I believe Shane is providing
through the webinar mechanisms. If
you're interested, it's just been
accepted by IEEE Software. So, we're
quite happy about that. It's trying to
describe some of the fundamental
characteristics of big data
architectures.

Thank you.

Page 55 of 64

Shane: Okay, Ian. Great
presentation. Thank you very much.
We've got lots of questions coming
in. So, we'll dive right into them.

Andre asks how to scale not scare
consumers with the data tsunami.

Ian Gorton: That's a big question. I
think you've just got to understand
what data that your consumers, your
users, need and somehow design
your system so that you can provide
that data, the primary data sources
of interest to the user community
without overwhelming them with the
volume of data. And perhaps, then if
you can structure your solution so
the primary data sources they're
interested in can then enable them to
navigate through the rest of this
massive amount of data that people
are accumulating. Again, so maybe
that's just about really understanding
your scope. And if you try to answer
everybody's question into the data,
you're just going to design a system
that's going to be very hard to scale.

Shane: Okay, great. Barak asks,
"Should we use big data solutions on
transaction critical systems?"

Ian Gorton: That's another big
question. So, there's a really
interesting blog post I think it was
from Ed Brewer of the CAP theorem,
the originator of the CAP theorem,
talking about how banking systems,
the classic example of a strong
consistency problem, are actually
eventually consistent. And the
example is if you go to your ATM and

Page 56 of 64

try to get some money out, you can
get money out without actually
knowing if you've got any money in
your bank account. If that ATM is
disconnected through a network
partition to the backend databases,
the ATM will still give you money.

It might not give you as much money
as you want. There's a failsafe built
into this. It might only give you a
hundred bucks or two hundred
bucks. But eventually, once you've
taken that money out, that
transaction will be resolved against
your backend system. And hopefully,
you've got enough money. And if you
haven't, you go into an overdraft
situation and get charged some
exorbitant fee by your bank.

But it just shows that you can do
what we consider a strongly
consistent problems in eventually
consistent ways. Some of the NoSQL
technologies are actually very strong
in providing consistency, such as
transactional problems that the
question alludes to. Things like Vault
for BD and Translation DB will
provide you with strong consistency
mechanisms. Neo for J is a fully
consistent, strongly consistent, acid
consistent database. But it probably
doesn't scale as well because of its
nature of handling graphs. So, I think
you can do it. Sometimes you have to be creative.

Shane: Okay, Bruno would like to
know, "Where did Ian get the quality
attributes for big data shown some
slides before where it was talking
about consistency, distribution, and the like?"

Page 57 of 64

Ian Gorton: Where did they come
from? From research essentially. I
mean myself and John Kline who's
my collaborator on this at the SEI,
we've both got extensive experience
in building database systems. I've
build a lot of systems for scientific
data management. And so, these are
the-- we know from our experience
are the sorts of questions that you
have to ask when you're starting to
design these systems. And hopefully,
our experience and no doubt we
don't have the complete experience,
and we'll steal information of other
people, but when the QuABase
becomes available, this information
will be available for everybody to
consume. And hopefully, the
expertise that it collectively expresses
will just be instantly available through
essentially a wiki to everybody.

Shane: Okay, great. Rob asks,
"What is the threshold to become
classified as big data, a big data
problem, i.e. is it one million lines of
code, one billion? Is there a
threshold?"

Ian Gorton: I don't think there is
actually. Some big data systems are
complex because of the amount of
data they can handle. But often,
you're just querying it in very simple
ways. And scaling that is not too
difficult. But some systems are much
more complex because of the
heterogeneity of the data and the
way the data kind of fuses together
and needs to be navigated in
complex ways.

Page 58 of 64

So, we used to build systems in
biology where the amount of data
actually wasn't that significant. It was
in the terabytes, many tens of
terabytes range. But the analyses
that we had to do and the links we
had to provide across these different
types of data that came from
scientific instruments and analyses
from simulations and analytics was
very, very complex. So, I would still
claim that was a big data solution.
We used technologies like HBase to
build it. But it wasn't massive in
terms of scale. So, I think there's so
many dimensions to scalability, it's
hard to say exactly what a threshold
might be.

Shane: Okay. I think you just
touched on this, but I'll ask it anyway
just in case. From Sridhar asking,
"How's big data changing the way
EDW solutions are built? Is there a
minimum data size for structured or
unstructured data that should be
used to use big data design?"

Ian Gorton: I think one of the
insights-- I'm not sure about
minimum sizes, but one of the nice
insights into this world is Martin
Fowler's Polyglot Persistence notion
whereby we're still going to be using
enterprise data warehouses, the big
Oracles and MySQL data warehouses
and R schemas that we already have.
And we're probably still going to be
populating these things. But we
might also be having many different
types of repositories that augment
those data warehouses.

Page 59 of 64

So, you might have a very large
Hadoop system to do certain sets of
analytics that maybe eventually feed
information into your data
warehouse. Or you may have other
types of databases to solve other
workloads. And the notion of polyglot
persistence is that traditionally we've
just used relational databases as a
single homogeneous approach to
providing persistence at the
organizational level. But now in the
NoSQL world, the big data world,
we're actually starting to pull
together systems that use different
types of database technology that are
specific to solving the particular piece
of the puzzle that the enterprise
needs to solve.

The data warehouse is still going to
be there in nearly every instance, I
suspect. But what's around the edges
of it may look very different as you
start to flesh out and architect your
big data system.

Shane: Okay, I think this question
was asked before you got to the end,
but a reminder's always good. From
Victor asking, "Where can I find more
information about Leap4BD?"

Ian Gorton: Right now, you'll have
to talk to us I'm afraid. So, this is
essentially in its initial trial. So, we've
been fleshing out the method,
making sure it works appropriately
with our clients. And so, we'll be kind
of making this into a product in the
next two, three months as we finish
off our initial trial. So, if you're

Page 60 of 64

interested, please talk to us. We'd
love to talk to people who are
interested in using the method.

Shane: Okay, Rob asks, "How do
you intend to keep the QuABase up
to date? Technology in NoSQL is
moving so quickly."

Ian Gorton: Good question. So, with
things like Wikipedia, obviously
there's an open contribution model
which is kind of monitored by people.
And I don't think that will work for
something like the QuABase. So, we--
even though you're right that the
technology does move very quickly
and it's vast. So, covering the
vastness is probably going to be
difficult. Once you have a particular
technology characterized within the
QuABase, it doesn't change that
quickly to be honest. Releases will
come and go and minor details will
change. But the fundamental data
model of MongoDB isn't going to
change. And more than likely, the
way that MongoDB does sharding
through shard keys and enables you
to move chunks of data around is not
going to change every two weeks.
So, there's an awful lot of stability
within this knowledge which we can
exploit.

I think we'll have to have some sort
of controlled update mechanism
where we have experts in particular
areas that can send us updates and it
gets refereed by some cohort of
experts or whatever or controllers of
the wiki. Whatever that may be, we
haven't actually thought through the

Page 61 of 64

model yet. But I think the pace of
change is manageable. And of
course, the core design knowledge
doesn't change that much. It
probably grows, but the
fundamentals don't change.
Computer science doesn't change
once we know it that much.

Shane: Okay, William writes, "Do
you have a graphic that shows the
difference between NoSQL and SQL
performance?"

Ian Gorton: No, but I'm sure if you
dug around the Internet, you could
find some specific examples.
Obviously, because any comparison
of performance is based on the actual
workload that a particular system is
serving, so I read only workload
might reveal very different
differences between a NoSQL and a
SQL technology. A write workload, I
suspect if you compared Cassandra's
write performance to a relational
database, you'd see Cassandra is
much faster. But it may only be
providing you with very weak
consistency.

So, there's always complexities in
doing these comparisons. And I think
where a lot of organizations fail is
that they don't look deeply enough
into these comparisons. And there's
lots of very superficial blog posts on
the Internet, hopefully, ours aren't
those, that just say hey man, use
this. It's really cool. I did a test
where I ran a four line piece of code.
And it was really good, man. So,
yeah it's very difficult to do this in the abstract.

Page 62 of 64

Shane: Okay, from Christopher,
"Does SEI have a body of knowledge
for architecture in general similar to
QuABase?"

Ian Gorton: There's an awful lot of
knowledge from the SEI expressed in
the book that have been published.
The Software Architecture in Practice
book has a third edition that was
published last year I think. There's
books on documenting architecture
knowledge and evaluating
architectures. Perhaps the QuABase
is a little bit different in that it's very
domain specific and technology
specific. So, perhaps it's best to
characterize the SEI knowledge as
being very broad and fundamental up
until now. And we're taking a very
thin slice of that knowledge and
diving much more deeply into it.

Shane: Okay, we'll take two more
questions. One was just a question
from Joe asking if a recording of
these sessions are available. And the
answer is yes. The whole day was
archived. And recordings more likely
will be accessible tomorrow. It was
the same login information you used
today. Again, all the PDFs of the
slides and other materials are
available on the materials widget
now. And we've got a minute left for
Ian. We'll ask one more. We've got
lots of other questions that hopefully
we can address at another time. But
we'll stick to our commitment of
twelve thirty. So, from Dan asking,
"Will the data about each NoSQL
system be available in any standard
format like XML or RDF?"

Page 63 of 64

Ian Gorton: Our initial version will
record the data inside the wiki. But
from the wiki, we can export into
RDF because the underlying semantic
representation is essentially RDF
triples. So, I think the answer is
probably yes.

Shane: Ian, excellent presentation.
Thank you. Folks, that's going to
wrap up our virtual event for today.
We thank each and every one of you
for attending.

Copyright

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

**082

Page 64 of 64

	Software Architecture cont’d
	Table of Contents Page 1
	Table of Contents Page 2

	Welcome
	Ian Gorton
	Scale changes everything
	What is Big DatA? from a software Architecture Perspective…
	Some Big Data…
	Not so successful…
	Big Data Survey
	Big Data – State of the practice “The problem is not solved”
	Polling Question #1
	NoSQL – Horizontally-scalable database technology
	NoSQL Landscape
	Horizontal Scaling Distributes Data (and adds complexity)
	Rule of Thumb: Scalability reduces as implementation complexity grows
	Big Data – A complex software engineering problem
	Software Engineering at Scale
	Polling Question #2
	So what are we doing at the SEI?
	Enhancing Design Knowledge for Big Data Systems
	LEAP4BD
	Some Example Scalability Prototypes - Cassandra
	QuA Base – A Knowledge Base for Big Data System Design
	Polling Question #3
	QuABase Demo
	QuABase Demo 1
	QuABase Demo 2
	QuABase Demo 3
	QuABase Demo 4
	QuABase Demo 5
	QuABase Demo 6
	QuABase Demo 7
	Status
	Thank you!
	Copyright

