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ABSTRACT 

Integers represent a growing and underestimated source of 
vulnerabilities in C and C++ programs. In this paper, we present 
the as-if infinitely ranged (AIR) integer model, which provides a 
largely automated mechanism for eliminating integer overflow, 
truncation, and other integral exceptional conditions. The AIR 
integer model either produces a value equivalent to one that would 
have been obtained using infinitely ranged integers or results in a 
runtime-constraint violation. Instrumented fuzz testing of libraries 
that have been compiled using a prototype AIR integer compiler 
has been effective in discovering vulnerabilities in software with 
low false positive and false negative rates.  Furthermore, the 
runtime overhead of the AIR integer model is low enough for 
typical applications to enable this feature in deployed systems for 
additional runtime protection. 

Categories and Subject Descriptors 

D.2.5 [Software Engineering] Testing and Debugging – testing 

tools. 

General Terms 

Security, Standardization, Languages, Verification, Reliability. 

Keywords 

Fuzz testing, software security, integral security, secure coding. 

1. INTEGRAL SECURITY 
The majority of software vulnerabilities result from coding errors. 
For example, 64% of the vulnerabilities in the National 
Vulnerability Database in 2004 resulted from programming errors    
[1]. The C and C++ languages are particularly prone to 
vulnerabilities because of the lack of type safety in these 
languages [2]. 

In 2007, MITRE reported that buffer overflows remain the 
number one issue as reported in operating system (OS) vendor 
advisories. It also reported that integer overflow, barely in the top 
10 overall in the years preceding the report, was number two in 

OS vendor advisories [3].  

Integer errors and vulnerabilities occur when programmers reason 
about infinitely ranged mathematical integers, while 
implementing their designs with the finite precision, integral data 
types supported by hardware and language implementations. 

Integer values that originate from untrusted sources and are used 
in the following ways, can easily result in vulnerabilities: (1) as an 
array index in pointer arithmetic, (2) as a length or size of an 
object, (3) as the bound of an array (for example, a loop counter), 
or (4) as an argument to a memory allocation function. 

The following sections describe integer behaviors that have 
resulted in real-world vulnerabilities.  

1.1 Signed Integer Overflow 
Signed integer overflow is undefined behavior in C, allowing 
implementations to silently wrap (the most common behavior), 
trap, or both.  Because signed integer overflow produces a silent 
wraparound in most existing C and C++ implementations, some 
programmers assume that this is a well-defined behavior.   

Conforming C and C++ compilers can deal with undefined 
behavior in many ways, such as ignoring the situation completely 
(with unpredictable results), translating or executing the program 
in a documented manner characteristic of the environment (with 
or without the issuance of a diagnostic message), or terminating a 
translation or execution (with the issuance of a diagnostic 
message).  Because compilers are not obligated to generate code 
for undefined behaviors, those behaviors are candidates for 
optimization. By assuming that undefined behaviors will not 
occur, compilers can generate code with better performance 
characteristics. For example, GCC version 4.1.1 optimizes out 
integer expressions that depend on undefined behavior for all 
optimization levels. 

Signed integer overflow is frequently not considered to be a 
problem for hardware that detects it, because overflow is 
undefined behavior. 

1.2 Unsigned Integer Wrapping 
Although unsigned integer wrapping is well defined by the C 
standard as having modulo behavior, unexpected wrapping has led 
to numerous software vulnerabilities. A real-world example of 
vulnerabilities resulting from unsigned integer wrapping occurs in 

memory allocation. Wrapping can occur in calloc() and other 
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memory allocation functions when the size of a memory region is  
being computed.1 As a result, a buffer is returned that is smaller 
than the requested size, and that can lead to a subsequent buffer 
overflow.  

For example, the following code fragments may lead to wrapping 

vulnerabilities, where count is an unsigned integer: 

C: p = calloc(sizeof(element_t), count); 

C++: p = new ElementType[count]; 

The wrapping of calculations internal to these functions may 
result in too little storage being allocated and subsequent buffer 
overflows. However, the Working Draft Standard for C++ 
requires that a new expression throw an instance of 

std::bad_array_new_length on integer overflow [17]. 

Another well-known vulnerability resulting from unsigned integer 
wrapping occurred in the handling of the comment field in JPEG 
files [4]. 

1.3 Conversion Errors 
Integer conversions, both implicit and explicit (using a cast), must 
be guaranteed not to result in lost or misinterpreted data [5]. 

The only integer type conversions that are guaranteed to be safe 
for all data values and all possible conforming implementations 
are conversions of an integral value to a wider type of the same   
signedness. Conversion of an integer to a smaller type results in 
truncation of the high-order bits. 

Consequently, conversions from an integer with greater precision 
to an integer type with lesser precision can result in truncation, if 
the resulting value cannot be represented in the smaller type.  
Conversions to an integer of the same precision but different 
signedness can lead to misinterpreted data. 

2. AIR INTEGER MODEL 
The purpose of the AIR integer model is to either produce a) a 
value that is equivalent to a value that would have been obtained 
using infinitely ranged integers or b) a runtime-constraint 
violation.  The model applies to both signed and unsigned 
integers, although either may be enabled or disabled per 
compilation unit using compiler options.   

Implementations must declare that they are implementing the AIR 

integer model with a predefine, __STDC_ANALYZABLE__.  The 

term analyzable is used here to indicate that the resulting system 
is easier to analyze because undefined behaviors have been 
defined and because the analyzer (either a tool or human) can 
safely assume that integer operations will result in an as-if 
infinitely ranged value or trap.   

Traps are implemented by using the existing hardware traps (such 
as divide-by-zero) or by invoking a runtime-constraint handler.  
Whether a program traps for given inputs depends on the exact 
optimizations carried out by a particular compiler version. If 
required, a programmer can implement a custom runtime-
constraint handler to set a flag and continue (using the 
indeterminate value that was produced).  In the future, an 
implementation that also supports C++ might throw an exception 
rather than invoke a runtime-constraint handler. Alternatively, the 

                                                                 
1 http://www.securityfocus.com/bid/5398  

runtime-constraint handler can throw an exception. We have not 
attempted to evaluate these, or other, alternatives for C++. 

A trap representation is a set of bits that, when interpreted as a 
value of a specific type, causes undefined behavior. Trap 
representations are most commonly seen on floating point and 
pointer values, but in theory, almost any type could have trap 
representations.   

An observation point occurs at an output, including a volatile 
object access. AIR integers do not require a trap for every integer 
overflow or truncation error.  In the AIR integer model, it is 
acceptable to delay catching an incorrectly represented value until 
an observation point is reached or just before it causes a critical 

undefined behavior [10].  The trap may occur any time between 
the overflow or truncation and the output or critical undefined 
behavior.  This model improves the ability of compilers to 
optimize, without sacrificing safety and security. 

Critical undefined behavior is a means of differentiating between 
behaviors that might perform an out-of-bounds store and those 
that cannot.  An out-of-bounds store is defined in the C1X 
committee draft as an (attempted) access that, at runtime, for a 
given computational state, would modify (or, for an object 
declared volatile, fetch) one or more bytes that lie outside the 
bounds permitted by this Standard [10]. 

The critical undefined behaviors (with reference to the section in 
the C1X draft in which they are defined) are shown in Table 1. 

Table 1. Critical undefined behavior 

C1X 

Section 

Critical Undefined Behavior 

6.2.4     An object is referred to outside of its lifetime.  

6.3.2.1 

   

An lvalue does not designate an object when 

evaluated. 

6.3.2.3 A pointer is used to call a function whose type is not 

compatible with the pointed-to type. 

6.5.3.2 

   

The operand of the unary * operator has an invalid 

value. 

6.5.6    Addition or subtraction of a pointer into, or just beyond, 

an array object and an integer type produces a result 

that points just beyond the array object and is used as 
the operand of a unary * operator that is evaluated. 

7.1.4 An argument to a library function has an invalid value 

or a type not expected by a function with variable 

number of arguments. 

7.21.3    The value of a pointer that refers to space deallocated 
by a call to the free or realloc function is used. 

7.22.1, 

7.27.4   

A string or wide string utility function is instructed to 

access an array beyond the end of an object. 

 

In the AIR integer model, when an observation point is reached 
and before any critical undefined behavior occurs, any integer 
value in the output is correctly represented (“as if infinitely 
ranged”) provided that traps have not been disabled and no traps 
have been raised.  Optimizations are encouraged, provided the 
model is not violated. 



2.1 Implementation Methods 
The AIR integer method permits a wide range of implementation 
methods, some of which might apply to different environments 
and implementations: 

• Overflow or truncation can set a flag that compiler-generated 
code will test later. 

• Overflow or truncation can immediately invoke a runtime-
constraint handler. 

• The testing of flags can be performed at an early point (such 
as within the same full-expression), or delayed (subject to 
some restrictions). 

For example, in the following code 

  i = k + 1; 

  j = i * 3; 

  if (m < 0) 

    a[i] = . . .; 

 

the variable j does not need to be checked within this code 

fragment (but may need to be checked later). The variable i does 

not need to be checked unless and until the a[i] expression is 

evaluated, but must be checked by then. 

Compilers may choose a single, cumulative integer exception flag 
in some cases and one flag per variable in others, depending on 
what is most efficient in terms of speed and storage for the 
particular expressions involved.  For example, in the following 
code 

  x++; 

  y++; 

  z++; 

  printf("%d", x); 

 

the call to printf() is an observation point for the variable x. 

Any of the operations x++, y++, or z++ can result in an 

overflow.   Consequently, it is necessary to test the value of the 
exception flag prior to the observation point (the call to 

printf()) and invoke the runtime-constraint handler if the 

exception flag is set:  

// compiler clears integer exception flags 

  x++; 

  y++; 

  z++; 

  if (/* integer exception flags are set */)  

    runtime_constraint_handler(); 

  printf("%d", x); 

 

If only a single exception flag is used, one or more of the 
variables may contain an incorrectly represented value, but we 
cannot know which one.  Consequently, the runtime-constraint 
handler will be invoked if any of the increment operations resulted 
in an overflow.  In this case, it may be preferable for the compiler 

to generate a separate exception flag for x so that the runtime-

constraint handler need only be invoked if x++ overflows. 

Portably, a programmer can only assume, if the code reaches an 
observation point without invoking a runtime-constraint handler, 

that all observable integer values are correctly represented.  If a 
runtime-constraint error occurs, all integer values that have been 
modified since the last observation point contain indeterminate 
values.  In cases where the programmer wants to rerun the 
calculation using a higher or arbitrary-precision integer, the 
programmer would need to recalculate the values for all 
indeterminate values. 

Ideally, while we would like to eliminate implementation-defined 
behavior in the AIR integer model, it is necessary to provide 
sufficient latitude for compiler implementers to optimize the 
resulting executable. 

2.2 Undefined Behavior 
One of the goals of the AIR integer model is to eliminate 
previously undefined behaviors by providing optional predictable 
semantics for areas of C that are presently undefined (at some 
optimization cost).  Changes from the existing unbounded 
undefined behavior that pose serious implementation problems in 
practice were not adopted under the AIR integer model. 

The following cases receive special handling in the AIR integer 
model. 

2.2.1 Multiplicative Operators 
There is no defined infinite-precision result for division by zero.  
Processors typically trap, but this may not be universal.  The AIR 
integer model requires trapping.   

When integers are divided, the result of the / operator is the 

algebraic quotient with any fractional part discarded.  If the 

quotient a/b is representable, the expression (a/b)*b + a%b 

is equal to a; otherwise, the behavior of both a/b and a%b is 

undefined by C99, but processors commonly trap. For example, 

when using the IA-32 idiv instruction, dividing INT_MIN by -

1 results in a division error and generates an interrupt on vector 0 

because the signed result (quotient) is too large for the destination 
[18].  The AIR integer model requires trapping if the quotient is 
not representable. 

The ISO/IEC JTC1/SC22/WG14 C standards committee discussed 

the behavior of INT_MIN % -1 on the WG14 reflector and at 

the April 2009 Markham meeting [11].  The committee agreed 

that, mathematically, INT_MIN % -1 equals 0.  However, 

instead of producing the mathematically correct result, some 
architectures may trap.  For example, implementations targeting 

the IA-32 architecture use the idiv instruction to determine the 

remainder.  Consequently, INT_MIN % -1 results in a division 

error and generates an interrupt on vector 0.     

At the same Markham meeting, some committee members argued 

that C99 requires a C program computing INT_MIN % -1 to 

produce 0, because 0 is representable. Others argued that C99 left 

the computation as undefined because INT_MIN / -1 is not 

representable.  The committee decided that requiring C programs 

to produce 0 would render some compilers noncompliant with the 

standard and that adding this corner case could add a significant 
overhead.  Consequently, the C1X Committee Draft has been 

amended to state explicitly that if a/b is not representable, a%b is 

undefined.  

The AIR integer model requires that a % -1 equals 0 for all 

values of a, or alternatively, trapping is performed. This violates 



the literal interpretation of “as-if infinite range” but reflects a 
concession to practical implementation issues. 

By comparison, in Java [9], an integer division or integer 

remainder operator throws an ArithmeticException if the 

value of the right-hand operand expression is zero.  The remainder 
operation for operands that are integers after binary numeric 

promotion produces a result value such that (a/b)*b+(a%b) is 

equal to a. This identity holds even in the case that the dividend is 

the negative integer of largest possible magnitude for its type and 
the divisor is -1 (the remainder is 0). 

2.2.2 Shifts  
Shifting by a negative number of bits or by more bits than exist in 
the operand is undefined behavior in C99 and, in almost every 
case, indicates a bug (logic error).  Signed left shifts of negative 
values or cases where the result of the operation is not 
representable in the type are undefined in C99 and 
implementation-defined in C90.  Processors may reduce the shift 
amount modulo some quantity larger than the width of the type.  
For example, 32-bit shifts are implemented using the following 
instructions on IA-32: 

sa[rl]l   %cl, %eax 

The sa[rl]l instructions take a bit mask of the least significant 

5 bits from %cl to produce a value in the range [0, 31] and then 

shift %eax that many bits. 

64-bit shifts become 

sh[rl]dl  %eax, %edx 

sa[rl]l   %cl, %eax 

 

where %eax stores the least significant bits in the double word to 

be shifted and %edx stores the most significant bits.  

In the AIR integer model, shifts by negative amounts or amounts 
outside the width of the type trap because the results are not 
representable without overflow; consistent with rule INT34-C of 
The CERT C Secure Coding Standard: “Do not shift a negative 
number of bits or more bits than exist in the operand” [5]. 

Signed left shifts of negative values, or cases where the result of 
the operation is not representable in the type, are undefined in C99 
and implementation-defined in C90. In the AIR integer model, 
signed left shifts on negative values must not trap if the result is 
representable without overflow.  If the value is not representable 

in the type, the implementation must trap.  For example, a << b 

== a * 2
b if b >= 0 and a * 2b is representable without 

overflow in the type.  For right shift, a >> b == a / 2b if b 

>= 0, and 2b is representable without overflow in the type.   

Unsigned left shifts never trap under the AIR integer model.  This 
is because unsigned left shifts are generally perceived by 
programmers as losing data, and there is a large amount of 
existing code that assumes modulo behavior.  For example, in the 
following code from the JasPer image processing library,2 version 

1.900.1, tmpval has uint_fast32_t type: 

while (--n >= 0) { 

  c = (tmpval >> 24) & 0xff; 

                                                                 
2 http://www.ece.uvic.ca/~mdadams/jasper/  

  if (jas_stream_putc(out, c) == EOF) { 

    return -1; 

  } 

  tmpval = (tmpval << 8) & 0xffffffff; 

} 

 

The modulo behavior of tmpval is assumed in the left shift 

operation. 

2.2.3 Fussy Overflows 
One problem with trapping is fussy overflows, which are 
overflows in intermediate computations that do not affect the 
resulting value.  For example, on two’s complement architectures, 
the following code 

int x = /* nondeterministic value */; 

x = x + 100 – 1000; 

 

overflows for values of x > INT_MAX - 100, but underflows 

during the subsequent subtraction, resulting in a correct as-if 
infinitely ranged integer value.   

In this case, it is likely that most compilers will perform constant 

folding to simplify the above expression to x – 900, eliminating 

the possibility of a fussy overflow.  However, there are situations 
where this will not be possible, for example: 

int x = /* nondeterministic value */; 

int y = /* nondeterministic value */; 

x = x + 100 – y; 

 

Because this expression cannot be optimized, a fussy overflow 
may result in a trap, and a potentially successful operation may be 
converted into an error condition. 

2.3 Enabling and Disabling Unsigned Integer 

Wrapping 
The default behavior under the AIR integer model is to trap 
unsigned integer wrapping. 

Unsigned integer semantics are problematic because unsigned 
integer wrapping poses a significant security risk but is well 
defined by the C standard. Also, in legacy code, the wrapping 
behavior can be critical to correct behavior. Consequently, it is 
necessary to provide mechanisms to enable and disable wrapping 
for unsigned integers.    

It is theoretically possible to introduce new identifiers, such as 

__wrap and __trap, to be used as named attributes to enable or 

disable wrapping for individual integer variables, both signed and 
unsigned.   These could be implemented as variable attributes in 

GCC or using __declspec or a similar mechanism in Microsoft 

Visual Studio.  Enabling or disabling wrapping and trapping per 
variable has implications for the type system: for example, what 
happens when you combine a wrapping variable with a trapping 
variable?  It also has implications for type safety: for example, 
what happens when you pass a trapping variable as an argument 
to a function that accepts a wrapping parameter? 

Because of these added complications, the AIR integer model 
only supports enabling or disabling unsigned integer wrapping per 
compilation unit.   



Compiler options can be provided to enable or disable wrapping 
for all unsigned integer variables per compilation unit. Existing 
code that depends on modulo behavior for unsigned integers 
should be isolated in a separate compilation unit and compiled 
with wrapping disabled. 

When an unsigned integer defined in one compilation unit 
compiled with wrapping semantics is combined with another 
unsigned integer defined in a separate compilation unit with 
trapping semantics, the resulting value has the default behavior of 
the compilation unit in which the operation occurs. 

Because a large number of exploitable software vulnerabilities 
result from unsigned integer wrapping, we strongly recommend 
that the trap behavior should be the default for all new code, and 
for as much legacy code as possible, consistent with adequate 
testing and code review. 

2.4 Integer Promotions and the Usual 

Arithmetic Conversions 
In cases where a compilation unit is compiled with wrapping 
disabled for unsigned integers, it is possible that operations can 
take place between signed integers with trapping semantics and 
unsigned integers with wrapping semantics.  In these cases, the 
semantics of the resulting variable (trapping or wrapping) depends 
on the integer promotions and the usual arithmetic conversions 
defined by C99.  In cases where the resulting variable is a signed 
integer type, trapping semantics apply; in cases where the 
resulting value is an unsigned integer type, wrapping semantics 
are used. 

2.5 Integer Constants 
In C99, it is a constraint violation if the value of a constant is 
outside the range of representable values for its type.  A C99 
conforming implementation must produce at least one diagnostic 
message (identified in an implementation-defined manner) if a 
preprocessing translation unit or other translation unit contains a 
violation of any constraint.  

For constant expressions, the AIR integer model requires that the 
compiler must use arbitrary-precision signed arithmetic to 
evaluate an integer constant expression (even an unsigned one) 
and then issue a fatal diagnostic if the final result does not fit the 
appropriate type. 

For example, the expression 

((unsigned)0 - 1) 

produces a constraint violation and should result in a fatal 
diagnostic if compiled. 

2.6 Expressions Involving Integer Variables 

and Constants 
Because of macro expansion, another common case in C programs 
are expressions that include some number of variables and some 
number of constant values such as 

V1 + 1u + V2 - 2u 

In this case, the compiler can reorder the expressions and reduce 
to a single constant value, for example 

V1 + V2 - 1u  

regardless of whether it is compiled with trapping enabled or 
disabled for unsigned integer values.   

2.7 Runtime-Constraint Handling 
Most functions defined by ISO/IEC TR 24731-1 [13] and by the  
bounds-checking interfaces annex of the C1X Committee Draft 
[10] include as part of their specification a list of runtime 
constraints, violations of which can be consistently handled at 
runtime.  Library implementations must verify that the runtime 
constraints for a function are not violated by the program. If a 
runtime constraint is violated, the runtime-constraint handler 

currently registered with set_constraint_handler_s() is 

called. 

Implementations are free to detect any case of undefined behavior 
and treat it as a runtime-constraint violation by calling the 
runtime-constraint handler.  This license comes directly from the 
definition of undefined behavior. Consequently, the AIR 
implementation uses the runtime-constraint mechanisms defined 
by ISO/IEC TR 24731-1 and by the C1X Committee Draft for 
handling integer exceptional conditions. 

2.8 Optimizations 
An important consideration in adopting a new integer model is the 
effect on compiler optimization and vice versa. C language 
experts are accustomed to evaluating the CPU cost of various 
proposals. A typical approach is to compare the CPU cost of 
solving the problem in the compiler versus the (zero) cost of not 
doing so. We submit that, for the AIR integer model, it would also 
be useful to consider the CPU cost of analyzable generated code 
versus the CPU cost of the programmer’s extra program logic 
added to the intrinsic CPU cost of the optimized construct. This 
comparison justifies putting a greater burden on the compiler 
when compiling otherwise insecure constructs in analyzable 
mode. However, our current work uses the traditional approach to 
demonstrate that solving the problem does not introduce a large 
amount of overhead. 

Regardless, performance is always an issue when evaluating new 
models, and it is important to preserve existing optimizations 
while discovering new ones. Consequently, the AIR integer model 
does not prohibit any optimizations that are permitted by the C 
standard but does require a diagnostic any time the compiler 
performs an optimization based on a) signed overflow wrapping, 
b) unsigned wrapping, c) signed overflow not occurring (although 
value-range analysis cannot guarantee it will not), or d) unsigned 
wrapping not occurring (although value-range analysis cannot 
guarantee it will not). 

For example, AIR integers allow optimizations based on algebraic 
simplification without a diagnostic:  

    (signed) (a * 10) / 10 

 

This can be optimized to a.  There is no need to preserve the 

possibly of trapping a * 10. 

The expression 

    (a - 10) + (b - 10)  

 

can be optimized to  

(a + b) - 20 



While there is a possibility that (a + b) will produce a trap, 

there is also a possibility that either (a - 10) or (b - 10) 

would result in a trap in the original expression. Provided that the 
application can be sure that each output is represented correctly, 
there is little interest in knowing whether a trap might have 
occurred by a different strategy. 

Optimizations that assume that integer overflow does not trap 
require a diagnostic because this assumption is inconsistent with 
the integer model. For example, certain optimizations operate on 
the basis that a loop must terminate by exactly reaching the limit 

n, and therefore the number of iterations can be determined by an 

exact division with no remainder such as 

for (i = 0; i != n; i += 3) 

This loop can be optimized to iterate for some number of terms 
determined by a code sequence that is only valid for exact 

division and not if n/3 leaves a remainder.  This loop should also 

be diagnosed because it violates rule MSC21-C of The CERT C 

Secure Coding Standard: “Use inequality to terminate a loop 
whose counter changes by more than one” [5]. 

Diagnostics are also required for optimizations on pointer 
arithmetic that assume wrapping cannot occur. 

2.9 The rsize_t Type 
The rsize_t type, defined as part of bounds-checked library 

functions [13], can be used in a complimentary fashion to AIR 
integers and is consequently subsumed as part of the overall 

solution.  Functions that accept parameters of type rsize_t 

diagnose a constraint violation if the values of those parameters 

are greater than RSIZE_MAX. Extremely large object sizes are 

frequently a sign that an object’s size was calculated incorrectly. 
For example, negative numbers appear as very large positive 

numbers when converted to an unsigned type like size_t. For 

those reasons, it is sometimes beneficial to restrict the range of 
object sizes to detect errors. For machines with large address 

spaces, ISO/IEC TR 24731-1 recommends that RSIZE_MAX be 

defined as the smaller of the size of the largest object supported or 

(SIZE_MAX >> 1), even if this limit is smaller than the size of 

some legitimate, but very large, objects.  The CERT C Secure 

Coding Standard [5] recommends using rsize_t or size_t 

for all integer values representing the size of an object (INT01-C). 

2.10 Pointer Arithmetic 
Pointer arithmetic is not part of the AIR integer model but can be 
checked by safe secure C/C++ (SSCC) methods [14].   

3.  RELATED WORK 
This section describes existing and contemplated alternative 
approaches to the problem of integral security in C and explains 
why they don’t adequately address the issues. 

3.1 The GCC –ftrapv Flag 
GCC provides an -ftrapv compiler option that provides limited 

support for detecting integer overflows at runtime.  The GCC 
runtime system generates traps for signed overflow on addition, 
subtraction, and multiplication operations for programs compiled 

with the -ftrapv flag. This is accomplished by invoking 

existing, portable library functions that test an operation’s post-

conditions and call the C library abort() function when results 

indicate that an integer error has occurred [2]. For example, the 
following function from the GCC runtime system is used to detect 
overflows resulting from the addition of signed 16-bit integers.  

Wtype __addvsi3(Wtype a, Wtype b) { 

   const Wtype w = a + b; 

   if (b >= 0 ? w < a : w > a) 

     abort (); 

   return w; 

} 

 

The two operands are added, and the result is compared to the 
operands to determine whether an overflow condition has 

occurred. For __addvsi3(), if b is non-negative and w < a, 

an overflow has occurred and abort() is called. Similarly, 

abort() is called if b is negative and w > a. 

The –ftrapv option is known to have substantial problems. The 

__addvsi3() function requires a function call and conditional 

branching, which can be expensive on modern hardware. An 
alternative implementation tests the processor overflow condition 
code, but it requires assembly code and is non-portable. 

Furthermore, the GCC –ftrapv flag only works for a limited 

subset of signed operations and always results in an abort() 

when a runtime overflow is detected. Discussions for how to trap 
signed integer overflows in a reliable and maintainable manner 
are ongoing within the GCC community.  

3.2 Precondition Testing 
Another approach to eliminating integer exceptional conditions is 
to test the values of the operands before an operation to prevent 
overflow and wrapping from occurring.  This is especially 
important for signed integer overflow, which is undefined 
behavior and may result in a trap on some architectures (for 
example, a division error on IA-32).  The complexity of these 
tests varies significantly. A precondition test for detecting 
wrapping when adding two unsigned integers is relatively simple.  
However, a strictly conforming test to ensure that a signed 
multiplication operation does not result in an overflow is 
significantly more involved.  Examples of these precondition test 
and other are shown in The CERT C Secure Coding Guidelines 
[5]: “INT30-C. Ensure that unsigned integer operations do not 
wrap;” “INT31-C. Ensure that integer conversions do not result in 
lost or misinterpreted data;” and “INT32-C. Ensure that 
operations on signed integers do not result in overflow.”  

Detecting an overflow in this manner can be relatively expensive, 
especially if the code is strictly conforming.  Frequently, these 
checks must be in place before suspect system calls that may or 
may not perform similar checks prior to performing integral 
operations. Redundant testing by the caller and by the called is a 
style of defensive programming that has been largely discredited 
within the C and C++ community. The usual discipline in C and 
C++ is to require validation only on one side of each interface.  

Furthermore, branches can be expensive on modern hardware, so 
programmers and implementers work hard to keep branches out of 
inner loops.  This argues against requiring the application 
programmer to pre-test all arithmetic values to prevent rare 
occurrences such as overflow. Preventing runtime overflow by 
program logic is sometimes easy, sometimes complicated, and 
sometimes extremely difficult. Clearly, some overflow 



occurrences can be diagnosed in advance by static-analysis 
methods. But no matter how good this analysis is, some code 
sequences still cannot be detected before runtime. In most cases, 
the resulting code is much less efficient than what a compiler 
could generate to detect overflow.  

The underlying process of code generation may be immensely 
complicated, but, in general, it is best to avoid complexity in the 
code that end-user programmers are required to write.  

3.3 Saturation Semantics 
Verifiably in-range operations are often preferable to treating out-
of-range values as an error condition because the handling of 
these errors has been shown to cause denial-of-service problems 
in actual applications (for example, when a program aborts). The 
quintessential example of this is the failure of the Ariane 5 
launcher, which resulted from an improperly handled conversion 
error that caused the processor to be shut down [6]. 

A program that detects an imminent integer overflow may either 
trap or produce an integer result that is within the range of 
representable integers on that system.  Some applications, 
particularly in embedded systems, are better handled by producing 
a verifiably in-range result because it allows the computation to 
proceed, thereby avoiding a denial-of-service attack. However, 
when continuing to produce an integer result in the face of 
overflow, the question of what integer result to return to the user 
must be considered. 

The saturation and modwrap algorithms and the technique of 
restricted range usage produce integer results that are always 
within a defined range. This range is between the integer values 

MIN and MAX (inclusive), where MIN and MAX are two 

representable integers with MIN < MAX. 

For saturation semantics, assume that the mathematical result of 

the computation is result. The value actually returned to the 

user is set out in Table 2. 

Table 2. Saturation semantics 

Range of mathematical result  Result returned  

MAX < result  MAX  

MIN <= result <= MAX  result  

result < MIN  MIN 

 

In the C standard, signed integer overflow produces undefined 
behavior, meaning that any behavior is permitted. Consequently, 

producing a saturated MAX or MIN result is permissible.  

Providing saturation semantics for unsigned integers would 
require a change in the standard.  For both signed and unsigned 
integers, there is currently no way of requiring a saturated result. 

If C1X defined a new standard pragma such as _Pragma(STDC 

SAT), saturation semantics could be provided without impacting 

existing code.  

Although saturation semantics may be suitable for some 
applications, it is not always appropriate in security-critical code 
where abnormal integer values may indicate an attack. 

3.4 Overflow Detection 
C99 provides the <fenv.h> header to support the floating-point 

exception status flags and directed-rounding control modes 

required by IEC 60559, and other similar floating-point state 
information.  This includes the ability to determine which 
floating-point exception flags are set. 

It is ironic that floating point has a set of fully developed methods 
for monitoring and reporting exceptional conditions, even though 
the population using those methods is orders of magnitude smaller 
than the population that needs correctly represented integers. On 
the other hand, perhaps C’s long gestation period for addressing 
the correct-representation problem will lead to a system that is 
superior to the other languages that tackled the problem decades 
ago (such as Pascal and Ada). 

A potential solution to handling integer exceptions in C is to 
provide an inquiry function (just as C provides for floating point) 
that interrogates status flags that are being maintained by the 
(compiler-specific) assembler code that performs the various 
integer operations. If the inquiry function is called after an 
integral operation and returns a “no overflow” status, the value is 
reliably represented correctly.  

At the level of assembler code, the cost of detecting overflow is 
zero or nearly zero. Many architectures do not even have an 
instruction for “add two numbers but do NOT set the overflow or 
carry bit;”3 the detection occurs for free whether it is desired or 
not. But it is only the specific compiler code generator that knows 
what to do with those status flags.  

These inquiry functions may be defined, for example, by 

translating the <fenv.h> header into an equivalent <ienv.h> 

header that provides access to the integer exception environment. 
This header would support the integer exception status flags and 
other similar integer exception state information.  

However, anything that can be performed by an <ienv.h> 

interface could be performed better by the compiler.  For example, 
the compiler may choose a single, cumulative integer exception 
flag in some cases and one flag per variable in others, depending 
on what is most efficient in terms of speed and storage for the 
particular expressions involved.   Additionally, the concept of a 
runtime-constraint handler did not exist until the publication of 

TR 24731-1 [13]. Consequently, when designing <fenv.h>, the 

C standards committee defined an interface that put the entire 
burden on the programmer.   

Floating-point code is different from integer code in that it 
includes concepts such as rounding mode, which need not be 
considered for integers. Additionally, floating point has a specific 
value, NaN (Not a Number), which indicates that an 
unrepresentable value was generated by an expression.  
Sometimes floating-point programmers want to terminate a 
computation when a NaN is generated; at other times they want to 
print out the NaN because its existence conveys valuable 
information (and there might be one NaN in the middle of an 
array being printed out, with the rest of the values being valid 
results).  Because of the combination of NaNs and the lack of 
runtime-constraint handlers, the programmer needed to be given 
more control. 
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architectures is commonly used for integer addition and does 
not set status flags. 



In general, there is no NaI (Not an Integer) value, so there is no 
requirement to preserve such a value to allow it to be printed out.  
Therefore, the programmer does not need fine control over 
whether or not an integer runtime-constraint handler gets called 
after each operation.  Without this requirement, it is preferable to 
keep the code simple and let the compiler do the work, which it 
can generally do more reliably and efficiently than individual 
application programmers. 

3.5 Runtime Integer Checking (RICH) 
Brumley et al. have developed a static program transformation 
tool, called RICH, that takes as input any C program and outputs 
object code that monitors its own execution to detect integer 
overflows and other bugs [8]. Despite the ubiquity of integer 
operations, the runtime performance penalty of RICH is low, 
averaging less than 5%. RICH implements the checks in two 
phases. At compile time, RICH instruments the target program 
with runtime checks of all unsafe integer operations. At runtime, 
the inserted instrumentation checks each integer operation. When 
a check detects an integer error, it generates a warning and 
optionally terminates the program. 

3.6 Clang Implementation  
David Chisnall implemented the AIR integer model for Clang 
using the LLVM overflow-checked operations.4 The current 
implementation checks the integer overflow flag after each +, - or 

* integer operation and calls a handler function on overflow. 

In the overflow handler, the operation arguments are promoted to 

the long long type via sign extension, the op indicates whether 

it was signed/unsigned addition, subtraction, or multiplication, 
and the width indicates the expected width of the result.  GCC’s  

-ftrapv can be replicated by having it unconditionally call 

abort(). Alternatively, overflow can be handled by calling a 

registered handler function from a stack or by promoting it to 
some kind of boxed value.  If this function returns, its return value 
is truncated and used in place of the result of the operation. 

The Clang implementation simply checks the flag immediately 
after any signed integer operation and jumps to a handler function 
if overflow occurred.  Conditional jumps on overflow are cheap 
because the branch predictor will almost always guess correctly.  
By allowing a custom handler function, rather than aborting, 

Clang allows for calling longjmp() or some unwind library 

functions in cases where overflow occurred.  This works well with 
the optimizer, which can eliminate the test for cases where the 
value can be proven to be in-range.   

3.7 GCC no-undefined-overflow 
Richard Guenther has proposed a new no-undefined-overflow 
branch for GCC, the goal of which is to make overflow behavior 
explicit per operation and to eliminate all constructs in the 
GIMPLE intermediate language (IL) that invoke undefined 
behavior. To support languages that have undefined semantics on 
overflowing operations such as C and C++, new unary and binary 
operators that implicitly encode value-range information about 
their operands are added to the middle-end, noting that the 
operation does not overflow.  These does-not-overflow operators 
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 http://article.gmane.org/gmane.comp.compilers.clang.devel/4469  

transform the undefined behavior into a valid assumption making 
the GIMPLE IL fully defined. Consequently, the front-end and 
value-range analysis must determine if operations overflow and 

generate the appropriate IL. Instructions such as NEGATE_EXPR, 

PLUS_EXPR, MINUS_EXPR, MULT_EXPR, and 

POINTER_PLUS_EXPR would have wrapping, no-overflow, and 

trapping variants. 

The trapping variants are indicated by a V for overflow (for 

example, PLUSV_EXPR is the trapping variant for PLUS_EXPR) 

and by NV for no overflow (for example, PLUSNV_EXPR). The 

no-overflow variant also wraps if it overflows so that existing 
code continues to function. 

The GCC no-undefined-overflow branch, when implemented, 
should greatly facilitate the implementation of the AIR integer 
model within GCC. 

3.8 Testing Methods 
The majority of vulnerabilities resulting from integer exceptions 
manifest themselves as buffer overflows while manipulating null-
terminated byte strings in C and C++.  Fang Yu, Tevfik Bultan, 
and Oscar H. Ibarra proposed an automata-based composite, 
symbolic verification technique that combines string analysis with 
size analysis that focuses on statically identifying all possible 
lengths of a string expression at a program point to eliminate 
buffer overflow errors [12].  This obviates the need for run-time 
checks, which is an advantage if the time to perform the checking 
can be favorably amortized over the expected number of run-time 
invocations. Runtime property checking (as implemented by AIR 
integers) checks whether a program execution satisfies a property. 
Active property checking extends runtime checking by checking 
whether the property is satisfied by all program executions that 
follow the same program path [19]. 

4. PERFORMANCE & EFFICACY STUDY 
A proof-of-concept modification to the GCC compiler version 
4.5.0 was developed for IA-32 processors to study the 
performance and efficacy of the AIR integer model.5  The AIR 

integer model is enabled by the –fanalyzable compile time 

option.  Generated executables automatically invoke a runtime-
constraint handler when an integral operation fails to produce an 
as-if infinitely ranged value.   

To diagnose integer overflow on an IA-32 processor, it is 
necessary to know whether the arguments are signed or unsigned, 
so that the appropriate flag (carry or overflow) can be checked. 
The overflow flag indicates that overflow has occurred for signed 
operations, while the carry flag can be safely ignored.  For 
unsigned computations, the opposite is true. Unfortunately, 
GCC’s last internal representation, the register transfer language 
(RTL), has no way of storing the signedness of arguments to 
operations. 

Doing so requires inserting a flag into the RTL data structure, the 

rtx, which carries signedness information to the GCC back-end, 

where translation to assembly code is performed. Upon 
translation, the proper signedness information is available to 
produce the correct RTL pattern. 
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  The prototype is available for download at:  

http://www.cert.org/secure-coding/integralsecurity.html  



Conditional jumps are added to RTL patterns containing 
arithmetic operations to invoke a runtime-constraint handler in the 
event that signed overflow or unsigned wrapping occurred, as 
shown in the following example: 

   // arithmetic 

jn[co] .LANALYZEXXX  

   call constraint_handler 

    

.LANALYZEXXX 

   // code after arithmetic 

 

Overflow checks were not added following signed division 
because these operations result in a division error on IA
generate an interrupt on vector 0.   

4.1 Performance Study 
The performance of the prototype was assessed using the industry 
standard SPECCPU2006 benchmarks, which provide a 
meaningful and unbiased metric. Because the goal of this project 
is analyzable integer behavior, only the SPECINT2006 portion of 
the benchmark was run. SPECINT2006 was compiled using a 
reference (unmodified) GCC compiler and a GCC compiler 
modified to implement branch insertion.  The two binaries were 
then run, and the ratio of their runtime to a known baseline was 
used to compute a performance ratio. 

Higher numbers for the control and analyzable rations in 
indicate better performance. 

Table 3 SPECINT2006 macro-benchmark runs

Optimization 

Level 

Control 

Ratio 

Analyzable 

Ratio 

-O0 4.92 4.60 

-O1 7.21 6.77 

-O2 7.38 6.99 

 

Because the benchmarks used in SPECINT2006 are not designed 
for analyzable code, the prototype was modified slightly so that 
the analysis is performed, but programs do not abort in the case of 

an overflow. The new snippet has a nop instruction instead of a

call to a runtime-constraint handler: 

   jn[co] .LANALYZEXXX 

   nop 

.LANALYZEXXX 

 

This modification prevents runtime-constraint handlers from 
being invoked in the case of overflow and wrapping behavior in 
the benchmarks.6  

Code insertions occur after all optimizations are performed by 
GCC, so the observed slowdown is not caused by disrupted 
optimizations. Instead, the slowdown is entirely due to the cost of 
the conditional tests after each arithmetic operation.

                                                                 

6 Ideally, a call instruction would be used because the 
instruction is shorter, resulting in better code density.
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%  

Slowdown 

6.96 

6.50 

5.58 

Because the benchmarks used in SPECINT2006 are not designed 
for analyzable code, the prototype was modified slightly so that 
the analysis is performed, but programs do not abort in the case of 

instruction instead of a 

constraint handlers from 
being invoked in the case of overflow and wrapping behavior in 

optimizations are performed by 
GCC, so the observed slowdown is not caused by disrupted 
optimizations. Instead, the slowdown is entirely due to the cost of 
the conditional tests after each arithmetic operation. 

instruction would be used because the nop 
instruction is shorter, resulting in better code density. 

Runtime performance could be further improved
unnecessary tests in cases where value
that overflow or wrapping is not possible
implemented as analyzer advice, where a front
provides advice to a back-end compiler.  For each i
file, our prototype accepts an analyzer advice file containing 
either a white list of operations on which tests can be eliminated 
or a black list of operations that require testing.
use of this capability when generating our re
wanted to establish a baseline prior to introducing any 
optimizations. 

4.2 Efficacy Study 
For our efficacy study, the JasPer image processing library 
instrumented using our prototype and fuzz tested using 

JasPer includes a software-based implementation of the codec 
specified in the JPEG-2000 Part-1 standard ISO/IEC 15444
is written in the C programming language [7]. The JasPer 
software has been included in the JPEG
ISO/IEC 15444-5 as an official reference implementation of the 
JPEG-2000 Part-1 codec. This software has also been 
incorporated into numerous other software projects (some 
commercial and some non-commercial). Some projects known to 
use JasPer include K Desktop Environment (as of version 3.2)
Kopete, Ghostscript, ImageMagick, 
10.12), and Checkmark. 

This library has been included in many commercial and non
commercial applications that have been widely deployed and 
used. As a result, any vulnerabilities in this library are quite 
severe because they can lead to widespread compromises.

The zzuf tool mangles input to an application while observing the 
application’s behavior.  The traditional purpose for fuzz testing is 
to find test cases that cause an application to crash.  However, we 
used fuzzing to exercise the target application’s code paths.  
Because JasPer was instrumented using AIR integers, we are able 
to observe integer constraint violations as they happen.

Fuzzing with zzuf starts with a seed file and 
bits of the file within a specified percentage range.  For our test, 
we used the range of 0.001% to 1%.  Each iteration of the fuzzing 

run opens the modified seed file, while logging 

capture AIR constraint violations. JasPer was fuzzed for 17.5 
hours, resulting in execution of the application 1,802,614 times.
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The zzuf tool mangles input to an application while observing the 
application’s behavior.  The traditional purpose for fuzz testing is 

application to crash.  However, we 
used fuzzing to exercise the target application’s code paths.  
Because JasPer was instrumented using AIR integers, we are able 
to observe integer constraint violations as they happen. 

file and randomly mutating 
the file within a specified percentage range.  For our test, 

we used the range of 0.001% to 1%.  Each iteration of the fuzzing 

run opens the modified seed file, while logging stderr output to 

capture AIR constraint violations. JasPer was fuzzed for 17.5 
hours, resulting in execution of the application 1,802,614 times. 
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Figure 1. JasPer defects. 

The JPEG-2000 decoding capabilities of JasPer were targeted in 
the fuzzing run.  Code coverage details were obtained by using 

GCC gcov. 8  74.4% of the code in jpc_dec.c , which contains 

code for decoding JPEG-2000 streams, has been executed through 
the use of fuzzing. 

Figure 1 shows the defects discovered in JasPer organized by 
severity and by the CERT Secure Coding guideline that was 
violated.   

Violations of the following CERT C Secure Coding rules were 
discovered 

• INT30-C. Ensure that unsigned integer operations do not 
wrap 

• INT31-C. Ensure that integer conversions do not result in 
lost or misinterpreted data 

• INT32-C. Ensure that operations on signed integers do not 
result in overflow 

• INT34-C. Do not shift a negative number of bits or more bits 
than exist in the operand 

Each runtime constraint was classified as exploitable, crashable, 
incorrect, or a false positive. 

Exploitable defects are those that are believed likely to result in an 
attacker being able to execute arbitrary code. 

Crashable defects are those that result in a program crash but 
whose overall security impact otherwise appears limited to a 
denial-of-service condition. 

Incorrect defects result in incorrect program output or data 
corruption, but there is no possibility of crashing or exploiting the 
program. 

False positives are traps for overflows or truncations that are not 
errors because they are harmless for that particular 
implementation.  Technically, these are still defects and may 
represent undefined behavior or rely on non-portable behaviors.  
For example, a left shift may be used to extract ASCII character 

data packed into an int or long. While this is undefined 

behavior and a violation of rule INT13-C: “Use bitwise operators 
only on unsigned operands” in The CERT C Secure Coding 

Standard [5], it may not constitute a defect for a given 
implementation. 

Instrumented fuzz testing discovered 10 of a known 12 
vulnerabilities in JasPer and had no code coverage for the other 2. 
For comparison, the splint9 static analysis tool identified those 2. 
Of the 10 vulnerabilities discovered through fuzzing, splint 
missed 4 and identified 6, but not for the reasons for which they 
are actually vulnerable. This is not surprising given that splint 
issued 468 warnings for 2000 lines of code. 

Anpother significant difference between the static analysis and 
AIR runtime strategies lies in the aspect of code coverage. With 
static tools, the entire codebase is available for analysis.  
However, with the AIR library, constraint violations are only 
reported if a code path is taken during program execution and the 
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input data caused a constraint violation to occur.  For example, 83 
runtime-constraint violation were reported in the file 

jpc_dec.c, while 0 violations were reported in jpc_enc.c.  

This is because the fuzzing run did not perform any JPEG-2000 

code stream encoding, and therefore the code in jpc_enc.c was 

never executed. 

An example of an exploitable vulnerability by fuzz testing the 
AIR-integer-instrumented JasPer library occurs in 

jas_image_cmpt_create() where size can easily 

overflow: 

303: long size;  

321: size = cmpt->width_ * cmpt->height_ *  

              cmpt->cps_; 

322: cmpt->stream_ = (inmem) ?   

       jas_stream_memopen(0, size) :  

       cmpt->jas_stream_tmpfile(); 

In jas_stream_memopen(), a bufsize less than or equal 

to 0 is meaningful and indicates that a buffer has been allocated 
internally and is growable.   

jas_stream_t *jas_stream_memopen(char *buf,  

  int bufsize) {  

 

if (bufsize <= 0) { 

  obj->bufsize_ = 1024 

  obj->growable_ = 1; 

} else { 

  obj->bufsize_ = bufsize; 

  obj->growable_ = 0; 

} 

 

When size overflows in jas_image_cmpt_create(), it 

becomes negative, tricking jas_stream_memopen() into 

thinking it should be allocated internally and be growable. 

This problem is diagnosed as follows, identifying both signed 
integer overflows on line 321 in violation of INT32-C: 

jas_image_cmpt_create 

src/libjasper/base/jas_image.c:321 

0x804c8d3 Signed integer overflow in multiplication 

0x804c8e3 Signed integer overflow in multiplication 

5. CONCLUSIONS 
The AIR integer model produces either a value that is equivalent 
to a value that would have been obtained using infinitely ranged 
integers or a runtime-constraint violation. AIR integers can be 
used to for dynamic analysis or as a run-time protection scheme. 

At the -02 optimization level our compiler prototype showed 

only a 5.58% slowdown when running the SPECINT2006 macro-
benchmark runs. This represents the worst case performance for 
AIR integers as no optimizations were performed but is still low 
enough for typical applications to enable this feature in deployed 
systems. AIR integers has also proved effective in discovering 
vulnerabilities, crashes, and other defects in real code when 
combined with dumb (mutation) fuzzing.  
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