
© 2010 Carnegie Mellon University

Characterizing Technical

Software Performance

Within System of Systems

Acquisitions: A Step-Wise

Methodology

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

B. Meyer, J. Wessel
May 2010

2

SSTC 2010

J. Wessel, B. Meyer May 2010

© 2010 Carnegie Mellon University

Introduction

System of systems (SoS), either directed as a program, acknowledged
as a set of programs, or emergent as in collaborative or virtual
varieties*, ALL need a way to assess software performance (SWP):

• Assess causes of SWP issues

• Determine indicators and measures of SWP

• Plan SWP measurement in tests

Fundamental question: Will software enable planned capabilities
within end-to-end field environment?

We provide a 10-step method for planning/assessing SWP, allowing for
respective improvement of architecture and test processes

Our method is based on experience within a major directed SoS Service
Orientated Architecture (SOA) DoD acquisition program

* See “Exploring Enterprise, System of Systems, and System and Software Architectures” by Paul C. Clements, SEI, 2009.

3

SSTC 2010

J. Wessel, B. Meyer May 2010

© 2010 Carnegie Mellon University

Illuminating the Software Performance ‘Cave’

Unknown but
(Partially to

Fully) Defined

Test
Events^

Unknown,
Undefined

Unknown,
Undefined

Requirements X
Design DocumentsTest

Events^^

Test Events

*= Partially to Fully based on fidelity and thoroughness
^= focused, lower fidelity
^^=Higher fidelity/scale

Late Project

4

SSTC 2010

J. Wessel, B. Meyer May 2010

© 2010 Carnegie Mellon University

Software Performance 10-Step Method

1 - Make SOS SOA
layout

performance view

2 - Review key

resource limiters

from layout

3 - Make sample

scenarios:

What are sources

of performance

impacts in each?

4 - Make list of

metrics (indicate

sources,

architecture ties if

known)

6 - Find test events

that have occurred:

Rate the maturity of

each for each

metric

7 - Circulate

results/vetting:

What metrics and

events are

missing?

5 - Add in required

SWP metrics from

documents (quality/

best practice/

critical resources)

8 - Use populated

metrics matrix to

plan future tests

and mine data from

existing data sets

9 - Use architecture

tie-ins to improve

software

performance

10 - Determine

repeat schedule

5

SSTC 2010

J. Wessel, B. Meyer May 2010

© 2010 Carnegie Mellon University

An Example SoS Layout

This schematic represents the SoS
context in which the example software

was delivered

Applications using services reside at
the system level and assume services

are instantiated on blades

System of Systems

System

Processing Unit

Blade

Service

Instance of
Discoverable

Service

Middleware

(Blade) OS

This is one of multiple context views

required; it was chosen to allow

further break down of performance

affecting sources

6

SSTC 2010

J. Wessel, B. Meyer May 2010

© 2010 Carnegie Mellon University

Notional SoS Layout: On a Processing Unit

This schematic provides

processor level SoS

context fidelity

Blade Server

Faster Slower

Blade in same
Processing Unit

Fiber Channel or similar
Interface to Shared RAID

Firewall + Router with LAN (Gigabit
Ethernet et al.) Interfaces

Processing Unit
(or Rack)

7

SSTC 2010

J. Wessel, B. Meyer May 2010

© 2010 Carnegie Mellon University

Notional SoS Layout: A System

System Firewall+ Router+
Radio Long Range

+Long Range Wireless
WAN Delays

Processing Unit

Shared
RAID

Processing
Unit

System Firewall+ Router+
Radio Short Range

+Short Range Wireless
WAN Delays

System

System Firewall+ Router+
Radio Satellite

+Satellite Link
WAN Delays

Note: The delay to the

WAN interface

processing units are the

same but performance

will need to add WAN

delays for each link

Faster Slower

8

SSTC 2010

J. Wessel, B. Meyer May 2010

© 2010 Carnegie Mellon University

Software Performance 10-Step Method

1 - Make SOS SOA
layout performance

view

2 - Review key

resource limiters

from layout

3 - Make sample

scenarios:

What are sources

of performance

impacts in each?

4 - Make list of

metrics (indicate

sources,

architecture ties if

known)

6 - Find test events

that have occurred:

Rate the maturity of

each for each

metric

7 - Circulate

results/vetting:

What metrics and

events are

missing?

5 - Add in required

SWP metrics from

documents (quality/

best practice/

critical resources)

8 - Use populated

metrics matrix to

plan future tests

and mine data from

existing data sets

9 - Use architecture

tie-ins to improve

software

performance

10 - Determine

repeat schedule

9

SSTC 2010

J. Wessel, B. Meyer May 2010

© 2010 Carnegie Mellon University

Software/Hardware Performance Planning

Notional Representation

Blue =No data

Orange = Simulated Data

Green: Live Data

Counter clock-wise,

faster to slower

Designers should manage access

to slower methods when possible

DRAM

RAID

(HDs)

FLASH

Blade

System on

Same

Platform

System on

Different

Platform

System

Over GiG

(Direct)

System

Over GiG

(Indirect)
Processor

~1 micro-

second

~ 100 microseconds

~1 millisecond

~ 100

microseconds

~ 5

milliseconds

>1 second

>1 second

0.1 to 1 second

Human

Interactions

1 second

to minutes

<1 microsecond

10

SSTC 2010

J. Wessel, B. Meyer May 2010

© 2010 Carnegie Mellon University

Scale Issues

The work of each blade (CPU/memory/
LAN utilization, middleware, etc.) will
increase based upon

• total number of systems in the
system of systems

• how often the users need
services in other systems/
processing units/blades

Each increase in scale increases
resource needs per service
hosting blade

11

SSTC 2010

J. Wessel, B. Meyer May 2010

© 2010 Carnegie Mellon University

Software Performance 10-Step Method

1 - Make SOS SOA
layout performance

view

2 - Review key

resource limiters

from layout

3 - Make sample

scenarios:

What are sources

of performance

impacts in each?

4 - Make list of

metrics (indicate

sources,

architecture ties if

known)

6 - Find test events

that have occurred:

Rate the maturity of

each for each

metric

7 - Circulate

results/vetting:

What metrics and

events are

missing?

5 - Add in required

SWP metrics from

documents (quality/

best practice/

critical resources)

8 - Use populated

metrics matrix to

plan future tests

and mine data from

existing data sets

9 - Use architecture

tie-ins to improve

software

performance

10 - Determine

repeat schedule

12

SSTC 2010

J. Wessel, B. Meyer May 2010

© 2010 Carnegie Mellon University

A Possible Scenario - 1

User 1 Requests Data from User 2

Where is software performance

affected (delayed)?

User 1 on

Blade A on PU1
User 2 on Blade B

on PU2
Start End

Instance of
Discovered

Service

Middleware

OS

System 1 System 2

Instance of
Discovered

Service

Middleware

OS

Over Air

13

SSTC 2010

J. Wessel, B. Meyer May 2010

© 2010 Carnegie Mellon University

A Possible Scenario - 2

User 1 to User 2, examples:

• On Blade A: Service Call to Middleware

• Delays Between Blade & Processing Unit

• Delays on Short Range Router/FW /Radio 1

• Delays on Short Range Router/FW /Radio 2

• LAN Latency From Short Range
Router/FW/Radio 2 to PU2‟s LAN Blade

User 2 to User 1: Reverse previous bullet!

What metrics affect
software

performance in
previous scenario?

14

SSTC 2010

J. Wessel, B. Meyer May 2010

© 2010 Carnegie Mellon University

Software Performance 10-Step Method

1 - Make SOS SOA
layout performance

view

2 - Review key

resource limiters

from layout

3 - Make sample

scenarios:

What are sources

of performance

impacts in each?

4 - Make list of

metrics (indicate

sources,

architecture ties if

known)

6 - Find test events

that have occurred:

Rate the maturity of

each for each

metric

7 - Circulate

results/vetting:

What metrics and

events are

missing?

5 - Add in required

SWP metrics from

documents (quality/

best practice/

critical resources)

8 - Use populated

metrics matrix to

plan future tests

and mine data from

existing data sets

9 - Use architecture

tie-ins to improve

software

performance

10 - Determine

repeat schedule

15

SSTC 2010

J. Wessel, B. Meyer May 2010

© 2010 Carnegie Mellon University

Make a Software Performance Metrics Matrix

Consider the design levels and requirements

• Aid: „desk‟ running scenarios
from: intended use, take to break („rainy day‟), and requirements

A breakout diagram or similar
can be used to gather the list

Engineering Metrics

Memory Availability

Memory
Level/Scenario

Memory in
Orphan Threads

Count of
Other Users

16

SSTC 2010

J. Wessel, B. Meyer May 2010

© 2010 Carnegie Mellon University

The Initial Matrix

• Metric name: title, short name and key words for tagging

• Why it should be collected, including Need Type

• An example of the ways to collect it: How?

• Any ties to requirements, directly or as contributors

• High-Level Type: What aspect of the overall design am I assessing?

#
Short
Name

Metric Title Why?
Keywords (for

Tagging)
How?

Need
Type

High
Level
Type

1 Bcalls_

Count
Blade to blade calls

(tagged by service, by

process, by user, by

case/scenario/time

Limiting calls from blade

to blade reduces time

(due to bus use)

Blade, calls, count,

service, process

Bus monitoring via

Processing Unit

against process

monitor

Efficiency Engineer

2 HDCalls_

Count
Service traffic count to

drives

Which services,

applications, clients of

applications are hitting

the drives often. The

more often RAM is used

in lieu of the drives, the

quicker the app will run.

User, service, raid,

calls

Process-message

snapshots and

parse (or logging

parse) for OS+bus

capture (log parse)

Efficiency Engineer

17

SSTC 2010

J. Wessel, B. Meyer May 2010

© 2010 Carnegie Mellon University

Software Performance 10-Step Method

1 - Make SOS SOA
layout performance

view

2 - Review key

resource limiters

from layout

3 - Make sample

scenarios:

What are sources

of performance

impacts in each?

4 - Make list of

metrics (indicate

sources,

architecture ties if

known)

6 - Find test events

that have occurred:

Rate the maturity of

each for each

metric

7 - Circulate

results/vetting:

What metrics and

events are

missing?

5 - Add in required

SWP metrics from

documents

(quality/best

practice/critical

resources)

8 - Use populated

metrics matrix to

plan future tests

and mine data from

existing data sets

9 - Use architecture

tie-ins to improve

software

performance

10 - Determine

repeat schedule

18

SSTC 2010

J. Wessel, B. Meyer May 2010

© 2010 Carnegie Mellon University

Adding Metrics Using Existing Matrix Guidance

Use list of 20 minimums to fill in list made from scenarios

• This provides a set of metrics that might not have emerged from Step 4
scenarios, but come from experience with similar systems

Add quality metrics related to software performance

Add guidance from requirements documents

Sample Key Metrics for Software Performance

Short Name Metric Title Why? How?

1 HDPart_Ut Partition/disk usage over

time/scenario/ factor

Avoid overfilling partitions (which can

slow or stop a system); determine

which situations stress disks

Repeated capture

from OS

2 LAN_Util Platform LAN utilization Prevent overuse of LAN on platform;

watch for processes that could be

done in blade instead of over LAN

SNMP MIB from

routers

3 RAM_Util RAM utilization (by client,

service, application) over time

Prevent over-utilization, prevent

resource hogging/application

Repeated capture

from OS

19

SSTC 2010

J. Wessel, B. Meyer May 2010

© 2010 Carnegie Mellon University

Software Performance 10-Step Method

1 - Make SOS SOA
layout performance

view

2 - Review key

resource limiters

from layout

3 - Make sample

scenarios:

What are sources

of performance

impacts in each?

4 - Make list of

metrics (indicate

sources,

architecture ties if

known)

6 - Find test

events that have

occurred:

Rate the maturity

of each for each

metric

7 - Circulate

results/vetting:

What metrics and

events are

missing?

5 - Add in required

SWP metrics from

documents (quality/

best practice/critical

resources)

8 - Use populated

metrics matrix to

plan future tests

and mine data from

existing data sets

9 - Use architecture

tie-ins to improve

software

performance

10 - Determine

repeat schedule

20

SSTC 2010

J. Wessel, B. Meyer May 2010

© 2010 Carnegie Mellon University

Testing/Simulation Types

Cube of „Realism‟ (Omitting Network*)

Hardware

S
o
ft

w
a
re

Assess realism per test event

1. Software

• Mod=Modeled

• Sim=Simulated

• Proto=Prototype

• EB=Early Build

• LB=Later Build

• Mat=Mature

2. Hardware

• Sim=Simulated

• EP=Early Prototype

• LP=Late Prototype

• IP=Initial Production

• FP=Full Production

3. Scale

• SB/MB=Single Blade/Multiple Blades

• PU/MPU=Process Unit/Multiple PUs

• SS=Single System

• LS=Limited Multiple System

• PS=Partial Scale

• FS=Full Scale

A

So, Event A might be [Proto/Sim,EP/LP,LS] for example.
*=N.B. One could extend to network scale for a 4th Dimension

* One could extend to „Network‟ for a 4th Dimension

21

SSTC 2010

J. Wessel, B. Meyer May 2010

© 2010 Carnegie Mellon University

Test for Realism

Realism varies by metric inside each test event due to available

test assets and timeframes

Test targeted at reducing one set of risks might collect data on other
related areas as a side effect

Review of full test artifacts can mine for „off-target‟ collections

Off-target metric collections might be at a lower fidelity level than

metric included in risk target of test

22

SSTC 2010

J. Wessel, B. Meyer May 2010

© 2010 Carnegie Mellon University

Trending and Correlation

Scenario X, Step X

Time

C
P

U
 U

ti
l.
 %

BladeA,PU1,System1

BladeB,PU1,System1

BladeC, PU1,System1

Time

M
id

d
le

w
a

re

C
a

lls BladeA,PU1,System1

BladeB,PU1,System1

BladeC, PU1,System1

Time

C
a

c
h

e
 H

it
s

BladeA,PU1,System1

BladeB,PU1,System1

BladeC, PU1,System1

Time

C
P

U
 U

ti
l.
 %

BladeA, PU2,System2

BladeB, PU2,System2

BladeC, PU2,System2

Time
M

id
d

le
w

a
re

C
a

lls BladeA, PU2,System2

BladeB, PU2,System2

BladeC, PU2,System2

Time

C
a

c
h

e
 H

it
s

BladeA, PU2,System2

BladeB, PU2,System2

BladeC, PU2,System2

Other correlations
• Regression comparisons?

• Gap analysis; compare
w/desired performance

Tie to architecture (design,
various levels)

System Architecture;

Software Architecture

Which cross correlations have a payoff?

23

SSTC 2010

J. Wessel, B. Meyer May 2010

© 2010 Carnegie Mellon University

Software Performance 10-Step Method

1 - Make SOS SOA
layout performance

view

2 - Review key

resource limiters

from layout

3 - Make sample

scenarios:

What are sources

of performance

impacts in each?

4 - Make list of

metrics (indicate

sources,

architecture ties if

known)

6 - Find test events

that have occurred:

Rate the maturity of

each for each

metric

7 - Circulate

results/vetting:

What metrics and

events are

missing?

5 - Add in required

SWP metrics from

documents (quality/

best practice/critical

resources)

8 - Use populated

metrics matrix to

plan future tests

and mine data from

existing data sets

9 - Use architecture

tie-ins to improve

software

performance

10 - Determine

repeat schedule

24

SSTC 2010

J. Wessel, B. Meyer May 2010

© 2010 Carnegie Mellon University

Who Vets the SWP Metrics Matrix?

Testing groups are usually scattered in various system groups and at
program level

Bring representatives of each group together to examine each iteration
of metrics matrix

• Limit attendance to those who understand test metrics and fidelity levels

• Honesty, not spin, is important

• Get leadership backing

Vet matrix with this newly-formed Technology Interchange Group (TIG).

25

SSTC 2010

J. Wessel, B. Meyer May 2010

© 2010 Carnegie Mellon University

Vetted Matrix and Procedure Linkage

Use matrix as a starting point for discussion for initial TIG meeting

• Discuss matrix data: Was anything missed?

– All that has happened to date: Does it include all test events?

– Knowledge of events at each scale: Does it capture the correct realism and scale of
each event?

• Revise matrix

– Include missed or incomplete items discovered

– Gain consensus on correctness/completeness of metrics: Are we measuring the
right performance? Does the list account for SWP issues that may emerge later?

Re-circulate to confirm results

• Store matrix in configuration-controlled, commonly accessible location
(Sharepoint, Wiki, etc.)

• Encourage TIG to comment and distribute to their teams for comment

• Collect comments, confirm veracity of updates with TIG, revise matrix

Repeat until there is a strong confidence/consensus in matrix

26

SSTC 2010

J. Wessel, B. Meyer May 2010

© 2010 Carnegie Mellon University

Software Performance 10-Step Method

1 - Make SOS SOA
layout performance

view

2 - Review key

resource limiters

from layout

3 - Make sample

scenarios:

What are sources

of performance

impacts in each?

4 - Make list of

metrics (indicate

sources,

architecture ties if

known)

6 - Find test events

that have occurred:

Rate the maturity of

each for each

metric

7 - Circulate

results/vetting:

What metrics and

events are

missing?

5 - Add in required

SWP metrics from

documents (quality/

best practice/critical

resources)

8 - Use populated

metrics matrix to

plan future tests &

mine data from

existing data sets

9 - Use architecture

tie-ins to improve

software

performance

10 - Determine

repeat schedule

27

SSTC 2010

J. Wessel, B. Meyer May 2010

© 2010 Carnegie Mellon University

Metrics/Planning for Metrics Collection using
the Matrix

Insert metrics with low event coverage into future test events.

• What metrics (rows) in the matrix have no associated events (i.e. empty
columns)? Which metrics were only measured at a low scale or fidelity?

• Insert metrics into event plans and insert planned events into the matrix

Make metric list a standard minimum for tests at any scale

Create correlation standards and a history of what correlations have
lead to problem discovery

Agree on initial conditions for tests

28

SSTC 2010

J. Wessel, B. Meyer May 2010

© 2010 Carnegie Mellon University

Ideas for Entry Criteria: Metrics Infrastructure

Consolidated Metrics Library Database

• Complex trends and simple points

• Easily accessible by architects/engineers/development/other test groups

• Metadata tagging using a standard

Insert into test schedule

• Run future test event planning through TIG

• Invite group edits to matrix

29

SSTC 2010

J. Wessel, B. Meyer May 2010

© 2010 Carnegie Mellon University

Software Performance 10-Step Method

1 - Make SOS SOA
layout performance

view

2 - Review key

resource limiters

from layout

3 - Make sample

scenarios:

What are sources

of performance

impacts in each?

4 - Make list of

metrics (indicate

sources,

architecture ties if

known)

6 - Find test events

that have occurred:

Rate the maturity of

each for each

metric

7 - Circulate

results/vetting:

What metrics and

events are

missing?

5 - Add in required

SWP metrics from

documents (quality/

best practice/critical

resources)

8 - Use populated

metrics matrix to

plan future tests &

mine data from

existing data sets

9 - Use

architecture tie-

ins to improve

software

performance

10 - Determine

repeat schedule

30

SSTC 2010

J. Wessel, B. Meyer May 2010

© 2010 Carnegie Mellon University

Software Performance Management: A Team
Effort

Software

Performance TIG

SOA SoS Program

Internal
Software
Service

Developers

Processing
Hardware

Developers

System
Integrator

Network Unit
Providers

COTS/GOTS
Services

Developers

External
Software
Service

Developers

Test Group Test Group Test Group Test Group Test GroupTest Group

... ...

31

SSTC 2010

J. Wessel, B. Meyer May 2010

© 2010 Carnegie Mellon University

Relating Architecture to Metrics

It is useful with a vetted metrics matrix to tie each metric to architecture

• Use ties to improve performance

There are likely no orphan metrics; they are just more complex to trace
to architecture and design

Repeated columns of higher fidelity and realistic events improve
confidence that the metric is covered and performance quantified;
use these to plan tests

Architecture and design elements tied to performance will gain
confidence with successive events; again test planning

32

SSTC 2010

J. Wessel, B. Meyer May 2010

© 2010 Carnegie Mellon University

Conclusions

Understanding software performance for a SoS SOA system is complex;
managers need to:

• Understand the system‟s respective performance affecting levels

• Develop a metrics list derived from scenarios and other sources

• Tie in test events to make the metrics matrix

• Have a way to circulate the matrix by understanding the organization

• Feedback the matrix and metrics testing results to architecture leads

• Keep the matrix current or status will be unknown

33

SSTC 2010

J. Wessel, B. Meyer May 2010

© 2010 Carnegie Mellon University

BACK-UP SLIDES

34

SSTC 2010

J. Wessel, B. Meyer May 2010

© 2010 Carnegie Mellon University

Acronym List

CM Configuration Management

COTS Common Off The Shelf

CPU Central Processing Unit

DoD U.S. Department of Defense

DRAM Dynamic Random Access Memory

E2E End-to-End

FW Fire Wall

GiG Global Information Grid

GUI Graphical User Interface

HD Hard Drives

H/W Hardware

LAN Local Area Network

LUT Limited User Test

IPT Integrated Process Team

M&S Modeling and Simulation

35

SSTC 2010

J. Wessel, B. Meyer May 2010

© 2010 Carnegie Mellon University

Acronym List

OS Operating System

PU Processing Unit

RAID Redundant Array of Independent Disks

RAM Random Access Memory

RFP Request For Proposal

SE Systems Engineering

SEC Army Software Engineering Center

SOA Service Oriented Architecture

SoS System of Systems

SW Software

SWP Software Performance

TIG Technology Interchange Group

TRL Technical Readiness Level

WAN Wide Area Network

36

SSTC 2010

J. Wessel, B. Meyer May 2010

© 2010 Carnegie Mellon University

Services

“Services and applications are defined as primarily software based
components which perform specific functions using standard
interfaces. A service is defined as a mechanism to enable access to
one or more capabilities, where the access is provided using a
prescribed interface and is exercised consistent with constraints
and policies as specified by the service description (reference w). A
service is a function that is well-defined, self contained, and does
not depend on the context or state of other services. It easily allows
for reuse in yet to be determined functions. Applications are
designed to perform a specific function directly for the user or for
another application.”

US DoD CJCSI 6212.01E, 15 December 2008

37

SSTC 2010

J. Wessel, B. Meyer May 2010

© 2010 Carnegie Mellon University

System of Systems:

See “Exploring Enterprise, System of Systems, and System and Software Architectures”
by Paul C. Clements, SEI:
http://www.sei.cmu.edu/library/abstracts/presentations/22jan2009webinar.cfm

“System of Systems (SoS) Architecture

• A SoS is a set or arrangement of systems that results when independent and useful systems are
integrated into a larger system that delivers unique capabilities.

• Varieties:

Directed: SoS objectives, management, funding and authority in place; systems are
subordinated to the SoS

Acknowledged: SoS objectives, management, funding and authority in place; systems retain
their own management, funding and authority in parallel with the SoS

Collaborative: No objectives, management, authority, responsibility, or funding at the SoS
level; systems voluntarily work together to address shared or common interest

Virtual: Like collaborative, but systems don’t know about each other (for example, the
Internet)”

http://www.sei.cmu.edu/library/abstracts/presentations/22jan2009webinar.cfm

38

SSTC 2010

J. Wessel, B. Meyer May 2010

© 2010 Carnegie Mellon University

Contact Information

Presenter / Point of Contact

Jim Wessel / Bryce Meyer

Acquisition Support Program

Telephone: +1 908-418-0323 /

+1 314-800-3159

Email: jwessel@sei.cmu.edu /

bmeyer@sei.cmu.edu

U.S. mail:

Software Engineering Institute

Customer Relations

4500 Fifth Avenue

Pittsburgh, PA 15213-2612

USA

World Wide Web:

www.sei.cmu.edu

www.sei.cmu.edu/contact.html

Customer Relations

Email: customer-relations@sei.cmu.edu

Telephone: +1 412-268-5800

SEI Phone: +1 412-268-5800

SEI Fax: +1 412-268-6257

mailto:jwessel@sei.cmu.edu
mailto:bmeyer@sei.cmu.edu
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/contact.html
mailto:customer-relations@sei.cmu.edu
mailto:customer-relations@sei.cmu.edu
mailto:customer-relations@sei.cmu.edu

39

SSTC 2010

J. Wessel, B. Meyer May 2010

© 2010 Carnegie Mellon University

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN “AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO
ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM
USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY
WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this presentation is not intended in any way to infringe on the
rights of the trademark holder.

This Presentation may be reproduced in its entirety, without modification, and freely
distributed in written or electronic form without requesting formal permission. Permission
is required for any other use. Requests for permission should be directed to the Software
Engineering Institute at permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number
FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software
Engineering Institute, a federally funded research and development center. The
Government of the United States has a royalty-free government-purpose license to use,
duplicate, or disclose the work, in whole or in part and in any manner, and to have or
permit others to do so, for government purposes pursuant to the copyright license under
the clause at 252.227-7013.

mailto:permission@sei.cmu.edu

