
1
© 2022 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution.

Juneberry - Tutorial

M A R C H 2 2 , 2 0 2 2
Software Engineering
Institute

Andrew Mellinger
Nick Winski
Nathan VanHoudnos (van-HOD-ness)

Naval Applications of Machine Learning 2022

If you haven’t already, please pull the image:
docker pull cmusei/juneberry:vignette1

2
© 2022 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution.

Document Markings

Copyright 2022 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002
with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and
development center.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN
"AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO
ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY
KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see
Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without
requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the
Software Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM22-0250

docker pull

cmusei/juneberry:vignette1

3
© 2022 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution.

Emerging
Technology

Software Engineering Institute -
AI Division

docker pull

cmusei/juneberry:vignette1

AI ENGINEERING

DIGITAL TRANSFORMATION

AI FOR MISSION

Juneberry

4
© 2022 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution.

Juneberry reproduces results

Reproducibility helps ML
research and evaluation
teams to:

• build ML capability,

• maintain capability, and

• evaluate existing ML.

No other framework
directly addresses
reproducibility:

• write less boilerplate
code (PyTorch Lightning;
TensorFlow)

• optimize hyper-
parameters (Weights
and Biases; Grid.AI)

• label and manage data
(Labelstud.io)

• et cetera

Juneberry is a reproducible
research framework to
build, maintain, and
evaluate ML with
declarative configs.

Managing code is hard.

Managing configs is easier.

docker pull

cmusei/juneberry:vignette1

5
© 2022 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution.

By the end of this tutorial you will
be able to …
reproduce the CIFAR 10 results* from the original ResNet paper (He et al., 2015):

1. Get CIFAR-10 (torchvision/cifar10.json)

2. Implement the “original” 6N + 2 ResNet (resnet_simple.py)

3. Write a Juneberry wrapper class (resnet_simple.ResNet32x32)

4. Write a Juneberry model training config (models/cifar_R20)

5. Train the model (jb_train cifar_R20)

6. Write an experiment to vary layers (experiments/cifar_layer)

7. Run the experiment to replicate the paper (jb_run_experiment cifar_layer)

*ish: 2 epochs of training, fewer layers, and CPU only. For full replication with GPUs, see
“Replicating a Classic Machine Learning Result with Juneberry” on our GitHub.

docker pull

cmusei/juneberry:vignette1

6
© 2022 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution.

Juneberry Overview

7
© 2022 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution.

Juneberry
Introduction

https://github.com/cmu-sei/Juneberry

Juneberry is an open source Python tool that improves the experience of machine learning experimentation by providing a
framework for automating the training, evaluation and comparison of multiple models against multiple datasets, reducing error s and
improving reproducibility.

Juneberry is focused on experiments such as:

• Example 1: Compare the interaction of model architecture vs training data vs hyper parameters.

• Example 2: Compare the impact of various defensive strategies (robust models) against a variety of adversarial attacks.

Key features:

• declarative – Experiment, model and dataset configuration are done via json isolating the science from execution details

• portable and extensible – Juneberry is designed to rest on top of a wide variety of backends and tools supporting the latest in
machine learning research, in particular adversarial machine learning

• determinism and reproducibility – By capturing all the configuration Juneberry strives for maximum reproducibility, experiment
maintainability and user scalability

• interoperability – Juneberry experiments are designed to be invoked by scalable workflow and pipeline systems

docker pull

cmusei/juneberry:vignette1

8
© 2022 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution.

Juneberry – What it isn’t…
Introduction

• A math or statistics package like numpy or pandas

• A machine learning package like pytorch, tensorflow, or scikit-learn

• An object detection package like torchvision, detectron2, or mmdetection

• An adversarial machine learning toolkit like ART

• An interactive platform like Jupyter notebooks

• A workflow engine like doit, snakemake or airflow

• A python environment

Instead it uses, extends and supports all these together to ease the burden of managing and
executing experiments.

docker pull

cmusei/juneberry:vignette1

9
© 2022 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution.

Juneberry – Trainer and Evaluator
Introduction

TensorFlow PyTorch Detectron2 MMDetection ONNX

Trainer

• Model config (json)

• Model code (python)

• Training data config (json)

• Training data

• Trained model (binary)

• Metrics (json)

• Metrics chart (png)

• Logs (text)
Evaluator

• Trained model (binary)

• Evaluation data config (json)

• Evaluation data

• Predictions (json)

• Metrics (json)

• Metrics chart (png)

• Logs

• Predictions

Viz

• Plots (png)

• Summaries (csv)

• Reports (md)

docker pull

cmusei/juneberry:vignette1

10
© 2022 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution.

Sample Experiment Context
Introduction

Trainer

Evaluator

Evaluator

Viz

Evaluator

Model config A

Eval Data 1

Eval Data 2

Eval Data 1

Plots (png)

Metrics (csv)

Reports (md)

Predictions

A1

Predictions

B1

Predictions

A2

Model A

Evaluator

Eval Data 2 Predictions

B2

Pretrained
Model

docker pull

cmusei/juneberry:vignette1

11
© 2022 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution.

File Organization
Introduction

docker pull

cmusei/juneberry:vignette1

12
© 2022 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution.

The Vignette Container

13
© 2022 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution.

Obtaining the Container Image
The Vignette Container

Configuring Docker on your host OS is outside the scope of this presentation.

A Docker image built specifically for this vignette is available on Docker Hub.

Retrieve the image using the following command:

docker pull cmusei/juneberry:vignette1

14
© 2022 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution.

Running a Shell Inside the Container
The Vignette Container

After obtaining the vignette image, the goal is to establish an interactive shell
inside the container.

We also need to establish a shared directory between the host filesystem and the
container.

• This will allow you to view files generated inside the container on your host OS.

The command to run a shell inside the container:
docker run –it –rm –v “directory on host”:/shared cmusei/juneberry:vignette1 bash

Replace “directory on host” with the path to a directory on your host OS.

• Shared files will appear in this directory on your host OS.

15
© 2022 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution.

Assembling Components for a
Single Model

16
© 2022 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution.

The Dataset Config
Assembling Components for a Single Model

We’ll be working with the CIFAR-10 dataset.

• Relatively small, commonly used

The CIFAR-10 data files (via torchvision) can be found inside /dataroot in the
vignette-specific Docker container.

The goal is to create a “dataset config” that tells Juneberry how to use this data.

17
© 2022 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution.

“Creating” the Dataset Config
Assembling Components for a Single Model

Create a sub-directory for torchvision related dataset configs:
mkdir /juneberry/data_sets/torchvision

Copy the pre-built dataset config into the new directory:
cp /juneberry/docs/vignettes/vignette1/configs/cifar10.json /juneberry/data_sets/torchvision/cifar10.json

(Optional) Examine the contents of the dataset config:
cat /juneberry/data_sets/torchvision/cifar10.json

18
© 2022 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution.

The Model Architecture
Assembling Components for a Single Model

Code that defines the layers of the Neural Network

Copy the pre-built architecture into the target directory:
cp /juneberry/docs/vignettes/vignette1/configs/resnet_simple.py /juneberry/juneberry/architectures/pytorch/resnet_simple.py

(Optional) Examine the contents of the architecture file:
cat /juneberry/juneberry/architectures/pytorch/resnet_simple.py | more

There’s a constraint on the number of layers in the ResNet.

• Number of layers must be (6n + 2), where n is some integer (1, 2, 3, …)

19
© 2022 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution.

The Model Config
Assembling Components for a Single Model

A model config defines various parameters of the model:

• Model architecture; training dataset

• Various training parameters

- Learning rate

- Optimizers

- Validation split

Create a unique model directory for the model config:
mkdir /juneberry/models/cifar_R20

20
© 2022 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution.

”Creating” the Model Config
Assembling Components for a Single Model

Copy the pre-built model config into the target directory:
cp /juneberry/docs/vignettes/vignette1/configs/config.json /juneberry/models/cifar_R20/config.json

Modify the contents of the pre-built config:

• Full training may take 4+ hrs; this is a 45 minute session

• Reduce training epochs for faster training (but worse model performance)

Open cifar_R20/config.json, change epochs to 2, save + close
vim /juneberry/models/cifar_R20/config.json

(nano and emacs are also available in the container)

Change (Line 4)

“epochs”: 182, -> “epochs”: 2,

21
© 2022 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution.

Running Commands on a Single
Model

22
© 2022 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution.

jb_train
Running Commands on a Single Model

The training command needs the name of a model inside the “models” directory.

jb_train cifar_R20

Once training finishes, examine the new files in the model directory:

ls /juneberry/models/cifar_R20

ls /juneberry/models/cifar_R20/train

23
© 2022 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution.

jb_evaluate
Running Commands on a Single Model

Once you have a trained model, you can evaluate it.

The evaluate command requires two components:

the model name AND a dataset to evaluate
jb_evaluate cifar_R20 /juneberry/data_sets/torchvision/cifar10.json

Once the evaluation finishes, examine the new files in the model directory:
ls /juneberry/models/cifar_R20/eval

ls /juneberry/models/cifar_R20/eval/cifar10/

The predictions.json holds the raw data that will be useful for plotting.

24
© 2022 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution.

jb_plot_roc
Running Commands on a Single Model

ROC curves help visualize a model’s performance.

The plot_roc command requires three components:

A predictions file, the classes to plot, and the desired path for the output file
jb_plot_roc –f /juneberry/models/cifar_R20/eval/cifar10/predictions.json –p all /juneberry/models/cifar_R20/cifar10_roc.png

Move the output file to the shared directory and examine the image on your host OS.

cp /juneberry/models/cifar_R20/cifar10_roc.png /shared/

25
© 2022 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution.

Designing an Experiment

26
© 2022 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution.

The Experiment Outline
Designing an Experiment

Experiments group models together for comparison.

Create a unique experiment directory for the experiment:
mkdir /juneberry/experiments/cifar_layer

Copy the pre-built experiment outline into the target directory:
cp /juneberry/docs/vignettes/vignette1/configs/experiment_outline.json /juneberry/experiments/cifar_layer/

27
© 2022 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution.

Modify the Experiment Outline
Designing an Experiment

We also need to modify the experiment outline so the models train faster.

Open the experiment outline for editing:
vim /juneberry/experiments/cifar_layer/experiment_outline.json

(nano and emacs are also available in the container)

An experiment outline can construct multiple model configs by substituting values
for one (or more) variables into a baseline model config.

Remember the architecture’s layer constraint? (6n + 2)

This will be the variable in our model config.

Change (line 24)
“vals”: [20, 32, 44, 56] -> “vals”: [8, 14, 20]

28
© 2022 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution.

Running an Experiment

29
© 2022 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution.

jb_run_experiment
Running an Experiment

The following command runs the experiment in commit mode:

jb_run_experiment cifar_layer –X

This experiment trains 3 models, evaluates each one, and then creates a report
summarizing the results.

Output files will appear in two locations:

ls /juneberry/experiments/cifar_layer

ls /juneberry/models/cifar_layer

30
© 2022 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution.

Experiment Results
Running an Experiment

31
© 2022 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution.

Experiment Results
Running an Experiment

32
© 2022 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution.

Questions and Feedback?

Emerging
Technology

AI ENGINEERING

DIGITAL TRANSFORMATION

AI FOR MISSION

Juneberry

CONTACT

Andrew Mellinger

aomellinger@sei.cmu.edu

GITHUB

github.com/cmu-sei/Juneberry

COME WORK WITH US

sei.cmu.edu/careers/

