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If you haven’t already, please pull the image:
docker pull cmusei/juneberry:vignette1
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Juneberry reproduces results 

Reproducibility helps ML 
research and evaluation 
teams to:

• build ML capability,

• maintain capability, and

• evaluate existing ML.

No other framework 
directly addresses 
reproducibility: 

• write less boilerplate 
code (PyTorch Lightning; 
TensorFlow)

• optimize hyper-
parameters (Weights 
and Biases; Grid.AI) 

• label and manage data 
(Labelstud.io)

• et cetera 

Juneberry is a reproducible  
research framework to 
build, maintain, and 
evaluate ML with 
declarative configs. 

Managing code is hard.

Managing configs is easier.

docker pull 

cmusei/juneberry:vignette1
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By the end of this tutorial you will 
be able to …
reproduce the CIFAR 10 results* from the original ResNet paper (He et al., 2015):

1. Get CIFAR-10 (torchvision/cifar10.json)

2. Implement the “original” 6N + 2 ResNet (resnet_simple.py)

3. Write a Juneberry wrapper class (resnet_simple.ResNet32x32)

4. Write a Juneberry model training config (models/cifar_R20)

5. Train the model (jb_train cifar_R20)

6. Write an experiment to vary layers (experiments/cifar_layer)

7. Run the experiment to replicate the paper (jb_run_experiment cifar_layer)

*ish: 2 epochs of training, fewer layers, and CPU only. For full replication with GPUs, see 
“Replicating a Classic Machine Learning Result with Juneberry” on our GitHub.

docker pull 

cmusei/juneberry:vignette1
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Juneberry
Introduction

https://github.com/cmu-sei/Juneberry

Juneberry is an open source Python tool that improves the experience of machine learning experimentation by providing a 
framework for automating the training, evaluation and comparison of multiple models against multiple datasets, reducing error s and 
improving reproducibility.

Juneberry is focused on experiments such as:

• Example 1: Compare the interaction of model architecture vs training data vs hyper parameters.

• Example 2: Compare the impact of various defensive strategies (robust models) against a variety of adversarial attacks.

Key features:

• declarative – Experiment, model and dataset configuration are done via json isolating the science from execution details

• portable and extensible – Juneberry is designed to rest on top of a wide variety of backends and tools supporting the latest in 
machine learning research, in particular adversarial machine learning

• determinism and reproducibility – By capturing all the configuration Juneberry strives for maximum reproducibility, experiment 
maintainability and user scalability

• interoperability – Juneberry experiments are designed to be invoked by scalable workflow and pipeline systems

docker pull 

cmusei/juneberry:vignette1
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Juneberry – What it isn’t…
Introduction

• A math or statistics package like numpy or pandas

• A machine learning package like pytorch, tensorflow, or scikit-learn

• An object detection package like torchvision, detectron2, or mmdetection

• An adversarial machine learning toolkit like ART

• An interactive platform like Jupyter notebooks

• A workflow engine like doit, snakemake or airflow

• A python environment

Instead it uses, extends and supports all these together to ease the burden of managing and 
executing experiments.

docker pull 

cmusei/juneberry:vignette1
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Juneberry – Trainer and Evaluator
Introduction

TensorFlow PyTorch Detectron2 MMDetection ONNX

Trainer

• Model config (json)

• Model code (python)

• Training data config (json)

• Training data

• Trained model (binary)

• Metrics (json)

• Metrics chart (png)

• Logs (text)
Evaluator

• Trained model (binary)

• Evaluation data config (json)

• Evaluation data

• Predictions (json)

• Metrics (json)

• Metrics chart (png)

• Logs

• Predictions

Viz

• Plots (png)

• Summaries (csv)

• Reports (md)

docker pull 

cmusei/juneberry:vignette1
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Sample Experiment Context
Introduction

Trainer

Evaluator

Evaluator

Viz

Evaluator

Model config A

Eval Data 1

Eval Data 2

Eval Data 1

Plots (png)

Metrics (csv)

Reports (md)

Predictions

A1

Predictions 

B1

Predictions 

A2

Model A

Evaluator

Eval Data 2 Predictions

B2

Pretrained 
Model

docker pull 

cmusei/juneberry:vignette1
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File Organization
Introduction

docker pull 

cmusei/juneberry:vignette1



12
© 2022 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release 

and unlimited distribution.

The Vignette Container
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Obtaining the Container Image
The Vignette Container

Configuring Docker on your host OS is outside the scope of this presentation.

A Docker image built specifically for this vignette is available on Docker Hub.

Retrieve the image using the following command:

docker pull cmusei/juneberry:vignette1
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Running a Shell Inside the Container
The Vignette Container

After obtaining the vignette image, the goal is to establish an interactive shell 
inside the container.

We also need to establish a shared directory between the host filesystem and the 
container.

• This will allow you to view files generated inside the container on your host OS.

The command to run a shell inside the container:
docker run –it –rm –v “directory on host”:/shared cmusei/juneberry:vignette1 bash

Replace “directory on host” with the path to a directory on your host OS.

• Shared files will appear in this directory on your host OS.
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Assembling Components for a 
Single Model



16
© 2022 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release 

and unlimited distribution.

The Dataset Config
Assembling Components for a Single Model

We’ll be working with the CIFAR-10 dataset.

• Relatively small, commonly used

The CIFAR-10 data files (via torchvision) can be found inside /dataroot in the 
vignette-specific Docker container.

The goal is to create a “dataset config” that tells Juneberry how to use this data.
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“Creating” the Dataset Config
Assembling Components for a Single Model

Create a sub-directory for torchvision related dataset configs:
mkdir /juneberry/data_sets/torchvision

Copy the pre-built dataset config into the new directory:
cp /juneberry/docs/vignettes/vignette1/configs/cifar10.json /juneberry/data_sets/torchvision/cifar10.json

(Optional) Examine the contents of the dataset config:
cat /juneberry/data_sets/torchvision/cifar10.json
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The Model Architecture
Assembling Components for a Single Model

Code that defines the layers of the Neural Network

Copy the pre-built architecture into the target directory:
cp /juneberry/docs/vignettes/vignette1/configs/resnet_simple.py /juneberry/juneberry/architectures/pytorch/resnet_simple.py

(Optional) Examine the contents of the architecture file:
cat /juneberry/juneberry/architectures/pytorch/resnet_simple.py | more

There’s a constraint on the number of layers in the ResNet.

• Number of layers must be (6n + 2), where n is some integer (1, 2, 3, …)
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The Model Config
Assembling Components for a Single Model

A model config defines various parameters of the model:

• Model architecture; training dataset

• Various training parameters

- Learning rate

- Optimizers

- Validation split

Create a unique model directory for the model config:
mkdir /juneberry/models/cifar_R20
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”Creating” the Model Config
Assembling Components for a Single Model

Copy the pre-built model config into the target directory:
cp /juneberry/docs/vignettes/vignette1/configs/config.json /juneberry/models/cifar_R20/config.json

Modify the contents of the pre-built config:

• Full training may take 4+ hrs; this is a 45 minute session

• Reduce training epochs for faster training (but worse model performance)

Open cifar_R20/config.json, change epochs to 2, save + close
vim /juneberry/models/cifar_R20/config.json

(nano and emacs are also available in the container)

Change (Line 4)

“epochs”: 182, -> “epochs”: 2,
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Running Commands on a Single 
Model
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jb_train
Running Commands on a Single Model

The training command needs the name of a model inside the “models” directory.

jb_train cifar_R20

Once training finishes, examine the new files in the model directory:

ls /juneberry/models/cifar_R20

ls /juneberry/models/cifar_R20/train
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jb_evaluate
Running Commands on a Single Model

Once you have a trained model, you can evaluate it.

The evaluate command requires two components:

the model name AND a dataset to evaluate
jb_evaluate cifar_R20 /juneberry/data_sets/torchvision/cifar10.json

Once the evaluation finishes, examine the new files in the model directory:
ls /juneberry/models/cifar_R20/eval

ls /juneberry/models/cifar_R20/eval/cifar10/

The predictions.json holds the raw data that will be useful for plotting.
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jb_plot_roc
Running Commands on a Single Model

ROC curves help visualize a model’s performance.

The plot_roc command requires three components:

A predictions file, the classes to plot, and the desired path for the output file
jb_plot_roc –f /juneberry/models/cifar_R20/eval/cifar10/predictions.json –p all /juneberry/models/cifar_R20/cifar10_roc.png

Move the output file to the shared directory and examine the image on your host OS.

cp /juneberry/models/cifar_R20/cifar10_roc.png /shared/
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Designing an Experiment



26
© 2022 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release 

and unlimited distribution.

The Experiment Outline
Designing an Experiment

Experiments group models together for comparison.

Create a unique experiment directory for the experiment:
mkdir /juneberry/experiments/cifar_layer

Copy the pre-built experiment outline into the target directory:
cp /juneberry/docs/vignettes/vignette1/configs/experiment_outline.json /juneberry/experiments/cifar_layer/
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Modify the Experiment Outline
Designing an Experiment

We also need to modify the experiment outline so the models train faster.

Open the experiment outline for editing:
vim /juneberry/experiments/cifar_layer/experiment_outline.json

(nano and emacs are also available in the container)

An experiment outline can construct multiple model configs by substituting values 
for one (or more) variables into a baseline model config.

Remember the architecture’s layer constraint? (6n + 2)

This will be the variable in our model config.

Change (line 24)
“vals”: [ 20, 32, 44, 56 ] -> “vals”: [ 8, 14, 20 ]
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Running an Experiment
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jb_run_experiment
Running an Experiment

The following command runs the experiment in commit mode:

jb_run_experiment cifar_layer –X

This experiment trains 3 models, evaluates each one, and then creates a report 
summarizing the results.

Output files will appear in two locations:

ls /juneberry/experiments/cifar_layer

ls /juneberry/models/cifar_layer
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Experiment Results
Running an Experiment
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Experiment Results
Running an Experiment
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Questions and Feedback? 
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CONTACT

Andrew Mellinger

aomellinger@sei.cmu.edu

GITHUB

github.com/cmu-sei/Juneberry

COME WORK WITH US

sei.cmu.edu/careers/


