
 

DoD Software Factbook 
Software Engineering Measurement 
and Analysis Group 
 
Version 1.1 

 
December 2015 

 
Bradford Clark 
James McCurley 
David Zubrow 

 

 

 

 

 

 

 

 

 

 

 

© 2015 Carnegie Mellon University 
Distribution Statement A: Approved for Public Release; 
Distribution is Unlimited 



DoD Software Factbook   

 Distribution Statement A: Approved for Public Release; Distribution is Unlimited     1 

Copyright 2015 Carnegie Mellon University 
 
This material is based upon work funded and supported by the Department of 
Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University 
for the operation of the Software Engineering Institute, a federally funded research 
and development center. 
 
Any opinions, findings and conclusions or recommendations expressed in this 
material are those of the author(s) and do not necessarily reflect the views of the 
United States Department of Defense. 
 
This report was prepared for the 
SEI Administrative Agent 
AFLCMC/PZM 
20 Schilling Circle, Bldg 1305, 3rd floor 
Hanscom AFB, MA 01731-2125 
 
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND 
SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON 
AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO 
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO 
ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF 
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR 
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE 
MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY 
KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR 
COPYRIGHT INFRINGEMENT. 
 
This material has been approved for public release and unlimited distribution 
except as restricted below. 
 
Internal use:* Permission to reproduce this material and to prepare derivative works from 
this material for internal use is granted, provided the copyright and “No Warranty” 
statements are included with all reproductions and derivative works. 
 
External use:* This material may be reproduced in its entirety, without 
modification, and freely distributed in written or electronic form without requesting 
formal permission. Permission is required for any other external and/or commercial 
use. Requests for permission should be directed to the Software Engineering 
Institute at permission@sei.cmu.edu. 

 
* These restrictions do not apply to U.S. government entities. 
 
Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by 
Carnegie Mellon University. 
 
DM-0002750 
 

  



DoD Software Factbook   

 Distribution Statement A: Approved for Public Release; Distribution is Unlimited     2 

Contents 

Executive Summary ............................................................................ 3 

Software Resources Data Report ........................................................ 3 

Reporting Frequency ....................................................................... 4 

Portfolio Description ........................................................................... 5 

Data Age ......................................................................................... 5 

Reported Software Process Maturity Levels ................................... 5 

Distribution by Super Domain ........................................................ 6 

Distribution by Operating Environment ......................................... 6 

Team Size........................................................................................ 7 

Project Size ..................................................................................... 8 

Software Growth Summary ............................................................ 9 

Most and Least Expensive Software ................................................. 10 

Unit Cost ....................................................................................... 10 

Production Rate ............................................................................. 11 

Cost Comparison ........................................................................... 12 

Effort–Schedule Tradeoff ................................................................. 13 

Team Size...................................................................................... 13 

Project Size ................................................................................... 13 

Average Effort .............................................................................. 14 

Average Duration .......................................................................... 14 

Tradeoff Results ............................................................................ 15 

Best in Class / Worst in Class ........................................................... 16 

Analysis Approach ....................................................................... 16 

Real-Time (RT) Software ............................................................. 17 

Engineering (ENG) Software ....................................................... 19 

Mission-Support (MS) Software .................................................. 20 

Automated Information System (AIS) ......................................... 21 

Conclusions and Next Steps ............................................................. 22 

Appendix .......................................................................................... 23 

Acronyms & Definitions .............................................................. 23 

Equivalent Source Lines of Code (ESLOC) ................................. 24 

Super Domains ............................................................................. 25 

Operating Environments ............................................................... 26 

Transforming Data ........................................................................ 27 

  

This research is funded by the Associate Director for 
Software Technologies Office of Information Systems 
& Cyber Security RD / ASD(R&E) / AT&L / 
Department of Defense. 



DoD Software Factbook  Executive Summary 

 Distribution Statement A: Approved for Public Release; Distribution is Unlimited     3 

Executive Summary 
This DoD Factbook is an initial analysis of software engineering data 
from the perspective of policy and management questions about 
software projects. The analysis relies on the DoD’s Software 
Resources Data Report (SRDR) and other supporting data. The 
Factbook provides a description of the DoD software portfolio based 
on the SRDR data. It then addresses the following questions posed to 
direct a deeper analysis: 

1. What is the most expensive software to develop? 
2. To what extent can project duration be shortened or recovered by 

adding more people? 
3. What differences are there between best-in-class and worst-in-

class software projects? 
The Factbook focuses on the following three analysis areas to answer 
the questions: 

1. The differences in productivity between different classes of 
projects. This will identify which project classes are more 
expensive to develop. 

Analysis shows that real-time software is at least three times 
more expensive to develop than the least expensive software, 
automated information system software. 

2. The tradeoff between software development effort and 
software development duration. This analysis addresses the 
ramifications of shortening or recovering project duration by 
adding more people. 

Analysis shows that for typical project durations, a 20% 
reduction in duration costs an additional 36% increase in effort. 

3. The differences in effort, schedule, and cost performance 
between best-, average-, and worst-in-class projects. 
Analysis shows that best-in-class projects are over two times 
more efficient than average projects and upwards of five times 
more efficient than worst-in-class projects. 

The Factbook starts with a discussion and overview of the data used 
in the analysis of these questions. The three analysis areas follow this 
introductory material. 

Software Resources Data Report 
The Software Resources Data Report (SRDR) is the primary source 
of data on software projects and their performance. It is a contract 
data deliverable that formalized the reporting of software metrics 
data. It consists of the following two forms: 

• data report 

• data dictionary 

It is designed to record both the estimates and actual results of new 
software developments or upgrades. 

The SRDR applies to all major contracts and subcontracts, regardless 
of contract type, for contractors developing or producing software 
elements within Acquisition Category (ACAT) I and IA programs 
and pre-Major Defense Acquisition Program (MDAP) and pre- 
Major Automated Information System (MAIS) programs subsequent 



DoD Software Factbook  Software Resources Data Report 

 Distribution Statement A: Approved for Public Release; Distribution is Unlimited     4 

to Milestone A approval for any software development element with 
a projected software effort greater than $20M.1 

Reporting Frequency 
Programs submit reports for these two types of reporting events: 

• Contract event: an SRDR is required at contract start (Initial 
Developer Report) and at contract completion (Final Developer 
Report). 

• Product event: an SRDR is required at the start of a product 
increment (Initial Developer Report) and at the completion of a 
product increment (Final Developer Report). An increment is a 
partial delivery of a product capability. Increments are also 
referred to as spirals, builds, and releases. 

The report for the start and end of a contract event will contain all of 
the data for all product events within the contract. Therefore, care 
must be taken to analyze only records that are from either contract 
events or product events, but not both. 

The SRDR event data used in this analysis is based on product event 
data and is referred to as project data in this Factbook. 

The SRDR data used in this analysis is based on the final report that 
contains actual result data. Data for this analysis had to include the 
following information: 

• size data 

• effort data 

• schedule data 

                                                 
1 CSDR Requirements, OSD Defense Cost and Resource Center, 
http://dcarc.cape.osd.mil/CSDR/CSDROverview.aspx#Introduction 

Based on this criterion, the dataset for this analysis used 208 projects 
from the product-event final-report data. 

As more data is added to the Defense Automated Cost Information 
Management System (DACIMS), this analysis will be expanded and 
updated.  



DoD Software Factbook  Portfolio Description 

 Distribution Statement A: Approved for Public Release; Distribution is Unlimited     5 

Portfolio Description 
Data Age 
The age of the data was derived from the Report as of Date. 
Submission dates in the analysis dataset of the Final Developer 
Report range from October 2004 to September 2011. As Figure 1 
shows, there are a few projects in 2004. Most of the projects are from 
the 2008 to 2010 timeframe. 

Reported Software Process Maturity Levels 
In Figure 2, the histogram shows the reported process maturity levels 
in the analysis dataset. Most projects reported the highest level of 
maturity. The following are the counts at each maturity level: 

• level 3 (64) 

• level 4 (24) 

• level 5 (119) 

 

  

Figure 1. Project Distribution for Data Age 

Figure 2. Project Distribution for Process Maturity Level 

Oct-11Oct-10Oct-09Oct-08Oct-07Oct-06Oct-05Oct-04

16

14

12

10

8

6

4

2

0

Final Report As Of Date

Pe
rc

en
t

543

60

50

40

30

20

10

0

Process Maturity Level

Pe
rc

en
t



DoD Software Factbook  Portfolio Description 

 Distribution Statement A: Approved for Public Release; Distribution is Unlimited     6 

Distribution by Super Domain 
The analysis dataset can be segregated into different classes called 
super domains. Super domains are high-level groupings of software 
application domains, as shown in Figure 3. The four super domains 
are 

• ENG: engineering software (88) 

• RT: real-time software (61) 

• MS: mission support software (38) 

• AIS: automated information system software (21) 
The four super domains are used later for the best-in-class and worst-
in-class analysis. A more detailed explanation of the super domains 
is provided in the Appendix, Super Domains. 

 

Distribution by Operating Environment 
The analysis dataset can also be grouped into the operating 
environments (OpEnv) in which the software operates, as shown in 
Figure 4. The most dominant environment was ground site followed 
by aerial vehicle. 

• GS: ground site (99) 

• AV: aerial vehicle (66) 

• GV: ground vehicle (28) 

• MV: maritime vessel (11) 

• OV: ordnance vehicle (9) 

• SV: space vehicle (1) 

Examples of these environments are provided in the Appendix, 
Operating Environments. 

Figure 4. Project Distribution by Operating Environment 

Figure 3. Project Distribution by Super Domain 

SVOVMVGVAVGS

50

40

30

20

10

0

Operating Environment

Pe
rc

en
t

AISMSRTENG

40

30

20

10

0

Super Domain

Pe
rc

en
t



DoD Software Factbook  Portfolio Description 

 Distribution Statement A: Approved for Public Release; Distribution is Unlimited     7 

Team Size 
The size of development teams is based on measures of project effort 
and duration. The effort for a project is reported in labor hours. Labor 
hours are converted to person months (PM) of effort and divided by 
months of project durations to derive the average level of project 
staffing. 

Figure 5 shows that most teams have 10 or fewer people. Recall that 
SRDRs are required for contracts over $20M. These contracts have 
multiple product events resulting in seemingly small team sizes 
which, in fact, are due to low levels of effort over relatively long 
durations 

Figure 5 also shows the data skewed to the left in the chart’s 
horizontal axis. This indicates that the data has a non-normal 
distribution that must be corrected before analyzing team size based 
on central tendency. Figure 6 shows the log-transformed data and its 
near-normal distribution. See Appendix, Transforming Data, for 
more discussion on the significance of normal versus non-normal 
data distribution. 

As will be seen in the Effort-Schedule Tradeoff analysis, project data 
has to be divided into three team-size groups: small, medium, and 
large. Projects in these groups are selected from one-third 
partitioning of a descending-order list of team sizes for projects. 

• small-size teams 1 to 3.5 average staff 

• medium-size teams  3.6 to 10 average staff 

• large-size teams Over 10 average staff 

In Figure 6, which shows team size on a log scale, the divisions 
between small to medium and medium to large are at 0.54 and 1.0, 
respectively, as depicted by the bold lines.   

Figure 6. Project Distribution of FTE – Log Scale 

Figure 5. Project Distribution of FTEs 

706050403020100

Median

Mean

1210864

1st Quartile 2.683
Median 5.768
3rd Quartile 12.743
Maximum 74.550

8.419 12.359

4.754 6.897

11.874 14.677

A-Squared 16.84
P-Value < 0.005

Mean 10.389
StDev 13.127
Variance 172.307
Skewness 2.45790
Kurtosis 6.48006
N 173

Minimum 0.136

Anderson-Darling Normality Test

95% Confidence Interval for Mean

95% Confidence Interval for Median

95% Confidence Interval for StDev

95% Confidence Intervals

Full Time Equivalent

2.01.61.20.80.40.0-0.4-0.8

Median

Mean

0.850.800.750.700.65

1st Quartile 0.42806
Median 0.76101
3rd Quartile 1.10527
Maximum 1.87245

0.63322 0.80186

0.67705 0.83865

0.50825 0.62824

A-Squared 1.07
P-Value 0.008

Mean 0.71754
StDev 0.56187
Variance 0.31570
Skewness -0.484540
Kurtosis 0.184375
N 173

Minimum -0.86774

Anderson-Darling Normality Test

95% Confidence Interval for Mean

95% Confidence Interval for Median

95% Confidence Interval for StDev

95% Confidence Intervals

Full Time Equivalent - Log Transformed



DoD Software Factbook  Portfolio Description 

 Distribution Statement A: Approved for Public Release; Distribution is Unlimited     8 

Project Size 
This analysis uses a product-size measure based on software source 
lines of code (SLOC). A key issue in using SLOC as a measure of 
work effort and duration is the difference in work required to 
incorporate software from different sources, including: 

• new code 

• modified code (changed in some way to make it suitable) 

• reused code (used without changes) 

• auto-generated code (created from a tool and used without 
change) 

Each of these computer-code sources requires a different amount of 
work effort to incorporate into a software product. The challenge is 
in coming up with a single measure that includes all of the code 
sources. 

The approach taken is to normalize all code sources to the equivalent 
of a new line of code. This is done by taking a portion of the 
measures for modified, reused, and auto-generated code. The 
portioning is based on the percentage of modification to the code 
based on changes to the design, code, and unit test, and integration 
and test documents. This is further explained in the Appendix, 
Equivalent Source Lines of Code. 

Figure 7 shows that most projects have a size less than 80,000 
equivalent source lines of code (ESLOC) with an average size of 
57,199 ESLOC and a median size of 28,598. When the size data is 
transformed (Figure 8) into a more normal-like distribution, the 
average project size is 104.37 or 23,442 ESLOC and the median is 
104.46 or 28,840 ESLOC. 

As an easy heuristic, the average project size is around 25,000 
ESLOC for all projects.  

Figure 7. Project Distribution of Size 

5.44.84.23.63.02.4

Median

Mean

4.554.504.454.404.354.30

1st Quartile 3.8388
Median 4.4563
3rd Quartile 4.8587
Maximum 5.6769

4.2764 4.4531

4.3086 4.5496

0.5958 0.7214

A-Squared 0.98
P-Value 0.013

Mean 4.3647
StDev 0.6526
Variance 0.4258
Skewness -0.315464
Kurtosis -0.492187
N 212

Minimum 2.4803

Anderson-Darling Normality Test

95% Confidence Interval for Mean

95% Confidence Interval for Median

95% Confidence Interval for StDev

95% Confidence Intervals

Equivalent Source Lines of Code - Log Trans.

Figure 8. Project Distribution of Size – Log Scale 

480000400000320000240000160000800000

Median

Mean

700006000050000400003000020000

1st Quartile 6899
Median 28598
3rd Quartile 72219
Maximum 475254

46404 67994

20351 35450

72798 88142

A-Squared 20.34
P-Value < 0.005

Mean 57199
StDev 79734
Variance 6357456546
Skewness 2.64418
Kurtosis 8.36081
N 212

Minimum 302

Anderson-Darling Normality Test

95% Confidence Interval for Mean

95% Confidence Interval for Median

95% Confidence Interval for StDev

95% Confidence Intervals

Equivalent Souce Lines of Code



DoD Software Factbook  Portfolio Description 

 Distribution Statement A: Approved for Public Release; Distribution is Unlimited     9 

Software Growth Summary 
Table 1 shows the change in software size and total hours of effort 
for all available record pairings of an initial SRDR and a 
corresponding final SRDR. The initial SRDR reports an estimate and 
the final SRDR reports the actual value. In Table 1, growth is shown 
in a pair of rows for each of the measures. The first row shows the 
growth in terms of the measure itself and the second row shows the 
growth in terms of percentage of change. 

Both ESLOC and effort change have wide variation from project to 
project and display skewed distributions. In these cases, the 
median—or 50th percentile—provides a better indication of the 
typical magnitude of change from the initial to final values. The 
median figures of percentage change provide a normalized indication 
of the magnitude of change. For ESLOC the median growth is 27% 
and for effort the growth is 19%. The skewness and spread of these 
distributions is graphically depicted in Figure 9 and Figure 10. 

 
Table 1. Change in Software Size and Hours of Effort 

Variable N Median 

Change in ESLOC 190 4,304 

Percentage Change in 
ESLOC 

190 27% 

Change in Total Hours 190 5,584 

Percentage Change in Total 
Hours 

189 19% 

 

Figure 10. Project Distribution of %Change in Hours of Effort 

Figure 9. Project Distribution of %Change in Software Size 

1800.00%1500.00%1200.00%900.00%600.00%300.00%0.00%

Median

Mean

120.00%100.00%80.00%60.00%40.00%20.00%0.00%

1st Quartile -0.0667
Median 0.2702
3rd Quartile 0.9432
Maximum 17.8224

0.5346 1.1930

0.1282 0.3680

2.0898 2.5580

A-Squared 25.40
P-Value < 0.005

Mean 0.8638
StDev 2.3002
Variance 5.2907
Skewness 4.5885
Kurtosis 25.8693
N 190

Minimum -0.8956

Anderson-Darling Normality Test

95% Confidence Interval for Mean

95% Confidence Interval for Median

95% Confidence Interval for StDev
95% Confidence Intervals

Summary for ΔESLOC%



DoD Software Factbook  Most and Least Expensive Software 

 Distribution Statement A: Approved for Public Release; Distribution is Unlimited     10 

Most and Least Expensive Software 
What is the most expensive software to develop? 
The analysis is based on the rationale that some types of software are 
more difficult to develop than other types and therefore require more 
effort to develop. The level of difficulty can be caused by factors 
such as execution timing constraints, interoperability requirements, 
commercial-off-the-shelf (COTS) software product incorporation, 
algorithmic complexity, communication complexity, data-bandwidth 
requirements, security requirements, and so forth. To account for the 
dissimilarities in project difficulty, projects are segregated into four 
groups based on their super domains. 

Two cost-related concepts are used in this analysis: unit cost and 
production rate. 

• Unit cost is the cost of producing a unit of software with some 
amount of effort. In this case, the unit of software is thousands of 
ESLOC (KESLOC). The effort is person months, which can be 
translated into cost using an average labor rate. 

• Production rate is the rate at which a unit of software is delivered 
over a period of time. The unit of software is ESLOC and the 
time is months of project duration. 

To get a complete picture of software cost, unit cost should be 
normalized with the production rate. This is done because some 
projects may choose to employ more staff to increase their 
production rate and deliver the software faster. 

Unit Cost 
With an average project size of 25,000 ESLOC, each of the four 
groups are displayed in the scatter-plot chart, Figure 11. Trend lines 
run through the average of each group. The black vertical line is a 
reference for the average project size discussed earlier. 

The trend lines on the chart show that there are differences in unit 
costs between the four groups. The trend line for real-time software 
shows that for small amounts of size, a large amount of effort is 
required; that is, real-time software has a high unit cost. The trend 
line for automated information system software shows the opposite: 
for large amounts of size, a small amount of effort is required. 

Apart from the implications of the trend lines, it is difficult to tell 
what is happening with the average project size of 25,000 ESLOC. If 
the data is transformed to a log scale, the comparisons become easier 
to discern. 

The scatter-plot chart in Figure 12 is a log-transformed version of 
Figure 11. Its transformation makes it easier to see the relationships 
between the four groups for an average project size. The order of unit 
costs (from highest to lowest) for an average-size project is as 
follows: 

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

0 100 200 300 400 500

Pe
rs

on
 M

on
th

s

KESLOC
RT ENG MS AIS

Figure 11. Unit Cost Scatter Plot 



DoD Software Factbook  Most and Least Expensive Software 

 Distribution Statement A: Approved for Public Release; Distribution is Unlimited     11 

• real-time software 12.2 PM per KESLOC 
• engineering software  8.8 PM per KESLOC 
• mission support software   5.1 PM per KESLOC 
• automated information system  2.8 PM per KESLOC 

Production Rate 
The scatter-plot chart for the production rate, using a data-
transformed log scale, is shown in the second chart to the right. This 
chart shows the relationships between the four groups for how long it 
takes to deliver a unit of software. For an average-size project, the 
order of production rate is as follows: 

• real-time software 1.5 months per KESLOC 
• engineering software 1.3 months per KESLOC 
• mission support software 1.3 months per KESLOC 
• automated information system 1.1 months per KESLOC 

Care must be taken when making comparisons for projects of other 
sizes. As can be seen in Figure 12 and Figure 13, the trend lines 
intersect, indicating that the orderings of unit cost and production 
rate vary with size. For instance, in the smaller size range, the data 
show that the unit cost of RT software is slightly less than that for 
ENG software. A similar result is shown by the trend line for MS 
software in terms of production rate.  

1

10

100

1000

0.1 1 10 100 1000

M
on

th
s

KESLOC
AIS ENG MS RT 25K

Figure 13. Production Rate Scatter Plot - Log Scale 

1

10

100

1,000

10,000

0.1 1 10 100 1000

Pe
rs

on
 M

on
th

s

KESLOC
RT ENG MS AIS

Figure 12. Unit Cost Scatter Plot - Log Scale 



DoD Software Factbook  Most and Least Expensive Software 

 Distribution Statement A: Approved for Public Release; Distribution is Unlimited     12 

Cost Comparison 
The average number of staff each month can be determined when 
unit cost is normalized with production rate. Assuming an average 
annual burden labor cost2 of $150,000/staff, the normalized monthly 
cost for each group is shown: 

• real-time software 8.1 people or $101,250 
• engineering software 6.7 people or $83,750 
• mission support software 3.9 people or $48,750 
• automated information system 2.5 people or $31,250 
Real-time software is the most expensive to develop and automated 
information system software is the least expensive. 

  

                                                 
2 Annual burden labor rate includes wages, payroll taxes, worker's compensation 
and health insurance, paid time off, training and travel expenses, vacation and sick 
leave, pension contributions, and other benefits. It may be as much as 50% higher 

than payroll costs alone. A $150,000 average annual burden labor rate breaks down 
to $12,500/month and $82.24/hour using 1,824 labor hours in a year 



DoD Software Factbook  Effort–Schedule Tradeoff 

 Distribution Statement A: Approved for Public Release; Distribution is Unlimited     13 

Effort–Schedule Tradeoff 
Can project duration be shortened or recovered by adding more 
people? 
The approach for this analysis is to look at the increase in the percent 
of effort required to reduce a percentage of schedule or duration. The 
simple strategy of reducing schedule 20% by increasing effort 20% 
may work in manufacturing, but does it work in software 
development? 

Team Size 
In small-size teams, effort and schedule are heavily influenced by 
individuals. Larger teams experience an averaging effect among team 
members for influencing effort and schedule. Since this analysis is 
attempting to draw conclusions based on averages, medium- and 
large-team-size projects are examined for the tradeoff between effort 
and time. Recall from the earlier discussion on team size: 

• medium-size teams 3.6 to 10 average staff 

• large-size teams over 10 average staff 

In Figure 14, the blue cloud represents medium-size projects and the 
red cloud represents large-size projects. 

Project Size 
An average project size is also needed for this analysis for 
comparison of effort and duration between the two team sizes. The 
average project size based on medium and large team size is 50,000 
ESLOC. See the black vertical bar in the chart. 

  

1.0

10.0

100.0

100 1,000 10,000 100,000 1,000,000

Av
er

ag
e 

St
af

fin
g

ESLOC

Figure 14. Comparison of Medium- vs. Large-Team Software Size 



DoD Software Factbook  Effort–Schedule Tradeoff 

 Distribution Statement A: Approved for Public Release; Distribution is Unlimited     14 

Average Effort 
Figure 15 shows the difference in effort between using medium- and 
large-size teams. A red trend line for a medium-size team and a blue 
trend line for a large-size team representing the average effort 
expended per ESLOC are shown. A black line for an average 50,000 
ESLOC project intersects the red and blue lines. 

The effort expended on an average-size project by each team is as 
follows: 

• medium-size team 258 person months 
• large-size team 455 person months 

The difference in effort between the medium and large team is 197 
person months of effort. This difference is attributed to the different 
development durations for each team and is discussed next. 

Average Duration 
Figure 16 shows the difference in development time between using 
medium- and large-size teams. The time it takes each team to finish 
an average-size project is as follows: 

• medium-size team 43 months 

• large-size team 25 months 

The difference in development time between the medium- and large-
size teams is 18 months. 

As expected, medium-size teams expend less effort and take longer 
for an average-size project. Larger size teams perform the reverse. 
But what is the tradeoff between increasing effort and reducing 
schedule? 

10

100

1000

10000

100 1,000 10,000 100,000 1,000,000

Pe
rs

on
 M

on
th

s

ESLOC
Medium Size Teams Large Size Teams

1

10

100

1000

100 1,000 10,000 100,000 1,000,000

M
on

th
s

ESLOC
Medium Size Teams Large Size Teams

Figure 15. Comparison of Medium- vs. Large-Team Development Effort 

Figure 16. Comparison of Medium- vs. Large-Team Development Duration 



DoD Software Factbook  Effort–Schedule Tradeoff 

 Distribution Statement A: Approved for Public Release; Distribution is Unlimited     15 

Tradeoff Results 
The time to develop an average-size project was reduced from 43 to 
25 calendar months, a 42% reduction. This came at the expense of 
increasing effort from 258 to 455 person months, a 76% increase. For 
each 1% reduction in schedule, there is a 1.8% increase in effort. 

Instead of achieving a 20% reduction in schedule with a 20% 
increase in effort, as stated in the manufacturing example earlier, a 
50,000 ESLOC project would reduce schedule 20% by adding 36% 
more effort. 
The strategy of reducing or reclaiming schedule by increasing the 
number of people on a project is expensive. It is also non-linear (the 
charts shown in this analysis are in log scale, meaning the trend lines 
are curved and not straight); that is, a larger percentage of schedule 
reduction is accompanied by a disproportionately larger percentage 
increase in effort. 

These results corroborate the schedule-compression driver in the 
COCOMO II model.3 In that model, a 15% schedule reduction 
causes a 14% increase in effort. A 25% schedule reduction causes a 
43% increase in effort. The analysis presented here shows that a 20% 
schedule reduction causes a 36% increase in effort. 

Project size does not appear to be the only factor that drives the 
amount of effort on a project. Schedule compression also has a 
significant impact on staffing level. 

  

                                                 
3 Boehm, B., Abts, C., Brown, W, Chulani, S., Clark, B., Horowitz, E., Madachy, 
R., Reifer, R., and Steece, B., “Software Cost Estimation with COCOMO II,” 
Prentice Hall, Upper Saddle River, NJ, 2000, pp. 50-51. 



DoD Software Factbook  Best in Class / Worst in Class 

 Distribution Statement A: Approved for Public Release; Distribution is Unlimited     16 

Best in Class / Worst in Class 
What differences are there between best-in-class and worst-in-class 
software projects? 
To assess differences between projects, two derived metrics are used: 
efficiency and speed. Efficiency is a measure of how much product 
can be produced per unit of effort. In this analysis, the amount of 
product is expressed as ESLOC. The effort is expressed as the 
number of people and amount of time required to produce the 
product, that is, the number of person months of effort. Dollar cost is 
derived by applying a labor rate to the person-month effort measure. 

Speed is a measure of how fast a product can be produced. Again, the 
amount of product is expressed as ESLOC. Time is expressed as 
calendar months. 

The dataset was segregated and analyzed in four classes based on the 
super domains discussed earlier: real-time, engineering, mission 
support, and automated information software. See Appendix, Super 
Domains for definitions of each super domain. 

Analysis Approach 
The analysis uses projects separated by their super domain or class. 
The focus is on an average project size of 25,000 ESLOC (as 
discussed earlier) within each class. Using a project of average size, 
project efficiency and speed are derived. A ±1 standard deviation 
(SD) about the efficiency and speed average are used to categorize 
best and worst projects. One standard deviation above and below the 
mean includes about 67% of projects, and therefore about 1/6th of 
the projects are deemed to be in the best and in the worst categories. 

                                                 
4 Burden labor rate includes wages, payroll taxes, worker's compensation and 
health insurance, paid time off, training and travel expenses, vacation and sick 

The assignment into the best-in-class and worst-in-class categories 
was done as follows: 

• Best: all projects below the −1 SD vale are projects that used less 
effort or took less time to finish than average. 

• Worst: all projects above the +1 SD value are projects that used 
more effort or took more time to finish than average. 

Projects within ±1 standard deviation are deemed average, that is, 
neither best nor worst-in-class. 

Each analysis presents scatter-plot charts for efficiency and speed for 
each software super domain. The average trend line and ±1 SD are 
shown, discussed and compared among best, average, and worst in 
class. An assumed burden labor rate4 of $150 per hour is used to 
compare costs. A table at the end of the analysis summarizes results. 

  

leave, pension contributions, and other benefits. It may be as much as 50% higher 
than payroll costs alone. 



DoD Software Factbook  Best in Class / Worst in Class 

 Distribution Statement A: Approved for Public Release; Distribution is Unlimited     17 

Real-Time (RT) Software 

Efficiency 
The RT efficiency chart in Figure 17 shows an average trend line 
through size and effort data for 61 real-time software projects. The 
average-size project expends 304 person months of effort. Best-in-
class projects expend 155 person months of effort, and worst-in-class 
projects expend 594 person months of effort. The difference between 
a best- or worst-in-class project from the average is 149 person 
months. The difference between best and worst in class is 298 person 
months. 

Best-in-class RT projects are almost 2 times more efficient than 
average projects and 3.8 times more efficient than worst-in-class 
projects. 

Using a burden labor rate of $150,000 per year, the best-in-class 
project saves $1.863M dollars over an average project and $3.725M 
over a worst-in-class project. 

Speed 
The average-size project delivers a product in 38 months. A best-in-
class project delivers a product in 21 months. And a worst-in-class 
project delivers a product in 69 months, as shown in Figure 18. Best-
in-class projects are 1.8 times faster than average projects and 3.3 
times faster than worst in class. 

Figure 17. Real-Time Software Efficiency 

1

10

100

1000

10000

100 1,000 10,000 100,000 1,000,000

Pe
rs

on
 M

on
th

s

ESLOC

Figure 18. Real-Time Software Speed 

1.0

10.0

100.0

100 1,000 10,000 100,000 1,000,000

M
on

th
s

ESLOC



DoD Software Factbook  Best in Class / Worst in Class 

 Distribution Statement A: Approved for Public Release; Distribution is Unlimited     18 

Table 2 summarizes the differences in efficiency and speed between 
best, average, and worst-in-class RT projects.  

Table 2. Real-Time Software Best & Worst Summary 

Metric 
Best in 
Class Average 

Worst in 
Class 

Effort (Person Months) 155 304 594 

Schedule (Months) 21 38 69 

Cost (Millions) $1.938 $3.800 $7.425 

 



DoD Software Factbook  Best in Class / Worst in Class 

 Distribution Statement A: Approved for Public Release; Distribution is Unlimited     19 

Engineering (ENG) Software 

Efficiency 
There are 92 projects in the ENG super domain. The average-size 
project expends 215 person months of effort. The best-in-class 
expends 93 person months, and the worst in class expends 496 
person months, as shown in Figure 19. The best-in-class project is 
2.3 times more efficient than average projects and 5.3 times more 
efficient than worst-in-class projects. 

Using a burden labor rate of $150,000 per year, the best-in-class 
project saves $1.525M dollars over an average project and $5.038M 
dollars over a worst-in-class project. 

Speed 
The average-size best-in-class project delivers a software product in 
19 months, an average project in 32 months, and a worst-in-class 
project in 55 months, as shown in Figure 20. The best-in-class 
project is 1.7 times faster than an average project and 2.9 times faster 
than a worst-in-class project. 

Table 3 summarizes the differences in efficiency and speed between 
best, average, and worst-in-class ENG projects.  

1

10

100

1000

10000

100 1,000 10,000 100,000 1,000,000

Pe
rs

on
 M

on
th

s

ESLOC

Table 3. Engineering Software Best & Worst Summary 

Metric 
Best-in-
Class Average 

Worst-in- 
Class 

Effort (Person Months) 93 215 496 

Schedule (Months) 19 32 55 

Cost (Millions) $1.163 $2.688 $6.200 

 

Figure 19. Engineering Software Efficiency 

Figure 20. Engineering Software Speed 

1.0

10.0

100.0

1000.0

100 1,000 10,000 100,000 1,000,000

M
on

th
s

ESLOC



DoD Software Factbook  Best in Class / Worst in Class 

 Distribution Statement A: Approved for Public Release; Distribution is Unlimited     20 

Mission-Support (MS) Software 

Efficiency 
The mission-support super domain has 38 projects. The best-in-class, 
average, and worst-in-class projects expended 52, 127, and 306 
person months, respectively, as shown in Figure 21. A best-in-class 
project is 2.4 times more efficient than an average project and 5.8 
times more efficient than a worst-in-class project. 

Best-in-class projects save $926K dollars over average projects and 
$3.163M dollars over worst-in-class projects using a burden labor 
rate of $150 per hour. 

Speed 
Product delivery is 20 months for an average-size, best-in-class 
project. Average projects take 33 months. Worst-in-class projects 
take 56 months, as shown in Figure 22. This means best-in-class 
projects are 1.7 times faster than average projects and 2.8 times faster 
than worst-in-class projects. 

Table 4 summarizes the differences in efficiency and speed between 
best, average, and worst MS software projects.  

Figure 21. Mission Support Software Efficiency 

1

10

100

1000

10000

100 1,000 10,000 100,000 1,000,000

Pe
rs

on
 M

on
th

s

ESLOC

1.0

10.0

100.0

1000.0

100 1,000 10,000 100,000 1,000,000

M
on

th
s

ESLOC

Table 4. Mission Support Software Best & Worst Summary 

Metric 
Best in 
Class Average 

Worst in 
Class 

Effort (Person Months) 53 127 306 

Schedule (Months) 20 33 56 

Cost (Millions) $0.662 $1.588 $3.825 

 Figure 22. Mission Support Software Speed 



DoD Software Factbook  Best in Class / Worst in Class 

 Distribution Statement A: Approved for Public Release; Distribution is Unlimited     21 

Automated Information System (AIS) 

Efficiency 
Using a project size of 75,000 ESLOC,5 best-in-class, average, and 
worst-in-class projects expended an average of 147, 207, and 293 
person months of effort, respectively (see Figure 23). That makes 
best-in-class projects 1.4 times more efficient than average projects 
and almost 2 times more efficient than a worst-in-class project. 

Best-in-class projects save $250K over average projects and $588K 
over worst-in-class projects for an average-size project. 

Speed 
Best-in-class projects deliver a software product 2 times faster than 
average projects and 4.3 times faster than worst-in-class projects (see 
Figure 24). 

Table 5 summarizes the differences in efficiency and speed between 
best, average, and worst AIS software projects.   

                                                 
5 The change in project size from the previous average of 25,000 to 75,000 ESLOC 
is due to the removal of two project outliers with sizes one order of magnitude less 

than the other projects in this class. These outliers disproportionately influenced 
the results. 

Table 5. AIS Software Best & Worst Summary 

Metric 
Best in 
Class Average 

Worst in 
Class 

Effort (Person Months) 147 207 293 

Schedule (Months) 12 25 50 

Cost (Millions) $0.625 $0.875 $1.213 

 

Figure 23. AIS Software Efficiency 

Figure 24. AIS Software Speed 

1.0

10.0

100.0

1000.0

10,000 100,000 1,000,000

M
on

th
s

ESLOC

AIS-Speed

1

10

100

1000

10000

10,000 100,000 1,000,000

Pe
rs

on
 M

on
th

s

ESLOC

AIS-Efficiency



DoD Software Factbook  Conclusions and Next Steps 

 Distribution Statement A: Approved for Public Release; Distribution is Unlimited     22 

Conclusions and Next Steps 
This analysis shows that the cost of software development varies 
depending on several factors. All of the charts that show size versus 
effort imply that as the size of a software project increases, there is a 
corresponding increase in the amount of development effort (an 
indicator of labor cost). But size is not the lone determiner of cost. 

The class or super domain of software makes a difference in the cost 
of software. Different super domains have different levels of 
difficulty that cause more effort to be expended on more difficult 
software. On an average-size project, automated information system 
software costs $31,350 a month and real-time software costs 
$101,250 a month, more than three times as much. 

The time it takes to develop software also drives cost. Based on an 
average-size project, shorter duration projects cost disproportionately 
more than longer duration projects. It was shown that team size is 
clearly not determined solely by the size of the software to be built. 

The effort-schedule tradeoff analysis result also implies that projects 
with slipping milestones will require disproportionately more effort 
when attempts are made to recover schedule. 

The performance of a project also drives cost. The analysis looked at 
best, average, and worst performing projects within each super 
domain. Unfortunately there was not enough background data on 
projects to investigate why best and worst projects perform 
differently. This leads to the next steps. 

There is an effort to link the project data back to source documents 
and other data to make it possible to investigate the data more fully. 
There is a lot of data and source material, and some progress has 
been made to date with a lot more to do. 

There is additional SRDR data that can be added to this analysis, and 
new data is submitted every quarter. More data would increase the 

fidelity of grouping the data into different super domains of software, 
providing a more robust analysis. 

The intent of this report is to provide a characterization of the DoD 
software portfolio and to demonstrate how the SRDR data is useful 
in gaining insights into software-development costs. More analysis 
can be done, but we want to ask you, “What are the important 
questions that need answers?” We would like to receive feedback on 
this report and input for useful extensions. For comments and 
suggestions, please contact fact-book@sei.cmu.edu 
 

Thank you. 

  

mailto:fact-book@sei.cmu.edu


DoD Software Factbook  Appendix 

 Distribution Statement A: Approved for Public Release; Distribution is Unlimited     23 

Appendix 
Acronyms & Definitions 
AIS automated information system software (See 

Appendix, Super Domains.) 

DACIMS Defense Automated Cost Information Management 
System 

ENG engineering software (See Appendix, Super 
Domains.) 

ESLOC equivalent source lines of code. (See Appendix, 
Equivalent Source Lines of Code.) 

FTE full-time equivalent; the number of total hours worked 
divided by the maximum number of compensable 
hours in a full-time schedule. For example, if the 
normal schedule for a quarter is defined as 35 hours 
per week * (52 weeks per year / 4), 411.25 hours, then 
someone working 100 hours during that quarter 
represents 100/411.25 = 0.24 FTE. 

KESLOC thousands (K) of ESLOC 

MAIS Major Automated Information System 

MDAP Major Defense Acquisition Program 

MS mission-support software (See Appendix, Super 
Domains.) 

OpEnv operating environment (See Appendix, Operating 
Environment.) 

PD person days; a measure of effort based on eight hours 
per day for requirements through final qualification 
testing activities; 1 PD = 1 calendar day only when 
one person is working on the project. 

PM person months; a measure of effort based on an 
average of 152 labor hours in a month. The average 
includes vacation time, sick time, and holidays. 

project data data from an SRDR product event 

RT real-time software systems (See Appendix, Super 
Domains.) 

SD standard deviation; the amount of variation in the 
data. ±1 standard deviation covers about 67% of 
projects. 

SRDR Software Resources Data Report 
  



DoD Software Factbook  Appendix 

 Distribution Statement A: Approved for Public Release; Distribution is Unlimited     24 

Equivalent Source Lines of Code (ESLOC) 
A key issue in using software source lines of code (SLOC) as a 
measure of work effort and duration is the difference in work 
required to incorporate software from different sources: new code, 
modified code (changed in some way to make it suitable), reused 
code (used without changes), and auto-generated code (created from 
a tool and used without change). Each of these computer-code 
sources requires a different amount of work to incorporate into a 
software product. The challenge is in coming up with a single 
measure that includes all of the code sources. 

The approach taken here is to normalize all code sources to the 
equivalent of a new line of code. This is done by taking a portion of 
the measures for modified, reused, and auto-generated code. The 
portioning is based on the percentage of modification to the code 
based on changes to the design, code and unit test, and integration 
and test documents. This approach is adopted from the COCOMO II 
software cost estimation model.6 

Equivalent source lines of code (ESLOC), then, is the homogeneous 
sum of the different code sources. The portion of each code source is 
determined using a formula called an adaption adjustment factor 
(AAF): 

AAF = (0.4 x %DM) + (0.3 x %CM) + (0.3 x %IM) 

Where 

%DM: Percentage Design Modified 

%CM: Percentage Code and Unit Test Modified 

                                                 
6 Boehm, B., Abts, C., Brown, W, Chulani, S., Clark, B., Horowitz, E., Madachy, 
R., Reifer, R., and Steece, B., “Software Cost Estimation with COCOMO II,” 
Prentice Hall, Upper Saddle River, NJ, 2000, p. 22. 

%IM: Percentage Integration and Test Modified 

Using a different set of percentages for the different code sources, 
ESLOC is expressed as 

ESLOC = New SLOC + 
(AAFM x Modified SLOC) + 
(AAFR x Reused SLOC) + 
(AAFAG x Auto-Generated SLOC) 

• New code does not require any adaption parameters, since 
nothing has been modified. 

• Auto-generated code does not require the DM or CM adaption 
parameters. However, it does require testing, IM. If auto-
generated code does require modification, then it becomes 
modified code, and the adaptation factors for modified code 
apply. 

• Reused code does not require the DM or CM adaption parameters 
either. It also requires testing, IM. If reused code does require 
modification, then it becomes modified code and the adaptation 
factors for modified code apply. 

• Modified code requires the three parameters, DM, CM, and IM, 
representing modifications to the modified code design, code, and 
integration testing. 

The equivalent sizes for all of the projects are shown in the histogram 
graphs. The first histogram shows that sizes for the projects do not 
have a normal distribution. The analyses in this Factbook rely on 
statistical methods that require a normally distributed dataset. 



DoD Software Factbook  Appendix 

 Distribution Statement A: Approved for Public Release; Distribution is Unlimited     25 

Super Domains 

Real-Time (RT) 
Real-time is the most complex type of software. These projects take 
the most time and effort for a given system size due to the lower 
language levels, high level of abstraction, and increased complexity. 
Characteristics include 

• tightly coupled interfaces 

• real-time scheduling requirements 

• very high reliability requirements (life critical) 

• generally severe memory and throughput constraints 

• often executed on special-purpose hardware 

Examples of software domains in this super domain are: sensor 
control and signal processing, vehicle control, vehicle payload, and 
real-time embedded. 

Engineering (ENG) 
Engineering is a software type of medium complexity. 
Characteristics include 

• multiple interfaces with other systems 

• constrained response-time requirement 

• high reliability but not life critical 

• generally executed on commercial off-the- shelf (COTS) 
software applications 

Examples of software domains in this super domain are: mission 
processing, executive, automation and process control, scientific 
systems, and telecommunications. 

Mission Support (MS) 
Mission support is the least complex type of software. Software is 
often written in more human-oriented languages and performs 
common business functions such as order entry, inventory, human 
resources, financial transactions, and data processing and storage. 
Characteristics include 

• relatively less complex 

• self-contained or few interfaces 

• less stringent reliability requirement 

Examples of software domains in this super domain are: planning 
systems, non-embedded training, software tools, and non-embedded 
test software 

Automated Information Systems (AIS) 
Automated information systems describes software that automates 
information processing. These applications allow the designated 
authority to exercise control over the accomplishment of the mission. 
Humans manage a dynamic situation and respond to user input in 
real time to facilitate coordination and cooperation. 

Examples of software domains in this super domain are: intelligence 
and information systems, software services, and software 
applications. 

  



DoD Software Factbook  Appendix 

 Distribution Statement A: Approved for Public Release; Distribution is Unlimited     26 

Operating Environments 
Aerial Vehicle (AV) 

Examples of aerial vehicles are 

• manned: fixed-wing aircraft, helicopters 

• unmanned: remotely piloted air vehicles 
Ground Site (GS) 

Examples of ground sites are 

• fixed: command post, ground operations center, ground terminal, 
test faculties 

• mobile: intelligence-gathering stations mounted on vehicles, 
mobile missile launcher, handheld devices 

Ground Vehicle (GV) 

Examples of ground vehicles are 

• manned: tanks, howitzers, personnel carrier, mobile missile 
launcher 

• unmanned: robots 
Maritime Vessel (MV) 

Examples of maritime vessels are 

• manned: aircraft carriers, destroyers, supply ships, submarines 

• unmanned: mine-hunting systems, towed sonar array 

Ordnance Vehicle (OV) 

Examples of ordnance vehicles are 

• air-to-air missiles, air-to-ground missiles, smart bombs, strategic 
missiles 

Space Vehicle (SV) 

• manned: passenger vehicle, cargo vehicle, space station 

• unmanned: orbiting satellites (weather, communications), 
exploratory space vehicles 

  



DoD Software Factbook  Appendix 

 Distribution Statement A: Approved for Public Release; Distribution is Unlimited     27 

Transforming Data 
The data means, standard deviations, and trend lines through data 
used in this analysis assume that the data has a bell-shaped normal 
distribution. 

For example, Figure 25 and Figure 26 show the same data for the 
number of FTEs. The top chart shows the data skewed up against the 
left axis with a non-bell-shaped distribution. The data in the bottom 
chart has been transformed into a near normal distribution by 
converting the data to their log values, that is, log10 (FTE).7 
The impact of non-normal distribution versus normal distribution in 
the data for the value of the mean can be seen in these two charts. 

• mean, non-normal distribution (top chart) 10.389 
• mean, normal distribution (bottom chart) 5.2 
The difference between the two means shows that the mean for non-
normal data is twice the value for the mean for normal data and is 
very misleading. Note that the transformed mean is relatively close to 
the median of the untransformed data. It is always best practice to 
check the normality assumption of data before reporting the data’s 
parametric statistics. 

 

                                                 
7 To achieve a normal distribution of the data in this example, it must be 
transformed by raising each value to the 0.14 power, i.e., n0.14. We felt that a log 

transformation adequately satisfied the assumption of a normal data distribution 
and was much easier to explain. 

Figure 26. Near Normal Distribution of FTE in Log Values 

Figure 25. Skewed Distribution of FTE 

2.01.61.20.80.40.0-0.4-0.8

Median

Mean

0.850.800.750.700.65

1st Quartile 0.42806
Median 0.76101
3rd Quartile 1.10527
Maximum 1.87245

0.63322 0.80186

0.67705 0.83865

0.50825 0.62824

A-Squared 1.07
P-Value 0.008

Mean 0.71754
StDev 0.56187
Variance 0.31570
Skewness -0.484540
Kurtosis 0.184375
N 173

Minimum -0.86774

Anderson-Darling Normality Test

95% Confidence Interval for Mean

95% Confidence Interval for Median

95% Confidence Interval for StDev

95% Confidence Intervals

Full Time Equivalent - Log Transformed

706050403020100

Median

Mean

1210864

1st Quartile 2.683
Median 5.768
3rd Quartile 12.743
Maximum 74.550

8.419 12.359

4.754 6.897

11.874 14.677

A-Squared 16.84
P-Value < 0.005

Mean 10.389
StDev 13.127
Variance 172.307
Skewness 2.45790
Kurtosis 6.48006
N 173

Minimum 0.136

Anderson-Darling Normality Test

95% Confidence Interval for Mean

95% Confidence Interval for Median

95% Confidence Interval for StDev

95% Confidence Intervals

Full Time Equivalent


	Executive Summary
	Software Resources Data Report
	Reporting Frequency

	Portfolio Description
	Data Age
	Reported Software Process Maturity Levels
	Distribution by Super Domain
	Distribution by Operating Environment
	Team Size
	Project Size
	Software Growth Summary

	Most and Least Expensive Software
	Unit Cost
	Production Rate
	Cost Comparison

	Effort–Schedule Tradeoff
	Team Size
	Project Size
	Average Effort
	Average Duration
	Tradeoff Results

	Best in Class / Worst in Class
	Analysis Approach
	Real-Time (RT) Software
	Efficiency
	Speed

	Engineering (ENG) Software
	Efficiency
	Speed

	Mission-Support (MS) Software
	Efficiency
	Speed

	Automated Information System (AIS)
	Efficiency
	Speed


	Conclusions and Next Steps
	Appendix
	Acronyms & Definitions
	Equivalent Source Lines of Code (ESLOC)
	Super Domains
	Real-Time (RT)
	Engineering (ENG)
	Mission Support (MS)
	Automated Information Systems (AIS)

	Operating Environments
	Transforming Data


