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Abstract 

Coding errors cause the majority of software vulnerabilities. For example, 64% of the nearly 
2,500 vulnerabilities in the National Vulnerability Database in 2004 were caused by programming 
errors. The CERT Division’s Source Code Analysis Laboratory (SCALe) offers conformance test-
ing of C language software systems against the CERT C Secure Coding Standard and the CERT 
Oracle Secure Coding Standard for Java, using various analysis tools available from commercial 
software vendors. Unfortunately, the current SCALe analysis process and tools do not collect any 
statistics about the accuracy of the code analysis tools or about the coding violations they flag, 
such as frequency of occurrence. This paper describes the approach used to add the ability to col-
lect and statistically analyze data regarding coding violations and tool characteristics along with 
the initial results. The collected data will be used over time to improve the effectiveness of the 
SCALe analysis. 
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1 Background 

The Source Code Analysis Laboratory (SCALe) is a proof-of-concept demonstration that software 
systems can be conformance tested against secure coding standards. It provides a consistent 
measure that can be used to assess the security of deployed software systems, specifically by de-
termining if they are free of coding errors that lead to known vulnerabilities. Error-free code in 
turn reduces the risk to these systems presented by increasingly sophisticated hacker tools. How-
ever, this type of conformance testing has the following problems that impact its widespread use: 

1. The effectiveness of analysis tools and coding rules are not well understood. 
2. Code analysis adds a large amount of time to the development schedule. 
3. Code analysis is error prone because a human must validate tool results. 

It is anticipated that gaining a better understanding of the effectiveness of the analysis tools will 
reduce the amount of time a human must spend validating results and therefore will reduce the 
amount of time conformance testing contributes to the development schedule. 

1.1 Software Security 

Software vulnerability and exploitation reports continue to grow at an alarming rate, and a signifi-
cant number of these reports result in technical security alerts. To address this growing threat to 
the government, corporations, educational institutions, and individuals, systems must be devel-
oped that are free of software vulnerabilities. 

The CERT Division of Carnegie Mellon University’s Software Engineering Institute takes a 
comprehensive approach to identifying and eliminating software vulnerabilities and other flaws. 
The CERT Division produces books and courses that foster a security mindset in developers, and 
it develops secure coding standards and automated analysis tools to help developers code secure-
ly. Secure coding standards provide a detailed enumeration of coding errors that have caused vul-
nerabilities, along with their mitigations for the most commonly used software development lan-
guages. The CERT Division also works with vendors and researchers to develop analyzers that 
can detect violations of the secure coding standards. 

Improving software security by implementing code that conforms to the CERT secure coding 
standards can be a significant investment for a software developer, particularly when refactoring 
or otherwise modernizing existing software systems [Seacord 2008]. However, a software devel-
oper does not always benefit from this investment because it is not easy to market code quality. 

To address these problems, the CERT Division has created SCALe, which offers testing to deter-
mine conformance of software systems to CERT secure coding standards.  

 
  CERT is a registered mark owned by Carnegie Mellon University. 
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1.2 SCALe 

SCALe evaluates client source code using multiple static analysis (SA) tools. The CERT Division 
reports any deviations from secure coding standards to the client. The client may then repair and 
resubmit the software for reevaluation. Once the reevaluation process is completed, the CERT 
Division provides the client a report detailing the software’s conformance or nonconformance to 
each secure coding rule. The SCALe process consists of the following sequence of steps: 

1. Clients contact CERT Division. The process is initiated when a client contacts the CERT 
Division with a request to evaluate a software system. 

2. CERT Division communicates the requirements. The CERT Division communicates re-
quirements to the client including (1) selection of secure coding standard(s) to be used, (2) a 
buildable version of the software to be evaluated, and (3) a build engineer. 

3. Client provides buildable software. The client selects standards(s), provides a buildable 
version of the software to be evaluated, and notifies the build engineer, who is available to re-
spond to build questions about the system. 

4. CERT Division selects tool set. The CERT Division chooses and documents the tool set to 
be used and procedures for using that tool set in the evaluation of the system. 

5. CERT Division analyzes source code and generates a conformance test report. The 
CERT Division evaluates the system against specified standard(s) and provides the conform-
ance test results to the client. If the system if found to be conforming, the CERT Division is-
sues a certificate and terminates the conformance testing process. 

6. Client repairs software. The client has the opportunity to repair nonconforming code. The 
client sends the system back to the CERT Division for final evaluation. 

7. CERT Division issues conformance test results and certificate. The CERT Division 
reevaluates the system using the tools and procedures used in the initial assessment. The 
CERT Division provides conformance test results to the client and, if the system is found to 
be conforming, a certificate. 

Unfortunately, the current SCALe analysis process and tools do not collect any statistics about the 
accuracy of the code analysis tools or about the coding violations they flag, such as frequency of 
occurrence. The ability to collect and statistically analyze data regarding coding violations and 
tool characteristics should improve the effectiveness of SCALe analysis.  

This paper describes how the CERT Division instrumented the SCALe process to provide insight 
into (1) the effectiveness of SA as a means of exposing vulnerabilities and (2) the performance of 
the SCALe process’s analyzers. The paper also presents our initial results. 
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2 Approach 

Our approach was as follows: 

1. Modify SCALe workflow, infrastructure, and database(s) to support data collection and in-
strumentation, such as the measurement of true/false positives, the ability to detect false nega-
tives through use of multiple analyzers, and measurement of violation occurrences based on 
programming language.  

2. Collect data from the re-analysis of source code previously analyzed in SCALe and from on-
going source code evaluations. 

3. Develop sampling space/characterization of codebase by identifying salient dimensions of the 
sampling space and then defining measures representing the dimensions of the sampling 
space. 

4. Conduct analyses to address the research questions (described in Section 2.1). 
5. Use results collected over time to improve the SCALe infrastructure, process, and tools. 

2.1 Research Questions 

1. Which analyzers are best at detecting specific coding rule violations? 
2. How common are violations of secure coding rules in systems developed under various code 

cultures? (Example code cultures: device driver, desktop application, weapons system, 
smartphone app) 

3. How effective is SA as a means of exposing vulnerabilities? 
4. Can the pattern of results across rules tell us what is likely to be a true or false positive? 

2.2 Methodology 

2.2.1 Use of the SCALe Process 

The process for analyzing any codebase using SCALe is fairly simple, as outlined in Figure 1. 
First, each SA tool (appropriate for the language) is run on the codebase, producing a set of diag-
nostics (also known as flagged nonconformities) on the codebase. These diagnostics may indicate 
true violations of the CERT secure coding rules, or they may be false positives. Each tool’s diag-
nostics are then merged into one complete list of diagnostics. 

The next task for an auditor is to determine which diagnostics in the list are true positives and 
which are false positives. This task can be daunting. Because some tools emphasize eliminating 
false negatives and so produce a large number of false positives, a codebase can sometimes have 
more than 10,000 associated diagnostics. 

To mitigate this challenge, we classify all the diagnostics into buckets, where each bucket repre-
sents all the diagnostics associated with a particular CERT secure coding rule. Thus, there will be 
exactly as many buckets as there are CERT rules being violated (according to the SA tools). The 
auditor executes the following procedure for each bucket: 
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1. Identify a random sample of diagnostics in the bucket, determining the sample size according 
to the scale shown in Table 1. If there are fewer than 50 diagnostics, the sample trivially in-
cludes all of the diagnostics in the bucket. 

2. Analyze each diagnostic in the sample until a true positive has been found or the sample is 
exhausted. 

3. Assign each false diagnostic a verdict of False. 
4. If a true positive is found, assign it a verdict of True, and assign all remaining unmarked di-

agnostics in the bucket a verdict of Suspicious. If no true positives are found, meaning every 
diagnostic in the sample is a false positive, assign all unmarked diagnostics for that bucket a 
verdict of Ignored. 

Table 1: Sample Sizes 

Bucket Size Sample 

0–50 All 

51–90 50 

91–150 80 

151–280 95 

281–500 105 

501–1,200 125 

1201–10,000 200 

 

Figure 1: SCALe Diagnostics Process 

This system works well, but it can still be suboptimal if any buckets have a high false-positive 
rate. Any bucket with a high false-positive rate requires a manual audit of up to 200 diagnostics 
before it can be discarded. Furthermore, if, over multiple codebase analyses, buckets for viola-
tions of a particular CERT rule have chronically high false-positive rates, every future bucket for 
that rule must be manually audited. 

Because these diagnostics can be identified by different tools or by different algorithms in the 
same tool, we partition the diagnostics produced by a tool into checkers. Each checker represents 
a single algorithm in a single tool whose diagnostics are all associated with a single secure coding 
rule. Each checker also produces a unique form of diagnostic message. Distinct messages pro-
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duced by a checker frequently vary in the specification of a variable or type identifier. Most 
checkers can be identified by analyzing the diagnostic messages using regular expressions. Fur-
thermore, many tools categorize their error messages and produce distinct identification tags for 
each type of error. These tags can serve to identify the checker for these tools, bypassing regular 
expression analysis completely. 

We have added a procedure to the SCALe process to identify the true-positive rate for any check-
er. We perform this procedure only on diagnostics that appear to have a low true-positive rate. If 
the procedure indicates that the true-positive rate is sufficiently low, we ignore the checker’s di-
agnostics for the codebase under analysis and for any future version of it. 

This procedure consists of an Excel spreadsheet that takes three variables: the total number of 
diagnostics in the checker, the number of diagnostics analyzed so far, and the number of diagnos-
tics that have been found to be true. The spreadsheet then computes the 95% confidence interval 
of the actual false-positive rate based on the sample false-positive rate using the formula for com-
puting a confidence interval for a proportion [Crossley 2000]. If the minimum bound of this inter-
val is above 80%, we can be 95% confident that the true-positive rate is less than 20%, so we drop 
the checker from the current audit and any future audits of this codebase unless improvements are 
made to the checker.  

Additionally, for three of the rules, we developed binary logistic regression models that may be 
used to assess the probability that a given diagnostic is a true versus a false positive. Although this 
approach was attempted for a set of 34 secure coding rules, as seen in Appendix A, only seven 
rules (ARR30-C, ARR36-C, DCL31-C, DCL32-C, EXP33-C, EXP34-C, and INT31-C) possessed 
sufficient data to enable an attempt at binary logistic regression. Of those seven rules, only three 
rules (ARR30-C, DCL31-C, and INT31-C) resulted in statistically significant models, which pro-
duced output grid tables depicting probability expectations associated with each scenario of which 
tools flagged versus did not flag a given diagnostic. We believe development of such binary lo-
gistic models using more data across multiple codebases will eventually produce a lookup table, 
by secure coding rule, of the probability of a true versus a false positive for remaining diagnostics 
that are not evaluated. In this fashion, management may choose to prioritize efforts on investigat-
ing suspicious diagnostics based on their likelihood of being a true versus a false positive. 

2.2.2 Data for Research 

Table 2 and Table 3 list the basic statistics of the codebases analyzed. 

Table 2: Java Codebase Metrics 

Codebase Files LOC Size 

java 1 28 4,161 131,477 

java 2 33 5,453 201,215 

Table 3: C Codebase Metrics 

Codebase Files LOC Size 

C1 155 50,223 1,770,822 

C2 124 118,425 4,511,085 
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Each SA tool produces output in its own idiosyncratic format. All tools can be adapted to produce 
a file containing the contents of the diagnostics they produced. SCALe provides scripts that con-
vert such an output file into a list of diagnostics. Each tool is assumed to contain a set of checkers. 
Many tools produce diagnostics with specific error IDs that indicate the category of error they 
catch; for these tools, the error ID serves as the checker string. Tools that do not provide error IDs 
still provide strings that describe the error in some brief text message. These messages can quick-
ly be categorized using regular expressions, and for these tools, the best matching regular expres-
sion indicates the checker for any diagnostic the tool may produce. 

For each tool, SCALe provides a mapping between checker identifiers and CERT secure coding 
rules. We continue to maintain this map as the set of checker identifiers grows and changes with 
newer versions of the tool. This map is used to associate each diagnostic with a secure coding 
rule. 

Many checkers identify problems that are not related to security. SCALe’s maps show that these 
checker identifiers map to no secure coding rule, allowing analysts to ignore such diagnostics for 
the remainder of the audit. Occasionally, the checker ID may map to multiple secure coding rules, 
and the error message may be useful in choosing the most appropriate rule for mapping. In these 
cases, regular expression analysis on the diagnostic message indicates the proper mapping of di-
agnostic to CERT rule. 

For Java codebases, we have used the SA tools listed in Table 4: FindBugs, Fortify, and Coverity, 
described shortly. We also used the warnings produced by the Eclipse compiler and thus include 
Eclipse as an SA tool. These tools check about 43% of the rules in the CERT Oracle Secure Cod-
ing Standard for Java. 

Table 4: Java Rule Coverage 

Tool Rules 

Coverity 35 

FindBugs 44 

Fortify 26 

Eclipse 10 

All Checked Rules 67 

All Rules 156 

For C and C++ codebases, we have used Fortify, Coverity, Rosecheckers, and PC-Lint. We have 
also used the warning messages produced by the GCC compiler, so we included GCC as an SA 
tool. These tools check about 63% of the rules in the CERT C Secure Coding Standard, as shown 
in Table 5. 
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Table 5: C Rule Coverage 

Tool Rules 

Coverity 32 

Fortify 9 

LDRA 19 

MSVC 17 

PCLint 27 

GCC 19 

Rosecheckers 51 

All Checked Rules except Rosecheckers 66 

All Checked Rules 81 

All Rules 129 

FindBugs 

FindBugs is an open source program that looks for bugs in Java code.1 It uses static analysis to 
identify hundreds of different potential types of errors in Java programs. FindBugs is written in 
“pure” Java and is therefore platform-independent. It provides a simple command-line interface, 
as well as a graphical interface, and provides a plug-in enabling it to be integrated into Eclipse.  

FindBugs operates on Java bytecode, so it is technically a binary-code analyzer rather than a 
source-code analyzer. However, it produces useful diagnostics and is free, so we included it in our 
study. 

Fortify 360 SCA 

Fortify 360 is a commercial product developed by Fortify Software, now owned by Hewlett-
Packard. The product provides an extensive suite of tools for software security assurance. We fo-
cused on the source code analysis (SCA) tool. It can be used to analyze software written in Java, 
C, C++, .NET, ASP.NET, ColdFusion, “Classic” ASP, PHP, VB6, VBScript, JavaScript, 
PL/SQL, T-SQL, and COBOL. 

Coverity Prevent 

Coverity Prevent is a commercial product developed by Coverity, Inc.2 The product provides an 
extensive suite of tools for software security assurance. We focused on the Coverity Static Analy-
sis tool, which can be used to analyze software written in C, C++, Java, and C#. We also used the 
Coverity Integrity Manager, a web-based framework for viewing the results of Coverity Static 
Analysis. It provides a rich detail of each diagnostic found, including multiple locations in the 
source code that serve to create the diagnostic.  

 
1  http://findbugs.sourceforge.net  

2  http://www.coverity.com  

http://findbugs.sourceforge.net
http://www.coverity.com
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MSVC /analyze 

Several editions of Microsoft Visual C++ provide a built-in SA tool.3 This includes MSVC 2008 
Team Edition and several editions of MSVC 2010. It is named analyze mode because of the 
/analyze option that is fed to the Microsoft C++ compiler command. This tool can be enabled 
by turning on a switch called Enable Code Analysis. Consequently, any C/C++ program compiled 
by Visual Studio can be examined by the SA tool. 

PC-Lint 

PC-Lint is a commercial SA tool produced by Gimpel Software for the C and C++ programming 
languages.4 First released in 1985, it is supported on all versions of Windows as well as MS-DOS 
and OS/2. It provides a command-line interface but can also be integrated as an external tool into 
many integrated development environments (IDEs), including Microsoft Visual Studio. It pro-
vides references to several coding guidelines, such as MISRA-C (both 2004 and 2008 editions). 

Rosecheckers 

The Rosecheckers project was internally developed at the CERT Division to provide an SA tool 
for analyzing C and C++ code. The project was designed to enforce the rules in the CERT C Se-
cure Coding Standard and the CERT C++ Secure Coding Standard. Each rule in the standard that 
can be statically analyzed has one or more code checkers as part of the Rosecheckers project. The 
source for the Rosecheckers project is freely downloadable at the Rosecheckers website,5 and the 
website also provides a virtual machine containing a complete build of the Rosecheckers project 
on Linux. The Rosecheckers project leverages the Compass/ROSE6 project developed at Law-
rence Livermore National Laboratory. This project provides a high-level API for accessing the 
abstract syntax tree (AST) of a C or C++ source code file. 

2.2.3 Define and Describe the Various Performance Measures Statistics 

The following measures are used to assess the performance of the various tools. They are based 
on the template table shown in Table 6. 

A similar table was constructed for each rule and tool combination for each of the codebases ana-
lyzed. The table shows the number of diagnostics that have been confirmed as true positives (TP) 
or false positives (FP) as well as the count for the number of false negatives (FN). We did not 
measure the number of true negatives in this work. Although the number of true and false posi-
tives was determined by experts evaluating the diagnostics reported by the tools, the false nega-
tives were computed as follows: for any given confirmed true diagnostic (a diagnostic being de-
fined as a violation of a coding rule at a specific location), any tool that checks that rule but does 
not detect the violation is assigned a false negative. 

 
3  http://msdn.microsoft.com/en-us/library/vstudio/ms173498.aspx  

4  http://www.gimpel.com  

5  http://rosecheckers.sourceforge.net  

6  http://rosecompiler.org  

http://msdn.microsoft.com/en-us/library/vstudio/ms173498.aspx
http://www.gimpel.com
http://rosecheckers.sourceforge.net
http://rosecompiler.org
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Table 6: Performance Measures 

  
Actual 

 

  TRUE FALSE  
P

re
d

ic
te

d TRUE # of TP # of FP  

FALSE # of FN # of TN  

These measures provide the counts needed for three of the four quadrants in the table. Conceiva-
bly, the number of true negatives could be computed based on the lines of code, but this was not 
done for two reasons. First, the three other values are based on confirmed results and are suffi-
cient to compute standard performance measures. Second, because there are many “suspicious” 
diagnostics that are left uninvestigated, the count of true negatives would be an estimate with a 
potentially wide standard error. 

From the three values, the following performance measures were computed:  

 Predicted positive rate (TP/[TP + FP]). This is the proportion of true positives across all diag-
nostics reported by a tool. It was computed by checker and by rule and aggregated for a tool. 

 Sensitivity rate (TP/TP + FN). This is the proportion of true positives detected among all of 
the true positives that the tool should have discovered. It was computed by rule and aggregat-
ed for a tool. Note that this value could not be computed by checker because the mapping 
from tool to tool was only done at the rule level. 

 F-score (2 * [PPV * Sensitivity]/[PPV + Sensitivity]). This is used as the overall performance 
index because it is a function of performance in both of the previous dimensions. Note that it 
is scaled so that 1 is a perfect score. 

 Rule set coverage (number of rules checked/total number of rules checked by all tools used in 
the analysis). This was included to provide a sense of coverage as some tools may perform 
well but only across a limited set of rules while others may cover more of the rule set. 

We additionally developed a prediction model across the set of static code analyzer outputs to 
determine the likelihood of a given diagnostic being a true or false positive. By using binary lo-
gistic regression, we can capitalize on the knowledge from the set of tools related to a given diag-
nostic. This approach allows us to benefit further from the joint track records of the tools for a 
given secure coding rule. As shown in Appendix A, 34 secure coding rules were analyzed in a 
given set of diagnostics. Two coding rules (INT31-C and EXP40-C) were involved in 1,466 of a 
total of 1,749 diagnostics, or about 84% of the diagnostics. Also evident is that 20 rules were in-
volved in single-digit amounts of diagnostics, ruling out any attempt at binary logistic regression 
due to a lack of sufficient data. Of the rules with sufficient data volumes, another set of rules was 
involved: those with only true verdicts or those with only false verdicts. As a result, they were not 
candidates for attempts at binary logistic regression. 

Not measured
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3 Results 

The research conducted during this project focused primarily on the first research question: What 
analyzers are best at detecting specific coding rule violations? The results produced to answer this 
question do not provide adequate evidence for a thorough analysis in relation to the other ques-
tions, though they are relevant. The main reason is the limited number of codebases that were 
available to analyze. Nonetheless, the research has produced a method and initial results for ad-
dressing the questions. 

Each of the following analyses was conducted on the four codebases described earlier. The results 
are summarized here, and more detailed results are contained in Appendix A. Due to potential 
vendor issues, the names of the vendors’ tools have been anonymized.  

3.1 What Analyzers Are Best at Detecting Specific Coding Rule 
Violations? 

As noted in Section 2.2.3, several measures of performance are used to characterize the perfor-
mance of each tool. Table 7 shows the average results for the tools used on the two Java codebas-
es. All of these measures range from 0 to 1, with a higher value indicating better performance. 

The F-score offers an overall performance measure based on the sensitivity and predicted positive 
rate. As can be seen, tool ja2 has the best overall performance because of its superior performance 
in terms of sensitivity and relatively good predicted positive rate. Ja1 ranks second because of its 
high predicted positive rate and relatively good sensitivity. The java compiler was used on only 
one codebase and, as can be seen, its overall performance is much lower than that of any of the 
analyzers. When looking at the coverage of the rule set, ja3 covers the largest proportion of rules 
while the other tools check less than a third of the rules. This suggests that the use of multiple 
tools is justified. 

Table 7: Results for Java Codebases 

Tool Sensitivity Predicted 
Positive 
Rate 

F-Score Coverage 

jc1 0.38 0.08 0.14 25% 

ja1 0.62 0.76 0.62 20% 

ja2 0.91 0.65 0.75 32% 

ja3 0.31 0.65 0.40 55% 

The averaged results for the two C codebases shown in Table 8 show somewhat different out-
comes. The major difference to be noted is the generally poor results of all the tools. The maxi-
mum F-score is associated with a C compiler, but it is only 0.353. Although other tools have bet-
ter performance on the two constituent performance measures, they tend to be good on one 
measure and poor on another. For instance, ca1 has relatively good scores for sensitivity and pre-
dicted positive rate values on average. However, the detailed scores comprising the average val-
ues are reflected in the low average F-score. What drives this is the alternating high and low 
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scores for the two different C codebases. For one codebase, ca1 has a relatively high sensitivity 
and low predicted positive rate yielding a low F-score. On the other codebase, the results are the 
reverse but yield a similar F-score. 

Finally, note that the average coverage by any given tool across the union of the set of rules 
checked by the tools is relatively modest at best. Ja3 is the only tool that checked more than half 
of the rules. 

Table 8: Results for C Codebases (averaged across both C codebases) 

Tool Sensitivity Predicted 
Positive 
Rate 

F-Score Coverage 

ca1 0.338 47.5% 0.112 15% 

ca2 0.143 22.2% 0.174 6% 

ca3 0.024 5.7% 0.033 6% 

ca6 0.590 4.4% 0.081 25% 

ca7 0.128 2.2% 0.037 17% 

cc1 0.050 25.0% 0.083 11% 

cc2 0.293 44.6% 0.353 13% 

As the tables show, the overall pattern of scores for the C codebases is lower than that for the Java 
codebases. Some of the tools, such as ca3, have very poor results, suggesting they are of limited 
value. Ca1 looks to have a low average F-score while having relatively good sensitivity and pre-
dicted positive rate values in comparison to cc2. The explanation for the ca1 performance num-
bers is the lack of consistency in its results across the two codebases. In neither case did ca1 have 
both high sensitivity and a high predicted positive rate. While the average result may seem incon-
sistent with the average F-score, they are accurate. 

Ca6 illustrates a common problem with static analyzers. There is often a tradeoff made between 
identifying the true violation at the expense of having a high false-positive rate. Ca6 has relatively 
good sensitivity. That is, among all of the true violations, on average it identified 59% of them. 
However, the price for this is a low predicted positive rate, or analogously, a high false-positive 
rate. Note that for ca6, of the violations it detects, only 4.4% of them are confirmed to be true vio-
lations. Interestingly, cc2, a compiler, had the best overall performance. 

However, it is important to note the limited rule coverage by the tools in general. For the C tools, 
ca6 had the highest average coverage, which was only 25% of the rules. See Figure 2 for codebase 
C1 and Figure 3 for codebase C2. 

With this more detailed look at the results, we can observe the very different performance of the 
tools on the different codebases. Cc2 is a case in point. While it had the best performance and 
coverage on the first codebase, it had the worst performance and was tied for the least amount of 
rule coverage on the second. 
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Figure 2: Performance and Rule Coverage for the C1 Codebase* 

  

 

Figure 3: Performance and Rule Coverage for the C2 Codebase*  

 
*  Note that the y-axes in Figures 2 and 3 are on different scales. 
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3.2 How Common Are Violations of Secure Coding Rules in Systems 
Developed under Various Code Cultures? 

Table 9 shows a mapping in terms of detected rule violations for the two Java codebases in the 
study. Overall, 27 rules had flagged an anomaly in the codebase. Of these, 7, or 26%, were com-
mon across the two codebases. This suggests that for these two codebases there is little in com-
mon in terms of the pattern of violations. Whether this is due to variability across code cultures or 
inherent variability in codebases caused by other factors (for example, maturity of the code), we 
cannot say at this time. 

Table 9: Mapping of Rules Violated in Two Java Codebases 

Rule Java 1 Java 2 

DCL00-J X  

DCL01-J X  

ENV05-J  X 

ERR00-J  X 

ERR01-J  X 

ERR07-J X X 

ERR08-J X X 

ERR09-J  X 

EXP01-J X X 

EXP04-J X  

FIO02-J  X 

FIO04-J X X 

FIO13-J  X 

IDS00-J  X 

IDS02-J  X 

IDS03-J  X 

IDS04-J X X 

IDS09-J X X 

IDS13-J  X 

MET02-J X  

MSC03-J X  

OBJ01-J X  

OBJ05-J  X 

OBJ06-J X X 

OBJ09-J X  

OBJ10-J X  

VNA00-J X  
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3.3 How Effective Is Static Analysis as a Means of Exposing 
Vulnerabilities? 

Assessing the effectiveness of static analysis would be best addressed by having results from sub-
sequent testing that could detect the violations that escaped from the static analysis. This was not 
done. As a second-best alternative, we can review the results shown in Table 7 and Table 8 and 
focus on the sensitivity scores. Recall that sensitivity is the percentage of actual violations that 
were accurately detected by the tool. For the Java tools, we can see quite a range of performance, 
with ja2 having a very high detection rate and ja3 detecting slightly less than one-third of actual 
coding violations. A more detailed look at ja2 shows its sensitivity ranging from 0.56 to 1.0 for 
one codebase and 0.33 to 1.0 for the second codebase. From this we learn that sensitivity to the 
various secure coding rules can vary greatly within a tool, even one that performs well.  

Taking a similar look at the C tools, ca6, with a value of 0.59, has the highest sensitivity while ca3 
and cc1 both detect 5% or less of the actual violations in the codebases. As with the Java tools, 
sensitivity across the rule set varies widely. For ca6, the sensitivity values range from 0.0 to 1.0 
for both codebases. 

3.4 Can the Pattern of Results across Rules Tell Us What Is Likely to 
Return a True or False Positive? 

Table 10 displays a subset of the 34 secure coding rules associated with varying numbers of diag-
nostics in the analyzed SCALe results. These diagnostics, with confirmed false and true positives, 
were analyzed in an attempt to apply logistic regression in predicting the probability of a given 
diagnostic being a false positive given knowledge of which static code analyzers flagged versus 
did not flag the diagnostic. 

Table 10: Subset of Rules with Varying Numbers of Diagnostics 

Rule N Rows N(False) N(True) 

INT31-C 1,347 1,298 76 

EXP40-C 92 92 0 

DCL36-C 34 0 34 

EXP34-C 32 18 14 

ARR30-C 30 27 3 

INT34-C 25 25 0 

EXP36-C 19 18 1 

DCL31-C 18 15 3 

EXP30-C 18 18 0 

INT33-C 18 17 1 

EXP33-C 17 14 3 

INT32-C 15 15 0 

DCL30-C 10 10 0 

DCL32-C 10 9 1 

ARR36-C 9 8 1 
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Appendix A includes example logistic regression analysis [Ryan 2012] associated with the three 
secure coding rules that possessed sufficient data to enable logistic regression models at this time. 
Table 11, Table 12, and Table 13 depict an output grid table for each rule showing the different 
scenarios in which tools flagged (1) or did not flag (0) a given diagnostic, along with the updated 
probability of a false versus true verdict. For example, for a diagnostic involving the ARR30-C 
rule, in which the only tool to flag an example diagnostic is cc2, we are almost certain this diag-
nostic is a true positive. On the other hand, if a diagnostic is flagged by multiple tools (cc1, ca7, 
and cc2), we are almost certain this is a false positive. Finally, if the diagnostic is flagged only by 
the cc1 and cc2 tools, we have 87% confidence that the diagnostic is a false positive.  

Consequently, these three models enhance our outlook of the probability of a diagnostic being a 
false versus true positive based on which tools did or did not flag the diagnostic. Note too that the 
probabilities are not a function of a simple majority vote. 

Table 11: ARR30-C Rule 

Ca1 Ca2 Cc1 Ca7 Cc2 Ca6 Ca3 Probability 

(Verdict = False) 

Probability 

(Verdict = True) 

0 0 0 0 1 0 0 1.2433e-8 0.999999 

0 0 0 1 0 0 0 0.999999 1.2433e-8 

0 0 0 1 1 0 0 0.999999 1.2433e-8 

0 0 1 0 0 0 0 0.866666 0.133333 

0 0 1 0 1 0 0 0.866666 0.133333 

0 0 1 1 0 0 0 1 0 

0 0 1 1 1 0 0 1 0 

Table 12: DCL31-C Rule 
Ca1 Ca2 Cc1 Ca7 Cc2 Ca6 Ca3 Probability 

(Verdict = False) 
Probability 

(Verdict = True) 

0 0 0 0 0 1 0 0.9375 0.0625 

0 0 0 1 0 0 0 9.1869e-8 0.999999 

0 0 0 1 0 1 0 9.1869e-8 0.999999 

Table 13: INT31-C Rule 
Ca1 Ca2 Cc1 Ca7 Cc2 Ca6 Ca3 Probability 

(Verdict = False) 

Probability 

(Verdict = True) 

0 0 0 0 0 1 0 0.971145 0.028854 

0 0 0 0 1 0 0 0.280701 0.719298 

0 0 0 0 1 1 0 0.280701 0.719298 

0 0 0 1 0 0 0 0.999999 1.243320 

0 0 0 1 0 1 0 0.999999 1.2433e-8 

0 0 0 1 1 0 0 0.999998 1.0723e-6 

0 0 0 1 1 1 0 0.999998 1.0723e-6 

We believe the ability to create three significant binary logistic regression models on this initial 
set of diagnostics highlights the practicality and promise of continuing to assemble data related to 
diagnostics investigated with verdicts of true and false across additional codebases. Armed with a 
growing inventory of confirmed verdicts, the SCALe team will be better positioned to create 
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models for each secure coding rule, thereby enabling lookup tables of the different scenarios of 
static code analyzers involved, so that real-time automation of the updated probabilities of true 
versus false positives can be performed. This feedback could prove invaluable in the prioritization 
and scheduling of work to investigate the high volume of suspicious flags from the static code 
analyzers. 
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4 Summary and Future Work 

To summarize, a modified version of the SCALe process was used to generate the data for the 
analysis of various static analyzers and compilers in terms of their performance detecting viola-
tions of secure coding rules for Java and C. Two codebases for Java and C were analyzed. Per-
formance measures used included the number of true positives, false positives, and false nega-
tives. From these values, the predicted positive rate, sensitivity, and F-scores were computed for 
each rule and tool combination for each codebase. The results generally show that the tools per-
form unevenly in terms of sensitivity and predicted positive rate, as illustrated by ca6, or just have 
generally low results. Ja2 and ja1 stand out among all of the tools in terms of their better perfor-
mance, as reflected in their relatively high F-scores. 

None of the tools covered all of the secure coding rules. Indeed, the results ranged from 13% to 
72% for the Java tools, depending on the codebase, and from 3% to 28% for the C tools, depend-
ing on the codebase. Hence, even with good performance, use of just one tool is likely to leave 
vulnerabilities in the codebase. 

Regarding the identification of code cultures, this study did not have sufficient data to address the 
question. Table 9 provided an initial observation that showed the limited overlap in the rules de-
tected in the two Java codebases. This is weak evidence with respect to code cultures and simply 
demonstrates that different codebases can have different profiles in terms of their rule violations.  

Finally, in terms of the effectiveness of static analysis, we found that the tools’ performance var-
ies greatly. Additionally, each tool’s detection of individual rules varied over multiple analyses. 
This raises a concern about reliance on a single tool for detecting secure coding violations and 
exposes the need for additional screenings of diagnostics, using models that account for how dif-
ferent analyzers have treated a given diagnostic. 

We would like to continue to leverage the SCALe process and obtain additional codebases to ana-
lyze. Additional results will allow us to address some of the unanswered questions that we began 
with and to further refine our knowledge of the effectiveness of SA tools. Additional studies 
would include 

 profiling of code cultures 
 improving the estimates of the false-positive and false-negative rates 
 experiments with the sequencing of tools and the time to perform a SCALe evaluation 
 experiments to test the prediction of the remaining true violations 
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Appendix A 

Nominal Logistic Fit for Verdict ID=ARR30-C 

Converged in Gradient, 17 iterations 

Whole Model Test 

Model -LogLikelihood DF ChiSquare Prob7 > ChiSq 

Difference 3.8623720 2 7.724744 0.0210* 

Full 5.8901172    

Reduced 9.7524892    

   

RSquare (U)8 0.3960 

AICc 21.3802 

BIC 25.385 

Observations (or Sum Wgts) 30 

  

Measure Training Definition 

Entropy RSquare 0.3960 1-Loglike(model)/Loglike(0) 

Generalized RSquare 0.4749 (1-(L(0)/L(model))^(2/n))/(1-L(0)^(2/n)) 

Mean -Log p 0.1963 ∑ -Log(ρ[j])/n 

RMSE 0.2404 √ ∑(y[j]-ρ[j])²/n 

Mean Abs Dev 0.1156 ∑ |y[j]-ρ[j]|/n 

Misclassification Rate 0.0667 ∑ (ρ[j]≠ρMax)/n 

N 30 n 

Parameter Estimates 

Term   Estimate Std Error ChiSquare Prob > ChiSq 

Intercept Biased 10.0373485 1198.4347 0.00 0.9933 

cc1[0] Biased −10.037348 4484.1319 0.00 0.9982 

ca7[0] Biased −18.202895 4641.5175 0.00 0.9969 

cc2[0] Zeroed 0 0 . . 

 
7  P value < .05 indicates a statistically significant model. 

8  RSquare (U), which provides a measure of how well the model explains the outcome, may be considered good in the 40%–
50%+ range, as it does not behave similarly to traditional RSquared measures from linear regression. 
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Nominal Logistic Fit for Verdict ID=DCL31-C 

Converged in Gradient, 15 iterations 

Whole Model Test 

Model  -LogLikelihood DF ChiSquare Prob > ChiSq 

Difference 4.3694350 1 8.73887 0.0031* 

Full 3.7406667    

Reduced 8.1101018    

    

RSquare (U) 0.5388 

AICc 15.1956 

BIC 16.1524 

Observations (or Sum Wgts) 18 

  

Measure Training Definition 

Entropy RSquare 0.5388 1-Loglike(model)/Loglike(0) 

Generalized RSquare 0.6476 (1-(L(0)/L(model))^(2/n))/(1-L(0)^(2/n)) 

Mean -Log p 0.2078 ∑ -Log(ρ[j])/n 

RMSE 0.2282 √ ∑(y[j]-ρ[j])²/n 

Mean Abs Dev 0.1042 ∑ |y[j]-ρ[j]|/n 

Misclassification Rate 0.0556 ∑ (ρ[j]≠ρMax)/n 

N 18 n 

Parameter Estimates 

Term  Estimate Std Error ChiSquare Prob > ChiSq 

Intercept Unstable −6.7474222 1166.4576 0.00 0.9954 

ca7[0] Biased 9.45547241 1166.4576 0.00 0.9935 

ca6[0] Zeroed 0 0 . . 
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Nominal Logistic Fit for Verdict ID=INT31-C 

Converged in Gradient, 17 iterations 

Whole Model Test 

Model  -LogLikelihood DF ChiSquare Prob>ChiSq 

Difference 101.44029 3 202.8806 <.0001* 

Full 192.41881    

Reduced 293.85910    

   

RSquare (U) 0.3452 

AICc 392.867 

BIC 413.74 

Observations (or Sum Wgts) 1374 

  

Measure Training Definition 

Entropy RSquare 0.3452 1-Loglike(model)/Loglike(0) 

Generalized RSquare 0.3944 (1-(L(0)/L(model))^(2/n))/(1-L(0)^(2/n)) 

Mean -Log p 0.1400 ∑ -Log(ρ[j])/n 

RMSE 0.1820 √ ∑(y[j]-ρ[j])²/n 

Mean Abs Dev 0.0662 ∑ |y[j]-ρ[j]|/n 

Misclassification Rate 0.0371 ∑ (ρ[j]≠ρMax)/n 

N 1374 n 

Parameter Estimates 

Term   Estimate Std Error ChiSquare Prob>ChiSq 

Intercept  Unstable 8.63095571 1087.5618 0.00 0.9937 

ca7[0]  Unstable  -7.3433347 1087.5617 0.00 0.9946 

cc2[0]  2.22860432 1189.0797 0.00 0.9985 

ca6[0]   -4.5287e-9 1189.0797 0.00 1.0000 
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