

Improving the Automated Detection and
Analysis of Secure Coding Violations

Daniel Plakosh
Robert Seacord
Robert Stoddard
David Svoboda
David Zubrow

June 2014

TECHNICAL NOTE
CMU/SEI-2014-TN-008

CERT® Division

http://www.sei.cmu.edu

http://www.sei.cmu.edu

Copyright 2014 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract

No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineer-

ing Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the

author(s) and do not necessarily reflect the views of the United States Department of Defense.

References herein to any specific commercial product, process, or service by trade name, trade mark,

manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation,

or favoring by Carnegie Mellon University or its Software Engineering Institute.

This report was prepared for the

SEI Administrative Agent

AFLCMC/PZM

20 Schilling Circle, Bldg 1305, 3rd floor

Hanscom AFB, MA 01731-2125

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING

INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON

UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED,

AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR

PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE

OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY

WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK,

OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted be-

low.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material

for internal use is granted, provided the copyright and “No Warranty” statements are included with all

reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely dis-

tributed in written or electronic form without requesting formal permission. Permission is required for

any other external and/or commercial use. Requests for permission should be directed to the Software

Engineering Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

CERT® is a registered mark of Carnegie Mellon University.

DM-0001389

mailto:permission@sei.cmu.edu

CMU/SEI-2014-TN-008 | i

Table of Contents

Abstract vii

1 Background 1
1.1 Software Security 1
1.2 SCALe 2

2 Approach 3
2.1 Research Questions 3
2.2 Methodology 3

2.2.1 Use of the SCALe Process 3
2.2.2 Data for Research 5
2.2.3 Define and Describe the Various Performance Measures Statistics 8

3 Results 10
3.1 What Analyzers Are Best at Detecting Specific Coding Rule Violations? 10
3.2 How Common Are Violations of Secure Coding Rules in Systems Developed under

Various Code Cultures? 13
3.3 How Effective Is Static Analysis as a Means of Exposing Vulnerabilities? 14
3.4 Can the Pattern of Results across Rules Tell Us What Is Likely to Return a True or False

Positive? 14

4 Summary and Future Work 17

Appendix A 18

Bibliography 21

CMU/SEI-2014-TN-008 | ii

CMU/SEI-2014-TN-008 | iii

List of Figures

Figure 1: SCALe Diagnostics Process 4

Figure 2: Performance and Rule Coverage for the C1 Codebase 12

Figure 3: Performance and Rule Coverage for the C2 Codebase* 12

CMU/SEI-2014-TN-008 | iv

CMU/SEI-2014-TN-008 | v

List of Tables

Table 1: Sample Sizes 4

Table 2: Java Codebase Metrics 5

Table 3: C Codebase Metrics 5

Table 4: Java Rule Coverage 6

Table 5: C Rule Coverage 7

Table 6: Performance Measures 9

Table 7: Results for Java Codebases 10

Table 8: Results for C Codebases (averaged across both C codebases) 11

Table 9: Mapping of Rules Violated in Two Java Codebases 13

Table 10: Subset of Rules with Varying Numbers of Diagnostics 14

Table 11: ARR30-C Rule 15

Table 12: DCL31-C Rule 15

Table 13: INT31-C Rule 15

CMU/SEI-2014-TN-008 | vi

CMU/SEI-2014-TN-008 | vii

Abstract

Coding errors cause the majority of software vulnerabilities. For example, 64% of the nearly
2,500 vulnerabilities in the National Vulnerability Database in 2004 were caused by programming
errors. The CERT Division’s Source Code Analysis Laboratory (SCALe) offers conformance test-
ing of C language software systems against the CERT C Secure Coding Standard and the CERT
Oracle Secure Coding Standard for Java, using various analysis tools available from commercial
software vendors. Unfortunately, the current SCALe analysis process and tools do not collect any
statistics about the accuracy of the code analysis tools or about the coding violations they flag,
such as frequency of occurrence. This paper describes the approach used to add the ability to col-
lect and statistically analyze data regarding coding violations and tool characteristics along with
the initial results. The collected data will be used over time to improve the effectiveness of the
SCALe analysis.

CMU/SEI-2014-TN-008 | viii

CMU/SEI-2014-TN-008 | 1

1 Background

The Source Code Analysis Laboratory (SCALe) is a proof-of-concept demonstration that software
systems can be conformance tested against secure coding standards. It provides a consistent
measure that can be used to assess the security of deployed software systems, specifically by de-
termining if they are free of coding errors that lead to known vulnerabilities. Error-free code in
turn reduces the risk to these systems presented by increasingly sophisticated hacker tools. How-
ever, this type of conformance testing has the following problems that impact its widespread use:

1. The effectiveness of analysis tools and coding rules are not well understood.
2. Code analysis adds a large amount of time to the development schedule.
3. Code analysis is error prone because a human must validate tool results.

It is anticipated that gaining a better understanding of the effectiveness of the analysis tools will
reduce the amount of time a human must spend validating results and therefore will reduce the
amount of time conformance testing contributes to the development schedule.

1.1 Software Security

Software vulnerability and exploitation reports continue to grow at an alarming rate, and a signifi-
cant number of these reports result in technical security alerts. To address this growing threat to
the government, corporations, educational institutions, and individuals, systems must be devel-
oped that are free of software vulnerabilities.

The CERT Division of Carnegie Mellon University’s Software Engineering Institute takes a
comprehensive approach to identifying and eliminating software vulnerabilities and other flaws.
The CERT Division produces books and courses that foster a security mindset in developers, and
it develops secure coding standards and automated analysis tools to help developers code secure-
ly. Secure coding standards provide a detailed enumeration of coding errors that have caused vul-
nerabilities, along with their mitigations for the most commonly used software development lan-
guages. The CERT Division also works with vendors and researchers to develop analyzers that
can detect violations of the secure coding standards.

Improving software security by implementing code that conforms to the CERT secure coding
standards can be a significant investment for a software developer, particularly when refactoring
or otherwise modernizing existing software systems [Seacord 2008]. However, a software devel-
oper does not always benefit from this investment because it is not easy to market code quality.

To address these problems, the CERT Division has created SCALe, which offers testing to deter-
mine conformance of software systems to CERT secure coding standards.

 CERT is a registered mark owned by Carnegie Mellon University.

CMU/SEI-2014-TN-008 | 2

1.2 SCALe

SCALe evaluates client source code using multiple static analysis (SA) tools. The CERT Division
reports any deviations from secure coding standards to the client. The client may then repair and
resubmit the software for reevaluation. Once the reevaluation process is completed, the CERT
Division provides the client a report detailing the software’s conformance or nonconformance to
each secure coding rule. The SCALe process consists of the following sequence of steps:

1. Clients contact CERT Division. The process is initiated when a client contacts the CERT
Division with a request to evaluate a software system.

2. CERT Division communicates the requirements. The CERT Division communicates re-
quirements to the client including (1) selection of secure coding standard(s) to be used, (2) a
buildable version of the software to be evaluated, and (3) a build engineer.

3. Client provides buildable software. The client selects standards(s), provides a buildable
version of the software to be evaluated, and notifies the build engineer, who is available to re-
spond to build questions about the system.

4. CERT Division selects tool set. The CERT Division chooses and documents the tool set to
be used and procedures for using that tool set in the evaluation of the system.

5. CERT Division analyzes source code and generates a conformance test report. The
CERT Division evaluates the system against specified standard(s) and provides the conform-
ance test results to the client. If the system if found to be conforming, the CERT Division is-
sues a certificate and terminates the conformance testing process.

6. Client repairs software. The client has the opportunity to repair nonconforming code. The
client sends the system back to the CERT Division for final evaluation.

7. CERT Division issues conformance test results and certificate. The CERT Division
reevaluates the system using the tools and procedures used in the initial assessment. The
CERT Division provides conformance test results to the client and, if the system is found to
be conforming, a certificate.

Unfortunately, the current SCALe analysis process and tools do not collect any statistics about the
accuracy of the code analysis tools or about the coding violations they flag, such as frequency of
occurrence. The ability to collect and statistically analyze data regarding coding violations and
tool characteristics should improve the effectiveness of SCALe analysis.

This paper describes how the CERT Division instrumented the SCALe process to provide insight
into (1) the effectiveness of SA as a means of exposing vulnerabilities and (2) the performance of
the SCALe process’s analyzers. The paper also presents our initial results.

CMU/SEI-2014-TN-008 | 3

2 Approach

Our approach was as follows:

1. Modify SCALe workflow, infrastructure, and database(s) to support data collection and in-
strumentation, such as the measurement of true/false positives, the ability to detect false nega-
tives through use of multiple analyzers, and measurement of violation occurrences based on
programming language.

2. Collect data from the re-analysis of source code previously analyzed in SCALe and from on-
going source code evaluations.

3. Develop sampling space/characterization of codebase by identifying salient dimensions of the
sampling space and then defining measures representing the dimensions of the sampling
space.

4. Conduct analyses to address the research questions (described in Section 2.1).
5. Use results collected over time to improve the SCALe infrastructure, process, and tools.

2.1 Research Questions

1. Which analyzers are best at detecting specific coding rule violations?
2. How common are violations of secure coding rules in systems developed under various code

cultures? (Example code cultures: device driver, desktop application, weapons system,
smartphone app)

3. How effective is SA as a means of exposing vulnerabilities?
4. Can the pattern of results across rules tell us what is likely to be a true or false positive?

2.2 Methodology

2.2.1 Use of the SCALe Process

The process for analyzing any codebase using SCALe is fairly simple, as outlined in Figure 1.
First, each SA tool (appropriate for the language) is run on the codebase, producing a set of diag-
nostics (also known as flagged nonconformities) on the codebase. These diagnostics may indicate
true violations of the CERT secure coding rules, or they may be false positives. Each tool’s diag-
nostics are then merged into one complete list of diagnostics.

The next task for an auditor is to determine which diagnostics in the list are true positives and
which are false positives. This task can be daunting. Because some tools emphasize eliminating
false negatives and so produce a large number of false positives, a codebase can sometimes have
more than 10,000 associated diagnostics.

To mitigate this challenge, we classify all the diagnostics into buckets, where each bucket repre-
sents all the diagnostics associated with a particular CERT secure coding rule. Thus, there will be
exactly as many buckets as there are CERT rules being violated (according to the SA tools). The
auditor executes the following procedure for each bucket:

CMU/SEI-2014-TN-008 | 4

1. Identify a random sample of diagnostics in the bucket, determining the sample size according
to the scale shown in Table 1. If there are fewer than 50 diagnostics, the sample trivially in-
cludes all of the diagnostics in the bucket.

2. Analyze each diagnostic in the sample until a true positive has been found or the sample is
exhausted.

3. Assign each false diagnostic a verdict of False.
4. If a true positive is found, assign it a verdict of True, and assign all remaining unmarked di-

agnostics in the bucket a verdict of Suspicious. If no true positives are found, meaning every
diagnostic in the sample is a false positive, assign all unmarked diagnostics for that bucket a
verdict of Ignored.

Table 1: Sample Sizes

Bucket Size Sample

0–50 All

51–90 50

91–150 80

151–280 95

281–500 105

501–1,200 125

1201–10,000 200

Figure 1: SCALe Diagnostics Process

This system works well, but it can still be suboptimal if any buckets have a high false-positive
rate. Any bucket with a high false-positive rate requires a manual audit of up to 200 diagnostics
before it can be discarded. Furthermore, if, over multiple codebase analyses, buckets for viola-
tions of a particular CERT rule have chronically high false-positive rates, every future bucket for
that rule must be manually audited.

Because these diagnostics can be identified by different tools or by different algorithms in the
same tool, we partition the diagnostics produced by a tool into checkers. Each checker represents
a single algorithm in a single tool whose diagnostics are all associated with a single secure coding
rule. Each checker also produces a unique form of diagnostic message. Distinct messages pro-

CMU/SEI-2014-TN-008 | 5

duced by a checker frequently vary in the specification of a variable or type identifier. Most
checkers can be identified by analyzing the diagnostic messages using regular expressions. Fur-
thermore, many tools categorize their error messages and produce distinct identification tags for
each type of error. These tags can serve to identify the checker for these tools, bypassing regular
expression analysis completely.

We have added a procedure to the SCALe process to identify the true-positive rate for any check-
er. We perform this procedure only on diagnostics that appear to have a low true-positive rate. If
the procedure indicates that the true-positive rate is sufficiently low, we ignore the checker’s di-
agnostics for the codebase under analysis and for any future version of it.

This procedure consists of an Excel spreadsheet that takes three variables: the total number of
diagnostics in the checker, the number of diagnostics analyzed so far, and the number of diagnos-
tics that have been found to be true. The spreadsheet then computes the 95% confidence interval
of the actual false-positive rate based on the sample false-positive rate using the formula for com-
puting a confidence interval for a proportion [Crossley 2000]. If the minimum bound of this inter-
val is above 80%, we can be 95% confident that the true-positive rate is less than 20%, so we drop
the checker from the current audit and any future audits of this codebase unless improvements are
made to the checker.

Additionally, for three of the rules, we developed binary logistic regression models that may be
used to assess the probability that a given diagnostic is a true versus a false positive. Although this
approach was attempted for a set of 34 secure coding rules, as seen in Appendix A, only seven
rules (ARR30-C, ARR36-C, DCL31-C, DCL32-C, EXP33-C, EXP34-C, and INT31-C) possessed
sufficient data to enable an attempt at binary logistic regression. Of those seven rules, only three
rules (ARR30-C, DCL31-C, and INT31-C) resulted in statistically significant models, which pro-
duced output grid tables depicting probability expectations associated with each scenario of which
tools flagged versus did not flag a given diagnostic. We believe development of such binary lo-
gistic models using more data across multiple codebases will eventually produce a lookup table,
by secure coding rule, of the probability of a true versus a false positive for remaining diagnostics
that are not evaluated. In this fashion, management may choose to prioritize efforts on investigat-
ing suspicious diagnostics based on their likelihood of being a true versus a false positive.

2.2.2 Data for Research

Table 2 and Table 3 list the basic statistics of the codebases analyzed.

Table 2: Java Codebase Metrics

Codebase Files LOC Size

java 1 28 4,161 131,477

java 2 33 5,453 201,215

Table 3: C Codebase Metrics

Codebase Files LOC Size

C1 155 50,223 1,770,822

C2 124 118,425 4,511,085

CMU/SEI-2014-TN-008 | 6

Each SA tool produces output in its own idiosyncratic format. All tools can be adapted to produce
a file containing the contents of the diagnostics they produced. SCALe provides scripts that con-
vert such an output file into a list of diagnostics. Each tool is assumed to contain a set of checkers.
Many tools produce diagnostics with specific error IDs that indicate the category of error they
catch; for these tools, the error ID serves as the checker string. Tools that do not provide error IDs
still provide strings that describe the error in some brief text message. These messages can quick-
ly be categorized using regular expressions, and for these tools, the best matching regular expres-
sion indicates the checker for any diagnostic the tool may produce.

For each tool, SCALe provides a mapping between checker identifiers and CERT secure coding
rules. We continue to maintain this map as the set of checker identifiers grows and changes with
newer versions of the tool. This map is used to associate each diagnostic with a secure coding
rule.

Many checkers identify problems that are not related to security. SCALe’s maps show that these
checker identifiers map to no secure coding rule, allowing analysts to ignore such diagnostics for
the remainder of the audit. Occasionally, the checker ID may map to multiple secure coding rules,
and the error message may be useful in choosing the most appropriate rule for mapping. In these
cases, regular expression analysis on the diagnostic message indicates the proper mapping of di-
agnostic to CERT rule.

For Java codebases, we have used the SA tools listed in Table 4: FindBugs, Fortify, and Coverity,
described shortly. We also used the warnings produced by the Eclipse compiler and thus include
Eclipse as an SA tool. These tools check about 43% of the rules in the CERT Oracle Secure Cod-
ing Standard for Java.

Table 4: Java Rule Coverage

Tool Rules

Coverity 35

FindBugs 44

Fortify 26

Eclipse 10

All Checked Rules 67

All Rules 156

For C and C++ codebases, we have used Fortify, Coverity, Rosecheckers, and PC-Lint. We have
also used the warning messages produced by the GCC compiler, so we included GCC as an SA
tool. These tools check about 63% of the rules in the CERT C Secure Coding Standard, as shown
in Table 5.

CMU/SEI-2014-TN-008 | 7

Table 5: C Rule Coverage

Tool Rules

Coverity 32

Fortify 9

LDRA 19

MSVC 17

PCLint 27

GCC 19

Rosecheckers 51

All Checked Rules except Rosecheckers 66

All Checked Rules 81

All Rules 129

FindBugs

FindBugs is an open source program that looks for bugs in Java code.1 It uses static analysis to
identify hundreds of different potential types of errors in Java programs. FindBugs is written in
“pure” Java and is therefore platform-independent. It provides a simple command-line interface,
as well as a graphical interface, and provides a plug-in enabling it to be integrated into Eclipse.

FindBugs operates on Java bytecode, so it is technically a binary-code analyzer rather than a
source-code analyzer. However, it produces useful diagnostics and is free, so we included it in our
study.

Fortify 360 SCA

Fortify 360 is a commercial product developed by Fortify Software, now owned by Hewlett-
Packard. The product provides an extensive suite of tools for software security assurance. We fo-
cused on the source code analysis (SCA) tool. It can be used to analyze software written in Java,
C, C++, .NET, ASP.NET, ColdFusion, “Classic” ASP, PHP, VB6, VBScript, JavaScript,
PL/SQL, T-SQL, and COBOL.

Coverity Prevent

Coverity Prevent is a commercial product developed by Coverity, Inc.2 The product provides an
extensive suite of tools for software security assurance. We focused on the Coverity Static Analy-
sis tool, which can be used to analyze software written in C, C++, Java, and C#. We also used the
Coverity Integrity Manager, a web-based framework for viewing the results of Coverity Static
Analysis. It provides a rich detail of each diagnostic found, including multiple locations in the
source code that serve to create the diagnostic.

1 http://findbugs.sourceforge.net

2 http://www.coverity.com

http://findbugs.sourceforge.net
http://www.coverity.com

CMU/SEI-2014-TN-008 | 8

MSVC /analyze

Several editions of Microsoft Visual C++ provide a built-in SA tool.3 This includes MSVC 2008
Team Edition and several editions of MSVC 2010. It is named analyze mode because of the
/analyze option that is fed to the Microsoft C++ compiler command. This tool can be enabled
by turning on a switch called Enable Code Analysis. Consequently, any C/C++ program compiled
by Visual Studio can be examined by the SA tool.

PC-Lint

PC-Lint is a commercial SA tool produced by Gimpel Software for the C and C++ programming
languages.4 First released in 1985, it is supported on all versions of Windows as well as MS-DOS
and OS/2. It provides a command-line interface but can also be integrated as an external tool into
many integrated development environments (IDEs), including Microsoft Visual Studio. It pro-
vides references to several coding guidelines, such as MISRA-C (both 2004 and 2008 editions).

Rosecheckers

The Rosecheckers project was internally developed at the CERT Division to provide an SA tool
for analyzing C and C++ code. The project was designed to enforce the rules in the CERT C Se-
cure Coding Standard and the CERT C++ Secure Coding Standard. Each rule in the standard that
can be statically analyzed has one or more code checkers as part of the Rosecheckers project. The
source for the Rosecheckers project is freely downloadable at the Rosecheckers website,5 and the
website also provides a virtual machine containing a complete build of the Rosecheckers project
on Linux. The Rosecheckers project leverages the Compass/ROSE6 project developed at Law-
rence Livermore National Laboratory. This project provides a high-level API for accessing the
abstract syntax tree (AST) of a C or C++ source code file.

2.2.3 Define and Describe the Various Performance Measures Statistics

The following measures are used to assess the performance of the various tools. They are based
on the template table shown in Table 6.

A similar table was constructed for each rule and tool combination for each of the codebases ana-
lyzed. The table shows the number of diagnostics that have been confirmed as true positives (TP)
or false positives (FP) as well as the count for the number of false negatives (FN). We did not
measure the number of true negatives in this work. Although the number of true and false posi-
tives was determined by experts evaluating the diagnostics reported by the tools, the false nega-
tives were computed as follows: for any given confirmed true diagnostic (a diagnostic being de-
fined as a violation of a coding rule at a specific location), any tool that checks that rule but does
not detect the violation is assigned a false negative.

3 http://msdn.microsoft.com/en-us/library/vstudio/ms173498.aspx

4 http://www.gimpel.com

5 http://rosecheckers.sourceforge.net

6 http://rosecompiler.org

http://msdn.microsoft.com/en-us/library/vstudio/ms173498.aspx
http://www.gimpel.com
http://rosecheckers.sourceforge.net
http://rosecompiler.org

CMU/SEI-2014-TN-008 | 9

Table 6: Performance Measures

Actual

 TRUE FALSE
P

re
d

ic
te

d TRUE # of TP # of FP

FALSE # of FN # of TN

These measures provide the counts needed for three of the four quadrants in the table. Conceiva-
bly, the number of true negatives could be computed based on the lines of code, but this was not
done for two reasons. First, the three other values are based on confirmed results and are suffi-
cient to compute standard performance measures. Second, because there are many “suspicious”
diagnostics that are left uninvestigated, the count of true negatives would be an estimate with a
potentially wide standard error.

From the three values, the following performance measures were computed:

 Predicted positive rate (TP/[TP + FP]). This is the proportion of true positives across all diag-
nostics reported by a tool. It was computed by checker and by rule and aggregated for a tool.

 Sensitivity rate (TP/TP + FN). This is the proportion of true positives detected among all of
the true positives that the tool should have discovered. It was computed by rule and aggregat-
ed for a tool. Note that this value could not be computed by checker because the mapping
from tool to tool was only done at the rule level.

 F-score (2 * [PPV * Sensitivity]/[PPV + Sensitivity]). This is used as the overall performance
index because it is a function of performance in both of the previous dimensions. Note that it
is scaled so that 1 is a perfect score.

 Rule set coverage (number of rules checked/total number of rules checked by all tools used in
the analysis). This was included to provide a sense of coverage as some tools may perform
well but only across a limited set of rules while others may cover more of the rule set.

We additionally developed a prediction model across the set of static code analyzer outputs to
determine the likelihood of a given diagnostic being a true or false positive. By using binary lo-
gistic regression, we can capitalize on the knowledge from the set of tools related to a given diag-
nostic. This approach allows us to benefit further from the joint track records of the tools for a
given secure coding rule. As shown in Appendix A, 34 secure coding rules were analyzed in a
given set of diagnostics. Two coding rules (INT31-C and EXP40-C) were involved in 1,466 of a
total of 1,749 diagnostics, or about 84% of the diagnostics. Also evident is that 20 rules were in-
volved in single-digit amounts of diagnostics, ruling out any attempt at binary logistic regression
due to a lack of sufficient data. Of the rules with sufficient data volumes, another set of rules was
involved: those with only true verdicts or those with only false verdicts. As a result, they were not
candidates for attempts at binary logistic regression.

Not measured

CMU/SEI-2014-TN-008 | 10

3 Results

The research conducted during this project focused primarily on the first research question: What
analyzers are best at detecting specific coding rule violations? The results produced to answer this
question do not provide adequate evidence for a thorough analysis in relation to the other ques-
tions, though they are relevant. The main reason is the limited number of codebases that were
available to analyze. Nonetheless, the research has produced a method and initial results for ad-
dressing the questions.

Each of the following analyses was conducted on the four codebases described earlier. The results
are summarized here, and more detailed results are contained in Appendix A. Due to potential
vendor issues, the names of the vendors’ tools have been anonymized.

3.1 What Analyzers Are Best at Detecting Specific Coding Rule
Violations?

As noted in Section 2.2.3, several measures of performance are used to characterize the perfor-
mance of each tool. Table 7 shows the average results for the tools used on the two Java codebas-
es. All of these measures range from 0 to 1, with a higher value indicating better performance.

The F-score offers an overall performance measure based on the sensitivity and predicted positive
rate. As can be seen, tool ja2 has the best overall performance because of its superior performance
in terms of sensitivity and relatively good predicted positive rate. Ja1 ranks second because of its
high predicted positive rate and relatively good sensitivity. The java compiler was used on only
one codebase and, as can be seen, its overall performance is much lower than that of any of the
analyzers. When looking at the coverage of the rule set, ja3 covers the largest proportion of rules
while the other tools check less than a third of the rules. This suggests that the use of multiple
tools is justified.

Table 7: Results for Java Codebases

Tool Sensitivity Predicted
Positive
Rate

F-Score Coverage

jc1 0.38 0.08 0.14 25%

ja1 0.62 0.76 0.62 20%

ja2 0.91 0.65 0.75 32%

ja3 0.31 0.65 0.40 55%

The averaged results for the two C codebases shown in Table 8 show somewhat different out-
comes. The major difference to be noted is the generally poor results of all the tools. The maxi-
mum F-score is associated with a C compiler, but it is only 0.353. Although other tools have bet-
ter performance on the two constituent performance measures, they tend to be good on one
measure and poor on another. For instance, ca1 has relatively good scores for sensitivity and pre-
dicted positive rate values on average. However, the detailed scores comprising the average val-
ues are reflected in the low average F-score. What drives this is the alternating high and low

CMU/SEI-2014-TN-008 | 11

scores for the two different C codebases. For one codebase, ca1 has a relatively high sensitivity
and low predicted positive rate yielding a low F-score. On the other codebase, the results are the
reverse but yield a similar F-score.

Finally, note that the average coverage by any given tool across the union of the set of rules
checked by the tools is relatively modest at best. Ja3 is the only tool that checked more than half
of the rules.

Table 8: Results for C Codebases (averaged across both C codebases)

Tool Sensitivity Predicted
Positive
Rate

F-Score Coverage

ca1 0.338 47.5% 0.112 15%

ca2 0.143 22.2% 0.174 6%

ca3 0.024 5.7% 0.033 6%

ca6 0.590 4.4% 0.081 25%

ca7 0.128 2.2% 0.037 17%

cc1 0.050 25.0% 0.083 11%

cc2 0.293 44.6% 0.353 13%

As the tables show, the overall pattern of scores for the C codebases is lower than that for the Java
codebases. Some of the tools, such as ca3, have very poor results, suggesting they are of limited
value. Ca1 looks to have a low average F-score while having relatively good sensitivity and pre-
dicted positive rate values in comparison to cc2. The explanation for the ca1 performance num-
bers is the lack of consistency in its results across the two codebases. In neither case did ca1 have
both high sensitivity and a high predicted positive rate. While the average result may seem incon-
sistent with the average F-score, they are accurate.

Ca6 illustrates a common problem with static analyzers. There is often a tradeoff made between
identifying the true violation at the expense of having a high false-positive rate. Ca6 has relatively
good sensitivity. That is, among all of the true violations, on average it identified 59% of them.
However, the price for this is a low predicted positive rate, or analogously, a high false-positive
rate. Note that for ca6, of the violations it detects, only 4.4% of them are confirmed to be true vio-
lations. Interestingly, cc2, a compiler, had the best overall performance.

However, it is important to note the limited rule coverage by the tools in general. For the C tools,
ca6 had the highest average coverage, which was only 25% of the rules. See Figure 2 for codebase
C1 and Figure 3 for codebase C2.

With this more detailed look at the results, we can observe the very different performance of the
tools on the different codebases. Cc2 is a case in point. While it had the best performance and
coverage on the first codebase, it had the worst performance and was tied for the least amount of
rule coverage on the second.

CMU/SEI-2014-TN-008 | 12

Figure 2: Performance and Rule Coverage for the C1 Codebase*

Figure 3: Performance and Rule Coverage for the C2 Codebase*

* Note that the y-axes in Figures 2 and 3 are on different scales.

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0% 5% 10% 15% 20% 25%

F-
sc

or
e

Rule Coverage

Performance and Coverage of Static
Analysis Tools

cc1

ca3

cc2

ca7
ca6ca1

0.000
0.020
0.040
0.060
0.080
0.100
0.120
0.140
0.160
0.180
0.200

0% 5% 10% 15% 20% 25% 30%

F-
sc

or
e

Rule Coverage

Performance and Coverage of Static
Analysis Tools

ca2

ca3

cc2

ca6

ca1

CMU/SEI-2014-TN-008 | 13

3.2 How Common Are Violations of Secure Coding Rules in Systems
Developed under Various Code Cultures?

Table 9 shows a mapping in terms of detected rule violations for the two Java codebases in the
study. Overall, 27 rules had flagged an anomaly in the codebase. Of these, 7, or 26%, were com-
mon across the two codebases. This suggests that for these two codebases there is little in com-
mon in terms of the pattern of violations. Whether this is due to variability across code cultures or
inherent variability in codebases caused by other factors (for example, maturity of the code), we
cannot say at this time.

Table 9: Mapping of Rules Violated in Two Java Codebases

Rule Java 1 Java 2

DCL00-J X

DCL01-J X

ENV05-J X

ERR00-J X

ERR01-J X

ERR07-J X X

ERR08-J X X

ERR09-J X

EXP01-J X X

EXP04-J X

FIO02-J X

FIO04-J X X

FIO13-J X

IDS00-J X

IDS02-J X

IDS03-J X

IDS04-J X X

IDS09-J X X

IDS13-J X

MET02-J X

MSC03-J X

OBJ01-J X

OBJ05-J X

OBJ06-J X X

OBJ09-J X

OBJ10-J X

VNA00-J X

CMU/SEI-2014-TN-008 | 14

3.3 How Effective Is Static Analysis as a Means of Exposing
Vulnerabilities?

Assessing the effectiveness of static analysis would be best addressed by having results from sub-
sequent testing that could detect the violations that escaped from the static analysis. This was not
done. As a second-best alternative, we can review the results shown in Table 7 and Table 8 and
focus on the sensitivity scores. Recall that sensitivity is the percentage of actual violations that
were accurately detected by the tool. For the Java tools, we can see quite a range of performance,
with ja2 having a very high detection rate and ja3 detecting slightly less than one-third of actual
coding violations. A more detailed look at ja2 shows its sensitivity ranging from 0.56 to 1.0 for
one codebase and 0.33 to 1.0 for the second codebase. From this we learn that sensitivity to the
various secure coding rules can vary greatly within a tool, even one that performs well.

Taking a similar look at the C tools, ca6, with a value of 0.59, has the highest sensitivity while ca3
and cc1 both detect 5% or less of the actual violations in the codebases. As with the Java tools,
sensitivity across the rule set varies widely. For ca6, the sensitivity values range from 0.0 to 1.0
for both codebases.

3.4 Can the Pattern of Results across Rules Tell Us What Is Likely to
Return a True or False Positive?

Table 10 displays a subset of the 34 secure coding rules associated with varying numbers of diag-
nostics in the analyzed SCALe results. These diagnostics, with confirmed false and true positives,
were analyzed in an attempt to apply logistic regression in predicting the probability of a given
diagnostic being a false positive given knowledge of which static code analyzers flagged versus
did not flag the diagnostic.

Table 10: Subset of Rules with Varying Numbers of Diagnostics

Rule N Rows N(False) N(True)

INT31-C 1,347 1,298 76

EXP40-C 92 92 0

DCL36-C 34 0 34

EXP34-C 32 18 14

ARR30-C 30 27 3

INT34-C 25 25 0

EXP36-C 19 18 1

DCL31-C 18 15 3

EXP30-C 18 18 0

INT33-C 18 17 1

EXP33-C 17 14 3

INT32-C 15 15 0

DCL30-C 10 10 0

DCL32-C 10 9 1

ARR36-C 9 8 1

CMU/SEI-2014-TN-008 | 15

Appendix A includes example logistic regression analysis [Ryan 2012] associated with the three
secure coding rules that possessed sufficient data to enable logistic regression models at this time.
Table 11, Table 12, and Table 13 depict an output grid table for each rule showing the different
scenarios in which tools flagged (1) or did not flag (0) a given diagnostic, along with the updated
probability of a false versus true verdict. For example, for a diagnostic involving the ARR30-C
rule, in which the only tool to flag an example diagnostic is cc2, we are almost certain this diag-
nostic is a true positive. On the other hand, if a diagnostic is flagged by multiple tools (cc1, ca7,
and cc2), we are almost certain this is a false positive. Finally, if the diagnostic is flagged only by
the cc1 and cc2 tools, we have 87% confidence that the diagnostic is a false positive.

Consequently, these three models enhance our outlook of the probability of a diagnostic being a
false versus true positive based on which tools did or did not flag the diagnostic. Note too that the
probabilities are not a function of a simple majority vote.

Table 11: ARR30-C Rule

Ca1 Ca2 Cc1 Ca7 Cc2 Ca6 Ca3 Probability

(Verdict = False)

Probability

(Verdict = True)

0 0 0 0 1 0 0 1.2433e-8 0.999999

0 0 0 1 0 0 0 0.999999 1.2433e-8

0 0 0 1 1 0 0 0.999999 1.2433e-8

0 0 1 0 0 0 0 0.866666 0.133333

0 0 1 0 1 0 0 0.866666 0.133333

0 0 1 1 0 0 0 1 0

0 0 1 1 1 0 0 1 0

Table 12: DCL31-C Rule
Ca1 Ca2 Cc1 Ca7 Cc2 Ca6 Ca3 Probability

(Verdict = False)
Probability

(Verdict = True)

0 0 0 0 0 1 0 0.9375 0.0625

0 0 0 1 0 0 0 9.1869e-8 0.999999

0 0 0 1 0 1 0 9.1869e-8 0.999999

Table 13: INT31-C Rule
Ca1 Ca2 Cc1 Ca7 Cc2 Ca6 Ca3 Probability

(Verdict = False)

Probability

(Verdict = True)

0 0 0 0 0 1 0 0.971145 0.028854

0 0 0 0 1 0 0 0.280701 0.719298

0 0 0 0 1 1 0 0.280701 0.719298

0 0 0 1 0 0 0 0.999999 1.243320

0 0 0 1 0 1 0 0.999999 1.2433e-8

0 0 0 1 1 0 0 0.999998 1.0723e-6

0 0 0 1 1 1 0 0.999998 1.0723e-6

We believe the ability to create three significant binary logistic regression models on this initial
set of diagnostics highlights the practicality and promise of continuing to assemble data related to
diagnostics investigated with verdicts of true and false across additional codebases. Armed with a
growing inventory of confirmed verdicts, the SCALe team will be better positioned to create

CMU/SEI-2014-TN-008 | 16

models for each secure coding rule, thereby enabling lookup tables of the different scenarios of
static code analyzers involved, so that real-time automation of the updated probabilities of true
versus false positives can be performed. This feedback could prove invaluable in the prioritization
and scheduling of work to investigate the high volume of suspicious flags from the static code
analyzers.

CMU/SEI-2014-TN-008 | 17

4 Summary and Future Work

To summarize, a modified version of the SCALe process was used to generate the data for the
analysis of various static analyzers and compilers in terms of their performance detecting viola-
tions of secure coding rules for Java and C. Two codebases for Java and C were analyzed. Per-
formance measures used included the number of true positives, false positives, and false nega-
tives. From these values, the predicted positive rate, sensitivity, and F-scores were computed for
each rule and tool combination for each codebase. The results generally show that the tools per-
form unevenly in terms of sensitivity and predicted positive rate, as illustrated by ca6, or just have
generally low results. Ja2 and ja1 stand out among all of the tools in terms of their better perfor-
mance, as reflected in their relatively high F-scores.

None of the tools covered all of the secure coding rules. Indeed, the results ranged from 13% to
72% for the Java tools, depending on the codebase, and from 3% to 28% for the C tools, depend-
ing on the codebase. Hence, even with good performance, use of just one tool is likely to leave
vulnerabilities in the codebase.

Regarding the identification of code cultures, this study did not have sufficient data to address the
question. Table 9 provided an initial observation that showed the limited overlap in the rules de-
tected in the two Java codebases. This is weak evidence with respect to code cultures and simply
demonstrates that different codebases can have different profiles in terms of their rule violations.

Finally, in terms of the effectiveness of static analysis, we found that the tools’ performance var-
ies greatly. Additionally, each tool’s detection of individual rules varied over multiple analyses.
This raises a concern about reliance on a single tool for detecting secure coding violations and
exposes the need for additional screenings of diagnostics, using models that account for how dif-
ferent analyzers have treated a given diagnostic.

We would like to continue to leverage the SCALe process and obtain additional codebases to ana-
lyze. Additional results will allow us to address some of the unanswered questions that we began
with and to further refine our knowledge of the effectiveness of SA tools. Additional studies
would include

 profiling of code cultures
 improving the estimates of the false-positive and false-negative rates
 experiments with the sequencing of tools and the time to perform a SCALe evaluation
 experiments to test the prediction of the remaining true violations

CMU/SEI-2014-TN-008 | 18

Appendix A

Nominal Logistic Fit for Verdict ID=ARR30-C

Converged in Gradient, 17 iterations

Whole Model Test

Model -LogLikelihood DF ChiSquare Prob7 > ChiSq

Difference 3.8623720 2 7.724744 0.0210*

Full 5.8901172

Reduced 9.7524892

RSquare (U)8 0.3960

AICc 21.3802

BIC 25.385

Observations (or Sum Wgts) 30

Measure Training Definition

Entropy RSquare 0.3960 1-Loglike(model)/Loglike(0)

Generalized RSquare 0.4749 (1-(L(0)/L(model))^(2/n))/(1-L(0)^(2/n))

Mean -Log p 0.1963 ∑ -Log(ρ[j])/n

RMSE 0.2404 √ ∑(y[j]-ρ[j])²/n

Mean Abs Dev 0.1156 ∑ |y[j]-ρ[j]|/n

Misclassification Rate 0.0667 ∑ (ρ[j]≠ρMax)/n

N 30 n

Parameter Estimates

Term Estimate Std Error ChiSquare Prob > ChiSq

Intercept Biased 10.0373485 1198.4347 0.00 0.9933

cc1[0] Biased −10.037348 4484.1319 0.00 0.9982

ca7[0] Biased −18.202895 4641.5175 0.00 0.9969

cc2[0] Zeroed 0 0 . .

7 P value < .05 indicates a statistically significant model.

8 RSquare (U), which provides a measure of how well the model explains the outcome, may be considered good in the 40%–
50%+ range, as it does not behave similarly to traditional RSquared measures from linear regression.

CMU/SEI-2014-TN-008 | 19

Nominal Logistic Fit for Verdict ID=DCL31-C

Converged in Gradient, 15 iterations

Whole Model Test

Model -LogLikelihood DF ChiSquare Prob > ChiSq

Difference 4.3694350 1 8.73887 0.0031*

Full 3.7406667

Reduced 8.1101018

RSquare (U) 0.5388

AICc 15.1956

BIC 16.1524

Observations (or Sum Wgts) 18

Measure Training Definition

Entropy RSquare 0.5388 1-Loglike(model)/Loglike(0)

Generalized RSquare 0.6476 (1-(L(0)/L(model))^(2/n))/(1-L(0)^(2/n))

Mean -Log p 0.2078 ∑ -Log(ρ[j])/n

RMSE 0.2282 √ ∑(y[j]-ρ[j])²/n

Mean Abs Dev 0.1042 ∑ |y[j]-ρ[j]|/n

Misclassification Rate 0.0556 ∑ (ρ[j]≠ρMax)/n

N 18 n

Parameter Estimates

Term Estimate Std Error ChiSquare Prob > ChiSq

Intercept Unstable −6.7474222 1166.4576 0.00 0.9954

ca7[0] Biased 9.45547241 1166.4576 0.00 0.9935

ca6[0] Zeroed 0 0 . .

CMU/SEI-2014-TN-008 | 20

Nominal Logistic Fit for Verdict ID=INT31-C

Converged in Gradient, 17 iterations

Whole Model Test

Model -LogLikelihood DF ChiSquare Prob>ChiSq

Difference 101.44029 3 202.8806 <.0001*

Full 192.41881

Reduced 293.85910

RSquare (U) 0.3452

AICc 392.867

BIC 413.74

Observations (or Sum Wgts) 1374

Measure Training Definition

Entropy RSquare 0.3452 1-Loglike(model)/Loglike(0)

Generalized RSquare 0.3944 (1-(L(0)/L(model))^(2/n))/(1-L(0)^(2/n))

Mean -Log p 0.1400 ∑ -Log(ρ[j])/n

RMSE 0.1820 √ ∑(y[j]-ρ[j])²/n

Mean Abs Dev 0.0662 ∑ |y[j]-ρ[j]|/n

Misclassification Rate 0.0371 ∑ (ρ[j]≠ρMax)/n

N 1374 n

Parameter Estimates

Term Estimate Std Error ChiSquare Prob>ChiSq

Intercept Unstable 8.63095571 1087.5618 0.00 0.9937

ca7[0] Unstable -7.3433347 1087.5617 0.00 0.9946

cc2[0] 2.22860432 1189.0797 0.00 0.9985

ca6[0] -4.5287e-9 1189.0797 0.00 1.0000

CMU/SEI-2014-TN-008 | 21

Bibliography

URLs are valid as of the publication date of this document.

[Bass 2012]
Bass, L.; Clements, P.; & Kazman, R. Software Architecture in Practice, 3rd ed. Reading, MA: Addi-
son-Wesley, 2012.

[Crossley 2000]
Crossley, Mark. The Desk Reference of Statistical Quality Methods. ASQ Quality Press, 2000, pp. 81–
89.

[Heffley 2004]
Heffley, J. & Meunier, P. “Can Source Code Auditing Software Identify Common Vulnerabilities and
Be Used to Evaluate Software Security?” Proceedings of the 37th Annual Hawaii International Con-
ference on System Sciences (HICSS–04), Track 9, Volume 9. Big Island, HI, January 2004. IEEE Com-
puter Society, January 2004.

[Long 2011]
Long, Fred; Mohindra, Dhruv; Seacord, Robert C.; Sutherland, Dean F.; & Svoboda, David. The CERT
Oracle Secure Coding Standard for Java (SEI Series in Software Engineering). Addison-Wesley Pro-
fessional, 2011.

[Long 2013]
Long, Fred; Mohindra, Dhruv; Seacord, Robert C.; Sutherland, Dean F.; & Svoboda, David. Java Cod-
ing Guidelines: 75 Recommendations for Reliable and Secure Programs (SEI Series in Software Engi-
neering). Addison-Wesley Professional, 2013.

[Ryan 2012]
Ryan, Barbara F.; Joiner, Brian L.; & Cryer, Jonathan D. Minitab Handbook, 6th Edition: Update for
Release 16. Cengage Learning, 2012.
http://store.minitab.com/781/catalog/category.10753/language.en/currency.USD/?id=wXvyNH6kHn

[Seacord 2008]
Seacord, Robert C. The CERT C Secure Coding Standard. Addison-Wesley Professional, 2008.

[Seacord 2010]
Seacord, Robert; Dormann, Will; McCurley, James; Miller, Philip; Stoddard, Robert; Svoboda, David;
& Welch, Jefferson. Source Code Analysis Laboratory (SCALe) for Energy Delivery Systems
(CMU/SEI-2010-TR-021). Software Engineering Institute, Carnegie Mellon University, 2010.
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=9561

[SEI 2013]
Software Engineering Institute. CERT C++ Secure Coding Standard.
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637 (2012).

[Svoboda 2009]
Svoboda, D. CERT Rose Checkers. http://rosecheckers.sourceforge.net (2009).

http://store.minitab.com/781/catalog/category.10753/language.en/currency.USD/?id=wXvyNH6kHn
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=9561
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
http://rosecheckers.sourceforge.net

CMU/SEI-2014-TN-008 | 22

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

June 2014

3. REPORT TYPE AND DATES
COVERED

Final

4. TITLE AND SUBTITLE

Improving the Automated Detection and Analysis of Secure Coding Violations

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

Daniel Plakosh, Robert Seacord, Robert Stoddard, David Svoboda, David Zubrow

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2014-TN-008

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFLCMC/PZE/Hanscom

Enterprise Acquisition Division

20 Schilling Circle

Building 1305

Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

n/a

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

Coding errors cause the majority of software vulnerabilities. For example, 64% of the nearly 2,500 vulnerabilities in the National Vulner-
ability Database in 2004 were caused by programming errors. The CERT Division’s Source Code Analysis Laboratory (SCALe) offers
conformance testing of C language software systems against the CERT C Secure Coding Standard and the CERT Oracle Secure Cod-
ing Standard for Java, using various analysis tools available from commercial software vendors. Unfortunately, the current SCALe anal-
ysis process and tools do not collect any statistics about the accuracy of the code analysis tools or about the coding violations they flag,
such as frequency of occurrence. This paper describes the approach used to add the ability to collect and statistically analyze data re-
garding coding violations and tool characteristics along with the initial results. The collected data will be used over time to improve the ef-
fectiveness of the SCALe analysis.

14. SUBJECT TERMS

Secure coding, static analysis, coding flaws, secure coding rules, SCALe

15. NUMBER OF PAGES

33

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18

298-102

	Abstract
	1 Background
	2 Approach
	3 Results
	4 Summary and Future Work
	Appendix A
	Bibliography

