
1Managing Enterprise Technical Debt
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

SATURN 2019

Detecting and Tracking
Enterprise Technical Debt

Felix Bachmann

Stephany Bellomo

2Managing Enterprise Technical Debt
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Document Markings

Copyright 2019 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON
AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS
TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,
EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY
WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice
for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting
formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering
Institute at permission@sei.cmu.edu.

DM19-0470

3Managing Enterprise Technical Debt
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Bottom Line Up Front

We have been working for a large organization for 2 years, conducting design reviews
of a large portfolio of projects
We also work in the area of technical debt research
During project design reviews, we routinely surface technical debt
We noticed that some technical debt has unique characteristics
We call this type of technical debt enterprise technical debt (ETD)
In this talk, we

• share characteristics and examples of ETD
• explain how to motivate action by making ETD items, along with supporting

evidence, visible to stakeholders

4Managing Enterprise Technical Debt
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Conceptual Organization Chart

IT Management O&M
Management

Architecture
Guides (us)

• Project Architects
• Team Leads
• Team Members

Special Projects

Special Project
Lead

Enterprise
Architect

Project
Managers

Projects

Interacts with

Responsible for

Business Staff

Business
Managers

• Project Architects
• Team Leads
• Team Members

ProjectsSoftware
Projects

O&M = Operations
and Maintenance

Enterprise Level

Project Level

5Managing Enterprise Technical Debt
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Our Role

We work for IT management, and we serve as architecture guides for a portfolio of
projects; each project has at least one architect
Our achievements in this role include

• establishing an incremental design review process
• establishing a dashboard for tracking design risks
• facilitating and participating in design reviews and code analyses
• educating architects and teams on software architecture practices
• mentoring architects to conduct design review and code analyses

6Managing Enterprise Technical Debt
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

What Is Technical Debt?

In software-intensive systems, technical debt consists of design or implementation
constructs that are expedient in the short term, but set up a technical context that can
make a future change more costly or impossible

Technical debt
• exists in a system artifact, such as code, build scripts, automated test suites, or data
• traces to several locations in the system, implying ripple effects of impact of change
• has a quantifiable effect on system attributes of interest to developers, such as

increasing number of defects, negative change in maintainability, and code quality
indicators

7Managing Enterprise Technical Debt
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Characteristics of Enterprise Technical Debt

Comparison to technical debt:
 Exists in a system artifact
Δ Is traced to several systems or projects
Δ Has a quantifiable effect at the enterprise management level

Often, these characteristics also exist:
 Requires enterprise-level involvement and investment to resolve
 Requires project resources to fix
 Conflicts with an enterprise goal or standard
 Impact may have ripple effects across multiple projects in the enterprise

8Managing Enterprise Technical Debt
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Examples of Enterprise Technical Debt

In this section, we will walk through three examples:
1. Shared schema integration (versus service API)
2. Business logic confusion in SpringMVC framework
3. Decentralized access control

9Managing Enterprise Technical Debt
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Examples of Enterprise Technical Debt

1. Shared schema integration (versus service API)
2. Business logic confusion in SpringMVC framework
3. Decentralized access control

We are here

10Managing Enterprise Technical Debt
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Shared Schema Example: Background

In this example, we have a project that forces two teams from different parts of the
organization to exchange data

• One team provides an external portal
• The other provides internal functionality and data used by the portal

The integration approach they used was common at the time it was built
However, now they are feeling the limitations of the approach
Neither team has control or motivation to fix the problem
This is because the enterprise has different goals from the project level; therefore, risks
may impact the enterprise but not the project (and vice versa)

11Managing Enterprise Technical Debt
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Example: Shared Schema Integration

System Artifact: Shared
Schema
Problem: Applications A and D
are integrated using a shared
database schema. Changes to
the schema by Application A
impact D and vice versa.

 Exists in a system artifact
 Is traced to several systems

or projects

Application A Application D

Shared
Schema

Database
1 Database

2

Changes here
directly impact
Application D

12Managing Enterprise Technical Debt
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Shared Schema Impact and Quantification

Impact Quantifiable Effect Who Impacted

Changes made to the shared schema by one
team break the other team’s application
Conflicts with organizational modernization
goal to move toward service APIs

Maintenance cost,
feature delays

IT Management,
Business Managers

Does not scale
Reusing the shared schema for more than two
projects is very difficult

Delays making UI
changes, cost of change

O&M Management

Functionality and data duplication are
workarounds to avoid impact of changes

Cost of feature
implementation, feature
delivery delays

Business
Management, O&M
Management

 Has a quantifiable effect at enterprise level
 Conflicts with enterprise goal or standard

13Managing Enterprise Technical Debt
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Solution Recommendations

Problem: Product Owner of Application A states, “There is no money to make the life
of team Application D easier.”

Therefore, the recommended solution is a two-pronged approach:
• Enterprise Management must allocate funds and/or reorder priorities to fix this
• Projects J and K must do the work to replace shared schema integration with

service API

 Requires enterprise-level involvement and investment
 Requires project resources to fix

14Managing Enterprise Technical Debt
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Examples of Enterprise Technical Debt

1. Shared schema integration (versus service API)
2. Business logic confusion in SpringMVC framework
3. Decentralized access control

We are here

15Managing Enterprise Technical Debt
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

SpringMVC Example: Background

For many years, the organization has been suffering from slow feature delivery
A contributing factor is that business rules are PL-SQL stored procedures that have
become complex and hard to change
The organization

• set a goal to extract business logic out of the database stored procedures
• decided to use SpringMVC pattern to separate business logic from physical storage

layer
• started with two projects using the SpringMVC pattern

16Managing Enterprise Technical Debt
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Example: MVC Business Logic Inconsistency

System Artifact:
SpringMVC framework Service
with focus on Controller
Problem:
Application B and C put business
logic in SpringMVC Controller
(versus Service), which creates
tight coupling between UI layer and
data layer

Controller Service

Repo

Application A

Controller Service

Repo

Application B

Application C

Service

Repo

Controller

 Exists in a system artifact
 Is traced to several systems or

projects

17Managing Enterprise Technical Debt
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

MVC Impact and Quantification

Impact Quantifiable Effect Who Impacted
The organization has an enterprise goal to
clean up the physical data storage tables, but
because there is coupling from UI to DB layer,
there may be impact if data storage level changes

Maintenance cost,
feature delays

Business
Management, O&M
Management

Changes to Controller could impact Data Layer,
which would impact multiple applications

Delays making UI
changes, cost of
change

O&M Management

Because business logic is not in consistent
places, maintainers take longer to create new
features

Cost of feature
implementation,
feature delivery delays

Business
Management, O&M
Management

 Has a quantifiable effect at enterprise level
 Conflicts with enterprise goal or standard

18Managing Enterprise Technical Debt
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

SpringMVC Recommended Solution

Executive management must
• direct the projects to make the changes
• set aside funds for projects to do rework if needed
• reprioritize other tasks to get it done

Projects B and C must move business logic out of Controller to Service Component

 Requires enterprise-level involvement and investment
 Requires project resources to fix

19Managing Enterprise Technical Debt
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Examples of Enterprise Technical Debt

1. Shared schema integration (versus service API)
2. Business logic confusion in SpringMVC framework
3. Decentralized access control We are here

20Managing Enterprise Technical Debt
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Decentralized Access Control Context

For many years, project teams have been building applications independently in silos
There is no centralized access control repository or maintenance screen
Each application writes access control roles/permission logic itself
Consequently, the teams write access control information for each application in different
placing in the database schemas
The project teams are fine with this, but the enterprise is suffering due to security and
maintainability issues

21Managing Enterprise Technical Debt
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Example: Decentralized Access Control

System Artifact:
Access control architecture (or
lack thereof)
Problem:
Each application team writes
access control roles/permission logic
itself; Access control information is
spread all over the databases

 Exists in a system artifact
 Is traced to several systems or

projects

Access

Access Access

AC

AC

Application A

Application B

Application C

22Managing Enterprise Technical Debt
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Decentralized Access Control Impact
Impact Quantifiable

Effect
Who Impacted

Security – Makes it more difficult and time consuming to delete
a person from multiple applications and you run the risk of
forgetting to delete the person from one or more applications.

Data loss cost,
risk of
exploitation
cost

O&M
Management,
Business
Managers

Every application does access control independently, leading to
too many different implementations, so features take
longer to develop. Approach conflicts with enterprise goal
to create common authentication component

Cost of feature
implementation

O&M
Management,
Business
Managers

Roles are hard coded in some applications, which limits
flexibility; if something changes in the organization, the code
must change

Cost of role
changes, admin
change delays

O&M
Management,
Business
Managers

 Conflicts with an enterprise goal or standard
 Has a quantifiable effect at enterprise level

23Managing Enterprise Technical Debt
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Access Control Recommended Solution

Executive management must
• direct the projects to make the changes
• set aside funds for projects to do rework if needed
• reprioritize other tasks to get it done

A Common Authentication capability should be created to store role and permission
information with an administrative capability to allow project teams to make changes.
Then project teams will need to adapt applications to use it.

 Requires enterprise-level involvement and investment
 Requires project resources to fix

24Managing Enterprise Technical Debt
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Managing Technical Debt

Discovering enterprise technical debt is just the start; after discovery we need to do
something with it
On the next few slides, we will cover these topics:

• Process overview for managing ETD
• Why and how we make ETD visible
• Implications of managing ETD as a continuous process

25Managing Enterprise Technical Debt
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Process Overview for Managing ETD

ETD List &
Combined

Risk
Summary

Project
Design Risk

List*

Project
Level

Enterprise
Level

Software Architecture Changes

Solution
Decision

Solution
Proposal

Investment
Planning

Direct Projects to
Do WorkDiscovery

Executive
Management

View(s)

To keep the diagram simple, we combine the Project Design Risk List and Project
Technical Debt Item List into one list
If a Project Design Risk has accumulation, we flag as Technical Debt Item in the list

26Managing Enterprise Technical Debt
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Making Data Visible

If not managed correctly, ETD will
be forgotten until it is too late
The key to getting action is to
make data visible
We make different kinds of data
visible for different stakeholders
and purposes

ETD List
and

Combined
Risk

Summary
(Dashboard)

Project Design
Risk List &
Summary

(Dashboard)

Project Level

Enterprise Level

Solution
Decision

Solution
Proposal

Discovery

Executive
Management
Affinity Tree

27Managing Enterprise Technical Debt
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Software Architecture Dashboard

Our Software Architecture Dashboard has four parts; the bottom two quadrants are project
level and the top two quadrants are enterprise level

Project and
Enterprise Level
Data

Project Level Data Project Level Data

Enterprise Level
Data

28Managing Enterprise Technical Debt
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Dashboard – Project Design Risk List

The Project Design Risk List shows the project design risks
Each project design risk associated with an ETD increases the probability the risk will
have an impact

ID Project Risk Description Project

SWQ-114 Data object definitions in Service belong in Utility Project A
SWQ-108 Role/permission architecture is not flexible Project B
SWQ-106 Use inheritance to get rid of unnecessary classes Project B
SWQ-99 Design missing integration with Secure gateway Project C
SWQ-77 Reduce branching complexity in xxDetailMgr.java Project B
SWQ-71 Performance issue due to calls to database Project B
SWQ-62 Duplication of data requires synchronization Project D
SWQ-35 Add a notification component Project E
SWQ-105 Manager and Model dependency Project B
SWQ-76 Investigate JPA for complex SQL stmts in validation Project B
SWQ-72 Move business rule logic to service layer Project B
SWQ-36 Clarify data transformation responsibility Project E
SWQ-27 Define IDs to map extranet records to intranet Project E
SWQ-16 Use repo component via a manager Project B

29Managing Enterprise Technical Debt
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Dashboard – Design/Code Review Summary

The Design/Code Review is a project-level roll-up of open issues by design or code
review activity

Review Name
Design
Risks

Code
Risk

Technical
Debt Item TODO

Design Review 09-16-18 0 4 2 2
Code Analysis 10-13-18 7 2 4 1
Design Review 11-20-18 2 0 3 3
Design Review 11-26-18 9 3 0 2
Code Analysis 01-12-19 5 9 1 5
Design Review 02-09-19 0 3 0 4
Code Analysis 03-24-19 6 7 0 2
Design Review 04-03-19 7 0 1 0
Design Review 06-18-19 7 1 2 1

30Managing Enterprise Technical Debt
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Enterprise Technical Debt List

This is an example ETD List
derived from our current work
(cleansed)

ID Enterprise Technical Debt Description
SWQ-131 ABC Portal using XYZ doc storage instead of enterprise doc storage

SWQ-128 The path for crossing extranet to intranet makes OSB redundant

SWQ-127 Externally facing data exchange Apps A and B use data syncing

SWQ-126 Standardized enterprise access control missing so App D team rewrites

SWQ-89 Microservices pattern misused, introducing overhead and latency

SWQ-88 Multiple sets of services for Case Management in heterogeneous ways

SWQ-85 There are two versions of C Application; features are duplicated in both

SWQ-74 Create Address Information Shared Service

SWQ-68 Project E moving business logic to SpringMVC PLSQL is copied "as is"

SWQ-66 Project A and C SpringMVC UI to data layer dependencies

SWQ-65 Enterprise authentication and access control partially finished

SWQ-64 A Shared Lookup Data Service partially finished

SWQ-58 Application A and D using a brittle shared database schema

31Managing Enterprise Technical Debt
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Dashboard: Combined Risk Summary

The Combined Risk Summary is at the enterprise level and is a roll-up of open issues by
design or code review activity

Projects
Design
Risks Code Risk

Technical
Debt Item TODO

Project A 0 4 2 2

Project B 7 2 4 1

Project C 2 0 3 3

Project D 9 3 0 2

Project E 5 9 1 5

Project F 0 3 0 4

Project G 6 7 0 2

Project H 7 0 1 0

Project I 7 1 2 1

32Managing Enterprise Technical Debt
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Executive Management Affinity Tree

This view is useful for helping Executive Management prioritize investments
Each bullet is an item on the ETD List
For example, this chart makes clear there are a lot of issues under Data Exchanges and
Service API, so this is an area for the organization to focus on

33Managing Enterprise Technical Debt
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Continuous Process

Making enterprise technical debt visible is not a one-time exercise
It is part of a continuous process, and the architect is the driving force!

Ecosystem
Action Decision

Point

System
Architecture

Project Design
Risks

Ecosystem TDI
Decision Point

Ecosystem TDI

Architecture
Decision Points

generates

Actions/Change
• Budget
• SOW
• Plans
• Verification

approved

Decision
Points

Architecture
Runway

Components
Phased

Roadmap

Project TDIArtifact

Project
Impact

Enterprise
Impact

34Managing Enterprise Technical Debt
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

The More Evidence, the Stronger the Case

One of the architect guide’s
jobs is to continuously look
for more evidence in risk
data
The more evidence, the
stronger the case for taking
action

ETD
• Status
• Evidence

Design
Risk

1 ... *

Evidence

Status:
• Proposed: Not sure if it is EDT

(assumed evidence)
• Defined: An open EDT item

(clear evidence)
• Resolved: Decision to pay

back (it is hurting!)
• In progress: Being resolved in

one or more projects
• Done

35Managing Enterprise Technical Debt
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Wrap-up

Summary
We discussed characteristics of ETD and provided several examples
We talked about the importance of data visibility and gave examples
We emphasized the architect guide’s role in continuously monitoring for ETD

Next Steps
We shared the ETD views with management for the first time in January
Encouraging outcome; ETD data gave us credibility when arguing for investments
Need to keep collecting data; more data will strengthen the case!
In the future, we plan to focus on tactics for proactive management of ETD

36Managing Enterprise Technical Debt
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Contact Information

Felix Bachmann
fb@sei.cmu.edu

Stephany Bellomo
sbellomo@sei.cmu.edu

mailto:fb@sei.cmu.edu
mailto:sbellomo@sei.cmu.edu

	Detecting and Tracking Enterprise Technical Debt
	Document Markings
	Bottom Line Up Front
	Conceptual Organization Chart
	Our Role
	What Is Technical Debt?
	Characteristics of Enterprise Technical Debt
	Examples of Enterprise Technical Debt
	Examples of Enterprise Technical Debt
	Shared Schema Example: Background
	Example: Shared Schema Integration
	Shared Schema Impact and Quantification
	Solution Recommendations
	Examples of Enterprise Technical Debt
	SpringMVC Example: Background
	Example: MVC Business Logic Inconsistency
	MVC Impact and Quantification
	SpringMVC Recommended Solution
	Examples of Enterprise Technical Debt
	Decentralized Access Control Context
	Example: Decentralized Access Control
	Decentralized Access Control Impact
	Access Control Recommended Solution
	Managing Technical Debt
	Process Overview for Managing ETD
	Making Data Visible
	Software Architecture Dashboard
	Dashboard – Project Design Risk List
	Dashboard – Design/Code Review Summary
	Enterprise Technical Debt List
	Dashboard: Combined Risk Summary
	Executive Management Affinity Tree
	Continuous Process
	The More Evidence, the Stronger the Case
	Wrap-up
	Contact Information

