
Will Rust Solve Software Security?

© 2023 Carnegie Mellon University 1
[Distribution Statement A] Approved for public release and unlimited distribution.

© 2023 Carnegie Mellon University
[Distribution Statement A] Approved for public release and unlimited distribution.

Will Rust Solve Software Security?

J U N E 1 2 , 2 0 2 3

Joseph Sible, David Svoboda, Garret Wassermann

Will Rust Solve Software Security?

© 2023 Carnegie Mellon University 2
[Distribution Statement A] Approved for public release and unlimited distribution.

Document Markings

Copyright 2023 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with

Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.
The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official

Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS

FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER

EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR

PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE

MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,

TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting

formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering

Institute at permission@sei.cmu.edu.

DM23-0506

Will Rust Solve Software Security?

© 2023 Carnegie Mellon University 3
[Distribution Statement A] Approved for public release and unlimited distribution.

Agenda

• Introduction

• The Rust Security Model

• Limitations of the Rust Security Model

• Rust in the Current Vulnerability Ecosystem

• Rust Stability and Maturity

• Conclusion

Will Rust Solve Software Security?

© 2023 Carnegie Mellon University 4
[Distribution Statement A] Approved for public release and unlimited distribution.[Distribution Statement A] Approved for public release and unlimited distribution.

Introduction
Will Rust Solve Software Security?

Will Rust Solve Software Security?

© 2023 Carnegie Mellon University 5
[Distribution Statement A] Approved for public release and unlimited distribution.

Background

• Easy to write vulnerable code in traditional languages

• Languages with strong type systems tended to be heavyweight and garbage

collected

• Mozilla Research set out to create the best of both worlds

Will Rust Solve Software Security?

© 2023 Carnegie Mellon University 6
[Distribution Statement A] Approved for public release and unlimited distribution.

The Rust Language

A multi-paradigm systems-level language designed to

eliminate certain kinds of security vulnerabilities.

● Compiles directly to machine code, not interpreted

● No garbage collection making it attractive for systems-

level programming

● Takes cues from modern languages

○ Functional paradigm supported (& often encouraged)

○ Robust typing system

○ Uses its own build system called cargo, with

libraries/packages available at crates.io

Ferris the Crab: the unofficial Rust mascot
(Released to public domain)

mailto:https://crates.io/
https://rustacean.net/

Will Rust Solve Software Security?

© 2023 Carnegie Mellon University 7
[Distribution Statement A] Approved for public release and unlimited distribution.

Safe Rust vs. Unsafe Rust

• Most code in Rust written entirely in Safe Rust

• Exceptions: standard library implementation,

C FFI, etc.

• Rust’s safety guarantee:

• Safe Rust can never cause Undefined Behavior

• For Safe Rust, this is a guarantee

• For Unsafe Rust, this is an obligation

• Unsafe Rust must be sound

Corro the Unsafe Rusturchin
(Released to public domain)

https://rustacean.net/

Will Rust Solve Software Security?

© 2023 Carnegie Mellon University 8
[Distribution Statement A] Approved for public release and unlimited distribution.

The borrow checker

• Rust’s most significant contribution to programming is the borrow checker

• Every object is owned in one place, and can be borrowed for use elsewhere

• Borrows can be immutable (read-only) or mutable (read-write)

• The two key rules of borrowing:

1. Borrows must not outlast the original owner’s lifetime

2. Either a single mutable borrow or multiple immutable borrows may exist at

any given time, but not both

Will Rust Solve Software Security?

© 2023 Carnegie Mellon University 9
[Distribution Statement A] Approved for public release and unlimited distribution.[Distribution Statement A] Approved for public release and unlimited distribution.

The Rust Security Model
Will Rust Solve Software Security?

Will Rust Solve Software Security?

© 2023 Carnegie Mellon University 10
[Distribution Statement A] Approved for public release and unlimited distribution.

Comparison with other languages

• Traditional programming languages are often memory-unsafe

• C

• C++

• Memory safety used to require expensive runtime checks

• Java

• Rust brings compile-time safety to the table

Will Rust Solve Software Security?

© 2023 Carnegie Mellon University 11
[Distribution Statement A] Approved for public release and unlimited distribution.

Iterator invalidation (C++11)

#include <cassert>

#include <iostream>

#include <vector>

int main() {

std::vector<int> v{1,2,3};

std::vector<int>::iterator it = v.begin();

assert(*it++ == 1);

v.push_back(4);

assert(*it++ == 2);

}

Compiles without warnings.
Undefined Behavior at runtime!

Will Rust Solve Software Security?

© 2023 Carnegie Mellon University 12
[Distribution Statement A] Approved for public release and unlimited distribution.

Iterator invalidation (Rust)

fn main() {

let mut v = vec![1, 2, 3];

let mut it = v.iter();

assert_eq!(*it.next().unwrap(), 1);

v.push(4);

assert_eq!(*it.next().unwrap(), 2);

} Using an invalidated iterator

Will Rust Solve Software Security?

© 2023 Carnegie Mellon University 13
[Distribution Statement A] Approved for public release and unlimited distribution.

Iterator invalidation (Rust)

error[E0502]: cannot borrow `v` as mutable because it is also
borrowed as immutable
--> rs.rs:5:5
|

3 | let mut it = v.iter();
| -------- immutable borrow occurs here

4 | assert_eq!(*it.next().unwrap(), 1);
5 | v.push(4);
| ^^^^^^^^^ mutable borrow occurs here

6 | assert_eq!(*it.next().unwrap(), 2);
| --------- immutable borrow later used here

error: aborting due to previous error

For more information about this error, try `rustc --explain
E0502`.

Does not compile!
Runtime bug avoided

Will Rust Solve Software Security?

© 2023 Carnegie Mellon University 14
[Distribution Statement A] Approved for public release and unlimited distribution.

Use-after-free (C)

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int main(void) {

char *x = strdup("Hello");

free(x);

printf("%s\n", x);

}

Compiles without warnings.
Undefined Behavior at runtime!

Will Rust Solve Software Security?

© 2023 Carnegie Mellon University 15
[Distribution Statement A] Approved for public release and unlimited distribution.

Use-after-free (Rust)

fn main() {

let x = String::from("Hello");

drop(x);

println!("{}", x);

}

x has already been freed here

Will Rust Solve Software Security?

© 2023 Carnegie Mellon University 16
[Distribution Statement A] Approved for public release and unlimited distribution.

Use-after-free (Rust)

error[E0382]: borrow of moved value: `x`
--> src/main.rs:4:20
|

2 | let x = String::from("Hello");
| - move occurs because `x` has type `String`, which

does not implement the `Copy` trait
3 | drop(x);
| - value moved here

4 | println!("{}", x);
| ^ value borrowed here after move
|
= note: this error originates in the macro

`$crate::format_args_nl` which comes from the expansion of the
macro `println` (in Nightly builds, run with -Z macro-backtrace
for more info)

For more information about this error, try `rustc --explain
E0382`.

Does not compile!
Runtime bug avoided

Will Rust Solve Software Security?

© 2023 Carnegie Mellon University 17
[Distribution Statement A] Approved for public release and unlimited distribution.

Other kinds of mistakes

• The billion dollar mistake: NULL

• No such thing in Rust – uses Option instead. Compiler enforces:

- Uses of optional variables must handle their absence

- Non-optional variables must always have a value

• Concurrency

• Data races

- Prevented by having either exactly one writer, or an arbitrary number of readers

• Mutexes, etc.

- Present in other languages like C, but can be forgotten

- Rust encodes their invariants into the type system, preventing misuse

Will Rust Solve Software Security?

© 2023 Carnegie Mellon University 18
[Distribution Statement A] Approved for public release and unlimited distribution.[Distribution Statement A] Approved for public release and unlimited distribution.

Limitations of the Rust
Security Model

Will Rust Solve Software Security?

Will Rust Solve Software Security?

© 2023 Carnegie Mellon University 19
[Distribution Statement A] Approved for public release and unlimited distribution.

Limitations

• Doesn't address features enabled by unsafe keyword (by design)

• Only addresses memory safety and concurrency safety (e.g. data races)

• Doesn't address other security issues

- SQL injections (and other injection attacks)

- Floating-point errors

- TOCTOU file race conditions (b/c not data race in memory)

- Unsafe cryptography (e.g. MD5)

• Borrow Checker Limitations

mailto:https://en.wikipedia.org/wiki/Time-of-check_to_time-of-use
mailto:https://www.kb.cert.org/vuls/id/836068

Will Rust Solve Software Security?

© 2023 Carnegie Mellon University 20
[Distribution Statement A] Approved for public release and unlimited distribution.

Borrow Checker Limitation (C++11)

#include <cassert>

#include <iostream>

#include <vector>

int main() {

std::vector<int> v{1,2,5};

std::vector<int>::iterator it = v.begin();

assert(*it++ == 1);

v[2] = 3;

assert(*it++ == 2);

}

Some operations invalidate C++ iterators
but not member assignment

This code compiles, runs cleanly, and is memory-safe.

Will Rust Solve Software Security?

© 2023 Carnegie Mellon University 21
[Distribution Statement A] Approved for public release and unlimited distribution.

Borrow Checker Limitation (Rust)

fn main() {

let mut v = vec![1, 2, 5];

let mut it = v.iter();

assert_eq!(*it.next().unwrap(), 1);

v[2] = 3;

assert_eq!(*it.next().unwrap(), 2);

}

Memory-safe

This code does not compile, it is rejected by the borrow checker

immutable borrow of v occurs here

mutable borrow of v occurs here

Workarounds:
• Use the vec<>::split_at_mut()method
• Using indices rather than iterators
• Wrap vector elements in std::cell

Will Rust Solve Software Security?

© 2023 Carnegie Mellon University 22
[Distribution Statement A] Approved for public release and unlimited distribution.

Rust Protection in Context

*Full protection is offered for Rust code that does not use the unsafe keyword

Protection C Java Python Rust

Memory
Corruption

None Full Full Full
*

Integer
Overflow

None None Full Optional

Data
Races

None Some None Full*

Injection
Attacks

None Some Some Some

Misuse of 3rd-
Party Code

None None None None

Will Rust Solve Software Security?

© 2023 Carnegie Mellon University 23
[Distribution Statement A] Approved for public release and unlimited distribution.[Distribution Statement A] Approved for public release and unlimited distribution.

Rust in the Current
Vulnerability Ecosystem

Will Rust Solve Software Security?

Will Rust Solve Software Security?

© 2023 Carnegie Mellon University 24
[Distribution Statement A] Approved for public release and unlimited distribution.

Expanding Rust Use – and Attack Surface?

Rust is now being adopted by many important software projects.

● Rust support in the Linux kernel since 6.2 (January 2023)

● Rust support in Microsoft Windows code/API in May 2023

● Rust support for UEFI in progress

● UEFI bytecode compilation target for rustc as of 2022

● Experimental GCC compiler for release in GCC 14 (early 2024)

● The reference compiler rustc is built on LLVM

As Rust's popularity grows in industry, we can expect vulnerability and security

issues around Rust to grow in importance.

https://uefi.org/sites/default/files/resources/Enabling%20RUST%20for%20UEFI%20Firmware_8.19.2020.pdf
https://github.com/rust-lang/compiler-team/issues/555

Will Rust Solve Software Security?

© 2023 Carnegie Mellon University 25
[Distribution Statement A] Approved for public release and unlimited distribution.

CVEs and Vulnerability Analysis

A CVE search for "rust" in May 2023 yields over 400 entries, including

vulnerabilities such as:

● Unsafe deserialization

● Integer overflow/underflow

● Out of bounds write, use after free, double drop (double free)

● Several forms of denial of service or memory leaks

● Various cryptographic issues – leaking secret data, incorrect use of

cryptography keys/algorithms, etc.

While Rust's design helps prevent certain memory vulnerabilities, clearly

many other kinds of vulnerabilities can still exist and require analysis.

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=rust

Will Rust Solve Software Security?

© 2023 Carnegie Mellon University 26
[Distribution Statement A] Approved for public release and unlimited distribution.

Current Vulnerability Analysis Tools

Rust has a few experimental tools for code analysis:

● Rudra is an experimental static-analysis tool that can reason about

certain classes of undefined behavior.

● Miri is an experimental Rust interpreter (dynamic analysis) that is

designed to also detect certain classes of undefined behavior and

memory access violations.

These tools are becoming standard analysis tools, though still

experimental. Both have been used to discover CVEs and bugs in crates.io

packages as well as in the rustc compiler itself.

However source code is not always available and requires specialized

reverse engineering tooling.

https://github.com/sslab-gatech/Rudra
https://github.com/rust-lang/miri

Will Rust Solve Software Security?

© 2023 Carnegie Mellon University 27
[Distribution Statement A] Approved for public release and unlimited distribution.

Reverse Engineering Challenges

Rust’s features ironically make more reliable/reproducible exploits.

There is evidence that malware authors are increasingly adopting Rust:

● In 2022, Rust code has been found in malware packages like BlackCat,

Hive, RustyBuer, Luna

Source code is not always available to aid malware analysis, and there are

gaps and challenges in providing Rust reverse engineering support

● Many tools assume C/C++ conventions and standards which are

incorrect and/or not used by Rust

● Research needed in recognizing Rust code and abstractions in

binary/machine code, and reconstructing those abstractions

https://www.cisa.gov/uscert/ncas/current-activity/2022/04/22/fbi-releases-iocs-associated-blackcatalphv-ransomware
https://www.microsoft.com/en-us/security/blog/2022/07/05/hive-ransomware-gets-upgrades-in-rust/
https://www.proofpoint.com/us/blog/threat-insight/new-variant-buer-loader-written-rust
https://www.kaspersky.com/about/press-releases/2022_luna-in-rust-new-ransomware-group-emerges-using-cross-platform-programming-language

Will Rust Solve Software Security?

© 2023 Carnegie Mellon University 28
[Distribution Statement A] Approved for public release and unlimited distribution.[Distribution Statement A] Approved for public release and unlimited distribution.

Rust Stability and Maturity
Will Rust Solve Software Security?

Will Rust Solve Software Security?

© 2023 Carnegie Mellon University 29
[Distribution Statement A] Approved for public release and unlimited distribution.

Signs of Maturity

• Working reference implementation

• Such as a compiler or interpreter

• Complete written specification

• Documents how the language is to be

interpreted

• Committee or group

• Manages evolution of the language

• Transparent process

• for evolving the language

• Test suite

• Determines the compliance of third-

party implementations

• Meta-process

• Allows the committee to rate and

improve its own processes

• Technology

• Surveys how the language is being

used in the wild

• Repository

• of free third-party libraries

Will Rust Solve Software Security?

© 2023 Carnegie Mellon University 30
[Distribution Statement A] Approved for public release and unlimited distribution.

Language C Java Python Rust

First Appearance 1972 1995 1991 2010

Reference
Implementation

None JDK / HotSpot VM cpython rustc

Complete Specification ISO/IES 9899:2017 JLS Python Language
Reference

The Rust Reference
(incomplete)

Language Maintenance
Group

ISO / IEC / JTC1 / SC22 /
WG14

Sun , Oracle Python Software
Foundation

The Rust Project

Transparent Evolution
Process

ISO JCP PEP Process Request For Comments
(RFC) process

Compliance Test Suite Third-party commercial
testsuites

JavaTest Harness None None

Meta-process to Improve
Committee

ISO None None None

Language Survey
Technology

None None None crater

Third-party Code
Repository

None None Python Package Index
(PyPI)

crates.io

Table of Maturity

https://www.oracle.com/java/technologies/java-se-glance.html
https://openjdk.org/groups/hotspot/
https://github.com/python/cpython
https://github.com/rust-lang/rust
https://www.iso.org/standard/74528.html
https://docs.oracle.com/javase/specs/jls/se19/html/index.html
https://docs.python.org/3/reference/
https://docs.python.org/3/reference/
https://doc.rust-lang.org/reference/
https://www.open-std.org/jtc1/sc22/wg14/
https://www.open-std.org/jtc1/sc22/wg14/
https://en.wikipedia.org/wiki/Sun_Microsystems
https://www.oracle.com/
https://www.python.org/psf/
https://www.python.org/psf/
https://www.rust-lang.org/governance/#teams
https://www.iso.org/home.html
https://www.jcp.org/en/home/index
https://peps.python.org/pep-0001/#:~:text=Copyright-,What%20is%20a%20PEP%3F,a%20rationale%20for%20the%20feature.
https://github.com/rust-lang/rfcs/
https://github.com/rust-lang/rfcs/
https://web.archive.org/web/20060207001422/http:/java.sun.com/developer/technicalArticles/JCPtools2/
https://www.iso.org/home.html
https://github.com/rust-lang/crater/blob/master/docs/bot-usage.md
https://pypi.org/
https://pypi.org/
http://crates.io/

Will Rust Solve Software Security?

© 2023 Carnegie Mellon University 31
[Distribution Statement A] Approved for public release and unlimited distribution.

Rust Stability Policies

• crater scans all code in crates.io

and github.com

• Any such code with a test that:

- passes under the stable build

- but fails under the nightly build

• indicates a bug in the nightly

build of the Rust compiler

- or a change that would break code.

• This is limited to OSS code on crates.io

and github.com

• crates.io guarantees that crates will

not become unavailable,

• Even if they become deprecated.

This prevents the left-pad fiasco.

• To use an experimental Rust

feature, you must add:
#![feature(…)]

in your code.

https://github.com/rust-lang/crater/blob/master/docs/bot-usage.md
mailto:http://crates.io
mailto:http://github.com
mailto:http://crates.io
mailto:https://arstechnica.com/information-technology/2016/03/rage-quit-coder-unpublished-17-lines-of-javascript-and-broke-the-internet/

Will Rust Solve Software Security?

© 2023 Carnegie Mellon University 32
[Distribution Statement A] Approved for public release and unlimited distribution.

Rust Maturity Conclusion

• For non-OSS Rust code:

• Rust offers stability and maturity comparable to Python

- The code might break when upgraded to a new version of Rust.

• BUT for OSS code published to crates.io and github.com

• Rust’s stability is considerably stronger

- The code will not break on new versions of Rust without notification

and the Rust community can provide assistance in fixing the code.

• Rust's stability will be comparable to C or Java once Rust gains:

- Complete written specification

• GCC's proposed Rust extension should spur the Rust community to create a spec

- Official compliance test suite

mailto:http://crates.io
mailto:http://github.com

Will Rust Solve Software Security?

© 2023 Carnegie Mellon University 33
[Distribution Statement A] Approved for public release and unlimited distribution.[Distribution Statement A] Approved for public release and unlimited distribution.

Conclusion
Will Rust Solve Software Security?

Will Rust Solve Software Security?

© 2023 Carnegie Mellon University 34
[Distribution Statement A] Approved for public release and unlimited distribution.

Key takeaways

• Rust is significantly safer than C, but

it’s not a panacea

• Some vulnerabilities will probably never

be totally preventable by a language

• Tooling is very good given how new

Rust is, but it will still take time to be as

rich as much older languages

Will Rust Solve Software Security?

© 2023 Carnegie Mellon University 35
[Distribution Statement A] Approved for public release and unlimited distribution.

Production readiness

• Being used in production by major companies such as Amazon and Google

• Lots of high-profile programs now use Rust in some capacity

• Firefox

• Linux kernel

• Windows kernel

Will Rust Solve Software Security?

© 2023 Carnegie Mellon University 36
[Distribution Statement A] Approved for public release and unlimited distribution.

Contact Us

David Svoboda

Software Security Engineer

Garret Wasserman

Vulnerability Analyst

Joseph Sible

Associate Software Engineer

Email: info@sei.cmu.edu

mailto:jcohen@sei.cmu.edu

	Slide 1
	Slide 2: Copyright 2023 Carnegie Mellon University
	Slide 3
	Slide 4
	Slide 5: Background
	Slide 6: The Rust Language
	Slide 7: Safe Rust vs. Unsafe Rust
	Slide 8: The borrow checker
	Slide 9
	Slide 10: Comparison with other languages
	Slide 11: Iterator invalidation (C++11)
	Slide 12: Iterator invalidation (Rust)
	Slide 13: Iterator invalidation (Rust)
	Slide 14: Use-after-free (C)
	Slide 15: Use-after-free (Rust)
	Slide 16: Use-after-free (Rust)
	Slide 17: Other kinds of mistakes
	Slide 18
	Slide 19: Limitations
	Slide 20: Borrow Checker Limitation (C++11)
	Slide 21: Borrow Checker Limitation (Rust)
	Slide 22: Rust Protection in Context
	Slide 23
	Slide 24: Expanding Rust Use – and Attack Surface?
	Slide 25: CVEs and Vulnerability Analysis
	Slide 26: Current Vulnerability Analysis Tools
	Slide 27: Reverse Engineering Challenges
	Slide 28
	Slide 29: Signs of Maturity
	Slide 30: Table of Maturity
	Slide 31: Rust Stability Policies
	Slide 32: Rust Maturity Conclusion
	Slide 33
	Slide 34: Key takeaways
	Slide 35: Production readiness
	Slide 36: Contact Us

