
A State-Based Model for Multi-Party

Coordinated Vulnerability Disclosure

(MPCVD)

Allen Householder
Jonathan Spring

July 2021

SPECIAL REPORT
CMU/SEI-2021-SR-021
DOI: 10.1184/R1/16416771

CERT Division

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

http://www.sei.cmu.edu

http://www.sei.cmu.edu

Copyright © 2021 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Homeland Security under
Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software En-
gineering Institute, a federally funded research and development center sponsored by the United States
Department of Defense.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not
be construed as an official Government position, policy, or decision, unless designated by other docu-
mentation.

References herein to any specific commercial product, process, or service by trade name, trade mark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation,
or favoring by Carnegie Mellon University or its Software Engineering Institute.

This report was prepared for the SEI Administrative Agent AFLCMC/AZS 5 Eglin Street Hanscom AFB,
MA 01731-2100

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTI-
TUTE MATERIAL IS FURNISHED ON AN ”AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES
NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUD-
ING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EX-
CLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNI-
VERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM
PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited dis-
tribution. Please see Copyright notice for non-US Government use and distribution.

Internal use:

• Permission to reproduce this material and to prepare derivative works from this material for in-
ternal use is granted, provided the copyright and “No Warranty” statements are included with all
reproductions and derivative works.

External use:

• This material may be reproduced in its entirety, without modification, and freely distributed in writ-
ten or electronic form without requesting formal permission. Permission is required for any other
external and/or commercial use. Requests for permission should be directed to the Software Engi-
neering Institute at permission@sei.cmu.edu.

• These restrictions do not apply to U.S. government entities.
Carnegie Mellon®, CERT® and CERT Coordination Center® are registered in the U.S. Patent and
Trademark Office by Carnegie Mellon University.

DM21-0607

Table of Contents

Acknowledgments vii

Abstract ix

1 Introduction 1
1.1 Approach 2
1.2 Organization of This Document 2

2 A State-based model for CVD 4
2.1 Events in a Vulnerability Lifecycle 4
2.2 Notation 6
2.3 Deterministic Finite State Automata 6
2.4 State Transitions 8

2.4.1 Input Symbols 8
2.4.2 Transition Function 8

3 Sequences of Events and Possible Histories in CVD 16
3.1 The Possible Histories of CVD 16
3.2 On the Desirability of Possible Histories 18
3.3 A Random Walk through CVD States 21

4 Reasoning over Possible Histories 25
4.1 History Frequency Analysis 25
4.2 Event Order Frequency Analysis 25
4.3 A Partial Order on Desiderata 26
4.4 Ordering Possible Histories by Skill 27

5 Discriminating Skill and Luck in Observations 29
5.1 A Measure of Skill in CVD 29

5.1.1 Computing αd from Observations 30
5.1.2 Calculating Measurement Error 31

5.2 Observing CVD in the Wild 31
5.2.1 Microsoft 2017-2020 31
5.2.2 Commodity Exploits 2015-2019 33

6 Discussion 35
6.1 Coordinated Vulnerability Disclosure (CVD) Benchmarks 35
6.2 Multi-Party Coordinated Vulnerability Disclosure 36

6.2.1 State Tracking in Multi-Party Coordinated Vulnerability Disclosure
(MPCVD) 37

6.2.2 MPCVD Benchmarks 38
6.3 CVD Roles and Their Influence 40

6.3.1 Vendors 42
6.3.2 System Owners 42
6.3.3 Security Researchers 43
6.3.4 Coordinators 43
6.3.5 Governments 43

6.4 Disclosure Policy Formalization 44
6.4.1 Embargo Initiation Policies 44

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY i
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

6.4.2 Embargo Continuation Policies 45
6.4.3 CVD Service Level Expectations 46

6.5 Improving Definitions of Common Terms 47
6.5.1 Zero Day 47
6.5.2 Forever Day 48

6.6 Vulnerability Response Situation Awareness 49
6.7 Vulnerability Equities Process (VEP) 50
6.8 Recommended Action Rules for CVD 52

7 Related Work 55

8 Limitations and Future Work 57
8.1 State Explosion 57
8.2 The Model Does Not Address Transition Probabilities 57
8.3 The Model Does Not Achieve a Total Order Over Histories 58
8.4 The Model Has No Sense of Timing 58
8.5 Attacks As Random Events 58
8.6 Modeling Multiple Agents 59
8.7 Gather Data About CVD 59
8.8 Observation May Be Limited 59
8.9 CVD Action Rules Are Not Algorithms 59
8.10 MPCVD Criteria Do Not Account for Equitable Resilience 60
8.11 MPCVD Is Still Hard 60

9 Conclusion 61

Request for Feedback 62

A Per-State Details 63
A.1 vfdpxa 64
A.2 vfdpxA 65
A.3 vfdpXa 66
A.4 vfdpXA 67
A.5 vfdPxa 68
A.6 vfdPxA 69
A.7 vfdPXa 70
A.8 vfdPXA 71
A.9 Vfdpxa 72
A.10 VfdpxA 73
A.11 VfdpXa 74
A.12 VfdpXA 75
A.13 VfdPxa 76
A.14 VfdPxA 77
A.15 VfdPXa 78
A.16 VfdPXA 79
A.17 VFdpxa 80
A.18 VFdpxA 81
A.19 VFdpXa 82
A.20 VFdpXA 83
A.21 VFdPxa 84
A.22 VFdPxA 85
A.23 VFdPXa 86
A.24 VFdPXA 87
A.25 VFDpxa 88

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY ii
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

A.26 VFDpxA 89
A.27 VFDpXa 90
A.28 VFDpXA 91
A.29 VFDPxa 92
A.30 VFDPxA 93
A.31 VFDPXa 94
A.32 VFDPXA 95

References/Bibliography 96

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY iii
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

List of Figures

Figure 2.1 Submap of vendor fix path state transitions (V, F, D) 9
Figure 2.2 Submap of vendor fix path state transitions with public awareness (V, F,

D, P) 10
Figure 2.3 Submap of non-fix path state transitions (P, X, A) 12
Figure 2.4 Complete map of the 32 possible states in our model of vulnerability dis-

closure and their allowed transitions (V, F, D, P, X, A) 14

Figure 3.1 The Lattice of Possible CVD Histories: A Hasse Diagram of the partial
ordering (H,≤H) of ha ∈ H given D as defined in (3.8). The diagram flows
from least desirable histories at the bottom to most desirable at the top.
Histories that do not share a path are incomparable. Labels indicate the
index (row number) a of ha in Table 3.1. 22

Figure 4.1 Hasse Diagram of the partial order (D,≤D) defined in Eq. 4.4 where the
rarity of each d as shown in Table 4.1 is taken to reflect skill. Nodes at the
top of the diagram reflect the most skill. 27

Figure 5.1 Publicly Disclosed Microsoft Vulnerabilities 2017-2020 31
Figure 5.2 Selected Skill Measurement for Publicly Disclosed Microsoft Vulnerabili-

ties 2017-2020 32
Figure 5.3 Simulated skill αd for Microsoft 2017-2020 based on observations of F ≺

P and F ≺ A over the period. 33
Figure 5.4 αP≺X for all NVD vulnerabilities 2013-2019 (X observations based on

Metasploit and ExploitDb) 34
Figure 5.5 Simulated skill αd for all NVD vulnerabilities 2013-2019 based on observa-

tions of P ≺ X over the period. 34

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY iv
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

List of Tables

Table 2.1 Vulnerability Lifecycle Events: Comparing Models. Symbols for our model
are defined in §2.4. 5

Table 2.2 Event status labels 7
Table 2.3 Transition function δV FD for the vendor fix path 9
Table 2.4 Transition function δV FDP for the vendor fix path incorporating public

awareness 10
Table 2.5 Transition function δPXA for the non-fix path transitions 11
Table 2.6 Transition function δ for the full model 13
Table 2.7 Semantic encoding of states in S 15

Table 3.1 Possible Histories h ∈ H of CVD 16
Table 3.1 Possible Histories h ∈ H of CVD 17
Table 3.1 Possible Histories h ∈ H of CVD 18
Table 3.2 Desired event precedence mapped to subsets of states 20
Table 3.3 Ordered pairs of events where row ≺ col (Key: - = impossible, r = required,

d = desired, u = undesired) 21
Table 3.4 Sparse state transition matrix and state PageRank assuming equiprobable

transitions in a random walk over S as shown Figure 2.4.) 23

Table 4.1 Expected Frequency of row ≺ col when events are chosen uniformly from
possible transitions in each state 26

Table 6.1 Applicability of Forum of Incident Response and Security Teams (FIRST)
MPCVD scenarios to subsets of states in our model 39

Table 6.2 CVD Roles and the transitions they can control. Roles can be combined
(vendor + deployer, finder + coordinator, etc.). Roles are based on [30]. 40

Table 6.3 Ordering Preferences for Selected Stakeholders. 41
Table 6.4 Mapping Subsets of States Q to SSVC v2.0 49
Table 6.5 Mapping Subsets of States Q to Common Vulnerability Scoring Sys-

tem (CVSS) v3.1 50
Table 6.6 PageRank and normalized state probabilities for states in V f 50
Table 6.7 CVD Action Rules based on States 52
Table 6.7 CVD Action Rules based on States 53
Table 6.7 CVD Action Rules based on States 54

Table A.1 CVD Action Options for State vfdpxa 64
Table A.2 CVD Action Options for State vfdpxA 65
Table A.3 CVD Action Options for State vfdpXa 66
Table A.4 CVD Action Options for State vfdpXA 67
Table A.5 CVD Action Options for State vfdPxa 68
Table A.6 CVD Action Options for State vfdPxA 69
Table A.7 CVD Action Options for State vfdPXa 70
Table A.8 CVD Action Options for State vfdPXA 71
Table A.9 CVD Action Options for State V fdpxa 72
Table A.10 CVD Action Options for State V fdpxA 73
Table A.11 CVD Action Options for State V fdpXa 74
Table A.12 CVD Action Options for State V fdpXA 75
Table A.13 CVD Action Options for State V fdPxa 76
Table A.14 CVD Action Options for State V fdPxA 77
Table A.15 CVD Action Options for State V fdPXa 78

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY v
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Table A.16 CVD Action Options for State V fdPXA 79
Table A.17 CVD Action Options for State V Fdpxa 80
Table A.18 CVD Action Options for State V FdpxA 81
Table A.19 CVD Action Options for State V FdpXa 82
Table A.20 CVD Action Options for State V FdpXA 83
Table A.21 CVD Action Options for State V FdPxa 84
Table A.22 CVD Action Options for State V FdPxA 85
Table A.23 CVD Action Options for State V FdPXa 86
Table A.24 CVD Action Options for State V FdPXA 87
Table A.25 CVD Action Options for State V FDpxa 88
Table A.26 CVD Action Options for State V FDpxA 89
Table A.27 CVD Action Options for State V FDpXa 90
Table A.28 CVD Action Options for State V FDpXA 91
Table A.29 CVD Action Options for State V FDPxa 92
Table A.30 CVD Action Options for State V FDPxA 93
Table A.31 CVD Action Options for State V FDPXa 94
Table A.32 CVD Action Options for State V FDPXA 95

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY vi
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Acknowledgments

We offer our sincere gratitude to the United States Senators, Members of Congress, and their
staffs, whose insightful questions surrounding the coordinated disclosure of the Meltdown and
Spectre vulnerabilities prompted us to recognize the need for a better way to reason about
and describe what “good” vulnerability disclosure outcomes look like.

We also thank the anonymous reviewers at the ACM Journal Digital Threats: Research and
Practice for their helpful feedback on an earlier version of this report.

CERT/CC staff were instrumental in reviewing and providing feedback on the model de-
scribed in this report as it developed. We are grateful for the opportunity to have them as
colleagues.

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY vii
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY viii
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Abstract

Coordinated Vulnerability Disclosure (CVD) stands as a consensus response to the persistent
fact of vulnerable software, yet few performance indicators have been proposed to measure its
efficacy at the broadest scales. In this report, we seek to fill that gap. We begin by deriving a
model of all possible CVD histories from first principles, organizing those histories into a par-
tial ordering based on a set of desired criteria. We then compute a baseline expectation for
the frequency of each desired criteria and propose a new set of performance indicators to mea-
sure the efficacy of CVD practices based on the differentiation of skill and luck in observation
data. As a proof of concept, we apply these indicators to a variety of longitudinal observa-
tions of CVD practice and find evidence of significant skill to be prevalent. We conclude with
reflections on how this model and its accompanying performance indicators could be used by
various stakeholders (vendors, system owners, coordinators, and governments) to interpret the
quality of their CVD practices.

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY ix
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY x
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

1 Introduction

Software vulnerabilities remain pervasive. To date, there is little evidence that we are any-
where close to equilibrium between the introduction and elimination of vulnerabilities in de-
ployed systems. The practice of Coordinated Vulnerability Disclosure (CVD) emerged as
part of a growing consensus to develop normative behaviors in response to the persistent
fact of vulnerable software. Yet while the basic principles of CVD have been established
[17, 31, 30, 14], there has been limited work to measure the efficacy of CVD programs, espe-
cially at the scale of industry benchmarks. ISO 29147 [31] sets out the goals of vulnerability
disclosure:

a) ensuring that identified vulnerabilities are addressed;
b) minimizing the risk from vulnerabilities;
c) providing users with sufficient information to evaluate risks from vulnerabilities
to their systems;
d) setting expectations to promote positive communication and coordination
among involved parties.

Meanwhile, the use of third party libraries and shared code components across vendors and
their products creates a need to coordinate across those parties whenever a vulnerability is
found in a shared component. While it can be difficult for stakeholders to ascertain the preva-
lence of components across products—and efforts such as the National Telecommunications
and Information Administration (NTIA)’s Software Bill of Materials (SBOM) [55] are working
to address the informational aspects of that problem—our concern here is the coordination of
multiple parties in responding to the vulnerability.

Multi-Party Coordinated Vulnerability Disclosure (MPCVD) is a more complex form of CVD,
involving the necessity to coordinate numerous stakeholders in the process of recognizing and
fixing vulnerable products. Initial guidance from the Forum of Incident Response and Security
Teams (FIRST) acknowledges the additional complexity that can arise in MPCVD cases [42].
The need for MPCVD arises from the complexities of the software supply chain. Its impor-
tance was illustrated by the Senate hearings about the Meltdown and Spectre vulnerabili-
ties [39]. Nevertheless, the goals of CVD apply to MPCVD, as the latter is a generalization
of the former.

The difficulty of MPCVD derives from the diversity of its stakeholders: different software ven-
dors have different development budgets, schedules, tempos, and analysis capabilities to help
them isolate, understand, and fix vulnerabilities. Additionally, they face diverse customer
support expectations and obligations, plus an increasing variety of regulatory regimes gov-
erning some stakeholders but not others. For these reasons and many others, practitioners of
MPCVD highlight fairness as a core difficulty in coordinating disclosures across vendors [30].

With the goal of minimizing the societal harm that results from the existence of a vulnera-
bility in multiple products spread across multiple vendors, our motivating question is, “What
does fair mean in MPCVD?” Optimizing MPCVD directly is not currently possible, as we
lack a utility function to map from the events that occur in a given case to the impact that
case has on the world. While this document does not fully address that problem, it sets out a
number of steps toward a solution. We seek a way to sort MPCVD cases into better outcomes
or worse outcomes. Ideally, the sorting criteria should based on unambiguous principles that
are agreed upon and intelligible by all interested parties. Further, we seek a way to measure
relevant features across MPCVD cases. Feature observability is a key factor: our measurement
needs to be simple and repeatable without overly relying on proprietary or easily hidden infor-
mation.

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 1
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

While a definition of fairness in MPCVD is a responsibility for the broader community, we
focus on evaluating the skill of the coordinator. We expect this contributes to fairness based
on the EthicsfIRST principles of ethics for incident response teams promoted by FIRST [22].1

To that end, our research questions are:

RQ1 : Construct a model of CVD states amenable to analysis and also future generalization
to MPCVD.

RQ2 : What is a reasonable baseline expectation for ordering of events in the model of CVD?

RQ3 : Given this baseline and model, does CVD as observed “in the wild” demonstrate skill-
ful behavior?

This paper primarily focuses on the simpler case of CVD, with some initial thoughts towards
extending it to MPCVD. This focus provides an opportunity for incremental analysis of the
success of the model; more detailed MPCVD modeling can follow in future work.

1.1 Approach

The CERT® Coordination Center (CERT/CC) has a goal to improve the MPCVD process.
Improvement involves automation. The creation of VINCE2 is a significant step toward this
goal, as it has helped us to recognize gaps in our own processes surrounding the MPCVD
services we provide. As part of the Software Engineering Institute (SEI) at Carnegie Mellon
University (CMU), we also recognize that automation is made better when we can formalize
process descriptions. In this report, we construct a toy model of the CVD process with the
interest of a better understanding of how it might be formalized.

Our intent with this report is not to provide a complete solution to automate either CVD or
MPCVD. Rather, this report is an attempt to systematize the basics in a way that can be
extended by future work toward the specification of protocols that facilitate the automation of
coordination tasks within MPCVD.

The model presented here provides a foundation on which we might build an MPCVD pro-
tocol. While we stop well short of a full protocol spec, we feel that this report contributes to
improved understanding of the problems that such a protocol would need to address. And al-
though an actual protocol would need to support a far more complicated process (i.e., the co-
ordination and resolution of actual MPCVD cases), our contention is that we should be able
to derive and learn quite a few of the basics from this toy model. A protocol that works on
the toy model might not work in the real world. But any proposed real-world protocol should
probably work on the toy model. The model is intended to be a sort of minimum acceptance
test for any future protocol—if a proposed MPCVD process doesn’t improve outcomes even in
the toy model, one might wonder what it is doing.

1.2 Organization of This Document

We begin by deriving a model of all possible CVD case states and histories from first princi-
ples in §2 and §3, organizing those histories into a partial ordering based on a set of desired
criteria in §4. We then compute a baseline expectation for the frequency of each desired cri-
teria and propose a new set of performance indicators to measure the efficacy of CVD prac-
tices based on the differentiation of skill and luck in observation data in §5. As a proof of con-
cept, we apply these indicators to a variety of longitudinal observations of CVD practice and
find evidence of significant skill to be prevalent. In §6, we explore some of the implications
and uses of such a model in any CVD case before extending it to MPCVD. The remainder

1Specifically, skill in our model will align with fulfilling the duty of coordinated vulnerability disclosure, duty of confi-
dentiality, duty to inform, duty to team ability, and duty of evidence-based reasoning.

2CERT/CC Vulnerability Information and Coordination Environment (VINCE). https://www.kb.cert.org/vince/

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 2
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

https://www.kb.cert.org/vince/

of that section offers reflections on how this model and its accompanying performance indi-
cators could be used by various stakeholders (vendors, system owners, coordinators, and gov-
ernments) to interpret the quality of their CVD and MPCVD practices We continue with a
review of related work in §7, future work in §8, and give our conclusions in §9.

An appendix summarizing each state in the model in conjunction with the discussion in §6 is
also provided.

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 3
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2 A State-based model for CVD

Our goal is to create a toy model of the MPCVD process that can shed light on the more
complicated real thing. We begin by building up a state map of what FIRST refers to as bi-
lateral CVD [42], which we will later expand into the MPCVD space. We start by defining a
set of events of interest. We then use these to construct model states and the transitions be-
tween them.

2.1 Events in a Vulnerability Lifecycle

The goal of this section is to establish a model of events that affect the outcomes of vulner-
ability disclosure. Our model builds on previous models of the vulnerability lifecycle, specif-
ically those of Arbaugh et al. [3], Frei et al. [24], and Bilge and et al. [10]. A more thorough
literature review of vulnerability lifecycle models can be found in [37]. We are primarily inter-
ested in events that are usually observable to the stakeholders of a CVD case. Stakeholders
include software vendors, vulnerability finder/reporters, coordinators, and deployers [30]. A
summary of this model comparison is shown in Table 2.1.

Since we are modeling only the disclosure process, we assume the vulnerability both exists
and is known to at least someone. Therefore we ignore the birth (creation, introduced) and
discovery states as they are implied at the beginning of all possible vulnerability disclosure
histories. We also omit the anti-virus signatures released event from [10] since we are not at-
tempting to model vulnerability management operations in detail.

The first event we are interested in modeling is Vendor Awareness. This event corresponds
to Disclosure in [3] and vulnerability discovered by vendor in [10] (this event is not modeled
in [24]). In the interest of model simplicity, we are not concerned with how the vendor came
to find out about the vulnerability’s existence—whether it was found via internal testing, re-
ported by a security researcher, or noticed as the result of incident analysis.

The second event we include is Public Awareness of the vulnerability. This event corresponds
to Publication in [3], time of public disclosure in [24], and vulnerability disclosed publicly
in [10]. The public might find out about a vulnerability through the vendor’s announcement
of a fix, a news report about a security breach, a conference presentation by a researcher, by
comparing released software versions as in [57, 56], or a variety of other means. As above, we
are primarily concerned with the occurrence of the event itself rather than the details of how
the public awareness event arises.

The third event we address is Fix Readiness, by which we refer to the vendor’s creation and
possession of a fix that could be deployed to a vulnerable system, if the system owner knew of
its existence. Here we differ somewhat from [3, 24, 10] in that their models address the release
of the fix rather than its readiness for release.

The reason for this distinction will be made clear, but first we must mention that Fix De-
ployed is simply that: the fix exists, and it has been deployed.

We chose to include the Fix Ready, Fix Deployed, and Public Awareness events so that our
model could better accommodate two common modes of modern software deployment:

• shrinkwrap - The traditional distribution mode in which the vendor and deployer are
distinct entities and deployers must be made aware of the fix before it can be deployed.
In this case, which corresponds to the previously mentioned fix release event, both fix
readiness and public awareness are necessary for the fix to be deployed.

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 4
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Table 2.1: Vulnerability Lifecycle Events: Comparing Models. Symbols for our model are de-
fined in §2.4.

Arbaugh et al. [3] Frei et al. [24] Bilge et al. [10] Our Model

Birth creation (tcreat) introduced (tc) (implied)
Discovery discovery (tdisco) n/a (implied)
Disclosure n/a discovered by

vendor (td)
Vendor Awareness
(V)

n/a patch availability (tpatch) n/a Fix Ready (F)
Fix Release n/a patch released (tp) Fix Ready and

Public Awareness
Publication public disclosure (tdiscl) disclosed publicly

(t0)
Public Awareness
(P)

n/a patch installation (tinsta) patch deployment
completed (ta)

Fix Deployed (D)

Exploit Automation exploit availability (texplo) Exploit released in
wild (te)

n/a

Exploit Automation n/a n/a Exploit Public (X)
Exploit Automation n/a n/a Attacks Observed

(A)
n/a n/a anti-virus signa-

tures released
(ts)

n/a

• SaaS - A more recent delivery mode in which the vendor also plays the role of deployer.
In this distribution mode, fix readiness can lead directly to fix deployed with no depen-
dency on public awareness.

We note that so-called silent fixes by vendors can sometimes result in a fix being deployed
without public awareness even if the vendor is not the deployer. Thus, it is possible (but un-
likely) for fix deployed to occur before public awareness even in the shrinkwrap case above. It
is also possible, and somewhat more likely, for public awareness to occur before fix deployed in
the SaaS case as well.

We diverge from [3, 24, 10] again in our treatment of exploits and attacks. Because attacks
and exploit publication are often discretely observable events, the broader concept of exploit
automation in [3] is insufficiently precise for our use. Both [24, 10] focus on the availability
of exploits rather than attacks, but the observability of their chosen events is hampered by
attackers’ incentives to maintain stealth. Frei et al. [24] uses exploit availability, whereas Bilge
et al. [10] calls it exploit released in wild. Both refer to the state in which an exploit is known
to exist. This can arise for at least two distinct reasons, which we wish to differentiate:

• exploit public—the method of exploitation for a vulnerability was made public in suffi-
cient detail to be reproduced by others. Posting proof of concept (PoC) code to a widely
available site or including the exploit in a commonly available exploit tool meets this
criteria; privately held exploits do not.

• attacks observed—the vulnerability was observed to be exploited in attacks. This case
requires evidence that the vulnerability was exploited; we can then presume the exis-
tence of an exploit regardless of its availability to the public. Analysis of malware from
an incident might meet attacks observed but not exploit public, depending on how closely
the attacker holds the malware. Use of a public exploit in an attack meets both exploit
public and attacks observed.

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 5
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Therefore, while we appreciate the existence of a hidden exploit exists event as causal prede-
cessor of both exploit public and attacks observed, we assert no causal relationship between
exploit public and attacks observed in our model. We make this choice in the interest of ob-
servability. The exploit exists event is difficult to consistently observe independently. Its oc-
currence is nearly always inferred from the observation of either exploit public or attacks ob-
served.

Further discussion of related work can be found in §7.

2.2 Notation

Before we discuss CVD states (§2.3), transitions (§2.4), or possible histories (§3) in the vul-
nerability life cycle, we need to formally define our terms. In all of these definitions, we take
standard Zermelo-Fraenkel set theory. The concept of sequences extends set theory to include
a concept of ordered sets. From them, we adopt the following notation:

• {. . . } An unordered set which makes no assertions about sequence

• (. . .) An ordered set in which the items occur in that sequence

• The normal proper subset (⊂), equality (=), and subset (⊆) relations between sets

• The precedes (≺) relation on members of an ordered set: σi ≺ σj if and only if σi, σj ∈
s and i < j where s is a sequence as defined in (3.1)

2.3 Deterministic Finite State Automata

Transitions during CVD resemble a Deterministic Finite Automaton (DFA) in that the tran-
sitions available to the current state are dependent on the state itself. Although DFAs are of-
ten used to determine whether the final or end state is acceptable, for analyzing CVD we are
more interested in the order of the transitions. The usual DFA notation will still be effective
for this modeling goal.

A DFA is defined as a 5-tuple (Q,Σ, δ, q0, F) [35].

• Q is a finite set of states

• Σ is a finite set of input symbols

• δ is a transition function δ : Q× Σ −→ Q

• q0 ∈ Q is an initial state

• F ⊆ Q is a set of final (or accepting) states

In our model, the state of the world is a specification of the current status of all the events
in the vulnerability lifecycle model described in §2.1. We represent each of these statuses in
vulnerability coordination by a letter for that part of the state of the world. For example, v
means no vendor awareness and V means vendor is aware. The complete set of status labels is
given in Table 2.2.

A state q represents the status of each of the six events. The possible states are all the com-
binations of the six event statuses. For state labels, lowercase letters designate events that
have not occurred and uppercase letters designate events that have occurred in a particular
state. For example, the state V FdpXa represents vendor is aware, fix is ready, fix not de-
ployed, no public awareness, exploit is public, and no attacks. The order in which the events
occurred does not matter when defining the state. However, we will observe a notation con-
vention keeping the letter names in the same case-insensitive order (v, f, d, p, x, a).

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 6
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Table 2.2: Event status labels

Status Meaning

v Vendor is not aware of vulnerability
V Vendor is aware of vulnerability
f Fix is not ready
F Fix is ready
d Fix is not deployed
D Fix is deployed
p Public is not aware of vulnerability
P Public is aware of vulnerability
x No exploit has been made public
X Exploit has been made public
a No attacks have been observed
A Attacks have been observed

All vulnerabilities start in the base state q0 in which no events have occurred.

q0 = vfdpxa (2.1)

The lone final state in which all events have occurred is V FDPXA.

F = {V FDPXA} (2.2)

Note that this is a place where our model of vulnerability lifecycle histories diverges from
what we expect to observe in vulnerability cases in the real world. There is ample evidence
that most vulnerabilities never have exploits published or attacks observed [29, 34]. Therefore,
practically speaking we might expect vulnerabilities to wind up in one of

F ′ = {V FDPxa, V FDPxA, V FDPXa, V FDPXA}

at the time a case is closed. However, because we are modeling the observation of events as
the transitions of a DFA, we allow for the possibility that an observed history remains incom-
plete at the time of case closure—in other words, it remains possible for exploits to be pub-
lished or attacks to be observed long after a CVD case has been closed.

Intermediate states can be any combination of statuses, with the caveats elaborated in §2.4.
In other words, valid states must contain one of the following strings: vfd, V fd, V Fd, or
V FD.

As a result, there are thirty-two possible states, which we define as the set of all states Q in
(2.3).

Q def
= {vfdpxa, vfdPxa, vfdpXa, vfdPXa,

vfdpxA, vfdPxA, vfdpXA, vfdPXA,

V fdpxa, V fdPxa, V fdpXa, V fdPXa,

V fdpxA, V fdPxA, V fdpXA, V fdPXA,

V Fdpxa, V FdPxa, V FdpXa, V FdPXa,

V FdpxA, V FdPxA, V FdpXA, V FdPXA,

V FDpxa, V FDPxa, V FDpXa, V FDPXa,

V FDpxA, V FDPxA, V FDpXA, V FDPXA}

(2.3)

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 7
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

When referring to a subset of states from Q, any unlisted status remains unconstrained. For
example,

QV FdP = V FdP = {V FdPxa, V FdPxA, V FdPXa, V FdPXA}

In most cases, we will use the non-subscripted notation (e.g., V FdP). We will use the sub-
scripted notation when it is needed to avoid confusion—for example, to disambiguate the sta-
tus v from the set of states Qv ⊂ Q in which the status v holds.

2.4 State Transitions

In this section, we elaborate on the input symbols and transition function for our DFA.

2.4.1 Input Symbols

The input symbols to our DFA correspond to observations of the events outlined in Table 2.1.
For our model, an input symbol σ is “read” when a participant observes a change in status
(the vendor is notified, an exploit has been published, etc.). For the sake of simplicity, we be-
gin with the assumption that observations are globally known—that is, a status change ob-
served by any CVD participant is known to all. In the real world, the CVD process itself is
well poised to ensure eventual consistency with this assumption through the communication
of perceived case state across coordinating parties. We define the set of input symbols for our
DFA as:

Σ
def
= {V,F,D,P,X,A} (2.4)

2.4.2 Transition Function

A DFA transitions between states according to its transition function δ based on which sym-
bol is input to δ. On our way to defining the transition function δ for the complete model, we
build up the allowed state transitions according to subsets of the complete set of six event sta-
tuses. State transitions correspond to the occurrence of a single event σ ∈ Σ. Because states
correspond to the status of events that have or have not occurred, and all state transitions are
non-reversible, the result will be an acyclic directed graph of states beginning at q0 = vfdpxa
and ending at F = {V FDPXA} with allowed transitions as the edges.

In our model, many inputs would represent errors because no transition is possible given the
model constraints we are about to describe. Yet a DFA requires a transition from every state
for every possible input value. In the transition function tables to follow, we represent these
transitions as “-”. In an implementation these would result in an error condition and rejection
of the input string. The state diagrams likewise omit the error state, although it is implied for
any transition not explicitly depicted.

It is common to use subscripts on the transition function δ corresponding to the partial func-
tion δσ on states for a specific symbol σ ∈ Σ. However, because the symbols in Σ are so
closely tied to both the state names and the transitions between them, we will avoid the
subscripts and just use the symbols themselves (bold capital letters) as proxies for the sub-
scripted transition function. For notation purposes, transitions between sets of states will use
an arrow with the specific event σ ∈ Σ as its label (

σ−→). For example,

vfdpxa
V−→ V fdpxa

is equivalent to

δV (vfdpxa) = V fdpxa and also δ(vfdpxa,V) = V fdpxa

and indicates the transition from the base state caused by notifying the vendor (V).

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 8
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Table 2.3: Transition function δV FD for the vendor fix path

State (q) V F D

vfd V fd - -
V fd - V Fd -
V Fd - - V FD
V FD - - -

vfd start

V fd

V Fd

V FD

V

F

D

Figure 2.1: Submap of vendor fix path state transitions (V, F, D)

Vendor Fix Path The primary aspect of our model is the vendor fix flow. The relevant
events and corresponding transitions in this dimension are Vendor Awareness (V), Fix Avail-
able (F), and Fix Deployed (D). A vendor cannot produce a fix and make it ready if the ven-
dor is not aware of the problem, and the fix cannot be deployed if it is not ready. Therefore,
we take the precedence relation V ≺ F ≺ D as a strong constraint on possible sequences.

The DFA specification for this submodel is given in (2.5). The resulting state subsets and
transitions are as shown in Table 2.3 and Figure 2.1. The double circle in Figure 2.1 and sub-
sequent state diagrams indicates the final state F for that submap.

QV FD = {vfd, V fd, V Fd, V FD}
ΣV FD = {V,F,D}
δV FD = see Table 2.3

q0V FD = vfd

FV FD = {V FD}

(2.5)

Private vs Public Awareness A second aspect of vulnerability disclosure is whether or not
a vulnerability is known to the public. The public may become aware of a vulnerability for a
number of reasons, including:

• the vendor publishes a fix

• the researcher publishes a report about the vulnerability

• exploit code is made available to the public

• attackers are found to be exploiting the vulnerability and this information is made pub-
lic

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 9
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Table 2.4: Transition function δV FDP for the vendor fix path incorporating public awareness

State V F D P

vfdp V fdp - - vfdP
V fdp - V Fdp - V fdP
V Fdp - - V FDp V FdP
V FDp - - - V FDP
vfdP V fdP - - -
V fdP - V FdP - -
V FdP - - V FDP -
V FDP - - - -

vfdp start

V fdp

V Fdp

V FDp

vfdP

V fdP

V FdP

V FDP

V
V

F

F
D

D

P

P

P

P

Figure 2.2: Submap of vendor fix path state transitions with public awareness (V, F, D, P)

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 10
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Table 2.5: Transition function δPXA for the non-fix path transitions

State P X A

pxa Pxa pXa pxA
pxA PxA pXA -
pXa PXa - -
pXA PXA - -
Pxa - PXa PxA
PxA - PXA -
PXa - - PXA
PXA - - -

Our model assumes that vendors immediately become aware of what the public is aware of.
Therefore, all states in vP are unstable, and must lead to the corresponding state in V P in
the next step.

CVD attempts to move vulnerabilities through states belonging to p until the process reaches
a state in V Fdp at least. Vendors that can control deployment will likely prefer the transi-

tion from V FDp
P−→ V FDP . On the other hand, vulnerabilities requiring system owner ac-

tion to deploy fixes will be forced to transition through V Fdp
P−→ V FdP

D−→ V FDP instead
since public awareness is required in order to prompt such action. This implies that states in
V FDp are unreachable to vendors whose distribution model requires system owner action to
deploy fixes.

The DFA specification for this submodel is given in (2.6). Table 2.4 shows the transition func-
tion δV FDP , while Figure 2.2 depicts the transitions among these states.

QV FDP = {vfdp, vfdP, V fdp, V fdP,
V Fdp, V FdP, V FDp, V FDP}

ΣV FDP = {V,F,D,P}
δV FDP = see Table 2.4

q0V FDP = vfdp

FV FDP = {V FDP}

(2.6)

Public awareness, exploits, and attacks Before fully integrating all thirty two states, we
pause here to develop a three dimensional sub-model that highlights the interaction of public
awareness, exploit publication, and attacks. Unlike the causal relationship representing the
vendor process in Figure 2.1, these three transitions can occur independently. We therefore
treat them as their own dimensions, as shown in Figure 2.3.

Because we defined X to correspond to the public availability of an exploit, as a simplifica-
tion we impose the constraint that exploit publication leads directly to public awareness when
the public was previously unaware of the vulnerability. For practical purposes, this constraint
means that all states in pX are unstable and must lead to the corresponding state in PX in
the subsequent step. As a result, transitions from pXa to pXA are disallowed, as reflected in
Figure 2.3. The transition function δPXA is given in Table 2.5. Further discussion of this tran-
sition can be found in §6.5.1.

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 11
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

pxa start

pxA

pXa

pXA

Pxa

PxA

PXa

PXA

A

X

P

X

P

P

P

A

X

X

A

Figure 2.3: Submap of non-fix path state transitions (P, X, A)

QPXA = {pxa, pxA, pXa, pXA,
Pxa, PxA, PXa, PXA}

ΣPXA = {P,X,A}
δPXA = see Table 2.5

q0PXA = pxa

FPXA = {PXA}

(2.7)

In this model, attacks observed need not immediately cause public awareness, although that
can happen. Our reasoning is that the connection between attacks and exploited vulnerabil-
ities is often made later during incident analysis. While the attack itself may have been ob-
served much earlier, the knowledge of which vulnerability it targeted may be delayed until
after other events have occurred. In other words, although pA does not require an immediate

transition to PA the way pX
P−→ PX does, it does seem plausible that the likelihood of P

occurring increases when attacks are occurring. Logically, this is a result of there being more
ways for the public to discover the vulnerability when attacks are happening than when they
are not. For states in pa, the public depends on the normal vulnerability discovery and re-
porting process. States in pA include that possibility and add the potential for discovery as a
result of security incident analysis.

Five Dimensions of CVD By composing these sub-parts, we arrive at our complete state
transition model, which we construct by combining the vendor fix path vfd→ V fd→ V Fd→
V FD defined by (2.5) and its extension in (2.6) with the PXA cube defined by (2.7). The
complete map is shown in Figure 2.4. We also can now define the transition function δ for the
entire model, as shown in Table 2.6. A summary of the complete DFA specification is given in
(2.8).

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 12
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Table 2.6: Transition function δ for the full model

State Σ
q V F D P X A

vfdpxa V fdpxa - - vfdPxa vfdpXa vfdpxA
vfdpxA V fdpxA - - vfdPxA vfdpXA -
vfdpXa - - - vfdPXa - -
vfdpXA - - - vfdPXA - -
vfdPxa V fdPxa - - - - -
vfdPxA V fdPxA - - - - -
vfdPXa V fdPXa - - - - -
vfdPXA V fdPXA - - - - -
V fdpxa - V Fdpxa - V fdPxa V fdpXa V fdpxA
V fdpxA - V FdpxA - V fdPxA V fdpXA -
V fdpXa - - - V fdPXa - -
V fdpXA - - - V fdPXA - -
V fdPxa - V FdPxa - - V fdPXa V fdPxA
V fdPxA - V FdPxA - - V fdPXA -
V fdPXa - V FdPXa - - - V fdPXA
V fdPXA - V FdPXA - - - -
V Fdpxa - - V FDpxa V FdPxa V FdpXa V FdpxA
V FdpxA - - V FDpxA V FdPxA V FdpXA -
V FdpXa - - - V FdPXa - -
V FdpXA - - - V FdPXA - -
V FdPxa - - V FDPxa - V FdPXa V FdPxA
V FdPxA - - V FDPxA - V FdPXA -
V FdPXa - - V FDPXa - - V FdPXA
V FdPXA - - V FDPXA - - -
V FDpxa - - - V FDPxa V FDpXa V FDpxA
V FDpxA - - - V FDPxA V FDpXA -
V FDpXa - - - V FDPXa - -
V FDpXA - - - V FDPXA - -
V FDPxa - - - - V FDPXa V FDPxA
V FDPxA - - - - V FDPXA -
V FDPXa - - - - - V FDPXA
V FDPXA - - - - - -

Q = see (2.3)
Σ = see (2.4)
δ = see Table 2.6

q0 = see (2.1)
F = see (2.2)

(2.8)

In this combined model, each point along the vendor fix flow in Figure 2.1 corresponds to an
instance of the public/exploit/attack cube from Figure 2.3. Figure 2.4 shows each of these as
distinct cubes embedded in the larger model.

The ignorant vendor cube (vfd) Found at the lower right of Figure 2.4, the vfd cube is the
least stable of the four because many of its internal transitions are disallowed, owing
to the instability of both pX and vP . The effect is a higher likelihood of exiting this

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 13
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

vfd
pxa start

vfd
pxA

vfd
pXa

vfd
pXA

vfd
Pxa

vfd
PxA

vfd
PXa

vfd
PXA

V fd
pxa

V fd
pxA

V fd
pXa

V fd
pXA

V fd
Pxa

V fd
PxA

V fd
PXa

V fd
PXA

V Fd
pxa

V Fd
pxA

V Fd
pXa

V Fd
pXA

V Fd
Pxa

V Fd
PxA

V Fd
PXa

V Fd
PXA

V FD
pxa

V FD
pxA

V FD
pXa

V FD
pXA

V FD
Pxa

V FD
PxA

V FD
PXa

V FD
PXA

A

X

P

V

X

P

A
F

P

X

A
D

A

X

P

Figure 2.4: Complete map of the 32 possible states in our model of vulnerability disclosure
and their allowed transitions (V, F, D, P, X, A)

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 14
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Table 2.7: Semantic encoding of states in S

Bit Position 0 1
0 Qv ∪QD QV d
1 Qf QF
2 Qp QP
3 Qx QX
4 Qa QA

cube than the others. The practical interpretation is that vendors are likely to become
aware of vulnerabilities that exist in their products barring significant effort on the part
of adversaries to prevent exiting the vfd states.

The vendor aware cube (V fd) In this cube, the vendor is aware of the vulnerability, but the
fix is not yet ready. Vulnerabilities remain in V fd until the vendor produces a fix.

The fix available cube (V Fd) States in this cube share the fact that a fix is available but not
yet deployed. Many publicly-disclosed vulnerabilities spend a sizable amount of time in
this cube as they await system owner or deployer action to deploy the fix.

The fix deployed cube (V FD) This cube is a sink: once it is reached, there are no exits. At-
tacks attempted in this cube are expected to fail. The broader the scope of one’s con-
cern in terms of number of systems, the less certain one can be of having reached this
cube. It is rather easy to tell when a single installed instance of vulnerable software has
been patched. It is less easy to tell when the last of thousands or even millions of vul-
nerable software instances across an enterprise has been fixed.

The states and transitions of the model can be represented as a partial Hamming cube in in
5 dimensions. In this representation, each state maps onto a binary value between 00000 and
11111, corresponding to the 32 vertices of the 5-dimensional Hamming Cube. The semantics
of each bit position from left to right are given in Table 2.7. Correspondingly, each transition
represents a single bit flip in the state encoding. Some edges (transitions) are disallowed by
the causal requirements described in this section and formalized in the next section (see (3.3),
(3.4), and (3.5)). This observation serves as the basis of the visualization given in Figure 2.4.

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 15
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3 Sequences of Events and Possible Histories in CVD

In §2, we began by identifying a set of events of interest in CVD cases. Then we constructed
a state model describing how the occurrence of these events can interact with each other. In
this section, we look at paths through the resulting state model.

A sequence s is an ordered set of some number of events σi ∈ Σ for 1 ≤ i ≤ n and the length

of s is |s| def= n. In other words, a sequence s is an input string to the DFA defined in §2.

s
def
= (σ1, σ2, . . . σn) (3.1)

A vulnerability disclosure history h is a sequence s containing one and only one of each of the
symbols in Σ; by definition |h| = |Σ| = 6. Note this is a slight abuse of notation; | | represents
both sequence length and the cardinality of a set.

h
def
= s :∀σi, σj ∈ s it is the case that σi 6= σj and

∀σk ∈ Σ it is the case that ∃σi ∈ s such that σk = σi
(3.2)

where two members of the set Σ are equal if they are represented by the same symbol and
not equal otherwise. The set of all potential histories, Hp, is a set of all the sequences h that
satisfy this definition.

3.1 The Possible Histories of CVD

Given that a history h contains all six events Σ in some order, there could be at most 720
(6P6 = 6! = 720) potential histories. However, because of the causal requirements outlined in
2.4.2, we know that Vendor Awareness (V) must precede Fix Ready (F) and that Fix Ready
must precede Fix Deployed (D).

The DFA developed in §2 provides the mechanism to validate histories: a history h is valid if
the DFA accepts it as a valid input string. Once this constraint is applied, only 70 possible
histories h ∈ Hp remain viable. We denote the set of all such valid histories as H and have
|H| = 70. The set of possible histories H corresponds to the 70 allowable paths through Q as
can be derived from Table 2.6 and Fig. 2.4.

The set of possible histories H is listed exhaustively in Table 3.1. Commas and parentheses
indicating ordered sets were omitted from column h for readability. The skill ranking function
on the histories will be defined in §4.4. The desirability of the history (Dh) will be defined in
§3.2. The expected frequency of each history fh is explained in §4.1.

Table 3.1: Possible Histories h ∈ H of CVD

h rank |Dh| fh D
≺

A

D
≺

P

D
≺

X

F
≺

A

F
≺

P

F
≺

X

P
≺

A

P
≺

X

V
≺

A

V
≺

P

V
≺

X

X
≺

A

0 AXPVFD 1 0 0.0833 0 0 0 0 0 0 0 0 0 0 0 0
1 APVXFD 2 2 0.0417 0 0 0 0 0 0 0 1 0 0 1 0
2 AVXPFD 3 2 0.0278 0 0 0 0 0 0 0 0 0 1 1 0

Continued on next page

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 16
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Table 3.1: Possible Histories h ∈ H of CVD

h rank |Dh| fh D
≺

A

D
≺

P

D
≺

X

F
≺

A

F
≺

P

F
≺

X

P
≺

A

P
≺

X

V
≺

A

V
≺

P

V
≺

X

X
≺

A

3 XPVAFD 4 3 0.1250 0 0 0 0 0 0 1 0 1 0 0 1
4 VAXPFD 5 3 0.0208 0 0 0 0 0 0 0 0 1 1 1 0
5 PVAXFD 6 4 0.0417 0 0 0 0 0 0 1 1 1 0 1 0
6 AVPXFD 7 3 0.0139 0 0 0 0 0 0 0 1 0 1 1 0
7 APVFXD 7 3 0.0208 0 0 0 0 0 1 0 1 0 0 1 0
8 XPVFAD 8 4 0.0625 0 0 0 1 0 0 1 0 1 0 0 1
9 VAPXFD 9 4 0.0104 0 0 0 0 0 0 0 1 1 1 1 0
10 PVXAFD 10 5 0.0417 0 0 0 0 0 0 1 1 1 0 1 1
11 VPAXFD 11 5 0.0104 0 0 0 0 0 0 1 1 1 1 1 0
12 PVAFXD 11 5 0.0208 0 0 0 0 0 1 1 1 1 0 1 0
13 VXPAFD 11 5 0.0312 0 0 0 0 0 0 1 0 1 1 1 1
14 AVPFXD 12 4 0.0069 0 0 0 0 0 1 0 1 0 1 1 0
15 APVFDX 13 4 0.0208 0 0 1 0 0 1 0 1 0 0 1 0
16 VAPFXD 14 5 0.0052 0 0 0 0 0 1 0 1 1 1 1 0
17 XPVFDA 15 5 0.0625 1 0 0 1 0 0 1 0 1 0 0 1
18 PVXFAD 16 6 0.0208 0 0 0 1 0 0 1 1 1 0 1 1
19 AVFXPD 17 4 0.0093 0 0 0 0 1 1 0 0 0 1 1 0
20 VPXAFD 18 6 0.0104 0 0 0 0 0 0 1 1 1 1 1 1
21 PVFAXD 19 6 0.0139 0 0 0 1 0 1 1 1 1 0 1 0
22 VXPFAD 19 6 0.0156 0 0 0 1 0 0 1 0 1 1 1 1
23 VPAFXD 20 6 0.0052 0 0 0 0 0 1 1 1 1 1 1 0
24 VAFXPD 21 5 0.0069 0 0 0 0 1 1 0 0 1 1 1 0
25 PVAFDX 22 6 0.0208 0 0 1 0 0 1 1 1 1 0 1 0
26 AVPFDX 23 5 0.0069 0 0 1 0 0 1 0 1 0 1 1 0
27 AVFPXD 24 5 0.0046 0 0 0 0 1 1 0 1 0 1 1 0
28 PVFXAD 25 7 0.0139 0 0 0 1 0 1 1 1 1 0 1 1
29 VPXFAD 25 7 0.0052 0 0 0 1 0 0 1 1 1 1 1 1
30 VAPFDX 26 6 0.0052 0 0 1 0 0 1 0 1 1 1 1 0
31 VAFPXD 27 6 0.0035 0 0 0 0 1 1 0 1 1 1 1 0
32 PVXFDA 28 7 0.0208 1 0 0 1 0 0 1 1 1 0 1 1
33 VPFAXD 29 7 0.0035 0 0 0 1 0 1 1 1 1 1 1 0
34 VFAXPD 30 6 0.0052 0 0 0 1 1 1 0 0 1 1 1 0
35 VXPFDA 31 7 0.0156 1 0 0 1 0 0 1 0 1 1 1 1
36 PVFADX 32 7 0.0139 0 0 1 1 0 1 1 1 1 0 1 0
37 VPAFDX 33 7 0.0052 0 0 1 0 0 1 1 1 1 1 1 0
38 VPFXAD 34 8 0.0035 0 0 0 1 0 1 1 1 1 1 1 1
39 AVFPDX 35 6 0.0046 0 0 1 0 1 1 0 1 0 1 1 0
40 VFAPXD 36 7 0.0026 0 0 0 1 1 1 0 1 1 1 1 0
41 VPXFDA 37 8 0.0052 1 0 0 1 0 0 1 1 1 1 1 1
42 PVFXDA 37 8 0.0139 1 0 0 1 0 1 1 1 1 0 1 1
43 VAFPDX 38 7 0.0035 0 0 1 0 1 1 0 1 1 1 1 0
44 VPFADX 39 8 0.0035 0 0 1 1 0 1 1 1 1 1 1 0
45 VFPAXD 40 8 0.0026 0 0 0 1 1 1 1 1 1 1 1 0
46 VFXPAD 41 8 0.0078 0 0 0 1 1 1 1 0 1 1 1 1
47 AVFDXP 42 6 0.0046 0 1 1 0 1 1 0 0 0 1 1 0
48 PVFDAX 43 8 0.0139 1 0 1 1 0 1 1 1 1 0 1 0
49 VAFDXP 44 7 0.0035 0 1 1 0 1 1 0 0 1 1 1 0
50 VPFXDA 45 9 0.0035 1 0 0 1 0 1 1 1 1 1 1 1
51 VFAPDX 46 8 0.0026 0 0 1 1 1 1 0 1 1 1 1 0
52 VFPXAD 46 9 0.0026 0 0 0 1 1 1 1 1 1 1 1 1
53 AVFDPX 47 7 0.0046 0 1 1 0 1 1 0 1 0 1 1 0

Continued on next page

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 17
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Table 3.1: Possible Histories h ∈ H of CVD

h rank |Dh| fh D
≺

A

D
≺

P

D
≺

X

F
≺

A

F
≺

P

F
≺

X

P
≺

A

P
≺

X

V
≺

A

V
≺

P

V
≺

X

X
≺

A

54 PVFDXA 48 9 0.0139 1 0 1 1 0 1 1 1 1 0 1 1
55 VPFDAX 49 9 0.0035 1 0 1 1 0 1 1 1 1 1 1 0
56 VFXPDA 50 9 0.0078 1 0 0 1 1 1 1 0 1 1 1 1
57 VFPADX 51 9 0.0026 0 0 1 1 1 1 1 1 1 1 1 0
58 VAFDPX 52 8 0.0035 0 1 1 0 1 1 0 1 1 1 1 0
59 VFADXP 53 8 0.0026 0 1 1 1 1 1 0 0 1 1 1 0
60 VPFDXA 54 10 0.0035 1 0 1 1 0 1 1 1 1 1 1 1
61 VFPXDA 55 10 0.0026 1 0 0 1 1 1 1 1 1 1 1 1
62 VFADPX 56 9 0.0026 0 1 1 1 1 1 0 1 1 1 1 0
63 VFPDAX 57 10 0.0026 1 0 1 1 1 1 1 1 1 1 1 0
64 VFDAXP 58 9 0.0026 1 1 1 1 1 1 0 0 1 1 1 0
65 VFPDXA 59 11 0.0026 1 0 1 1 1 1 1 1 1 1 1 1
66 VFDAPX 60 10 0.0026 1 1 1 1 1 1 0 1 1 1 1 0
67 VFDXPA 61 11 0.0052 1 1 1 1 1 1 1 0 1 1 1 1
68 VFDPAX 61 11 0.0026 1 1 1 1 1 1 1 1 1 1 1 0
69 VFDPXA 62 12 0.0026 1 1 1 1 1 1 1 1 1 1 1 1

Now that we have defined the set of histories H, we can summarize the effects of the transi-
tion function δ developed in §2.4 (Table 2.6) as a set of patterns it imposes on all histories
h ∈ H. First, the causality constraint of the vendor fix path must hold.

V ≺ F ≺ D (3.3)

Second, the model makes the simplifying assumption that vendors know at least as much as
the public does. In other words, all histories must meet one of two criteria: either Vendor
Awareness precedes Public Awareness (P) or Vendor Awareness must immediately follow it.

V ≺ P or P→ V (3.4)

Third, the model assumes that the public can be informed about a vulnerability by a public
exploit. Therefore, either Public Awareness precedes Exploit Public (X) or must immediately
follow it.

P ≺ X or X→ P (3.5)

This model is amenable for analysis of CVD, but we need to add a way to express preferences
before it is complete. Thus we are part way through RQ1. §6.2 will address how this model
can generalize from CVD to MPCVD.

3.2 On the Desirability of Possible Histories

All histories are not equally preferable. Some are quite bad—for example, those in which at-
tacks precede vendor awareness (A ≺ V). Others are very desirable—for example, those in
which fixes are deployed before either an exploit is made public (D ≺ X) or attacks occur
(D ≺ A).

In pursuit of a way to reason about our preferences for some histories over others, we define
the following preference criteria: history ha is preferred over history hb if, all else being equal,

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 18
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

a more desirable event σ1 precedes a less desirable event σ2. This preference is denoted as
σ1 ≺ σ2. We define the following ordering preferences:

• V ≺ P, V ≺ X, or V ≺ A—Vendors can take no action to produce a fix if they are
unaware of the vulnerability. Public awareness prior to vendor awareness can cause in-
creased support costs for vendors at the same time they are experiencing increased pres-
sure to prepare a fix. If public awareness of the vulnerability prior to vendor awareness
is bad, then a public exploit is at least as bad because it encompasses the former and
makes it readily evident that adversaries have exploit code available for use. Attacks
prior to vendor awareness represent a complete failure of the vulnerability remediation
process because they indicate that adversaries are far ahead of defenders.

• F ≺ P, F ≺ X, or F ≺ A—As noted above, the public can take no action until a fix
is ready. Because public awareness also implies adversary awareness, the vendor/adver-
sary race becomes even more critical if this condition is not met. When fixes exist before
exploits or attacks, defenders are better able to protect their users.

• D ≺ P, D ≺ X, or D ≺ A—Even better than vendor awareness and fix availability
prior to public awareness, exploit publication or attacks are scenarios in which fixes are
deployed prior to one or more of those transitions.

• P ≺ X or P ≺ A—In many cases, fix deployment (D) requires system owners to take
action, which implies a need for public awareness of the vulnerability. We therefore pre-
fer histories in which public awareness happens prior to either exploit publication or at-
tacks.

• X ≺ A—This criteria is not about whether exploits should be published or not.1 It is
about whether we should prefer histories in which exploits are published before attacks
happen over histories in which exploits are published after attacks happen. Our position
is that attackers have more advantages in the latter case than the former, and therefore
we should prefer histories in which X ≺ A.

Equation 3.6 formalizes our definition of desired orderings D. Table 3.3 displays all 36 possi-
ble orderings of paired transitions and whether they are considered impossible, required (as
defined by (3.3), (3.4), and (3.5)), desirable (as defined by (3.6)), or undesirable (the comple-
ment of the set defined in (3.6)).

Before proceeding, we note that our model focuses on the ordering of transitions, not their
timing. We acknowledge that in some situations, the interval between transitions may be of
more interest than merely the order of those transitions, as a rapid tempo of transitions can
alter the options available to stakeholders in their response. We discuss this limitation fur-
ther in §8; however, the following model posits event sequence timing on a human-oriented
timescale measured in minutes to weeks.

D def
= {V ≺ P,V ≺ X,V ≺ A,

F ≺ P,F ≺ X,F ≺ A,

D ≺ P,D ≺ X,D ≺ A,

P ≺ X,P ≺ A,X ≺ A}

(3.6)

An element d ∈ D is of the form σi ≺ σj . More formally, d is a relation of the form
d (σ1, σ2,≺). D is a set of such relations.

1Although we do believe there is some value in exploit publication because it allows defenders to develop detec-
tion controls (e.g., in the form of behavioral patterns or signatures). Even if those detection mechanisms are imper-
fect, it seems better that they be in place prior to adversaries using them than the opposite.

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 19
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Table 3.2: Desired event precedence mapped to subsets of states

Event Precedence (d) State Subsets to Prefer State Subsets to Avoid

V ≺ X V x vX
V ≺ A V a vA
V ≺ P V p vP
P ≺ X Px pX
F ≺ X V Fx fdX
P ≺ A Pa pA
F ≺ A V Fa fdA
F ≺ P V Fp fdP
D ≺ X V FDx dX
X ≺ A Xa xA
D ≺ A V FDa dA
D ≺ P V FDp dP

Some states are preferable to others The desiderata in (3.6) address the preferred order-
ing of transitions in CVD histories, which imply that one should prefer to pass through some

states and avoid others. For example, V ≺ P implies that we prefer the paths vp
V−→ V p

P−→
V P over the paths vp

P−→ vP
V−→ V P . In Table 3.2 we adapt those desiderata into specific

subsets of states that should be preferred or avoided if the criteria is to be met.

A partial order over possible histories Given the desired preferences over orderings of
transitions (D in (3.6)), we can construct a partial ordering over all possible histories H, as
defined in (3.8). This partial order requires a formal definition of which desiderata are met by
a given history, provided by (3.7).

Dh def
= {d ∈ D such that d is true for h}, for h ∈ H
where d (σ1, σ2,≺) is true for h if and only if:

∃σi, σj ∈ h such that σi = σ1 and σj = σ2 and h satisfies the relation d (σi, σj ,≺)
(3.7)

(H,≤H)
def
= ∀ha, hb ∈ H it is the case that hb ≤H ha if and only if Dhb ⊆ Dha (3.8)

A visualization of the resulting partially ordered set, or poset, (H,≤H) is shown as a Hasse
Diagram in Figure 3.1. Hasse Diagrams represent the transitive reduction of a poset. Each
node in the diagram represents an individual history ha from Table 3.1; labels correspond
to the index of the table. Figure 3.1 follows (3.8), in that ha is higher in the order than hb
when ha contains all the desiderata from hb and at least one more. Histories that do not
share a path are incomparable (formally, two histories incomparable if both Dha 6⊃ Dhb and
Dha 6⊂ Dhb). The diagram flows from least desirable histories at the bottom to most desirable
at the top. This model satisfies RQ1; §4 and §5 will demonstrate that the model is amenable
to analysis and §6.2.2 will lay out the criteria for extending it to cover MPCVD.

The poset (H,≤H), has as its upper bound

h69 = (V,F,D,P,X,A)

while its lower bound is
h0 = (A,X,P,V,F,D).

Thus far, we have made no assertions about the relative desirability of any two desiderata
(that is, di, dj ∈ D where i 6= j). In the next section we will expand the model to include a
partial order over our desiderata, but for now it is sufficient to note that any simple ordering

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 20
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Table 3.3: Ordered pairs of events where row ≺ col (Key: - = impossible, r = required, d = de-
sired, u = undesired)

V F D P X A

V - r r d d d
F - - r d d d
D - - - d d d
P u u u - d d
X u u u u - d
A u u u u u -

over D would remain compatible with the partial order given in (3.8). In fact, a total order
on D would create a linear extension of the poset defined here, whereas a partial order on D
would result in a more constrained poset of which this poset would be a subset.

3.3 A Random Walk through CVD States

To begin to differentiate skill from chance in the next few sections, we need a model of what
the CVD world would look like without any skill. We cannot derive this model by observa-
tion. Even when CVD was first practiced in the 1980s, some people may have had social,
technical, or organizational skills that transferred to better CVD. We follow the principle of
indifference, as stated in [23]:

Principle of Indifference: Let X = {x1, x2, ..., xn} be a partition of the set W
of possible worlds into n mutually exclusive and jointly exhaustive possibilities. In
the absence of any relevant evidence pertaining to which cell of the partition is the
true one, a rational agent should assign an equal initial credence of n to each cell.

While the principle of indifference is rather strong, it is inherently difficult to reason about
absolutely skill-less CVD when the work of CVD is, by its nature, a skilled job. Given the set
of states and allowable transitions between them, we can apply the principle of indifference to
define a baseline against which measurement can be meaningful.

Estimating State Transition Probabilities Our assumption is that transitions are equally
probable, not that states or histories are. The events σ ∈ Σ trigger state transitions accord-
ing to δ and the histories h ∈ H are paths (traces) through the states. This meets the defi-
nition above because each σ ∈ Σ is unique (mutually exclusive) and δ defines an exhaustive
set of valid σ at each state q ∈ Q. For example, because (3.3) requires V ≺ F and F ≺ D,
only four of the six events in Σ are possible at the beginning of each history at q0 = vfdpxa:
{V,P,X,A}. Since the principle of indifference assigns each possible transition event as
equally probable in this model of unskilled CVD, we assign an initial probability of 0.25 to
each possible event.

p(V|q0) = p(P|q0) = p(X|q0) = p(A|q0) = 0.25

p(F|q0) = p(D|q0) = 0

From there, we see that the other rules dictate possible transitions from each subsequent
state. For example, (3.4) says that any h starting with (P) must start with (P,V). And
(3.5) requires any h starting with (X) must proceed through (X,P) and again (3.4) gets us
to (X,P,V). Therefore, we expect histories starting with (P,V) or (X,P,V) to occur with
frequency 0.25 as well. We can use these transition probabilities to estimate a neutral baseline
expectation of which states would be common if we weren’t doing anything special to coor-
dinate vulnerability disclosures. Specifically, for each state we set the transition probability

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 21
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Figure 3.1: The Lattice of Possible CVD Histories: A Hasse Diagram of the partial order-
ing (H,≤H) of ha ∈ H given D as defined in (3.8). The diagram flows from least desirable
histories at the bottom to most desirable at the top. Histories that do not share a path are
incomparable. Labels indicate the index (row number) a of ha in Table 3.1.

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 22
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Table 3.4: Sparse state transition matrix and state PageRank assuming equiprobable transi-
tions in a random walk over S as shown Figure 2.4.)

Start State Next State(s) p(transition) PageRank

vfdpxa vfdpxA, vfdpXa, vfdPxa, V fdpxa 0.250 0.123
vfdpxA vfdpXA, vfdPxA, V fdpxA 0.333 0.031
vfdpXa vfdPXa 1.000 0.031
vfdpXA vfdPXA 1.000 0.013
vfdPxa V fdPxa 1.000 0.031
vfdPxA V fdPxA 1.000 0.013
vfdPXa V fdPXa 1.000 0.031
vfdPXA V fdPXA 1.000 0.016
V fdpxa V fdpxA, V fdpXa, V fdPxa, V Fdpxa 0.250 0.031
V fdpxA V fdpXA, V fdPxA, V FdpxA 0.333 0.020
V fdpXa V fdPXa 1.000 0.011
V fdpXA V fdPXA 1.000 0.010
V fdPxa V fdPxA, V fdPXa, V FdPxa 0.333 0.037
V fdPxA V fdPXA, V FdPxA 0.500 0.032
V fdPXa V fdPXA, V FdPXa 0.500 0.051
V fdPXA V FdPXA 1.000 0.063
V Fdpxa V FdpxA, V FdpXa, V FdPxa, V FDpxa 0.250 0.011
V FdpxA V FdpXA, V FdPxA, V FDpxA 0.333 0.013
V FdpXa V FdPXa 1.000 0.007
V FdpXA V FdPXA 1.000 0.008
V FdPxa V FdPxA, V FdPXa, V FDPxa 0.333 0.018
V FdPxA V FdPXA, V FDPxA 0.500 0.027
V FdPXa V FdPXA, V FDPXa 0.500 0.037
V FdPXA V FDPXA 1.000 0.092
V FDpxa V FDpxA, V FDpXa, V FDPxa 0.333 0.007
V FDpxA V FDpXA, V FDPxA 0.500 0.010
V FDpXa V FDPXa 1.000 0.007
V FDpXA V FDPXA 1.000 0.009
V FDPxa V FDPxA, V FDPXa 0.500 0.012
V FDPxA V FDPXA 1.000 0.026
V FDPXa V FDPXA 1.000 0.031
V FDPXA ∅ 0.000 0.139

to any other state proportional to the inverse of the outdegree of the state, as shown in the
p(transition) column of Table 3.4. Real world data is unlikely to ever reflect such a sad state
of affairs (because CVD is happening after all).

Using PageRank to Estimate Baseline State Probabilities We use the PageRank algo-
rithm to provide state probability estimates. The PageRank algorithm provides a probability
estimate for each state based on a Markov random walk of the directed graph of states [46].
PageRank assumes each available transition is equally probable, consistent with our model.
To avoid becoming stuck in dead ends, PageRank adds a teleport feature by which walks can,
with a small probability, randomly jump to another node in the graph.

Before proceeding, we need to make a small modification of our state digraph. Without
modification, the PageRank algorithm will tend to be biased toward later states because
the only way to reach the earlier states is for the algorithm to teleport there. Teleportation
chooses states uniformly, so for example there is only a 1/32 chance of our actual start state
(q0 = vfdpxa) ever being chosen. Therefore, to ensure that the early states in our process are
fairly represented we add a single link from V FDPXA to vfdpxa, representing a model re-
set whenever the end state is reached. This modification allows PageRank traversals to wrap

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 23
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

around naturally and reach the early states in the random walk process without needing to
rely on teleportation. With our modification in place, we are ready to compute the PageRank
of each node in the graph. Results are shown in Table 3.4

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 24
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4 Reasoning over Possible Histories

Our goal in this section is to formulate a way to rank our undifferentiated desiderata D from
§3.2 in order to develop the concept of CVD skill and its measurement in §5. This will provide
a baseline expectation about events (RQ2).

4.1 History Frequency Analysis

As described in §3.3, we apply the principle of indifference to the available transition events
σi+1 at each state q for each of the possible histories to compute the expected frequency of
each history, which we denote as fh. The frequency of a history fh is the cumulative product
of the probability p of each event σi in the history h. We are only concerned with histories
that meet our sequence constraints, namely h ∈ H.

fh =

5∏
i=0

p(σi+1|hi) (4.1)

Table 3.1 displays the value of fh for each history. Having an expected frequency (fh) for each
history h will allow us to examine how often we might expect our desiderata d ∈ D to occur
across H.

Choosing uniformly over event transitions is more useful than treating the six-element histo-
ries as uniformly distributed. For example, P ≺ A in 59% of valid histories, but when his-
tories are weighted by the assumption of uniform state transitions P ≺ A is expected to oc-
cur in 67% of the time. These differences arise due to the dependencies between some states.
Since CVD practice is comprised of a sequence of events, each informed by the last, our uni-
form distribution over events is more likely a useful baseline than a uniform distribution over
histories.

4.2 Event Order Frequency Analysis

Each of the event pair orderings in Table 3.3 can be treated as a Boolean condition that ei-
ther holds or does not hold in any given history. In §4.1 we described how to compute the ex-
pected frequency of each history (fh) given the presumption of indifference to possible events
at each step. We can use fh as a weighting factor to compute the expected frequency of event
orderings (σi ≺ σj) across all possible histories H. Equations 4.2 and 4.3 define the frequency
of an ordering fσi≺σj as the sum over all histories in which the ordering occurs (Hσi≺σj) of
the frequency of each such history (fh) as shown in Table 3.1.

Hσi≺σj def
= {h ∈ H where σi ≺ σj is true for h and i 6= j} (4.2)

fσi≺σj
def
=

∑
h∈Hσi≺σj

fh (4.3)

Table 4.1 displays the results of this calculation. Required event orderings have an expected
frequency of 1, while impossible orderings have an expected frequency of 0. As defined in §3.2,
each desiderata d ∈ D is specified as an event ordering of the form σi ≺ σj . We use fd to de-
note the expected frequency of a given desiderata d ∈ D. The values for the relevant fd appear
in the upper right of Table 4.1. Some event orderings have higher expected frequencies than

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 25
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Table 4.1: Expected Frequency of row ≺ col when events are chosen uniformly from possible
transitions in each state

V F D P X A

V 0 1 1 0.333 0.667 0.750
F 0 0 1 0.111 0.333 0.375
D 0 0 0 0.037 0.167 0.187
P 0.667 0.889 0.963 0 0.500 0.667
X 0.333 0.667 0.833 0.500 0 0.500
A 0.250 0.625 0.812 0.333 0.500 0

others. For example, vendor awareness precedes attacks in 3 out of 4 histories in a uniform
distribution of event transitions (fV≺A = 0.75), whereas fix deployed prior to public awareness
holds in less than 1 out of 25 (fD≺P = 0.037) histories generated by a uniform distribution
over event transitions.

4.3 A Partial Order on Desiderata

Any observations of phenomena in which we measure the performance of human actors can
attribute some portion of the outcome to skill and some portion to chance [36, 19]. It is rea-
sonable to wonder whether good outcomes in CVD are the result of luck or skill. How can we
tell the difference?

We begin with a simple model in which outcomes are a combination of luck and skill.

oobserved = oluck + oskill

In other words, outcomes due to skill are what remains when you subtract the outcomes due
to luck from the outcomes you observe. In this model, we treat luck as a random component:
the contribution of chance. In a world where neither attackers nor defenders held any advan-
tage and events were chosen uniformly from Σ whenever they were possible, we would expect
to see the preferred orderings occur with probability equivalent to their frequency fd as shown
in Table 4.1.

Skill, on the other hand, accounts for the outcomes once luck has been accounted for. So
the more likely an outcome is due to luck, the less skill we can infer when it is observed. As
an example, from Table 4.1 we see that fix deployed before the vulnerability is public is the
rarest of our desiderata with fD≺P = 0.037, and thus exhibits the most skill when observed.
On the other hand, vendor awareness before attacks is expected to be a common occurrence
with fV≺A = 0.75.

We can therefore use the set of fd to construct a partial order over D in which we prefer
desiderata d which are more rare (and therefore imply more skill when observed) over those
that are more common. We create the partial order on D as follows: for any pair d1, d2 ∈ D,
we say that d2 exhibits less skill than d1 if d2 occurs more frequently in H than d1.

(D,≤D)
def
= d2 ≤D d1 ⇐⇒ fd2

R
≥ fd1 (4.4)

Note that the inequalities on the left and right sides of (4.4) are flipped because skill is in-
versely proportional to luck. Also, while ≤D on the left side of (4.4) defines a preorder over

the poset H, the
R
≥ is the usual ordering over the set of real numbers. The result is a partial

order (D,≤D) because a few d have the same fd (fF≺X = fV≺P = 0.333 for example). The full
Hasse Diagram for the partial order (D,≤D) is shown in Figure 4.1.

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 26
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4.4 Ordering Possible Histories by Skill

D ≺ P

F ≺ P

D ≺ X

D ≺ A

F ≺ X V ≺ P

F ≺ A

P ≺ X X ≺ A

P ≺ A V ≺ X

V ≺ A

Figure 4.1: Hasse Dia-
gram of the partial order
(D,≤D) defined in Eq. 4.4
where the rarity of each d
as shown in Table 4.1 is
taken to reflect skill. Nodes
at the top of the diagram
reflect the most skill.

Next we develop a new partial order on H given the par-
tial order (D,≤D) just described. We observe that Dh acts
as a Boolean vector of desiderata met by a given h. Since
0 ≤ fd ≤ 1, simply taking its inverse could in the general case
lead to some large values for rare events. For convenience, we
use −log(fd) as our proxy for skill. For example, if a desider-
atum were found to occur in every case (indicating no skill
required), fd = 1 and therefore −log(1) = 0. On the other
hand, for increasingly rare desiderata, our skill metric rises:
limfd→0−log(fd) = +∞.

Taking the dot product of Dh with the set of −log(fd) values
for each d ∈ D represented as a vector, we arrive at a single
value representing the skill exhibited for each history h. Care-
ful readers may note that this value is equivalent to the Term
Frequency—Inverse Document Frequency (TF-IDF) score for a
search for the “skill terms” represented by D across the corpus
of possible histories H.

We have now computed a skill value for every h ∈ H, which al-
lows us to sort H and assign a rank to each history h contained
therein. The rank is shown in Table 3.1. Rank values start at 1
for least skill up to a maximum of 62 for most skill. Owing to
the partial order (D,≤D), some h have the same computed skill
values, and these are given the same rank.

The ranks for h ∈ H lead directly to a new poset (H,≤D). It is
an extension of and fully compatible with (H,≤H) as developed
in §3.2.

The resulting Hasse Diagram would be too large to reproduce
here. Instead, we include the resulting rank for each h as a col-
umn in Table 3.1. In the table, rank is ordered from least de-
sirable and skillful histories to most. Histories having identical
rank are incomparable to each other within the poset. The re-
fined poset (H,≤D) is much closer to a total order on H, as
indicated by the relatively few histories having duplicate ranks.

The remaining incomparable histories are the direct result of
the incomparable d in (D,≤D), corresponding to the branches
in Figure 4.1. Achieving a total order on D would require deter-
mining a preference for one of each of the following:

• that fix ready precede exploit publication (F ≺ X) or that
vendor awareness precede public awareness (V ≺ P)

• that public awareness precede exploit publication (P ≺
X) or that exploit publication precede attacks (X ≺ A)

• that public awareness precede attacks (P ≺ A) or vendor
awareness precede exploit publication (V ≺ X)

Recognizing that readers may have diverse opinions on all three items, we leave further con-
sideration of the answers to these as future work.

This is just one example of how poset refinements might be used to order H. Different posets

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 27
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

on D would lead to different posets on H. For example, one might construct a different poset
if certain d were considered to have much higher financial value when achieved than others.

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 28
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5 Discriminating Skill and Luck in Observations

This section defines a method for measuring skillful behavior in CVD, which we will need to
answer RQ3 about measuring and evaluating CVD “in the wild.” The measurement method
makes use of all the modeling tools and baselines established thus far: a comprehensive set of
possible histories H, a partial order over them in terms of the presence of desired event prece-
dence (H,≤D), and the a priori expected frequency of each desiderata d ∈ D.

If we expected to be able to observe all events in all CVD cases, we could be assured of having
complete histories and could be done here. But the real world is messy. Not all events e ∈ E
are always observable. We need to develop a way to make sense of what we can observe, re-
gardless of whether we are ever able to capture complete histories. Continuing towards our
goal of measuring efficacy, we return to considering the balance between skill and luck in de-
termining our observed outcomes.

5.1 A Measure of Skill in CVD

There are many reasons why we might expect our observations to differ from the expected fre-
quencies we established in §4. Adversaries might be rare, or conversely very well equipped.
Vendors might be very good at releasing fixes faster than adversaries can discover vulnerabili-
ties and develop exploits for them. System owners might be diligent at applying patches. (We
did say might, didn’t we?) Regardless, for now we will lump all of those possible explanations
into a single attribute called “skill.”

In a world of pure skill, one would expect that a player could achieve all 12 desiderata d ∈ D
consistently. That is, a maximally skillful player could consistently achieve the specific order-
ing h = (V,F,D,P,X,A) with probability pskill = 1.

Thus, we construct the following model: for each of our preferred orderings d ∈ D, we model
their occurrence due to luck using the binomial distribution with parameter pluck = fd taken
from Table 4.1.

Recall that the mean of a binomial distribution is simply the probability of success p, and
that the mean of a weighted mixture of two binomial distributions is simply the weighted
mixture of the individual means. Therefore our model adds a parameter αd to represent the
weighting between our success rates arising from skill pskill and luck pluck. Because there are
12 desiderata d ∈ D, each d will have its own observations and corresponding value for αd for
each history ha.

fobsd = αd · pskill + (1− αd) · pluck (5.1)

Where fobsd is the observed frequency of successes for desiderata d. Because pskill = 1, one of
those binomial distributions is degenerate. Substituting pskill = 1, pluck = fd and solving Eq.
5.1 for α, we get

αd
def
=
fobsd − fd

1− fd
(5.2)

The value of αd therefore gives us a measure of the observed skill normalized against the
background success rate provided by luck fd. We denote the set of αd values for a given his-
tory as αD. When we refer to the αd coefficient for a specific d we will use the specific order-
ing as the subscript, for example: αF≺P.

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 29
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

αD
def
= {αd : d ∈ D} (5.3)

The concept embodied by fd is founded on the idea that if attackers and defenders are in a
state of equilibrium, the frequency of observed outcomes (i.e., how often each desiderata d and
history h actually occurs) will appear consistent with those predicted by chance. So another
way of interpreting αd is as a measure of the degree to which a set of observed histories is out
of equilibrium.

The following are a few comments on how αd behaves. Note that αd < 0 when 0 ≤ fobsd < fd
and 0 ≤ αd ≤ 1 when fd ≤ fobsd ≤ 1. The implication is that a negative value for αd indicates
that our observed outcomes are actually worse than those predicted by pure luck. In other
words, we can only infer positive skill when the observations are higher (fobsd > fd). That
makes intuitive sense: if you are likely to win purely by chance, then you have to attribute
most of your wins to luck rather than skill. From Table 4.1, the largest value for any d ∈ D
is fV≺A = 0.75, implying that even if a vendor knows about 7 out of 10 vulnerabilities before
attacks occur (fobsV≺A = 0.7), they are still not doing better than random.

On the other hand, when fd is small it is easier to infer skill should we observe anything bet-
ter than fd. However, it takes larger increments of observations fobsd to infer growth in skill
when fd is small than when it is large. The smallest fd we see in Table 4.1 is fD≺P = 0.037.

Inherent to the binomial distribution is the expectation that the variance of results is lower
for both extremes (as p approaches either 0 or 1) and highest at p = 0.5. Therefore we should
generally be less certain of our observations when they fall in the middle of the distribution.
We address uncertainty further in §5.1.2.

5.1.1 Computing αd from Observations

Although Eq. (5.2) develops a skill metric from observed frequencies, our observations will in
fact be based on counts. Observations consist of some number of successes Sobsd out of some
number of trials T , i.e.,

fobsd =
Sobsd

T
(5.4)

We likewise revisit our interpretation of fd.

fd =
Sluckd

T
(5.5)

where Sluckd is the number of successes at d we would expect due to luck in T trials.

Substituting (5.4) and (5.5) into (5.2), and recalling that pskill = 1 because a maximally skill-
ful player succeeds in T out of T trials, we get

αd =

Sobsd

T
−
Sluckd

T
T

T
−
Sld
T

(5.6)

Rearranging (5.5) to Sluckd = fdT , substituting into (5.6), and simplifying, we arrive at:

αd =
Sobsd − fdT
(1− fd)T

(5.7)

Hence for any of our desiderata D we can compute αd given Sobsd observed successes out of T
trials in light of fd taken from Table 4.1.

Before we address the data analysis we take a moment to discuss uncertainty.

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 30
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

(a) Vulnerabilities Patched (b) Vulnerabilities known or attacked prior to patch avail-
ability

Figure 5.1: Publicly Disclosed Microsoft Vulnerabilities 2017-2020

5.1.2 Calculating Measurement Error

We have already described the basis of our fobsd model in the binomial distribution. While we
could just estimate the error in our observations using the binomial’s variance np(1 − p), be-
cause of boundary conditions at 0 and 1 we should not assume symmetric error. An extensive
discussion of uncertainty in the binomial distribution is given in [12].

However, for our purpose the Beta distribution lends itself to this problem nicely. The Beta
distribution is specified by two parameters (a, b). It is common to interpret a as the number
of successes and b as the number of failures in a set of observations of Bernoulli trials to esti-
mate the mean of the binomial distribution from which the observations are drawn. For any
given mean, the width of the Beta distribution narrows as the total number of trials increases.

We use this interpretation to estimate a 95% credible interval for fobsd using a Beta distribu-
tion with parameters a = Sobsd as successes and b = T − Sobsd representing the number of
failures using the scipy.stats.beta.interval function in Python. This gives us an upper
and lower estimate for fobsd , which we multiply by T to get upper and lower estimates of Sobsd

as in (5.4).

5.2 Observing CVD in the Wild

As a proof of concept, we apply the model to two data sets: Microsoft’s security updates from
2017 through early 2020 in §5.2.1, and commodity public exploits from 2015-2019 in §5.2.2.

5.2.1 Microsoft 2017-2020

We are now ready to proceed with our data analysis. First, we examine Microsoft’s monthly
security updates for the period between March 2017 and May 2020, as curated by the Zero
Day Initiative blog1. Figure 5.1a shows monthly totals for all vulnerabilities while 5.1b has
monthly observations of P ≺ F and A ≺ F. This data set allowed us to compute the monthly
counts for two of our desiderata, F ≺ P and F ≺ A.

1https://www.zerodayinitiative.com/blog. The ZDI blog posts were more directly useful than the monthly Mi-
crosoft security updates because ZDI had already condensed the counts of how many vulnerabilities were known (P)
or exploited (A) prior to their fix readiness F. Retrieving this data from Microsoft’s published vulnerability information
requires collecting it from all the individual vulnerabilities patched each month. We are grateful to ZDI for providing
this summary and saving us the effort.

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 31
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

https://www.zerodayinitiative.com/blog

(a) αF≺P (b) αF≺A

Figure 5.2: Selected Skill Measurement for Publicly Disclosed Microsoft Vulnerabilities 2017-
2020

Observations of F ≺ P: In total, Microsoft issued patches for 2,694 vulnerabilities; 2,610
(0.97) of them met the fix-ready-before-public-awareness (F ≺ P) objective. The mean
monthly αF≺P = 0.967, with a range of [0.878, 1.0]. We can also use the cumulative data
to estimate an overall skill level for the observation period, which gives us a bit more precision
on αF≺P = 0.969 with the 0.95 interval of [0.962, 0.975]. Figure 5.2a shows the trend for both
the monthly observations and the cumulative estimate of αF≺P.

Observations of F ≺ A: Meanwhile, 2,655 (0.99) vulnerabilities met the fix-ready-before-
attacks-observed (F ≺ A) criteria. Thus we compute a mean monthly αF≺A = 0.976 with
range [0.893, 1.0]. The cumulative estimate yields αF≺A = 0.986 with an interval of [0.980,
0.989]. The trend for both is shown in Figure 5.2b.

Inferring Histories from Observations: Another possible application of our model is to es-
timate unobserved αd based on the cumulative observations of both fobsF≺P and fobsF≺A above.
Here we estimate the frequency fd of the other d ∈ D for this period. Our procedure is as
follows:

1. For 10000 rounds, draw an festd for both F ≺ P and F ≺ A from the Beta distribution
with parameters a = Sobsd and b = T − Sobsd where Sobsd is 2,610 or 2,655, respectively,
and T is 2,694.

2. Assign each h ∈ H a weight according to standard joint probability based whether it
meets both, either, or neither A = F ≺ P and B = F ≺ A, respectively.

wh =


pAB = fA ∗ fB if A and B

pAb = fA ∗ fb if A and ¬B
paB = fa ∗ fB if ¬A and B

pab = fa ∗ fb if ¬A and ¬B

(5.8)

where fa = 1− fA and fb = 1− fB
3. Draw a weighted sample (with replacement) of size N = 2, 694 from H according to

these weights.

4. Compute the sample frequency fsampled = Ssampled /N for each d ∈ D, and record the
median rank of all histories h in the sample.

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 32
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5. Compute the estimated frequency as the mean of the sample frequencies, namely festd =

〈fsampled 〉, for each d ∈ D.

6. Compute αd from festd for each d ∈ D .

As one might expect given the causal requirement that vendor awareness precedes fix avail-
ability, the estimated values of αd are quite high (0.96 − 0.99) for our desiderata involving ei-
ther V or F. We also estimate that αd is positive—indicating that we are observing skill over
and above mere luck—for all d except P ≺ A and X ≺ A which are slightly negative. The
results are shown in Figure 5.3. The most common sample median history rank across all runs
is 53, with all sample median history ranks falling between 51-55. The median rank of possi-
ble histories weighted according to the assumption of equiprobable transitions is 11. We take
this as evidence that the observations are indicative of skill.

Figure 5.3: Simulated skill αd for Microsoft 2017-2020 based on observations of F ≺ P and
F ≺ A over the period.

5.2.2 Commodity Exploits 2015-2019

Next, we examine the overall trend in P ≺ X for commodity exploits between 2015 and 2019.
The data set is based on the National Vulnerability Database [40], in conjunction with the
CERT Vulnerability Data Archive [15]. Between these two databases, a number of candidate
dates are available to represent the date a vulnerability was made public. We use the mini-
mum of these as the date for P .

To estimate the exploit availability (X) date, we extracted the date a CVE ID appeared in
the git logs for Metasploit [48] or Exploitdb [50]. When multiple dates were available for a
CVE ID, we kept the earliest. Note that commodity exploit tools such as Metasploit and Ex-
ploitdb represent a non-random sample of the exploits available to adversaries. These obser-
vations should be taken as a lower bounds estimate of exploit availability, and therefore an
upper bounds estimate of observed desiderata d and skill αd.

During the time period from 2013-2019, the data set contains N = 73, 474 vulnerabilities.
Of these, 1,186 were observed to have public exploits (X) prior to the earliest observed vul-
nerability disclosure date (P), giving an overall success rate for P ≺ X of 0.984. The mean
monthly αP≺X is 0.966 with a range of [0.873, 1.0]. The volatility of this measurement ap-
pears to be higher than that of the Microsoft data. The cumulative αP≺X comes in at 0.968
with an interval spanning [0.966, 0.970]. A chart of the trend is shown in Fig. 5.4.

To estimate unobserved αd from the commodity exploit observations, we repeat the procedure

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 33
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Figure 5.4: αP≺X for all NVD vulnerabilities 2013-2019 (X observations based on Metasploit
and ExploitDb)

outlined in §5.2.1. This time, we use N = 73, 474 and estimate festd for P ≺ X with Beta
parameters a = 72, 288 and b = 1186. As above, we find evidence of skill in positive estimates
of αd for all desiderata except P ≺ A and X ≺ A, which are negative. The most common
sample median history rank in this estimate is 33 with a range of [32,33], which while lower
than the median rank of 53 in the Microsoft estimate from §5.2.1, still beats the median rank
of 11 assuming uniform event probabilities. The results are shown in Figure 5.5.

Figure 5.5: Simulated skill αd for all NVD vulnerabilities 2013-2019 based on observations of
P ≺ X over the period.

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 34
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

6 Discussion

The observational analysis in §5.2 supports an affirmative response to RQ3: vulnerability dis-
closure as currently practiced demonstrates skill. In both data sets examined, our estimated
αd is positive for most d ∈ D. However, there is uncertainty in our estimates due to the ap-
plication of the principle of indifference to unobserved data. This principle assumes a uniform
distribution across event transitions in the absence of CVD, which is an assumption we can-
not readily test. The spread of the estimates in Figures 5.3 and 5.5 represents the variance in
our samples, not this assumption-based uncertainty. Our interpretation of αd values near zero
is therefore that they reflect an absence of evidence rather than evidence that skill is absent.
While we cannot rule definitively on luck or low skill, values of αd > 0.9 should reliably indi-
cate skillful defenders.

If, as seems plausible from the evidence, it turns out that further observations of h are sig-
nificantly skewed toward the higher end of the poset (H,≤D), then it may be useful to em-
pirically calibrate our metrics rather than using the a priori frequencies in Table 4.1 as our
baseline. This analysis baseline would provide context on “more skillful than the average for
some set of teams” rather than more skillful than blind luck. §6.1 discusses this topic, which
should be viewed as an examination of what “reasonable” in RQ2 should mean in the context
of “reasonable baseline expectation.”

§6.2 suggests how the model might be applied to establish benchmarks for CVD processes in-
volving any number of participants, which closes the analysis of RQ1 in relation to MPCVD.
§6.3 surveys the stakeholders in CVD and how they might use our model; the stakeholders
are vendors, system owners, the security research community, coordinators, and governments.
In particular, we focus on how these stakeholders might respond to the affirmative answer
to RQ3 and a method to measure skill in a way more tailored to each stakeholder group.
§6.4 discusses the potential for formalizing disclosure policy specifications using the model.
§6.5 offers formal definitions of some common terms in vulnerability disclosure. We then pro-
ceed to address vulnerability response situation awareness in §6.6, with a brief note about the
Vulnerability Equities Process (VEP) in relation to this model in §6.7. Finally, a set of state-
based rules for CVD actions is given in §6.8.

6.1 CVD Benchmarks

As described above, in an ideal CVD situation, each observed history would achieve all 12
desiderata D. Realistically, this is unlikely to happen. We can at least state that we would
prefer that most cases reach fix ready before attacks (F ≺ A). Per Table 4.1, even in a world
without skill we would expect F ≺ A to hold in 73% of cases. This means that αF≺A < 0 for
anything less than a 0.73 success rate. In fact, we propose to generalize this for any d ∈ D,
such that αd should be greater than some benchmark constant cd:

αd ≥ cd ≥ 0 (6.1)

where cd is a based on observations of αd collected across some collection of CVD cases.

We propose as a starting point a näıve benchmark of cd = 0. This is a low bar, as it only
requires that CVD actually do better than possible events which are independent and iden-
tically distributed (i.i.d.) within each case. For example, given a history in which (V,F,P)
have already happened (i.e., state q ∈ V FdPxa), D, X, or A are equally likely to occur next.

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 35
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

The i.i.d. assumption may not be warranted. We anticipate that event ordering probabilities
might be conditional on history: for example, exploit publication may be more likely when the
vulnerability is public (p(X|q ∈ QP) > p(X|q ∈ Qp)) or attacks may be more likely when
an exploit is public (p(A|q ∈ QX) > p(A|q ∈ Qx)). If the i.i.d. assumption fails to hold for
transition events σ ∈ Σ, observed frequencies of h ∈ H could differ significantly from the rates
predicted by the uniform probability assumption behind Table 4.1.

Some example suggestive observations are:

• There is reason to suspect that only a fraction of vulnerabilities ever reach the exploit
public event X, and fewer still reach the attack event A. Recent work by the Cyentia In-
stitute found that “5% of all CVEs are both observed within organizations AND known
to be exploited” [1], which suggests that fD≺A ≈ 0.95.

• Likewise, D ≺ X holds in 28 of 70 (0.4) h. However Cyentia found that “15.6% of all
open vulnerabilities observed across organizational assets in our sample have known ex-
ploits” [1], which suggests that fD≺X ≈ 0.844.

We might therefore expect to find many vulnerabilities remaining indefinitely in V FDPxa.

On their own these observations can equally well support the idea that we are broadly observ-
ing skill in vulnerability response, rather than that the world is biased from some other cause.
However, we could choose a slightly different goal than differentiating skill and “blind luck” as
represented by the i.i.d. assumption. One could aim to measure “more skillful than the aver-
age for some set of teams” rather than more skillful than blind luck.

If this were the “reasonable” baseline expectation (RQ2), the primary limitation is available
observations. This model helps overcome this limitation because it provides a clear path to-
ward collecting relevant observations. For example, by collecting dates for the six σ ∈ Σ
for a large sample of vulnerabilities, we can get better estimates of the relative frequency of
each history h in the real world. It seems as though better data would serve more to improve
benchmarks rather than change expectations of the role of chance.

As an applied example, if we take the first item in the above list as a broad observation of
fD≺A = 0.95, we can plug into (5.2) to get a potential benchmark of αD≺A = 0.94, which is
considerably higher than the näıve generic benchmark αd = 0. It also implies that we should
expect actual observations of histories h ∈ H to skew toward the 19 h in which D ≺ A nearly
20x as often as the 51 h in which A ≺ D. Similarly, if we interpret the second item as a broad
observation of fD≺X = 0.844, we can then compute a benchmark αD≺X = 0.81, which is again
a significant improvement over the näıve αd = 0 benchmark.

6.2 Multi-Party Coordinated Vulnerability Disclosure

Multi-Party Coordinated Vulnerability Disclosure (MPCVD) is the process of coordinating the
creation, release, publication, and potentially the deployment of fixes for vulnerabilities across
a number of vendors and their respective products. The need for MPCVD arises due to the
inherent nature of the software supply chain [30]. A vulnerability that affects a low-level com-
ponent (such as a library or operating system API) can require fixes from both the originating
vendor and any vendor whose products incorporate the affected component. Alternatively,
vulnerabilities are sometimes found in protocol specifications or other design-time issues where
multiple vendors may have each implemented their own components based on a vulnerable de-
sign. §6.2.1 applies the state-based view of our model to MPCVD, while §6.2.2 addresses the
topic from the possible history perspective.

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 36
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

6.2.1 State Tracking in MPCVD

Applying our state-based model to MPCVD requires a forking approach to the state tracking.
At the time of discovery, the vulnerability is in state vfdpxa. Known only to its finder, the
vulnerability can be described by that singular state.

As it becomes clear that the vulnerability affects multiple vendors’ products, both find-
er/reporters and coordinators might begin to track the state of each individual vendor as
a separate instance of the model. For example, if 3 vendors are known to be affected, but
only 1 has been notified, the case might be considered to be in a superposition1 of states
{V fdpxa, vfdpxa, vfdpxa}.

Each vendor, in turn, might then ascertain whether they are able to produce fixes for all their
available products at once, or if those fixes will be staggered over time. In either case, the
vendor might track the case as a superposition of states for each affected product depen-
dent on its fix readiness status. For example, a vendor might have four products affected,
with two in the fix-ready state and two fixes still in progress. Should they opt for trans-
parency into their internal process, they might communicate their status as the superposition
of {V Fdpxa, V Fdpxa, V fdpxa, V fdpxa}. Alternatively, they might choose to only share the
lowest state across their products, which in this example would be {V fdpxa}.

This implies a need to expand our notation. In the MPCVD case, we need to think of each
state q ∈ Q as a set of states qM :

qM
def
= {q1, q2, . . . , qn} (6.2)

where qi represents the state q for the ith affected vendor and/or product. For example,
{V fdpxa1, vfdpxa2} would represent the state in which vendor 1 has been notified but ven-
dor 2 has not.

State transitions across vendors need not be simultaneous. Very often, vendor notification oc-
curs as new products and vendors are identified as affected in the course of analyzing a vul-
nerability report. So the individual events Vi in VM (representing the status of all the vendor
notifications) might be spread out over a period of time.

Some transitions are more readily synchronized than others. For example, if an MPCVD case
is already underway, and information about the vulnerability appears in a public media re-
port, we can say that PM occurred simultaneously for all coordinating vendors.

Regardless, in the maximal case, each vendor-product pair is effectively behaving indepen-
dently of all the others. Thus the maximum dimensionality of the MPCVD model for a case
is

Dmax = 5 ∗Nvprod (6.3)

where Nvprod represents the number of vendor-product pairs.

This is of course undesirable, as it would result in a wide distribution of realized histories that
more closely resemble the randomness assumptions outlined above than a skillful, coordinated
effort. Further discussion of measuring MPCVD skill can be found in 6.2.2. For now, though,
we posit that the goal of a good MPCVD process is to reduce the dimensionality of a given
MPCVD case as much as is possible (i.e., to the 5 dimensions of a single vendor CVD case we
have presented above). Experience shows that a full dimension reduction is unlikely in most
cases, but that does not detract from the value of having the goal.

Vendors may be able to reduce their internal tracking dimensionality—which may be driven
by things like component reuse across products or product lines—through in-house coordina-
tion of fix development processes. Within an individual vendor organization, Product Security

1Borrowing the terminology of quantum mechanics

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 37
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Incident Response Teams (PSIRTs) are a common organizational structure to address this
internal coordination process. The FIRST PSIRT Services Framework provides guidance re-
garding vendors’ internal processes for coordinating vulnerability response [43]. Additional
guidance can be found in ISO-IEC 30111 [32].

Regardless, the cross-vendor dimension is largely the result of component reuse across ven-
dors, for example through the inclusion of third party libraries or Original Equipment Man-
ufacturer (OEM) Software Development Kits (SDKs). Visibility of cross-vendor component
reuse remains an unsolved problem, although efforts such as NTIA’s SBOM [55] efforts are
promising in this regard. Thus, dimensionality reduction can be achieved through both im-
proved transparency of the software supply chain and the process of coordination toward syn-
chronized state transitions, especially for P, if not for F and D as well.

As a result of the dimensionality problem, coordinators and other parties to an MPCVD case
need to decide how to apply disclosure policy rules in cases where different products or ven-
dors occupy different case states with potentially contradictory recommended actions. For ex-
ample, when four out of five vendors involved in a case have reached V Fdpxa and are ready
to publish, but the fifth is still in V fdpxa. Essentially this can be expected to take the form
of a weighting function that acts on a vector of case states, and outputs a set of recommended
actions derived from those states.

One possible function would be to apply a simple voting heuristic such as waiting for a sim-
ple majority of vendors to reach a state before taking action as that state recommends. In
our 4/5 V Fdpxa example, the coordinating parties would simply behave as if the case were
in that state for all. Another could be to weight vendors and products by some other factor,
such as size of the installed user base, or even based on a risk analysis of societal costs asso-
ciated with potential actions. Here we acknowledge that our example is under-specified: does
the fifth vendor (the one in V fdpxa) represent a sizable fraction of the total user base? Or
does it concentrate the highest risk use cases for the software? Challenges in efficiently assess-
ing consistent answers to these questions are easy to imagine. The status quo for MPCVD
appears consistent with defaulting to simple majority in the absence of additional information,
with consideration given to the distribution of both users and risk on a case-by-case basis. At
present, there is no clear consensus on such policies, although we hope that future work can
use the model presented here to formalize the necessary analysis.

Integrating FIRST MPCVD Guidance FIRST has published MPCVD guidance [42]. Their
guidance describes four use cases, along some with variations. Each use case variant includes
a list of potential causes along with recommendations for prevention and responses when the
scenario is encountered. A mapping of which use cases and variants apply to which subsets of
states is given in Table 6.1.

6.2.2 MPCVD Benchmarks

A common problem in MPCVD is that of fairness: coordinators are often motivated to opti-
mize the CVD process to maximize the deployment of fixes to as many end users as possible
while minimizing the exposure of users of other affected products to unnecessary risks.

The model presented in this paper provides a way for coordinators to assess the effectiveness
of their MPCVD cases. In an MPCVD case, each vendor/product pair effectively has its own
6-event history ha. We can therefore recast MPCVD as a set of histories M drawn from the
possible histories H:

M = {h1, h2, ..., hm where each ha ∈ H} (6.4)

Where m = |M| ≥ 1. The edge case when |M| = 1 is simply the regular (non-multiparty)
case.

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 38
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Table 6.1: Applicability of FIRST MPCVD scenarios to subsets of states in our model

States FIRST Use Case Description

n/a 0 No vulnerability exists
V FDp 1 Vulnerability with no affected users
V p 1 Variant 1 Product is deployed before vulnerability is discov-

ered or fixed
f 2 Vulnerability with coordinated disclosure
fdP 2 Variant 1 Finder makes the vulnerability details public prior

to remediation
V FdP 2 Variant 2 Users do not deploy remediation immediately

(multiparty sync) 2 Variant 3 Missing communication between upstream and
downstream vendors

V fdP 2 Variant 4 Vendor makes the vulnerability details public prior
to remediation

V fd 2 Variant 5 Vendor does not remediate a reported vulnerabil-
ity

(multiparty sync) 2 Variant 6 Missing communication between peer vendors
impedes coordination

fdP 2 Variant 7 Coordinator makes vulnerability details public
prior to remediation

V fdp, vfdp 2 Variant 8 Finder reports a vulnerability to one vendor that
may affect others using the same component

fdP 3 Public disclosure of limited vulnerability informa-
tion prior to remediation

vP , vX, vA 4 Public disclosure or exploitation of vulnerability
prior to vendor awareness

vfPX, vfPA 4 Variant 1 Finder publishes vulnerability details and vulnera-
bility is exploited

vpA 4 Variant 2 Previously undisclosed vulnerability used in at-
tacks

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 39
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Table 6.2: CVD Roles and the transitions they can control. Roles can be combined (vendor +
deployer, finder + coordinator, etc.). Roles are based on [30].

Role V F D P X A

Finder/Reporter X · · X X ·
Vendor · X · X X ·

Deployer · · X · · ·
Coordinator X · · X X ·
Adversary · · · · · X

We can then set desired criteria for the set M, as in the benchmarks described in §6.1. In
the MPCVD case, we propose to generalize the benchmark concept such that the median α̃d
should be greater than some benchmark constant cd:

α̃d ≥ cd ≥ 0 (6.5)

In real-world cases where some outcomes across different vendor/product pairs will necessarily
be lower than others, we can also add the criteria that we want the variance of each αd to be
low. An MPCVD case having high median αd with low variance across vendors and products
involved will mean that most vendors achieved acceptable outcomes.

To summarize:

• The median αd for all histories h ∈ M should be positive and preferably above some
benchmark constant cd, which may be different for each d ∈ D.

Median({αd(h) : h ∈M}) ≥ cd > 0 (6.6)

• The variance of each αd for all histories h ∈ M should be low. The constant ε is pre-
sumed to be small.

σ2({αd(h) : h ∈M}) ≤ ε (6.7)

6.3 CVD Roles and Their Influence

CVD stakeholders include vendors, system owners, the security research community, coordi-
nators, and governments [30]. Of interest here are the main roles: finder/reporter, vendor, de-
ployer, and coordinator. Each of the roles corresponds to a set of transitions they can cause.
For example, a coordinator can notify the vendor (V) but not create the fix (F), whereas a
vendor can create the fix but not notify itself (although a vendor with an in-house vulnera-
bility discovery capability might also play the role of a finder/reporter as well). A mapping of
CVD Roles to the transitions they can control can be found in Table 6.2. We also included a
role of adversary just to cover the A transition.

Different stakeholders might want different things, although most benevolent parties will likely
seek some subset of D. Because H is the same for all stakeholders, the expected frequencies
shown in Table 4.1 will be consistent across any such variations in desiderata. A discussion
of some stakeholder preferences is given below, while a summary can be found in Table 6.3.
We notate these variations of the set of desiderata D with subscripts: Dv for vendors, Ds for
system owners, Dc for coordinators, and Dg for governments. In Table 3.3 we defined a pref-
erence ordering between every possible pairing of events, therefore D is the largest possible set
of desiderata. We thus expect the desiderata of benevolent stakeholders to be a subset of D in
most cases. That said, we note a few exceptions in the text that follows.

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 40
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Table 6.3: Ordering Preferences for Selected Stakeholders.

Vendor SysOwner Coordinator
d ∈ D (Dv) (Ds) (Dc)

V ≺ P yes maybe4 yes
V ≺ X yes maybe4 yes
V ≺ A yes maybe4 yes
F ≺ P yes maybe5 yes
F ≺ X yes yes yes
F ≺ A yes yes yes
D ≺ P maybe1 maybe1 yes
D ≺ X maybe2 maybe5 yes
D ≺ A maybe2 yes yes
P ≺ X yes yes yes
P ≺ A yes yes yes
X ≺ A maybe3 maybe3 maybe3

1 When vendors control deployment, both vendors and system owners likely prefer D ≺ P.
When system owners control deployment, D ≺ P is impossible.
2 Vendors should care about orderings involving D when they control deployment, but
might be less concerned if deployment responsibility is left to system owners.
3 Exploit publication can be controversial. To some, it enables defenders to test deployed
systems for vulnerabilities or detect attempted exploitation. To others, it provides unneces-
sary adversary advantage.
4 System owners may only be concerned with orderings involving V insofar as it is a pre-
requisite for F.
5 System owners might be indifferent to F ≺ P and D ≺ X depending on their risk toler-
ance.

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 41
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

6.3.1 Vendors

As shown in Table 6.3, we expect vendors’ desiderata Dv to be a subset of D. It seems reason-
able to expect vendors to prefer that a fix is ready before either exploit publication or attacks
(F ≺ X and F ≺ A, respectively). Fix availability implies vendor awareness (V ≺ F), so
we would expect vendors’ desiderata to include those orderings as well (V ≺ X and V ≺ A,
respectively).

Vendors typically want to have a fix ready before the public finds out about a vulnerability
(F ≺ P). We surmise that a vendor’s preference for this item could be driven by at least two
factors: the vendor’s tolerance for potentially increased support costs (e.g., fielding customer
support calls while the fix is being prepared), and the perception that public awareness with-
out an available fix leads to a higher risk of attacks. As above, vendor preference for F ≺ P
implies a preference for V ≺ P as well.

When a vendor has control over fix deployment (D), it will likely prefer that deployment pre-
cede public awareness, exploit publication, and attacks (D ≺ P, D ≺ X, and D ≺ A, respec-
tively).2 However, when fix deployment depends on system owners to take action, the feasibil-
ity of D ≺ P is limited.3 Regardless of the vendor’s ability to deploy fixes or influence their
deployment, it would not be unreasonable for them to prefer that public awareness precedes
both public exploits and attacks (P ≺ X and P ≺ A, respectively).

Ensuring the ease of patch deployment by system owners remains a likely concern for vendors.
Conscientious vendors might still prefer D ≺ X and D ≺ A even if they have no direct control
over those factors. However, vendors may be indifferent to X ≺ A.

Although our model only addresses event ordering, not timing, a few comments about timing
of events are relevant since they reflect the underlying state transition process from which H
arises. Vendors have significant influence over the speed of V to F based on their vulnerabil-
ity handling, remediation, and development processes [32]. They can also influence how early
V happens based on promoting a cooperative atmosphere with the security researcher com-
munity [31]. Vendor architecture and business decisions affect the speed of F to D. Cloud-
based services and automated patch delivery can shorten the lag between F and D. Vendors
that leave deployment contingent on system owner action can be expected to have longer lags,
making it harder to achieve the D ≺ P, D ≺ X, and D ≺ A objectives, respectively.

6.3.2 System Owners

System owners ultimately determine the lag from F to D based on their processes for sys-
tem inventory, scanning, prioritization, patch testing, and deployment—in other words, their
Vulnerability Management (VM) practices. In cases where the vendor and system owner are
distinct entities, system owners should optimize to minimize the lag between F and D in or-
der to improve the chances of meeting the D ≺ X and D ≺ A objectives, respectively. En-
abling automatic updates for security patches is one way to improve F to D performance, al-
though not all system owners find the resulting risk of operational impact to be acceptable to
their change management process.

System owners might select a different desiderata subset than vendors Ds ⊆ D, Ds 6= Dv. In
general, system owners are primarily concerned with the F and D events relative to X and A.
Therefore, we expect system owners to be concerned about F ≺ X, F ≺ A, D ≺ X, and
D ≺ A. As discussed above, D ≺ P is only possible when the vendor controls D. Depending

2On the other hand, some vendors might actually prefer public awareness before fix deployment even if they have
the ability to deploy fixes, for example in support of transparency or trust building. In that case, DV 6⊆ D, and some
portions of the analysis presented here may not apply.

3“Silent patches” can obviously occur when vendors fix a vulnerability but do not make that fact known. In princi-
ple, silent patches could achieve D ≺ P even in traditional COTS or OSS distribution models. However, in practice
silent patches result in poor deployment rates precisely because they lack an explicit imperative to deploy the fix.

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 42
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

on the system owner’s risk tolerance, F ≺ P and D ≺ X may or may not be preferred. Some
system owners may find X ≺ A useful for testing their infrastructure, others might prefer that
no public exploits be available.

6.3.3 Security Researchers

The “friendly” offensive security community (i.e., those who research vulnerabilities, report
them to vendors, and sometimes release proof-of-concept exploits for system security evalua-
tion purposes) can do their part to ensure that vendors are aware of vulnerabilities as early as
possible prior to public disclosure (6.8).

vfdpxa
V−→ V fdpxa =⇒ V ≺ P, V ≺ X and V ≺ A (6.8)

Security researchers can also delay the publication of exploits until after fixes exist (6.9), are
public (6.10), and possibly even until most system owners have deployed the fix (6.11).

X|q ∈ V Fdpx =⇒ F ≺ X (6.9)
X|q ∈ V FdPx =⇒ F ≺ X and P ≺ X (6.10)

X|q ∈ V FDPx =⇒ F ≺ X, P ≺ X and D ≺ X (6.11)

This does not preclude adversaries from doing their own exploit development on the way to
A, but it avoids providing them with unnecessary assistance.

6.3.4 Coordinators

Coordinators have been characterized as seeking to balance the social good across both ven-
dors and system owners [9]. This implies that they are likely interested in the union of the
vendors’ and system owners’ preferences. In other words, coordinators want the full set of
desiderata (Dc = D).

We pause for a brief aside about the design of the model with respect to the coordination role.
We considered adding a Coordinator Awareness (C) event, but this would expand |H| from 70
to 452 because it could occur at any point in any h. There is not much for a coordinator to do
once the fix is deployed, however, so we could potentially reduce |H| to 329 by only including
positions in H that precede the D event. This is still too large and unwieldy for meaningful
analysis within our scope; instead, we simply provide the following comment.

The goal of coordination is this: regardless of which stage a coordinator becomes involved in
a case, the objective is to choose actions that make preferred histories more likely and non-
preferred histories less likely.

The rules outlined in §6.8 suggest available actions to improve outcomes. Namely, this means
focusing coordination efforts as needed on vendor awareness, fix availability, fix deployment,
and the appropriately timed public awareness of vulnerabilities and their exploits (V,F,D, P,
and X).

6.3.5 Governments

In their defensive roles, governments act as a combination of system owners, vendors,
and—increasingly—coordinators. Therefore we might anticipate Dg = Dc = D.

However, governments sometimes also have an adversarial role to play for national security,
law enforcement, or other reasons. The model presented in this paper could be adapted to
that role by drawing some desiderata from the lower left triangle of Table 3.3. While defin-
ing such adversarial desiderata (Da) is out of scope for this paper, we leave the topic with our
expectation that Da 6⊆ D.

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 43
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

6.4 Disclosure Policy Formalization

In this section, we apply our model to the formalization of vulnerability disclosure policies.
This discussion is not intended to be a complete formalization of all possible policy choices;
rather, we seek to relate how some aspects of disclosure policies might be formalized using our
model. In particular, we will look at applications of the model to embargoes and service level
expectations.

6.4.1 Embargo Initiation Policies

An agreement between coordinating stakeholders to keep information about the vulnerability
private until some exit condition has been met is called an embargo.4 Examples of exit condi-
tions for CVD embargoes include the expiration of a timer or a the occurrence of a triggering
event such as fix availability. The model gives us a way of formally specifying the conditions
under which initiating or maintaining an embargo may or may not be appropriate.

Let us first examine which states are eligible for embargoes to be initiated. The whole point of
an embargo is to restrict public knowledge of the vulnerability for some period of time, corre-
sponding to a desire to avoid entering QP until the embargo ends. Therefore, it follows that
our set of embargo initiation states must reside in Qp. Furthermore, as we have discussed, pX
is inherently unstable because publication of an exploit necessarily leads to public awareness
of the vulnerability. Because pX leads immediately to PX, we can infer that our embargo en-
try points must be in px.

Many disclosure policies—including CERT/CC’s—eschew embargoes when attacks are un-
derway (QA). This implies we should be looking in pxa. We further observe that there is lit-
tle reason to initiate an information embargo about a vulnerability after the fix has been de-
ployed5 (D) and thus continue with dpxa.

In cases where a single vendor and product are affected, then fix readiness is truly binary (it
either is or is not ready), and there may be no need to enter into an embargo when the fix is
ready (i.e., in Fdpxa). However, while may be tempted to expand the requirement and nar-
row the states of interest to fdpxa, we must allow for the multiparty situation in which some
vendors have a fix ready (Fp) while others do not (fp). We discuss MPCVD further in sec-
tion §6.2. Here we note that in MPCVD cases, prudence requires us to allow for a (hopefully

brief) embargo period to enable more vendors to achieve fp
F−→ Fp prior to public disclosure

(F ≺ P). Therefore we stick with dpxa for the moment.

Finally, because embargoes are typically an agreement between the vendor and other coordi-
nating parties, it might appear that we should expect embargoes to begin in V dpxa. However,
doing so would neglect the possibility of embargoes entered into by finders, reporters, and
coordinators prior to vendor awareness—i.e., in vfdpxa. In fact, the very concept of CVD is
built on the premise that every newly discovered vulnerability should have a default embargo

at least until the vendor has been informed about the vulnerability (i.e., vfdpxa
V−→ V fdpxa

is CVD’s preferred initial state transition). And so, having considered all possible states, we
conclude that embargoes can only begin from dpxa, with the caveat that practitioners should
carefully consider why they would enter an embargo from Fdpxa.

This leaves us with only few states from which we can enter an embargo, which we denote as
Q0
E :

Q0
E

def
= dpxa = {vfdpxa, V fdpxa, V Fdpxa} (6.12)

4A CVD embargo is analogous to a news embargo used in journalism, often in the context of scientific publica-
tions. Like CVD embargoes, the use of scientific news embargoes is not without controversy. [2, 18, 44]

5It is of course appropriate to use discretion as to how much detail is released.

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 44
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

6.4.2 Embargo Continuation Policies

Having shown the limited number of states from which an embargo can begin, we turn next
to the states in which an embargo remains viable. By viable we mean that maintaining the
embargo is reasonable and not contraindicated by the facts at hand. It is of course possible
for parties to attempt to maintain embargoes in spite of facts indicating they should do other-
wise. We are not here to support such contrived arguments.

By definition an embargo must be viable in all the states it can start from, so we’ll begin with
Q0
E (dpxa) and consider which restrictions we can relax, as there may be states in which an

existing embargo remains viable even if one should not initiate a new one.

To begin, states in Qp remain a necessary condition because keeping the public from becom-
ing aware of the vulnerability too early is the key state the embargo is intended to maintain.
Furthermore, because our starting criteria is already indifferent to vendor awareness and fix
availability, we will not revisit those here.

It appears we can relax Qd because it is certainly possible in some situations to maintain an
embargo after a fix is deployed, as is common in CVD cases regarding specific instances of
vulnerabilities. For example, web site vulnerabilities are often only published after the system
is no longer vulnerable. So our set of viable states is currently pxa.

Next, we address two potential sticking points, X and A. First, how long can an existing em-
bargo persist in pX? The embargo can persist only for as long as it takes for public awareness

of its existence to take hold pX
P−→ PX. This might be reasonable for a few hours or at best

a few days, but not much longer.6 In other words, an active embargo for a vulnerability case
in a state q ∈ pX has either already failed or is at imminent risk of failure to prevent public
awareness. For this reason, it seems better to presume embargo non-viability in pX.

Second, what should we do if an embargo is in place and we find out that attacks are
happening—i.e., we assess that we are in a state q ∈ pA? Cases in pA give the attacker an
advantage over defenders insofar as attackers are able to exploit vulnerabilities while deploy-
ers remain ignorant of steps they might take to defend their systems. For this reason, many
organizations’ disclosure policies explicitly call out observed attacks as a reason to break an
embargo. Therefore, while it may be technically possible to maintain an embargo in pxA, we
remain skeptical of the reason for doing so, if not to maintain the ability for attacks to remain
stealthy.

In the interest of avoiding justification for bad faith disclosure behaviors, we hold that embar-
goes remain viable only in pxa, with the caveat that only limited circumstances as described
above justify maintaining embargoes once F or D have occurred (V Fdpxa and V FDpxa, re-
spectively).

QE
def
= pxa = {vfdpxa, V fdpxa, V Fdpxa, V FDpxa} (6.13)

In summary, embargoes can be initiated if the case is in Q0
E as in Eq. (6.12), and remain vi-

able through any state in QE as in Eq. (6.13). This in turn gives us specific things to look for
in order to determine when to end an embargo:

• The embargo timer has expired.

• Any observation of P, X, or A has been made (q 6∈ pxa).

• F or D have occurred (q ∈ {V Fdpxa, V FDpxa}), and no reasons specific to the case to
maintain the embargo remain.

6Public awareness notwithstanding, an engaged adversary can begin using a public exploit as soon as it becomes
available.

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 45
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

• Any other embargo exit rules—such as those specified in the relevant disclosure
policies—have been triggered.

6.4.3 CVD Service Level Expectations

Closely related to CVD embargoes are CVD Service Level Expectations (SLEs). Disclosure
policies specify commitments by coordinating parties to ensure the occurrence of certain state
transitions within a specific period of time. While the model presented here does not directly
address timing choices, we can point out some ways to relate the model to those choices.
Specifically, we intend to demonstrate how disclosure policy SLEs can be stated as rules trig-
gered within subsets of states or by particular transitions between subsets of states in Q.

For example, a finder, reporter, or coordinator might commit to publishing information about

a vulnerability 30 days after vendor notification. This translates to starting a timer at v
V−→ V

and ensuring V p
P−→ V P when the timer expires. Notice that the prospect of V fp

P−→ V fP is

often used to motivate vendors to ensure a reasonable SLE to produce fixes (V f
F−→ V F) [9].

Similarly, a vendor might commit to providing public fixes within 5 business days of report

receipt. In that case, the SLE timer would start at vfp
V−→ V fp and and end at one of two

transitions: First, the “normal” situation in which the vendor creates a fix and makes it pub-

lic along with the vulnerability (F ≺ P, i.e., V Fp
P−→ V FP). Second, a “zero day” situation7

in which events outside the vendor’s control cause the V fp
P−→ V fP transition to occur prior

to the fix being ready (V fP
F−→ V FP), i.e, P ≺ F. Likewise, the V fp

P−→ V fP
F−→ V FP

path might also occur when a vendor has set their embargo timer too aggressively for their
development process to keep up.

It is therefore in the vendor’s interest to tune their SLE to reduce the likelihood for unex-
pected public awareness (P) while providing sufficient time for F to occur, optimizing to
achieve F ≺ P in a substantial fraction of cases. As future work, measurement of both the
incidence and timing of embargo failures through observation of P, X, and A originating from
QE could give insight into appropriate vendor SLEs for fix readiness (F).

Service providers and VM practitioners might similarly describe their SLEs in terms of timing
between states. Such policies will likely take the form of commitments to limit the time spent

in FdP . When the vendor has already produced a patch, the clock starts at Fdp
P−→ FdP ,

whereas if the vulnerability becomes public prior to patch the clock starts at fdP
F−→ FdP . In

both cases, the timer ends at FdP
D−→ FDP .

Future formal definitions of policy statements might take the general form of specifications
including

• Starting state (q ∈ Q) or subset of states (S ⊂ Q)

• Expected transitions (σ ∈ Σ) and SLEs around their timing, including possible con-
straints such as “not before” and “no later than” specifications

• An indication of constraint rigidity (negotiable, fixed, MUST, SHOULD, MAY [11],
etc.)

• Potential exceptions in the form of other transitions (σ ∈ Σ) that might alter expected
behavior, and a description of the anticipated response.

One reason to formalize policy definitions is the potential to automatically resolve embargo
negotiations when those policies are compatible. It may be possible to resolve some appar-
ent policy conflicts by delaying notifications to some vendors to ensure that all embargo end

7The phrase zero day means many things to many people. We provide more formal definitions in §6.5

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 46
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

timers expire simultaneously. We informally refer to this as the Thanksgiving Dinner prob-
lem, due to its similarity to the familiar annual holiday meal in which a number of dishes with
varying preparation times are expected to be delivered to the table simultaneously, each at
its appropriate temperature and doneness. For example, when one party has a “minimum 90
days to publish” policy and another has a “maximum 5 days to publish” policy, the resolu-
tion could be to notify the first vendor 85 days before notifying the second. Such a model of
graduated disclosure could work well for cases where notifications are automated and vendor
dependencies are small or where coordinating parties’ policies can be resolved as compatible.
Technology such as Theorem Provers and Solvers seem likely to be suited to this sort of prob-
lem.

However, when formal policies are incompatible, the failure to resolve them automatically be-
comes an opportunity for human intervention as the exception handler of last resort. Of po-
tential concern here are MPCVD cases in which a vendor with a long policy timer is depen-
dent on one with a short policy timer to provide fixes. The serial nature of the dependency
creates the potential for a compatibility conflict. For example, this can happen when an OS
kernel provider’s disclosure policy specifies a shorter embargo timer than the policies of device
manufacturers whose products depend on that OS kernel. Automation can draw attention to
these sorts of conflicts, but their resolution is likely to require human intervention for some
time to come.

6.5 Improving Definitions of Common Terms

Some terms surrounding CVD and VM have been ambiguously defined in common usage.
One benefit of the definition of events, states, and possible CVD histories presented in this
whitepaper is an opportunity to clarify definitions of related terms. In this section we will use
our model to formally define their meaning.

6.5.1 Zero Day

The information security community uses a variety of common phrases that contain the words
zero day. This creates confusion. For example, a reviewer stated that they prefer to define
“zero day vulnerability” as X ≺ V and not (P ≺ F or A ≺ F). We should seek these precise
definitions because sometimes both X ≺ V and P ≺ F are true, in which case two people
might agree that an instance is a “zero day” without realizing that they disagree on its defini-
tion. We can resolve these formally using our model. This section extends prior work by one
of the authors in [28].

zero day vulnerability Two common definitions for this term are in widespread use; a third
is drawn from an important policy context. The two commonly-used definitions can be
considered a relatively low threat level because they only involve states q ∈ xa where
no exploits are public and no attacks have occurred. We ordered all three definitions in
approximately descending risk due to the expected duration until D can be achieved.

1. q ∈ vp The United States Vulnerability Equities Process [27] defines zero day vul-
nerability in a manner consistent with q ∈ vp. Further discussion appears in §6.7.

2. vp
P−→ vP when the vulnerability becomes public before the vendor is aware of it.

Note that our model assumes that states in vP are unstable and resolve to vP
V−→

V P in the next step.

3. fp
P−→ fP when the vulnerability becomes public before a fix is available, regard-

less of the vendor’s awareness. Some states in fP—specifically, those in V fP—are
closer to F (and therefore D) occuring than others (i.e., vfP), thus this definition
could imply less time spent at risk than the first.

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 47
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

zero day exploit This term has three common definitions. Each can be considered a moder-

ate threat level because they involve transition from xa
X−→ Xa. However, we ordered

them in approximately descending risk due to the expected duration until D can be
achieved.

1. vfdx
X−→ vfdX when an exploit is released before the vendor is aware of the vulner-

ability.

2. fdx
X−→ fdX when an exploit is released before a fix is available for the vulnerabil-

ity. Because Qvf ⊂ Qf , any scenario matching the previous definition also matches
this one.

3. px
X−→ pX when an exploit is released before the public is aware of the vulnera-

bility. Note that our model assumes that states in pX are unstable and transition

pX
P−→ PX in the next step.

zero day attack We have identified three common definitions of this term. Each can be con-
sidered a high threat level because they involve the A transition. However, we ordered
them in approximately descending risk due to the expected duration until D can be
achieved.

1. vfda
A−→ vfdA when attacks against the vulnerability occur before the vendor is

aware of the vulnerability.

2. fda
A−→ fdA when attacks against the vulnerability occur before a fix is available

for the vulnerability. As with zero day exploit, because Qvf ⊂ Qf , any scenario
matching the previous definition also matches this one.

3. pa
A−→ pA when attacks against the vulnerability occur before the public is aware

of the vulnerability. Note that this definition disregards the vendor entirely since it
makes no reference to either V or F.

6.5.2 Forever Day

In common usage, a forever day vulnerability is one that is expected to remain unpatched in-
definitely [26]. In other words, the vulnerability is expected to remain in d forever. This situa-
tion can occur when deployed code is abandoned for a number of reasons, including:

1. The vendor has designated the product as End-of-Life (EoL) and thereby declines to fix
any further security flaws, usually implying q ∈ V fd. Vendors should evaluate their
support posture for EoL products when they are aware of vulnerabilities in V fdX or
V fdA. Potential vendor responses include issuing additional guidance or an out-of-
support patch.

2. The vendor no longer exists, implying a state q ∈ vfd. Neither F nor D transitions can
be expected although P, X, and A remain possible. For this reason alone, coordinators
or other stakeholders may choose to publish anyway to cause P. In this situation, if de-
ployers are to respond at all, states in vfdP are preferable to states in vfdp. Defender
options in this case are usually limited to retiring or otherwise isolating affected systems,
especially for vulnerabilities in either vfdPX or vfdPA.

3. The deployer chooses to never deploy, implying an expectation to remain in d until
the affected systems are retired or otherwise removed from service. This situation may
be more common in deployments of safety-critical systems and Operational Technol-
ogy (OT) than it is in Information Technology (IT) deployments. It is also the most
reversible of the three forever day scenarios, because the deployer can always reverse
their decision as long as a fix is available (q ∈ V F). In deployment environments where

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 48
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Table 6.4: Mapping Subsets of States Q to SSVC v2.0

States SSVC Decision Point SSVC Value

xa Exploitation None
Xa Exploitation PoC (Proof of Concept)
A Exploitation Active
p Report Public No
P Report Public Yes
V Supplier Contacted Yes
v Supplier Contacted No (but see text for caveat)
p Public Value Added Precedence

V Fdp or dP Public Value Added Ampliative
V FP Public Value Added Limited

other mitigations are in place and judged to be adequate, and where the risk posed by
X and/or A are perceived to be low, this can be a reasonable strategy within a VM pro-
gram.

Scenarios in which the vendor has chosen not to develop a patch for an otherwise supported
product, and which also imply q ∈ V fd, are omitted from the above definition because as
long as the vendor exists the choice to not develop a fix remains reversible. That said, such
scenarios most closely follow the first bullet in the list above.

6.6 Vulnerability Response Situation Awareness

In this section, we demonstrate how the model can be applied to improve situation awareness
for coordinating parties and other stakeholders.

SSVC v2.0 Vulnerability prioritization schemes such as SSVC [52, 53, 54] generally give in-
creased priority to states in higher threat levels, corresponding to q ∈ QX ∪ QA. SSVC also
includes decision points surrounding other states in our model. A summary of the relevant
SSVC decision points and their intersection with our model is given in Table 6.4.

Not all SSVC decision point values map as clearly onto states in this model however. For ex-
ample, Supplier Contacted=No likely means q ∈ Qv but it is possible that the vendor has
found out another way, so one cannot rule out q ∈ QV on this basis alone. However, notifying
the vendor yourself forces you into q ∈ QV . Therefore it is always in the coordinator’s interest
to encourage, facilitate, or otherwise cause the vendor to be notified.

Other SSVC decision points may be informative about which transitions to expect in a case.
Two examples apply here: First, Supplier Engagement acts to gauge the likelihood of the F
transitions. Coordination becomes more necessary the lower that likelihood is. Second, Utility
(the usefulness of the exploit to the adversary) acts to gauge the likelihood of the A transi-
tion.

Mapping to CVSS v3.1 Common Vulnerability Scoring System (CVSS) version 3.1 includes
a few Temporal Metric variables that connect to this model [41]. Unfortunately, differences in
abstraction between the models leaves a good deal of ambiguity in the translation. Table 6.5
shows the relationship between the two models.

Addressing Uncertainty in Situation Awareness It is possible to use this model to infer
what other decisions can be made based on incomplete information about a case. For exam-
ple, imagine that a vendor just found out about a vulnerability in a product and has taken no

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 49
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Table 6.5: Mapping Subsets of States Q to CVSS v3.1

States CVSS v3.1 Temporal Metric CVSS v3.1 Temporal Metric Value(s)

XA Exploit Maturity High (H), or Functional (F)
X Exploit Maturity High (H), Functional (F), or Proof-of-Concept (P)
x Exploit Maturity Unproven (U) or Not Defined (X)
V f Remediation Level Not Defined (X), Unavailable (U), Workaround (W), or

Temporary Fix (T)
V F Remediation Level Temporary Fix (T) or Official Fix (O)

Table 6.6: PageRank and normalized state probabilities for states in V f

State PageRank Normalized

V fdPXA 0.063 0.245
V fdPXa 0.051 0.200
V fdPxa 0.037 0.146
V fdPxA 0.032 0.126
V fdpxa 0.031 0.120
V fdpxA 0.020 0.078
V fdpXa 0.011 0.044
V fdpXA 0.010 0.040

action yet. We know they are in V f , but that leaves 8 possible states for the case to be in:

V f = {V fdpxa, V fdPxa, V fdpXa,
V fdpxA, V fdPXa, V fdpXA,

V fdPxA, V fdPXA}

Can we do better than simply assigning equal likelihood p(q|V f) = 0.125 to each of these
states? Yes: we can use the PageRank computations from Table 3.4 to inform our estimates.

To assess our presence in V f , we can select just the subset of states we are interested in. But
our PageRank values are computed across all 32 states and we are only interested in the rela-
tive probabilities within a subset of 8 states. Thus, we normalize the PageRank for the subset
to find the results shown in Table 6.6. As a result, we find that the most likely state in V f is
V fdPXA with probability 0.24, nearly twice what we would have expected (1/8 = 0.125) if
we just assumed each state was equally probable.

6.7 Vulnerability Equities Process (VEP)

The Vulnerability Equities Process (VEP) is the United States government’s process to decide
whether to inform vendors about vulnerabilities they have discovered. The VEP Charter [27]
describes the process:

The Vulnerabilities Equities Process (VEP) balances whether to disseminate vul-
nerability information to the vendor/supplier in the expectation that it will be
patched, or to temporarily restrict the knowledge of the vulnerability to the USG,
and potentially other partners, so that it can be used for national security and law
enforcement purposes, such as intelligence collection, military operations, and/or
counterintelligence.

For each vulnerability that enters the process, the VEP results in a decision to disseminate or
restrict the information.

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 50
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

In terms of our model:

disseminate is a decision to notify the vendor, thereby triggering the transition Qv
V−→ QV .

restrict is a decision not to notify the vendor and remain in Qv.

VEP policy does not explicitly touch on any other aspect of the CVD process. By solely ad-
dressing V, VEP is mute regarding intentionally triggering the P or X transitions. It also
makes no commitments about F or D, although obviously these are entirely dependent on V
having occurred. However, preserving the opportunity to exploit the vulnerability implies a
chance that such use would be observed by others, thereby resulting in the A transition.

The charter sets the following scope requirement as to which vulnerabilities are eligible for
VEP:

To enter the process, a vulnerability must be both newly discovered and not pub-
licly known

given the following definitions (from Annex A of [27])

Newly Discovered After February 16, 2010, the effective date of the initial Vulnerabilities
Equities Process, when the USG discovers a zero-day vulnerability or new zero-day vul-
nerability information, it will be considered newly discovered. This definition does NOT
preclude entry of vulnerability information discovered prior to February 16, 2010.

Publicly known A vulnerability is considered publicly known if the vendor is aware of its ex-
istence and/or vulnerability information can be found in the public domain (e.g., pub-
lished documentation, Internet, trade journals).

Vulnerability A weakness in an information system or its components (e.g., system security
procedures, hardware design, internal controls) that could be exploited or impact confi-
dentiality, integrity, or availability of information.

Zero-Day Vulnerability A type of vulnerability that is unknown to the vendor, exploitable,
and not publicly known.

Mapping back to our model, the VEP definition of newly discovered hinges on the definition
of zero day vulnerability. The policy is not clear what distinction is intended by the use of
the term exploitable in the zero day vulnerability definition, as the definition of vulnerability
includes the phrase “could be exploited,” seeming to imply that a non-exploitable vulnerabil-
ity might fail to qualify as a vulnerability altogether. Regardless, “unknown to the vendor”
clearly matches with Qv, and “not publicly known” likewise matches with Qp. Thus we inter-
pret their definition of newly discovered to be consistent with q ∈ vp.

VEP’s definition of publicly known similarly specifies either “vendor is aware” (QV) or “in-
formation can be found in the public domain” (QP). As above, the logical negation of these
two criteria puts us back in q ∈ vp since vp = ¬QV ∩ ¬QP . We further note that because a
public exploit (QX) would also meet the definition of “vulnerability information in the pub-
lic domain,” we can narrow the scope from vp to vpx. Lastly, we note that due to the vendor
fix path causality rule in Eq. (3.3), vpx is equivalent to vfdpx, and therefore we can formally
specify that VEP is only applicable to vulnerabilities in

SV EP = vfdpx = {vfdpxa, vfdpxA} (6.14)

Vulnerabilities in any other state by definition should not enter into the Vulnerability Equi-
ties Process, as the first transition from vfdpx (i.e., V, P, or X) exits the inclusion criteria.
However it is worth mentioning that the utility of a vulnerability for offensive use contin-
ues throughout Qd, which is a considerably larger subset of states than vfdpx (|Qd| = 24,
|Qvfdpx| = 2).

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 51
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

6.8 Recommended Action Rules for CVD

Another application of this model is to recommend actions for coordinating parties in CVD
based on the subset of states that currently apply to a case. What a coordinating party does
depends on their role and where they engage, as shown in the list below. As described in §6.2,
MPCVD attempts to synchronize state transitions across vendors.

A significant portion of Coordinated Vulnerability Disclosure can be formally described as a
set of action rules based on this model. For our purposes, a CVD action rule consists of:

State subset The subset of states Q ∈ Q from which the action may be taken

Role(s) The role(s) capable of performing the action

Action A summary of the action to be taken

Reason The rationale for taking the action

Transition The state transition event σ ∈ Σ induced by the action (if any)

This rule structure follows a common user story pattern:

When a case is in a state q ∈ Q ⊆ Q, a Role can do Action for Reason, resulting in
the transition event σ ∈ Σ

The list in Table 6.7 can be built into a rules engine that translates each state in the model to
a set of suggested CVD actions.

Table 6.7: CVD Action Rules based on States

State Subset Role(s) Action Reason σ

P any Terminate any existing embargo Exit criteria
met

-

X any Terminate any existing embargo Exit criteria
met

-

A any Terminate any existing embargo Exit criteria
met

-

x any Monitor for exploit publication SA -
X any Monitor for exploit refinement SA -
a any Monitor for attacks SA -
A any Monitor for additional attacks SA -

vfdP vendor Pay attention to public reports SA V
pX any Draw attention to published exploit(s) SA P
PX any Draw attention to published exploit(s) SA P
pxa any Maintain vigilance for embargo exit criteria SA -
V fdP any Escalate vigilance for exploit publication or

attacks
SA, Coordi-
nation

-

X any Publish detection(s) for exploits Detection P
A any Publish detection(s) for attacks Detection P
V p any Publish vul and any mitigations (if no active

embargo)
Defense P

fdP any Publish mitigations Defense -
pX any Publish vul and any mitigations Defense P
PX any Publish vul and any mitigations Defense P
pA any Publish vul and any mitigations Defense P

V fdP any Publish mitigations Defense -

Continued on next page

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 52
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Table 6.7: CVD Action Rules based on States

State Subset Role(s) Action Reason σ

vfdp any Publish vul and any mitigations (if no ven-
dor exists)

Defense P

V fdP any Ensure any available mitigations are publi-
cized

Defense -

V fd vendor Create fix Defense F
V Fdp vendor,

deployer
Deploy fix (if possible) Defense D

V FdP deployer Deploy fix Defense D
fdPxA any Publish exploit code Defense,

Detection
X

V FdPxa any Publish exploit code Defense,
Detection,
Accelerate
deployment

X

vfd non-
vendor

Notify vendor Coordination V

dP any Escalate response priority among responding
parties

Coordination -

dX any Escalate response priority among responding
parties

Coordination -

dA any Escalate response priority among responding
parties

Coordination -

V fd non-
vendor

Encourage vendor to create fix Coordination -

pxa any Maintain any existing disclosure embargo Coordination -
dpxa any Negotiate or establish disclosure embargo Coordination -
V fdP non-

vendor
Escalate fix priority with vendor Coordination -

V fdp non-
vendor

Publish vul Coordination,
Motivate
vendor to fix

P

V fdp any Publish vul Coordination,
Motivate de-
ployers to
mitigate

P

V Fdp non-
vendor

Encourage vendor to deploy fix (if possible) Coordination -

V Fdpxa any Scrutinize appropriateness of initiating a new
embargo

Coordination -

V Fdp any Publish vul and fix details Accelerate
deployment

P

V FdP any Promote fix deployment Accelerate
deployment

-

V FDp any Publish vulnerability Document
for future
reference

P

Continued on next page

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 53
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Table 6.7: CVD Action Rules based on States

State Subset Role(s) Action Reason σ

V FDp any Publish vulnerability Acknowledge
contribu-
tions

P

fdxa any Discourage exploit publication until at least
F

Limit at-
tacker ad-
vantage

-

vfdpx US Gov’t Initiate VEP (if applicable) Policy -
V FDPXA any Close case No action

required
-

V FDPxa any Close case (unless monitoring for X or A) No action
required

-

V FDPXa any Close case (unless monitoring for A) No action
required

-

V FDPxA any Close case (unless monitoring for X) No action
required

-

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 54
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7 Related Work

Numerous models of the vulnerability life cycle and CVD have been proposed. Arbaugh,
Fithen, and McHugh provide a descriptive model of the life cycle of vulnerabilities from incep-
tion to attacks and remediation [3], which we refined with those of Frei et al. [24], and Bilge
and et al. [10] to form the basis of this model as described in §2.1. We also found Lewis’ liter-
ature review of vulnerability lifecycle models to be useful [37].

Prescriptive models of the CVD process have also been proposed. Christey and Wysopal’s
2002 IETF draft laid out a process for responsible disclosure geared towards prescribing roles,
responsibilities for researchers, vendors, customers, and the security community [17]. The
NIAC Vulnerability Disclosure Framework also prescribed a process for coordinating the dis-
closure and remediation of vulnerabilities [16]. The CERT Guide to Coordinated Vulnera-
bility Disclosure provides a practical overview of the CVD process [30]. ISO/IEC 29147 de-
scribes standard externally-facing processes for vulnerability disclosure from the perspective of
a vendor receiving vulnerability reports , while ISO/IEC 30111 describes internal vulnerabil-
ity handling processes within a vendor [31, 32]. The Forum of Incident Response and Security
Teams (FIRST) PSIRT Services Framework provides a practical description of the capabilities
common to vulnerability response within vendor organizations [43]. The FIRST Guidelines
and Practices for Multi-Party Vulnerability Coordination and Disclosure provides a number of
scenarios for MPCVD [42]. Many of these scenarios can be mapped directly to the histories
h ∈ H described in §6.2.

Benchmarking CVD capability is the topic of the Vulnerability Coordination Maturity Model
(VCMM) from Luta Security [49]. The VCMM addresses five capability areas: organizational,
engineering, communications, analytics, and incentives. Of these, our model is perhaps most
relevant to the analytics capability, and the metrics described in §5 could be used to inform
an organization’s assessment of progress in this dimension. Concise description of case states
using the model presented here could also be used to improve the communications dimension
of the VCMM.

System dynamics and agent based models have been applied to the interactions between the
vulnerability discovery, disclosure, and remediation processes. Ellis et al. analyzed the compo-
sition of the labor market for bug bounty programs, finding that a small core of high-volume
reporters earn most of the bounties while a much larger group are infrequent low-volume re-
porters [21]. Lewis modeled the interaction of social and economic factors in the global vul-
nerability discovery and disclosure system [37]. The key systemic themes identified include:

Perception of Punishment; Vendor Interactions; Disclosure Stance; Ethical Con-
siderations; Economic factors for Discovery and Disclosure and Emergence of New
Vulnerability Markets

Moore and Householder modeled cooperative aspects of the MPCVD process, noting, ”it ap-
pears that adjusting the embargo period to increase the likelihood that patches can be devel-
oped by most vendors just in time is a good strategy for reducing cost”[38].

Economic analysis of CVD has also been done. Arora et al. explored the CVD process from
an economic and social welfare perspective [8, 7, 4, 9, 5, 6]. More recently, so did Silfversten
[51]. Cavusoglu and Cavusoglu model the mechanisms involved in motivating vendors to pro-
duce and release patches [13]. Ellis et al. examined the dynamics of labor market for bug
bounties both within and across CVD programs [21]. Pupillo et al. explored the policy impli-
cations of CVD in Europe [47]. A model for prioritizing vulnerability response that considers
X and A, among other impact factors, can be found in Spring et al. [53].

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 55
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Other work has examined the timing of events in the lifecycle, sometimes with implications for
forecasting. Ozment and Schechter examined the rate of vulnerability reports as software ages

[45]. Bilge and Dumitraş studied 18 vulnerabilities in which pa
A−→ pA

P−→ PA, finding a lag
of over 300 days [10]. Jacobs et al. proposed an Exploit Prediction Scoring System [33], which
could provide insight into the relative frequencies of

vfda
V−→ V a

A−→ V A vs. vfda
A−→ vA

V−→ V A

fda
F−→ Fa

A−→ FA vs. fda
A−→ fA

F−→ FA

and possibly other transitions.

Future work might apply similar measurements of state subset populations over time to put
better bounds on state transition probabilities than our simplified assumption of uniformity.
Some possible starting points for such analysis follow.

Householder et al. found that only about 5% of vulnerabilities have public exploits available

via commodity tools. However, for those that do, the median lag between transitions in px
P−→

Px
X−→ PX was 2 days [29].

Frei et al. describe the timing of many of the events here, including F, D, X, P, and the
elapsed time between them for the period 2000-2007 across a wide swath of industry [24].

Their analysis finds that px
X−→ pX

P−→ PX in 15% of the vulnerabilities they analyzed, leav-

ing 85% on the px
P−→ Px

X−→ PX path. Similarly, they report that a patch is available on
or before the date of public awareness in 43% of vulnerabilities. In other words, they find that

fp
F−→ Fp

P−→ FP 43% of the time, implying that fp
P−→ fP

F−→ FP 57% of the time.

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 56
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

8 Limitations and Future Work

This section highlights some limitations of the current work and lays out a path for improv-
ing on those limitations in future work. Broadly, the opportunities for expanding the model
include

• addressing the complexities of tracking CVD and MPCVD cases throughout their lifecy-
cle

• addressing the importance of both state transition probabilities and the time interval
between them

• options for modeling attacker behavior

• modeling multiple agents

• gathering more data about CVD in the world

• managing the impact of partial information

• working to account for fairness and the complexity of MPCVD

8.1 State Explosion

Although our discussion of MPCVD in §6.2 and §6.2.2 highlights one area in which the num-
ber of states to track can increase dramatically, an even larger problem could arise in the con-
text of Vulnerability Management (VM) efforts even within normal CVD cases. Our model
casts each event σ ∈ Σ as a singular point event, even though some—such as fix deployed D—
would be more accurately described as diffusion or multi-agent processes.

That is, by the time a vulnerability case reaches the point of remediating individual in-
stances of vulnerable deployments, every such instance has its own state to track in regards to
whether D has occurred yet. To apply this model to real world observations, it may be prag-
matic to adapt the event definition to include some defined threshold criteria.

However, this problem is equivalent to an existing problem in VM practice: how best to ad-
dress the question of whether the fix for a vulnerability has been deployed across the enter-
prise. Many organizations find a fixed quantile SLE to be a reasonable approach. For exam-
ple, a stakeholder might set the SLE that 80% of known vulnerable systems will be patched
within a certain timeframe. Other organizations might track fix deployments by risk groups,
for example by differentiating between end user systems, servers, and network infrastructure.
They then could observe the deployed fix ratio for their constituency and mark the event D
as having occurred when certain thresholds are reached. Nothing in our model precludes those
sorts of roll-up functions from being applied.

8.2 The Model Does Not Address Transition Probabilities

Although we posit a skill-less baseline in which each transition is equally likely whenever pos-
sible within the model, it is a reasonable criticism to point out that some transitions may be
expected to change conditional on a history already in progress.

For example, many people believe that the publication of exploits increases the likelihood of
attacks. Our model moves toward making this a testable hypothesis: Does p(A|q ∈ QX) >
p(A|q ∈ Qx) over some set of cases? Other such hypotheses can be framed in terms of the
model.

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 57
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Does making vulnerabilities public prior to fix readiness increase attacks?

p(A|q ∈ fP) > p(A|q ∈ FP)?

Does notifying vendors prior to making vulnerability information public increase the likeli-
hood that fixes will be deployed before attacks are observed?

p(D ≺ A|V ≺ P) > p(D ≺ A|P ≺ V)?

The novelty here is not that these questions could not be asked or answered previously.
Rather, it is that the formalism of our model allows them to be stated concisely and measured
in terms of 6 events σ ∈ Σ, which points directly to the usefulness of collecting data about
those events as part of ongoing CVD (including MPCVD) practices.

8.3 The Model Does Not Achieve a Total Order Over Histories

As described in §4.4, some ambiguity remains regarding preferences for elements of D. These
preferences would need to be addressed before the model can achieve a total order over histo-
ries H. Specifically, we need to decide whether it is preferable

• that Fix Ready precede Exploit Publication (F ≺ X) or that Vendor Awareness precede
Public Awareness (V ≺ P)

• that Public Awareness precede Exploit Publication (P ≺ X) or that Exploit Publication
Precede Attacks (X ≺ A)

• that Public Awareness precede Attacks (P ≺ A) or Vendor Awareness precede Exploit
Publication (V ≺ X)

We look forward to the ensuing “would you rather...?” discussions.

8.4 The Model Has No Sense of Timing

There is no concept of time in this model, but delays between events can make a big differ-
ence in history results. Two cases in which F ≺ A would be quite different if the time gap
between these two events was 1 week versus 3 months, as this gap directly bears on the need
for speed in deploying fixes. Organizations may wish to extend this model by setting timing
expectations in addition to simple precedence preferences. For example, organizations may
wish to specify SLEs for V ≺ F, F ≺ D, F ≺ A, and so forth.

Furthermore, in the long run the elapsed time for F ≺ A essentially dictates the response
time requirements for Vulnerability Management (VM) processes for system owners. Neither
system owners nor vendors get to choose when attacks happen, so we should expect stochas-
ticity to play a significant role in this timing. However, if an organization cannot consistently
achieve a shorter lag between F and D than between F and A (i.e., achieving D ≺ A) for a
sizable fraction of the vulnerability cases they encounter, it’s difficult to imagine that organi-
zation being satisfied with the effectiveness of their VM program.

8.5 Attacks As Random Events

In the model presented here, attacks are modeled as random events. However, attacks are not
random. At an individual or organization level, attackers are intelligent adversaries and can
be expected to follow their own objectives and processes to achieve their ends.

Modeling the details of various attackers is beyond the scope of this model. Thus we believe
that a stochastic approach to adversarial actions is reasonable from the perspective of a ven-
dor or system owner. Furthermore, if attacks were easily predicted, we would be having a very
different conversation.

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 58
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

8.6 Modeling Multiple Agents

We agree with the reviewer who suggested that an agent-based model could allow deeper ex-
amination of the interactions between stakeholders in MPCVD. Many of the mechanisms and
proximate causes underlying the events this model describes are hidden from the model, and
would be difficult to observe or measure even if they were included.

Nevertheless, to reason about different stakeholders’ strategies and approaches to MPCVD,
we need a way to measure and compare outcomes. The model we present here gives us such
a framework, but it does so by making a tradeoff in favor of generality over causal specificity.
We anticipate that future agent-based models of MPCVD will be better positioned to address
process mechanisms, whereas this model will be useful to assess outcomes independently of
the mechanisms by which they arise.

8.7 Gather Data About CVD

§6.1 discusses how different benchmarks and “reasonable baseline expectations” might change
the results of a skill assessment. It also proposes how to use observations of the actions a cer-
tain team or team performs to create a baseline which compares other CVD practitioners to
the skill of that team or teams. Such data could also inform causal reasoning about certain
event orderings and help identify effective interventions. For example, might causing X ≺ F
be an effective method to improve the chances of D ≺ A in cases where the vendor is slow to
produce a fix? Whether it is better to compare the skill of a team to blind luck via the i.i.d.
assumption or to other teams via measurement remains an open question.

To address questions such as this, future research efforts must collect and collate a large
amount of data about the timing sequences of events in the model for a variety of stakeholder
groups and a variety of vulnerabilities. Deeper analysis using joint probabilities could then
continue if the modeling choice is to base skill upon a measure from past observations.

While there is a modeling choice about using the uniformity assumption versus observations
from past CVD (see §6.1), the model does not depend on whether the uniformity assumption
actually holds. We have provided a means to calculate from observations a deviation from the
desired “reasonable baseline,” whether this is based on the i.i.d. assumption or not. Although,
via our research questions, we have provided a method for evaluating skill in CVD, evaluating
the overarching question of fairness in MPCVD requires a much broader sense of CVD prac-
tices.

8.8 Observation May Be Limited

Not all events σ ∈ Σ, and therefore not all desiderata d ∈ D, will be observable by all in-
terested parties. But in many cases at least some are, which can still help to infer reasonable
limits on the others, as shown in §5.2.1.

Vendors are in a good position to observe most of the events in each case. This is even more
so if they have good sources of threat information to bolster their awareness of the X and A
events. A vigilant public can also be expected to eventually observe most of the events, al-
though V might not be observable unless vendors, researchers, and/or coordinators are forth-
coming with their notification timelines (as many increasingly are). D is probably the hardest
event to observe for all parties, for the reasons described in the timing discussion above.

8.9 CVD Action Rules Are Not Algorithms

The rules given in §6.8 are not algorithms. We do not propose them as a set of required ac-
tions for every CVD case. However, following Atul Gawande’s lead, we offer them as a mecha-

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 59
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

nism to generate CVD checklists:

Good checklists, on the other hand are precise. They are efficient, to the point,
and easy to use even in the most difficult situations. They do not try to spell out
everything–a checklist cannot fly a plane. Instead, they provide reminders of only
the most critical and important steps–the ones that even the highly skilled profes-
sional using them could miss. Good checklists are, above all, practical [25].

8.10 MPCVD Criteria Do Not Account for Equitable Resilience

The proposed criteria for MPCVD in §6.2.2 fail to account for either user populations or their
relative importance. For example, suppose an MPCVD case had a total of 15 vendors, with
5 vendors representing 95% of the total userbase achieving highly preferred outcomes and 10
vendors with poor outcomes representing the remaining 5% of the userbase. The desired cri-
teria (high median α score with low variance) would likely be unmet even though most users
were protected.

Similarly, a smaller set of vendor/product pairs might represent a disproportionate concen-
tration of the total risk posed by a vulnerability.1 Again, aggregation across all vendor/prod-
uct pairs could be misleading. In fact, risk concentration within a particular user population
may lead to a need for strategies that appear inequitable at the vendor level while achieving
greater outcome equity at a larger scale.

The core issue is that we lack a utility function to map from observed case histories to harm
reduction.2 Potential features of such a function include aggregation across vendors and/or
users. Alternatively, it may be possible to devise a method for weighting the achieved histories
in an MPCVD case by some proxy for total user risk. Other approaches remain possible—
for example, employing a heuristic to avoid catastrophic outcomes for all, then applying
a weighted sum over the impact to the remaining users. Future work might also consider
whether criteria other than high median and low variance could be applied.

Regardless, achieving accurate estimates of such parameters is likely to remain challenging.
Equity in MPCVD may be a topic of future interest to groups such as the FIRST Ethics
Special Interest Group (SIG)3.

8.11 MPCVD Is Still Hard

CVD is a wicked problem, and MPCVD even more so [30]. The model provided by this white
paper offers structure to describe the problem space where there was little of it to speak of
previously.

However, such a model does not significantly alter the complexity of the task of coordinating
the response of multiple organizations, many of which identify as each others’ competitors,
in order to bring about a delicate social good in the face of many incentives for things to go
otherwise. The social, business, and geopolitical concerns and interests that influence cyberse-
curity policy across the globe remain at the heart of the vulnerability disclosure problem for
most stakeholders. Our hope is that the model found here will help to clarify decisions, com-
munication, and policies that all have their part to play in MPCVD process improvement.

1User concentration is one way to think about risk, but it is not the only way. Value density, as defined in [53] is
another.

2We also admit our omission from consideration of whether utilitarianism is even the best way to approach these
problems; and if it is, which variety of utilitarianism may be best suited. Such topics, while both interesting and rele-
vant, lie too far afield from our main topic for us to to them justice here. We direct interested readers toward [20] as an
introduction to the general topic.

3https://ethicsfirst.org/

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 60
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9 Conclusion

In this report, we developed a state-based model of the CVD process that enables us to enu-
merate all possible CVD histories H and defined a set of desired criteria D that are preferable
in each history. This allowed us to create a partially ordered set over all histories and to com-
pute a baseline expected frequency for each desired criteria. We also proposed a new perfor-
mance indicator for comparing actual CVD experiences against a benchmark, and proposed
an initial benchmark based on the expected frequency of each desired criteria. We demon-
strated this performance indicator in a few examples, indicating that at least some CVD prac-
tices appear to be doing considerably better than random. Finally, we posited a way to apply
these metrics to measure the efficacy of MPCVD processes.

The resulting state-transition model has numerous applications to formalizing the specifica-
tion of CVD policies and processes. We discussed how the model can be used to specify em-
bargo and disclosure policies, and to bring consistency to coordination practices. We further
showed how the model can be used to reduce uncertainty regarding actions to take even in the
presence of incomplete CVD information. We also suggested how the model can be used to
normalize frequently-used terms that have lacked consistent definitions among practitioners of
CVD and VM. Finally, we demonstrated the potential application of this model to US VEP
scope definitions.

In combination, the model described in this report offers a way to observe, communicate, and
measure the quality improvement of CVD and MPCVD practices across the board.

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 61
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Request for Feedback

The CERT/CC is interested to receive feedback on this report. Although every action was
taken to ensure the completeness and accuracy of the information contained within this re-
port, the possibility for improvement still exists. Please feel free to contact the author provid-
ing recommendations, corrections, opinions, or requests for clarification.

Feedback may be submitted at https://www.sei.cmu.edu/contact-us/

To contact the author please address all mail to:
Software Engineering Institute
4500 Fifth Avenue
Pittsburgh, PA 15213-2612
USA
Email: info@sei.cmu.edu

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 62
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

https://www.sei.cmu.edu/contact-us/
mailto:info@sei.cmu.edu

A Per-State Details

This appendix gives a brief description of each state q ∈ Q as developed in §2. See §2.3 for an
explanation of the states in the model. States are presented in the order given in (2.3), which
follows a hierarchy implied by traversal of the PXA submodel found in (2.7) for each step of
the V FD submodel given in (2.5). See §2.4 for an explanation of the state transitions permit-
ted by the model.

In this appendix, state transitions are cross-referenced by page number to enable easier nav-
igation through the state descriptions. See §3.2 for more on transition ordering desiderata.
Where applicable, the specific definitions of zero day matched by a given state are shown
based on §6.5.1. Additional notes on each state are consistent with §6.6. Also included for
each state is a table containing suggested actions as derived from §6.8. The embargo initia-
tion, continuation, and exit advice in those rules are consistent with the discussion found in
§6.4. Each state is given its own page to allow for consistent formatting.

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 63
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

A.1 vfdpxa

Vendor is unaware of vulnerability. Fix is not ready. Fix has not been deployed. Public is un-
aware of vulnerability. No exploits have been made public. No attacks have been observed.

Previous State(s): N/A

Next State(s): vfdpxA (p.65), vfdpXa (p.66), vfdPxa (p.68), V fdpxa (p.72)

Desiderata met: N/A

Desiderata blocked: N/A

Zero Day Definitions Matched: Zero Day Vulnerability Type 1

Other notes: Attack success likely. CVSS 3.1 Exploit Maturity: Unproven (U) or Not Defined
(X). Embargo continuation is viable. Embargo initiation may be appropriate. SSVC v2 Ex-
ploitation: None. SSVC v2 Public Value Added: Precedence. SSVC v2 Report Public: No.
SSVC v2 Supplier Contacted: No. VEP remains tenable. See Table A.1 for actions.

Table A.1: CVD Action Options for State vfdpxa

Role Action Reason Transition

any Publish vul and any mitigations (if no vendor
exists)

Defense P

non-vendor Notify vendor Coordination V
any Monitor for exploit publication SA -
any Monitor for attacks SA -
any Maintain vigilance for embargo exit criteria SA -
any Maintain any existing disclosure embargo Coordination -
any Negotiate or establish disclosure embargo Coordination -
any Discourage exploit publication until at least F Limit attacker

advantage
-

US Gov’t Initiate VEP (if applicable) Policy -

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 64
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

A.2 vfdpxA

Vendor is unaware of vulnerability. Fix is not ready. Fix has not been deployed. Public is un-
aware of vulnerability. No exploits have been made public. Attacks have been observed.

Previous State(s): vfdpxa (p.64)

Next State(s): vfdpXA (p.67), vfdPxA (p.69), V fdpxA (p.73)

Desiderata met: N/A

Desiderata blocked: D ≺ A, F ≺ A, P ≺ A, V ≺ A, X ≺ A

Zero Day Definitions Matched: Zero Day Vulnerability Type 1, Zero Day Attack Type 1,
Zero Day Attack Type 2, Zero Day Attack Type 3

Other notes: Attack success likely. Embargo is at risk. SSVC v2 Exploitation: Active. SSVC
v2 Public Value Added: Precedence. SSVC v2 Report Public: No. SSVC v2 Supplier Con-
tacted: No. VEP remains tenable. See Table A.2 for actions.

Table A.2: CVD Action Options for State vfdpxA

Role Action Reason Transition

any Publish detection(s) for attacks Detection P
any Publish vul and any mitigations Defense P
any Publish vul and any mitigations (if no vendor

exists)
Defense P

non-vendor Notify vendor Coordination V
any Terminate any existing embargo Attacks observed -
any Monitor for exploit publication SA -
any Monitor for additional attacks SA -
any Escalate response priority among respond-

ing parties
Coordination -

US Gov’t Initiate VEP (if applicable) Policy -

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 65
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

A.3 vfdpXa

Vendor is unaware of vulnerability. Fix is not ready. Fix has not been deployed. Public is un-
aware of vulnerability. Exploit(s) have been made public. No attacks have been observed.

Previous State(s): vfdpxa (p.64)

Next State(s): vfdPXa (p.70)

Desiderata met: X ≺ A

Desiderata blocked: D ≺ X, F ≺ X, P ≺ X, V ≺ X

Zero Day Definitions Matched: Zero Day Vulnerability Type 1, Zero Day Exploit Type 1,
Zero Day Exploit Type 2, Zero Day Exploit Type 3

Other notes: Attack success likely. CVSS 3.1 Exploit Maturity: high (H), functional (F), or
proof of concept (P). Embargo is at risk. Expect both Vendor and Public awareness immi-
nently. SSVC v2 Exploitation: PoC. SSVC v2 Public Value Added: Precedence. SSVC v2 Re-
port Public: No. SSVC v2 Supplier Contacted: No. VEP does not apply. See Table A.3 for
actions.

Table A.3: CVD Action Options for State vfdpXa

Role Action Reason Transition

any Draw attention to published exploit(s) SA P
any Publish detection(s) for exploits Detection P
any Publish vul and any mitigations Defense P
any Publish vul and any mitigations (if no vendor

exists)
Defense P

non-vendor Notify vendor Coordination V
any Terminate any existing embargo Exploit is public -
any Monitor for exploit refinement SA -
any Monitor for attacks SA -
any Escalate response priority among respond-

ing parties
Coordination -

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 66
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

A.4 vfdpXA

Vendor is unaware of vulnerability. Fix is not ready. Fix has not been deployed. Public is un-
aware of vulnerability. Exploit(s) have been made public. Attacks have been observed.

Previous State(s): vfdpxA (p.65)

Next State(s): vfdPXA (p.71)

Desiderata met: N/A

Desiderata blocked: D ≺ A, D ≺ X, F ≺ A, F ≺ X, P ≺ A, P ≺ X, V ≺ A, V ≺ X

Zero Day Definitions Matched: Zero Day Vulnerability Type 1, Zero Day Exploit Type 1,
Zero Day Exploit Type 2, Zero Day Exploit Type 3, Zero Day Attack Type 1, Zero Day At-
tack Type 2, Zero Day Attack Type 3

Other notes: Attack success likely. CVSS 3.1 Exploit Maturity: high (H) or functional (F).
Embargo is at risk. Expect both Vendor and Public awareness imminently. SSVC v2 Ex-
ploitation: Active. SSVC v2 Public Value Added: Precedence. SSVC v2 Report Public: No.
SSVC v2 Supplier Contacted: No. VEP does not apply. See Table A.4 for actions.

Table A.4: CVD Action Options for State vfdpXA

Role Action Reason Transition

any Draw attention to published exploit(s) SA P
any Publish detection(s) for exploits Detection P
any Publish detection(s) for attacks Detection P
any Publish vul and any mitigations Defense P
any Publish vul and any mitigations (if no vendor

exists)
Defense P

non-vendor Notify vendor Coordination V
any Terminate any existing embargo Exploit is public -
any Terminate any existing embargo Attacks observed -
any Monitor for exploit refinement SA -
any Monitor for additional attacks SA -
any Escalate response priority among respond-

ing parties
Coordination -

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 67
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

A.5 vfdPxa

Vendor is unaware of vulnerability. Fix is not ready. Fix has not been deployed. Public is
aware of vulnerability. No exploits have been made public. No attacks have been observed.

Previous State(s): vfdpxa (p.64)

Next State(s): V fdPxa (p.76)

Desiderata met: P ≺ A, P ≺ X

Desiderata blocked: D ≺ P, F ≺ P, V ≺ P

Zero Day Definitions Matched: Zero Day Vulnerability Type 2, Zero Day Vulnerability Type
3

Other notes: Attack success likely. CVSS 3.1 Exploit Maturity: Unproven (U) or Not Defined
(X). Embargo is no longer viable. Expect Vendor awareness imminently. SSVC v2 Exploita-
tion: None. SSVC v2 Public Value Added: Ampliative. SSVC v2 Report Public: Yes. SSVC
v2 Supplier Contacted: No. VEP does not apply. See Table A.5 for actions.

Table A.5: CVD Action Options for State vfdPxa

Role Action Reason Transition

vendor Pay attention to public reports SA V
non-vendor Notify vendor Coordination V
any Terminate any existing embargo Vul is public -
any Monitor for exploit publication SA -
any Monitor for attacks SA -
any Publish mitigations Defense -
any Escalate response priority among respond-

ing parties
Coordination -

any Discourage exploit publication until at least F Limit attacker
advantage

-

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 68
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

A.6 vfdPxA

Vendor is unaware of vulnerability. Fix is not ready. Fix has not been deployed. Public is
aware of vulnerability. No exploits have been made public. Attacks have been observed.

Previous State(s): vfdpxA (p.65)

Next State(s): V fdPxA (p.77)

Desiderata met: P ≺ X

Desiderata blocked: D ≺ A, D ≺ P, F ≺ A, F ≺ P, V ≺ A, V ≺ P, X ≺ A

Zero Day Definitions Matched: Zero Day Vulnerability Type 2, Zero Day Vulnerability Type
3, Zero Day Attack Type 1, Zero Day Attack Type 2

Other notes: Attack success likely. Embargo is no longer viable. Expect Vendor awareness
imminently. SSVC v2 Exploitation: Active. SSVC v2 Public Value Added: Ampliative. SSVC
v2 Report Public: Yes. SSVC v2 Supplier Contacted: No. VEP does not apply. See Table A.6
for actions.

Table A.6: CVD Action Options for State vfdPxA

Role Action Reason Transition

any Publish detection(s) for attacks Detection P
vendor Pay attention to public reports SA V
non-vendor Notify vendor Coordination V
any Publish exploit code Defense, Detec-

tion
X

any Terminate any existing embargo Vul is public -
any Terminate any existing embargo Attacks observed -
any Monitor for exploit publication SA -
any Monitor for additional attacks SA -
any Publish mitigations Defense -
any Escalate response priority among respond-

ing parties
Coordination -

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 69
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

A.7 vfdPXa

Vendor is unaware of vulnerability. Fix is not ready. Fix has not been deployed. Public is
aware of vulnerability. Exploit(s) have been made public. No attacks have been observed.

Previous State(s): vfdpXa (p.66)

Next State(s): V fdPXa (p.78)

Desiderata met: P ≺ A, X ≺ A

Desiderata blocked: D ≺ P, D ≺ X, F ≺ P, F ≺ X, V ≺ P, V ≺ X

Zero Day Definitions Matched: Zero Day Vulnerability Type 2, Zero Day Vulnerability Type
3, Zero Day Exploit Type 1, Zero Day Exploit Type 2

Other notes: Attack success likely. CVSS 3.1 Exploit Maturity: high (H), functional (F), or
proof of concept (P). Embargo is no longer viable. Expect Vendor awareness imminently.
SSVC v2 Exploitation: PoC. SSVC v2 Public Value Added: Ampliative. SSVC v2 Report
Public: Yes. SSVC v2 Supplier Contacted: No. VEP does not apply. See Table A.7 for ac-
tions.

Table A.7: CVD Action Options for State vfdPXa

Role Action Reason Transition

any Draw attention to published exploit(s) SA P
any Publish detection(s) for exploits Detection P
any Publish vul and any mitigations Defense P
vendor Pay attention to public reports SA V
non-vendor Notify vendor Coordination V
any Terminate any existing embargo Vul is public -
any Terminate any existing embargo Exploit is public -
any Monitor for exploit refinement SA -
any Monitor for attacks SA -
any Publish mitigations Defense -
any Escalate response priority among respond-

ing parties
Coordination -

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 70
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

A.8 vfdPXA

Vendor is unaware of vulnerability. Fix is not ready. Fix has not been deployed. Public is
aware of vulnerability. Exploit(s) have been made public. Attacks have been observed.

Previous State(s): vfdpXA (p.67)

Next State(s): V fdPXA (p.79)

Desiderata met: N/A

Desiderata blocked: D ≺ A, D ≺ P, D ≺ X, F ≺ A, F ≺ P, F ≺ X, V ≺ A, V ≺ P, V ≺ X

Zero Day Definitions Matched: Zero Day Vulnerability Type 2, Zero Day Vulnerability Type
3, Zero Day Exploit Type 1, Zero Day Exploit Type 2, Zero Day Attack Type 1, Zero Day
Attack Type 2

Other notes: Attack success likely. CVSS 3.1 Exploit Maturity: high (H) or functional (F).
Embargo is no longer viable. Expect Vendor awareness imminently. SSVC v2 Exploitation:
Active. SSVC v2 Public Value Added: Ampliative. SSVC v2 Report Public: Yes. SSVC v2
Supplier Contacted: No. VEP does not apply. See Table A.8 for actions.

Table A.8: CVD Action Options for State vfdPXA

Role Action Reason Transition

any Draw attention to published exploit(s) SA P
any Publish detection(s) for exploits Detection P
any Publish detection(s) for attacks Detection P
any Publish vul and any mitigations Defense P
vendor Pay attention to public reports SA V
non-vendor Notify vendor Coordination V
any Terminate any existing embargo Vul is public -
any Terminate any existing embargo Exploit is public -
any Terminate any existing embargo Attacks observed -
any Monitor for exploit refinement SA -
any Monitor for additional attacks SA -
any Publish mitigations Defense -
any Escalate response priority among respond-

ing parties
Coordination -

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 71
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

A.9 Vfdpxa

Vendor is aware of vulnerability. Fix is not ready. Fix has not been deployed. Public is un-
aware of vulnerability. No exploits have been made public. No attacks have been observed.

Previous State(s): vfdpxa (p.64)

Next State(s): V fdpxA (p.73), V fdpXa (p.74), V fdPxa (p.76), V Fdpxa (p.80)

Desiderata met: V ≺ A, V ≺ P, V ≺ X

Desiderata blocked: N/A

Other notes: Attack success likely. CVSS 3.1 Exploit Maturity: Unproven (U) or Not De-
fined (X). CVSS 3.1 remediation level: Not Defined (X), Unavailable (U), Workaround (W),
or Temporary Fix (T). Embargo continuation is viable. Embargo initiation may be appropri-
ate. SSVC v2 Exploitation: None. SSVC v2 Public Value Added: Precedence. SSVC v2 Re-
port Public: No. SSVC v2 Supplier Contacted: Yes. VEP does not apply. See Table A.9 for
actions.

Table A.9: CVD Action Options for State V fdpxa

Role Action Reason Transition

vendor Create fix Defense F
any Publish vul and any mitigations (if no active

embargo)
Defense P

non-vendor Publish vul Coordination,
Motivate vendor
to fix

P

any Publish vul Coordination,
Motivate deploy-
ers to mitigate

P

any Monitor for exploit publication SA -
any Monitor for attacks SA -
any Maintain vigilance for embargo exit criteria SA -
non-vendor Encourage vendor to create fix Coordination -
any Maintain any existing disclosure embargo Coordination -
any Negotiate or establish disclosure embargo Coordination -
any Discourage exploit publication until at least F Limit attacker

advantage
-

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 72
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

A.10 VfdpxA

Vendor is aware of vulnerability. Fix is not ready. Fix has not been deployed. Public is un-
aware of vulnerability. No exploits have been made public. Attacks have been observed.

Previous State(s): vfdpxA (p.65), V fdpxa (p.72)

Next State(s): V fdpXA (p.75), V fdPxA (p.77), V FdpxA (p.81)

Desiderata met: V ≺ P, V ≺ X

Desiderata blocked: D ≺ A, F ≺ A, P ≺ A, X ≺ A

Zero Day Definitions Matched: Zero Day Attack Type 2, Zero Day Attack Type 3

Other notes: Attack success likely. CVSS 3.1 remediation level: Not Defined (X), Unavail-
able (U), Workaround (W), or Temporary Fix (T). Embargo is at risk. SSVC v2 Exploitation:
Active. SSVC v2 Public Value Added: Precedence. SSVC v2 Report Public: No. SSVC v2
Supplier Contacted: Yes. VEP does not apply. See Table A.10 for actions.

Table A.10: CVD Action Options for State V fdpxA

Role Action Reason Transition

vendor Create fix Defense F
any Publish detection(s) for attacks Detection P
any Publish vul and any mitigations (if no active

embargo)
Defense P

any Publish vul and any mitigations Defense P
non-vendor Publish vul Coordination,

Motivate vendor
to fix

P

any Publish vul Coordination,
Motivate deploy-
ers to mitigate

P

any Terminate any existing embargo Attacks observed -
any Monitor for exploit publication SA -
any Monitor for additional attacks SA -
any Escalate response priority among respond-

ing parties
Coordination -

non-vendor Encourage vendor to create fix Coordination -

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 73
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

A.11 VfdpXa

Vendor is aware of vulnerability. Fix is not ready. Fix has not been deployed. Public is un-
aware of vulnerability. Exploit(s) have been made public. No attacks have been observed.

Previous State(s): V fdpxa (p.72)

Next State(s): V fdPXa (p.78)

Desiderata met: V ≺ A, V ≺ P, X ≺ A

Desiderata blocked: D ≺ X, F ≺ X, P ≺ X

Zero Day Definitions Matched: Zero Day Exploit Type 2, Zero Day Exploit Type 3

Other notes: Attack success likely. CVSS 3.1 Exploit Maturity: high (H), functional (F),
or proof of concept (P). CVSS 3.1 remediation level: Not Defined (X), Unavailable (U),
Workaround (W), or Temporary Fix (T). Embargo is at risk. Expect Public awareness im-
minently. SSVC v2 Exploitation: PoC. SSVC v2 Public Value Added: Precedence. SSVC v2
Report Public: No. SSVC v2 Supplier Contacted: Yes. VEP does not apply. See Table A.11
for actions.

Table A.11: CVD Action Options for State V fdpXa

Role Action Reason Transition

vendor Create fix Defense F
any Draw attention to published exploit(s) SA P
any Publish detection(s) for exploits Detection P
any Publish vul and any mitigations (if no active

embargo)
Defense P

any Publish vul and any mitigations Defense P
non-vendor Publish vul Coordination,

Motivate vendor
to fix

P

any Publish vul Coordination,
Motivate deploy-
ers to mitigate

P

any Terminate any existing embargo Exploit is public -
any Monitor for exploit refinement SA -
any Monitor for attacks SA -
any Escalate response priority among respond-

ing parties
Coordination -

non-vendor Encourage vendor to create fix Coordination -

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 74
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

A.12 VfdpXA

Vendor is aware of vulnerability. Fix is not ready. Fix has not been deployed. Public is un-
aware of vulnerability. Exploit(s) have been made public. Attacks have been observed.

Previous State(s): V fdpxA (p.73)

Next State(s): V fdPXA (p.79)

Desiderata met: V ≺ P

Desiderata blocked: D ≺ A, D ≺ X, F ≺ A, F ≺ X, P ≺ A, P ≺ X

Zero Day Definitions Matched: Zero Day Exploit Type 2, Zero Day Exploit Type 3, Zero
Day Attack Type 2, Zero Day Attack Type 3

Other notes: Attack success likely. CVSS 3.1 Exploit Maturity: high (H) or functional (F).
CVSS 3.1 remediation level: Not Defined (X), Unavailable (U), Workaround (W), or Tempo-
rary Fix (T). Embargo is at risk. Expect Public awareness imminently. SSVC v2 Exploitation:
Active. SSVC v2 Public Value Added: Precedence. SSVC v2 Report Public: No. SSVC v2
Supplier Contacted: Yes. VEP does not apply. See Table A.12 for actions.

Table A.12: CVD Action Options for State V fdpXA

Role Action Reason Transition

vendor Create fix Defense F
any Draw attention to published exploit(s) SA P
any Publish detection(s) for exploits Detection P
any Publish detection(s) for attacks Detection P
any Publish vul and any mitigations (if no active

embargo)
Defense P

any Publish vul and any mitigations Defense P
non-vendor Publish vul Coordination,

Motivate vendor
to fix

P

any Publish vul Coordination,
Motivate deploy-
ers to mitigate

P

any Terminate any existing embargo Exploit is public -
any Terminate any existing embargo Attacks observed -
any Monitor for exploit refinement SA -
any Monitor for additional attacks SA -
any Escalate response priority among respond-

ing parties
Coordination -

non-vendor Encourage vendor to create fix Coordination -

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 75
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

A.13 VfdPxa

Vendor is aware of vulnerability. Fix is not ready. Fix has not been deployed. Public is aware
of vulnerability. No exploits have been made public. No attacks have been observed.

Previous State(s): vfdPxa (p.68), V fdpxa (p.72)

Next State(s): V fdPxA (p.77), V fdPXa (p.78), V FdPxa (p.84)

Desiderata met: P ≺ A, P ≺ X, V ≺ A, V ≺ X

Desiderata blocked: D ≺ P, F ≺ P

Zero Day Definitions Matched: Zero Day Vulnerability Type 3

Other notes: Attack success likely. CVSS 3.1 Exploit Maturity: Unproven (U) or Not De-
fined (X). CVSS 3.1 remediation level: Not Defined (X), Unavailable (U), Workaround (W),
or Temporary Fix (T). Embargo is no longer viable. SSVC v2 Exploitation: None. SSVC v2
Public Value Added: Ampliative. SSVC v2 Report Public: Yes. SSVC v2 Supplier Contacted:
Yes. VEP does not apply. See Table A.13 for actions.

Table A.13: CVD Action Options for State V fdPxa

Role Action Reason Transition

vendor Create fix Defense F
any Terminate any existing embargo Vul is public -
any Monitor for exploit publication SA -
any Monitor for attacks SA -
any Escalate vigilance for exploit publication or

attacks
SA, Coordination -

any Publish mitigations Defense -
any Ensure any available mitigations are publi-

cized
Defense -

any Escalate response priority among respond-
ing parties

Coordination -

non-vendor Encourage vendor to create fix Coordination -
non-vendor Escalate fix priority with vendor Coordination -
any Discourage exploit publication until at least F Limit attacker

advantage
-

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 76
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

A.14 VfdPxA

Vendor is aware of vulnerability. Fix is not ready. Fix has not been deployed. Public is aware
of vulnerability. No exploits have been made public. Attacks have been observed.

Previous State(s): vfdPxA (p.69), V fdpxA (p.73), V fdPxa (p.76)

Next State(s): V fdPXA (p.79), V FdPxA (p.85)

Desiderata met: P ≺ X, V ≺ X

Desiderata blocked: D ≺ A, D ≺ P, F ≺ A, F ≺ P, X ≺ A

Zero Day Definitions Matched: Zero Day Vulnerability Type 3, Zero Day Attack Type 2

Other notes: Attack success likely. CVSS 3.1 remediation level: Not Defined (X), Unavail-
able (U), Workaround (W), or Temporary Fix (T). Embargo is no longer viable. SSVC v2 Ex-
ploitation: Active. SSVC v2 Public Value Added: Ampliative. SSVC v2 Report Public: Yes.
SSVC v2 Supplier Contacted: Yes. VEP does not apply. See Table A.14 for actions.

Table A.14: CVD Action Options for State V fdPxA

Role Action Reason Transition

vendor Create fix Defense F
any Publish detection(s) for attacks Detection P
any Publish exploit code Defense, Detec-

tion
X

any Terminate any existing embargo Vul is public -
any Terminate any existing embargo Attacks observed -
any Monitor for exploit publication SA -
any Monitor for additional attacks SA -
any Escalate vigilance for exploit publication or

attacks
SA, Coordination -

any Publish mitigations Defense -
any Ensure any available mitigations are publi-

cized
Defense -

any Escalate response priority among respond-
ing parties

Coordination -

non-vendor Encourage vendor to create fix Coordination -
non-vendor Escalate fix priority with vendor Coordination -

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 77
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

A.15 VfdPXa

Vendor is aware of vulnerability. Fix is not ready. Fix has not been deployed. Public is aware
of vulnerability. Exploit(s) have been made public. No attacks have been observed.

Previous State(s): vfdPXa (p.70), V fdpXa (p.74), V fdPxa (p.76)

Next State(s): V fdPXA (p.79), V FdPXa (p.86)

Desiderata met: P ≺ A, V ≺ A, X ≺ A

Desiderata blocked: D ≺ P, D ≺ X, F ≺ P, F ≺ X

Zero Day Definitions Matched: Zero Day Vulnerability Type 3, Zero Day Exploit Type 2

Other notes: Attack success likely. CVSS 3.1 Exploit Maturity: high (H), functional (F),
or proof of concept (P). CVSS 3.1 remediation level: Not Defined (X), Unavailable (U),
Workaround (W), or Temporary Fix (T). Embargo is no longer viable. SSVC v2 Exploita-
tion: PoC. SSVC v2 Public Value Added: Ampliative. SSVC v2 Report Public: Yes. SSVC v2
Supplier Contacted: Yes. VEP does not apply. See Table A.15 for actions.

Table A.15: CVD Action Options for State V fdPXa

Role Action Reason Transition

vendor Create fix Defense F
any Draw attention to published exploit(s) SA P
any Publish detection(s) for exploits Detection P
any Publish vul and any mitigations Defense P
any Terminate any existing embargo Vul is public -
any Terminate any existing embargo Exploit is public -
any Monitor for exploit refinement SA -
any Monitor for attacks SA -
any Escalate vigilance for exploit publication or

attacks
SA, Coordination -

any Publish mitigations Defense -
any Ensure any available mitigations are publi-

cized
Defense -

any Escalate response priority among respond-
ing parties

Coordination -

non-vendor Encourage vendor to create fix Coordination -
non-vendor Escalate fix priority with vendor Coordination -

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 78
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

A.16 VfdPXA

Vendor is aware of vulnerability. Fix is not ready. Fix has not been deployed. Public is aware
of vulnerability. Exploit(s) have been made public. Attacks have been observed.

Previous State(s): vfdPXA (p.71), V fdpXA (p.75), V fdPxA (p.77), V fdPXa (p.78)

Next State(s): V FdPXA (p.87)

Desiderata met: N/A

Desiderata blocked: D ≺ A, D ≺ P, D ≺ X, F ≺ A, F ≺ P, F ≺ X

Zero Day Definitions Matched: Zero Day Vulnerability Type 3, Zero Day Exploit Type 2,
Zero Day Attack Type 2

Other notes: Attack success likely. CVSS 3.1 Exploit Maturity: high (H) or functional (F).
CVSS 3.1 remediation level: Not Defined (X), Unavailable (U), Workaround (W), or Tempo-
rary Fix (T). Embargo is no longer viable. SSVC v2 Exploitation: Active. SSVC v2 Public
Value Added: Ampliative. SSVC v2 Report Public: Yes. SSVC v2 Supplier Contacted: Yes.
VEP does not apply. See Table A.16 for actions.

Table A.16: CVD Action Options for State V fdPXA

Role Action Reason Transition

vendor Create fix Defense F
any Draw attention to published exploit(s) SA P
any Publish detection(s) for exploits Detection P
any Publish detection(s) for attacks Detection P
any Publish vul and any mitigations Defense P
any Terminate any existing embargo Vul is public -
any Terminate any existing embargo Exploit is public -
any Terminate any existing embargo Attacks observed -
any Monitor for exploit refinement SA -
any Monitor for additional attacks SA -
any Escalate vigilance for exploit publication or

attacks
SA, Coordination -

any Publish mitigations Defense -
any Ensure any available mitigations are publi-

cized
Defense -

any Escalate response priority among respond-
ing parties

Coordination -

non-vendor Encourage vendor to create fix Coordination -
non-vendor Escalate fix priority with vendor Coordination -

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 79
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

A.17 VFdpxa

Vendor is aware of vulnerability. Fix is ready. Fix has not been deployed. Public is unaware
of vulnerability. No exploits have been made public. No attacks have been observed.

Previous State(s): V fdpxa (p.72)

Next State(s): V FdpxA (p.81), V FdpXa (p.82), V FdPxa (p.84), V FDpxa (p.88)

Desiderata met: F ≺ A, F ≺ P, F ≺ X, V ≺ A, V ≺ P, V ≺ X

Desiderata blocked: N/A

Other notes: Attack success likely. CVSS 3.1 Exploit Maturity: Unproven (U) or Not Defined
(X). CVSS 3.1 remediation level: Temporary Fix (T) or Official Fix (O). Embargo continua-
tion is viable. Embargo initiation may be appropriate. Embargo initiation with careful consid-
eration only. SSVC v2 Exploitation: None. SSVC v2 Public Value Added: Ampliative. SSVC
v2 Public Value Added: Precedence. SSVC v2 Report Public: No. SSVC v2 Supplier Con-
tacted: Yes. VEP does not apply. See Table A.17 for actions.

Table A.17: CVD Action Options for State V Fdpxa

Role Action Reason Transition

vendor,
deployer

Deploy fix (if possible) Defense D

any Publish vul and any mitigations (if no active
embargo)

Defense P

any Publish vul and fix details Accelerate de-
ployment

P

any Monitor for exploit publication SA -
any Monitor for attacks SA -
any Maintain vigilance for embargo exit criteria SA -
any Maintain any existing disclosure embargo Coordination -
any Negotiate or establish disclosure embargo Coordination -
non-vendor Encourage vendor to deploy fix (if possible) Coordination -
any Scrutinize appropriateness of initiating a new

disclosure embargo
Coordination -

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 80
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

A.18 VFdpxA

Vendor is aware of vulnerability. Fix is ready. Fix has not been deployed. Public is unaware
of vulnerability. No exploits have been made public. Attacks have been observed.

Previous State(s): V fdpxA (p.73), V Fdpxa (p.80)

Next State(s): V FdpXA (p.83), V FdPxA (p.85), V FDpxA (p.89)

Desiderata met: F ≺ P, F ≺ X, V ≺ P, V ≺ X

Desiderata blocked: D ≺ A, P ≺ A, X ≺ A

Zero Day Definitions Matched: Zero Day Attack Type 3

Other notes: Attack success likely. CVSS 3.1 remediation level: Temporary Fix (T) or Official
Fix (O). Embargo is at risk. SSVC v2 Exploitation: Active. SSVC v2 Public Value Added:
Ampliative. SSVC v2 Public Value Added: Precedence. SSVC v2 Report Public: No. SSVC
v2 Supplier Contacted: Yes. VEP does not apply. See Table A.18 for actions.

Table A.18: CVD Action Options for State V FdpxA

Role Action Reason Transition

vendor,
deployer

Deploy fix (if possible) Defense D

any Publish detection(s) for attacks Detection P
any Publish vul and any mitigations (if no active

embargo)
Defense P

any Publish vul and any mitigations Defense P
any Publish vul and fix details Accelerate de-

ployment
P

any Terminate any existing embargo Attacks observed -
any Monitor for exploit publication SA -
any Monitor for additional attacks SA -
any Escalate response priority among respond-

ing parties
Coordination -

non-vendor Encourage vendor to deploy fix (if possible) Coordination -

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 81
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

A.19 VFdpXa

Vendor is aware of vulnerability. Fix is ready. Fix has not been deployed. Public is unaware
of vulnerability. Exploit(s) have been made public. No attacks have been observed.

Previous State(s): V Fdpxa (p.80)

Next State(s): V FdPXa (p.86)

Desiderata met: F ≺ A, F ≺ P, V ≺ A, V ≺ P, X ≺ A

Desiderata blocked: D ≺ X, P ≺ X

Zero Day Definitions Matched: Zero Day Exploit Type 3

Other notes: Attack success likely. CVSS 3.1 Exploit Maturity: high (H), functional (F), or
proof of concept (P). CVSS 3.1 remediation level: Temporary Fix (T) or Official Fix (O). Em-
bargo is at risk. Expect Public awareness imminently. SSVC v2 Exploitation: PoC. SSVC v2
Public Value Added: Ampliative. SSVC v2 Public Value Added: Precedence. SSVC v2 Re-
port Public: No. SSVC v2 Supplier Contacted: Yes. VEP does not apply. See Table A.19 for
actions.

Table A.19: CVD Action Options for State V FdpXa

Role Action Reason Transition

vendor,
deployer

Deploy fix (if possible) Defense D

any Draw attention to published exploit(s) SA P
any Publish detection(s) for exploits Detection P
any Publish vul and any mitigations (if no active

embargo)
Defense P

any Publish vul and any mitigations Defense P
any Publish vul and fix details Accelerate de-

ployment
P

any Terminate any existing embargo Exploit is public -
any Monitor for exploit refinement SA -
any Monitor for attacks SA -
any Escalate response priority among respond-

ing parties
Coordination -

non-vendor Encourage vendor to deploy fix (if possible) Coordination -

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 82
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

A.20 VFdpXA

Vendor is aware of vulnerability. Fix is ready. Fix has not been deployed. Public is unaware
of vulnerability. Exploit(s) have been made public. Attacks have been observed.

Previous State(s): V FdpxA (p.81)

Next State(s): V FdPXA (p.87)

Desiderata met: F ≺ P, V ≺ P

Desiderata blocked: D ≺ A, D ≺ X, P ≺ A, P ≺ X

Zero Day Definitions Matched: Zero Day Exploit Type 3, Zero Day Attack Type 3

Other notes: Attack success likely. CVSS 3.1 Exploit Maturity: high (H) or functional (F).
CVSS 3.1 remediation level: Temporary Fix (T) or Official Fix (O). Embargo is at risk. Ex-
pect Public awareness imminently. SSVC v2 Exploitation: Active. SSVC v2 Public Value
Added: Ampliative. SSVC v2 Public Value Added: Precedence. SSVC v2 Report Public: No.
SSVC v2 Supplier Contacted: Yes. VEP does not apply. See Table A.20 for actions.

Table A.20: CVD Action Options for State V FdpXA

Role Action Reason Transition

vendor,
deployer

Deploy fix (if possible) Defense D

any Draw attention to published exploit(s) SA P
any Publish detection(s) for exploits Detection P
any Publish detection(s) for attacks Detection P
any Publish vul and any mitigations (if no active

embargo)
Defense P

any Publish vul and any mitigations Defense P
any Publish vul and fix details Accelerate de-

ployment
P

any Terminate any existing embargo Exploit is public -
any Terminate any existing embargo Attacks observed -
any Monitor for exploit refinement SA -
any Monitor for additional attacks SA -
any Escalate response priority among respond-

ing parties
Coordination -

non-vendor Encourage vendor to deploy fix (if possible) Coordination -

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 83
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

A.21 VFdPxa

Vendor is aware of vulnerability. Fix is ready. Fix has not been deployed. Public is aware of
vulnerability. No exploits have been made public. No attacks have been observed.

Previous State(s): V fdPxa (p.76), V Fdpxa (p.80)

Next State(s): V FdPxA (p.85), V FdPXa (p.86), V FDPxa (p.92)

Desiderata met: F ≺ A, F ≺ X, P ≺ A, P ≺ X, V ≺ A, V ≺ X

Desiderata blocked: D ≺ P

Other notes: Attack success likely. CVSS 3.1 Exploit Maturity: Unproven (U) or Not De-
fined (X). CVSS 3.1 remediation level: Temporary Fix (T) or Official Fix (O). Embargo is no
longer viable. SSVC v2 Exploitation: None. SSVC v2 Public Value Added: Ampliative. SSVC
v2 Public Value Added: Limited. SSVC v2 Report Public: Yes. SSVC v2 Supplier Contacted:
Yes. VEP does not apply. See Table A.21 for actions.

Table A.21: CVD Action Options for State V FdPxa

Role Action Reason Transition

deployer Deploy fix Defense D
any Publish exploit code Defense, Detec-

tion, Accelerate
deployment

X

any Terminate any existing embargo Vul is public -
any Monitor for exploit publication SA -
any Monitor for attacks SA -
any Escalate response priority among respond-

ing parties
Coordination -

any Promote fix deployment Accelerate de-
ployment

-

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 84
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

A.22 VFdPxA

Vendor is aware of vulnerability. Fix is ready. Fix has not been deployed. Public is aware of
vulnerability. No exploits have been made public. Attacks have been observed.

Previous State(s): V fdPxA (p.77), V FdpxA (p.81), V FdPxa (p.84)

Next State(s): V FdPXA (p.87), V FDPxA (p.93)

Desiderata met: F ≺ X, P ≺ X, V ≺ X

Desiderata blocked: D ≺ A, D ≺ P, X ≺ A

Other notes: Attack success likely. CVSS 3.1 remediation level: Temporary Fix (T) or Official
Fix (O). Embargo is no longer viable. SSVC v2 Exploitation: Active. SSVC v2 Public Value
Added: Ampliative. SSVC v2 Public Value Added: Limited. SSVC v2 Report Public: Yes.
SSVC v2 Supplier Contacted: Yes. VEP does not apply. See Table A.22 for actions.

Table A.22: CVD Action Options for State V FdPxA

Role Action Reason Transition

deployer Deploy fix Defense D
any Publish detection(s) for attacks Detection P
any Terminate any existing embargo Vul is public -
any Terminate any existing embargo Attacks observed -
any Monitor for exploit publication SA -
any Monitor for additional attacks SA -
any Escalate response priority among respond-

ing parties
Coordination -

any Promote fix deployment Accelerate de-
ployment

-

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 85
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

A.23 VFdPXa

Vendor is aware of vulnerability. Fix is ready. Fix has not been deployed. Public is aware of
vulnerability. Exploit(s) have been made public. No attacks have been observed.

Previous State(s): V fdPXa (p.78), V FdpXa (p.82), V FdPxa (p.84)

Next State(s): V FdPXA (p.87), V FDPXa (p.94)

Desiderata met: F ≺ A, P ≺ A, V ≺ A, X ≺ A

Desiderata blocked: D ≺ P, D ≺ X

Other notes: Attack success likely. CVSS 3.1 Exploit Maturity: high (H), functional (F), or
proof of concept (P). CVSS 3.1 remediation level: Temporary Fix (T) or Official Fix (O). Em-
bargo is no longer viable. SSVC v2 Exploitation: PoC. SSVC v2 Public Value Added: Am-
pliative. SSVC v2 Public Value Added: Limited. SSVC v2 Report Public: Yes. SSVC v2 Sup-
plier Contacted: Yes. VEP does not apply. See Table A.23 for actions.

Table A.23: CVD Action Options for State V FdPXa

Role Action Reason Transition

deployer Deploy fix Defense D
any Draw attention to published exploit(s) SA P
any Publish detection(s) for exploits Detection P
any Publish vul and any mitigations Defense P
any Terminate any existing embargo Vul is public -
any Terminate any existing embargo Exploit is public -
any Monitor for exploit refinement SA -
any Monitor for attacks SA -
any Escalate response priority among respond-

ing parties
Coordination -

any Promote fix deployment Accelerate de-
ployment

-

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 86
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

A.24 VFdPXA

Vendor is aware of vulnerability. Fix is ready. Fix has not been deployed. Public is aware of
vulnerability. Exploit(s) have been made public. Attacks have been observed.

Previous State(s): V fdPXA (p.79), V FdpXA (p.83), V FdPxA (p.85), V FdPXa (p.86)

Next State(s): V FDPXA (p.95)

Desiderata met: N/A

Desiderata blocked: D ≺ A, D ≺ P, D ≺ X

Other notes: Attack success likely. CVSS 3.1 Exploit Maturity: high (H) or functional (F).
CVSS 3.1 remediation level: Temporary Fix (T) or Official Fix (O). Embargo is no longer vi-
able. SSVC v2 Exploitation: Active. SSVC v2 Public Value Added: Ampliative. SSVC v2
Public Value Added: Limited. SSVC v2 Report Public: Yes. SSVC v2 Supplier Contacted:
Yes. VEP does not apply. See Table A.24 for actions.

Table A.24: CVD Action Options for State V FdPXA

Role Action Reason Transition

deployer Deploy fix Defense D
any Draw attention to published exploit(s) SA P
any Publish detection(s) for exploits Detection P
any Publish detection(s) for attacks Detection P
any Publish vul and any mitigations Defense P
any Terminate any existing embargo Vul is public -
any Terminate any existing embargo Exploit is public -
any Terminate any existing embargo Attacks observed -
any Monitor for exploit refinement SA -
any Monitor for additional attacks SA -
any Escalate response priority among respond-

ing parties
Coordination -

any Promote fix deployment Accelerate de-
ployment

-

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 87
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

A.25 VFDpxa

Vendor is aware of vulnerability. Fix is ready. Fix has been deployed. Public is unaware of
vulnerability. No exploits have been made public. No attacks have been observed.

Previous State(s): V Fdpxa (p.80)

Next State(s): V FDpxA (p.89), V FDpXa (p.90), V FDPxa (p.92)

Desiderata met: D ≺ A, D ≺ P, D ≺ X, F ≺ A, F ≺ P, F ≺ X, V ≺ A, V ≺ P, V ≺ X

Desiderata blocked: N/A

Other notes: Attack success unlikely. CVSS 3.1 Exploit Maturity: Unproven (U) or Not De-
fined (X). CVSS 3.1 remediation level: Temporary Fix (T) or Official Fix (O). Do not initiate
a new disclosure embargo, but an existing embargo may continue. Embargo continuation is
viable. SSVC v2 Exploitation: None. SSVC v2 Public Value Added: Precedence. SSVC v2
Report Public: No. SSVC v2 Supplier Contacted: Yes. VEP does not apply. See Table A.25
for actions.

Table A.25: CVD Action Options for State V FDpxa

Role Action Reason Transition

any Publish vul and any mitigations (if no active
embargo)

Defense P

any Publish vulnerability Document for
future reference

P

any Publish vulnerability Acknowledge
contributions

P

any Monitor for exploit publication SA -
any Monitor for attacks SA -
any Maintain vigilance for embargo exit criteria SA -
any Maintain any existing disclosure embargo Coordination -

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 88
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

A.26 VFDpxA

Vendor is aware of vulnerability. Fix is ready. Fix has been deployed. Public is unaware of
vulnerability. No exploits have been made public. Attacks have been observed.

Previous State(s): V FdpxA (p.81), V FDpxa (p.88)

Next State(s): V FDpXA (p.91), V FDPxA (p.93)

Desiderata met: D ≺ P, D ≺ X, F ≺ P, F ≺ X, V ≺ P, V ≺ X

Desiderata blocked: P ≺ A, X ≺ A

Zero Day Definitions Matched: Zero Day Attack Type 3

Other notes: Attack success unlikely. CVSS 3.1 remediation level: Temporary Fix (T) or
Official Fix (O). Embargo is at risk. SSVC v2 Exploitation: Active. SSVC v2 Public Value
Added: Precedence. SSVC v2 Report Public: No. SSVC v2 Supplier Contacted: Yes. VEP
does not apply. See Table A.26 for actions.

Table A.26: CVD Action Options for State V FDpxA

Role Action Reason Transition

any Publish detection(s) for attacks Detection P
any Publish vul and any mitigations (if no active

embargo)
Defense P

any Publish vul and any mitigations Defense P
any Publish vulnerability Document for

future reference
P

any Publish vulnerability Acknowledge
contributions

P

any Terminate any existing embargo Attacks observed -
any Monitor for exploit publication SA -
any Monitor for additional attacks SA -

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 89
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

A.27 VFDpXa

Vendor is aware of vulnerability. Fix is ready. Fix has been deployed. Public is unaware of
vulnerability. Exploit(s) have been made public. No attacks have been observed.

Previous State(s): V FDpxa (p.88)

Next State(s): V FDPXa (p.94)

Desiderata met: D ≺ A, D ≺ P, F ≺ A, F ≺ P, V ≺ A, V ≺ P, X ≺ A

Desiderata blocked: P ≺ X

Zero Day Definitions Matched: Zero Day Exploit Type 3

Other notes: Attack success unlikely. CVSS 3.1 Exploit Maturity: high (H), functional (F), or
proof of concept (P). CVSS 3.1 remediation level: Temporary Fix (T) or Official Fix (O). Em-
bargo is at risk. Expect Public awareness imminently. SSVC v2 Exploitation: PoC. SSVC v2
Public Value Added: Precedence. SSVC v2 Report Public: No. SSVC v2 Supplier Contacted:
Yes. VEP does not apply. See Table A.27 for actions.

Table A.27: CVD Action Options for State V FDpXa

Role Action Reason Transition

any Draw attention to published exploit(s) SA P
any Publish detection(s) for exploits Detection P
any Publish vul and any mitigations (if no active

embargo)
Defense P

any Publish vul and any mitigations Defense P
any Publish vulnerability Document for

future reference
P

any Publish vulnerability Acknowledge
contributions

P

any Terminate any existing embargo Exploit is public -
any Monitor for exploit refinement SA -
any Monitor for attacks SA -

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 90
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

A.28 VFDpXA

Vendor is aware of vulnerability. Fix is ready. Fix has been deployed. Public is unaware of
vulnerability. Exploit(s) have been made public. Attacks have been observed.

Previous State(s): V FDpxA (p.89)

Next State(s): V FDPXA (p.95)

Desiderata met: D ≺ P, F ≺ P, V ≺ P

Desiderata blocked: P ≺ A, P ≺ X

Zero Day Definitions Matched: Zero Day Exploit Type 3, Zero Day Attack Type 3

Other notes: Attack success unlikely. CVSS 3.1 Exploit Maturity: high (H) or functional (F).
CVSS 3.1 remediation level: Temporary Fix (T) or Official Fix (O). Embargo is at risk. Ex-
pect Public awareness imminently. SSVC v2 Exploitation: Active. SSVC v2 Public Value
Added: Precedence. SSVC v2 Report Public: No. SSVC v2 Supplier Contacted: Yes. VEP
does not apply. See Table A.28 for actions.

Table A.28: CVD Action Options for State V FDpXA

Role Action Reason Transition

any Draw attention to published exploit(s) SA P
any Publish detection(s) for exploits Detection P
any Publish detection(s) for attacks Detection P
any Publish vul and any mitigations (if no active

embargo)
Defense P

any Publish vul and any mitigations Defense P
any Publish vulnerability Document for

future reference
P

any Publish vulnerability Acknowledge
contributions

P

any Terminate any existing embargo Exploit is public -
any Terminate any existing embargo Attacks observed -
any Monitor for exploit refinement SA -
any Monitor for additional attacks SA -

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 91
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

A.29 VFDPxa

Vendor is aware of vulnerability. Fix is ready. Fix has been deployed. Public is aware of vul-
nerability. No exploits have been made public. No attacks have been observed.

Previous State(s): V FdPxa (p.84), V FDpxa (p.88)

Next State(s): V FDPxA (p.93), V FDPXa (p.94)

Desiderata met: D ≺ A, D ≺ X, F ≺ A, F ≺ X, P ≺ A, P ≺ X, V ≺ A, V ≺ X

Desiderata blocked: N/A

Other notes: Attack success unlikely. CVSS 3.1 Exploit Maturity: Unproven (U) or Not De-
fined (X). CVSS 3.1 remediation level: Temporary Fix (T) or Official Fix (O). Embargo is no
longer viable. SSVC v2 Exploitation: None. SSVC v2 Public Value Added: Limited. SSVC v2
Report Public: Yes. SSVC v2 Supplier Contacted: Yes. VEP does not apply. See Table A.29
for actions.

Table A.29: CVD Action Options for State V FDPxa

Role Action Reason Transition

any Terminate any existing embargo Vul is public -
any Monitor for exploit publication SA -
any Monitor for attacks SA -
any Close case (unless monitoring for X or A) No further action

required
-

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 92
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

A.30 VFDPxA

Vendor is aware of vulnerability. Fix is ready. Fix has been deployed. Public is aware of vul-
nerability. No exploits have been made public. Attacks have been observed.

Previous State(s): V FdPxA (p.85), V FDpxA (p.89), V FDPxa (p.92)

Next State(s): V FDPXA (p.95)

Desiderata met: D ≺ X, F ≺ X, P ≺ X, V ≺ X

Desiderata blocked: X ≺ A

Other notes: Attack success unlikely. CVSS 3.1 remediation level: Temporary Fix (T) or Of-
ficial Fix (O). Embargo is no longer viable. SSVC v2 Exploitation: Active. SSVC v2 Pub-
lic Value Added: Limited. SSVC v2 Report Public: Yes. SSVC v2 Supplier Contacted: Yes.
VEP does not apply. See Table A.30 for actions.

Table A.30: CVD Action Options for State V FDPxA

Role Action Reason Transition

any Publish detection(s) for attacks Detection P
any Terminate any existing embargo Vul is public -
any Terminate any existing embargo Attacks observed -
any Monitor for exploit publication SA -
any Monitor for additional attacks SA -
any Close case (unless monitoring for X) No further action

required
-

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 93
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

A.31 VFDPXa

Vendor is aware of vulnerability. Fix is ready. Fix has been deployed. Public is aware of vul-
nerability. Exploit(s) have been made public. No attacks have been observed.

Previous State(s): V FdPXa (p.86), V FDpXa (p.90), V FDPxa (p.92)

Next State(s): V FDPXA (p.95)

Desiderata met: D ≺ A, F ≺ A, P ≺ A, V ≺ A, X ≺ A

Desiderata blocked: N/A

Other notes: Attack success unlikely. CVSS 3.1 Exploit Maturity: high (H), functional (F), or
proof of concept (P). CVSS 3.1 remediation level: Temporary Fix (T) or Official Fix (O). Em-
bargo is no longer viable. SSVC v2 Exploitation: PoC. SSVC v2 Public Value Added: Lim-
ited. SSVC v2 Report Public: Yes. SSVC v2 Supplier Contacted: Yes. VEP does not apply.
See Table A.31 for actions.

Table A.31: CVD Action Options for State V FDPXa

Role Action Reason Transition

any Draw attention to published exploit(s) SA P
any Publish detection(s) for exploits Detection P
any Publish vul and any mitigations Defense P
any Terminate any existing embargo Vul is public -
any Terminate any existing embargo Exploit is public -
any Monitor for exploit refinement SA -
any Monitor for attacks SA -
any Close case (unless monitoring for A) No further action

required
-

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 94
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

A.32 VFDPXA

Vendor is aware of vulnerability. Fix is ready. Fix has been deployed. Public is aware of vul-
nerability. Exploit(s) have been made public. Attacks have been observed.

Previous State(s): V FdPXA (p.87), V FDpXA (p.91), V FDPxA (p.93), V FDPXa (p.94)

Next State(s): N/A

Desiderata met: N/A

Desiderata blocked: N/A

Other notes: Attack success unlikely. CVSS 3.1 Exploit Maturity: high (H) or functional (F).
CVSS 3.1 remediation level: Temporary Fix (T) or Official Fix (O). Embargo is no longer vi-
able. SSVC v2 Exploitation: Active. SSVC v2 Public Value Added: Limited. SSVC v2 Re-
port Public: Yes. SSVC v2 Supplier Contacted: Yes. VEP does not apply. See Table A.32 for
actions.

Table A.32: CVD Action Options for State V FDPXA

Role Action Reason Transition

any Draw attention to published exploit(s) SA P
any Publish detection(s) for exploits Detection P
any Publish detection(s) for attacks Detection P
any Publish vul and any mitigations Defense P
any Terminate any existing embargo Vul is public -
any Terminate any existing embargo Exploit is public -
any Terminate any existing embargo Attacks observed -
any Monitor for exploit refinement SA -
any Monitor for additional attacks SA -
any Close case No further action

required
-

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 95
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

References/Bibliography

URLs are valid as of the publication date of this document.

[1] Prioritization to prediction volume 2: Getting real about remediation. Technical report,
Cyentia Institute, LLC, 2019.

[2] Marcia Angell and Jerome P. Kassirer. The ingelfinger rule revisited. New England Jour-
nal of Medicine, 325(19):1371–1373, 1991. PMID: 1669838.

[3] William A Arbaugh, William L Fithen, and John McHugh. Windows of vulnerability: A
case study analysis. Computer, 33(12):52–59, 2000.

[4] Ashish Arora, Jonathan P Caulkins, and Rahul Telang. Research note—sell first, fix
later: Impact of patching on software quality. Management Science, 52(3):465–471, 2006.

[5] Ashish Arora, Chris Forman, Anand Nandkumar, and Rahul Telang. Competition and
patching of security vulnerabilities: An empirical analysis. Information Economics and
Policy, 22(2):164–177, 2010.

[6] Ashish Arora, Ramayya Krishnan, Rahul Telang, and Yubao Yang. An empirical analysis
of software vendors’ patch release behavior: impact of vulnerability disclosure. Informa-
tion Systems Research, 21(1):115–132, 2010.

[7] Ashish Arora, Anand Nandkumar, and Rahul Telang. Does information security attack
frequency increase with vulnerability disclosure? an empirical analysis. Information Sys-
tems Frontiers, 8(5):350–362, 2006.

[8] Ashish Arora and Rahul Telang. Economics of software vulnerability disclosure. IEEE
Security & Privacy, 3(1):20–25, 2005.

[9] Ashish Arora, Rahul Telang, and Hao Xu. Optimal policy for software vulnerability dis-
closure. Management Science, 54(4):642–656, 2008.

[10] Leyla Bilge and Tudor Dumitraş. Before we knew it: an empirical study of zero-day at-
tacks in the real world. In Computer and communications security, pages 833–844. ACM,
2012.

[11] Scott Bradner. RFC2119: Key words for use in RFCs to indicate requirement levels.
https://datatracker.ietf.org/doc/html/rfc2119, 1997.

[12] Lawrence D Brown, T Tony Cai, and Anirban DasGupta. Interval estimation for a bino-
mial proportion. Statistical science, pages 101–117, 2001.

[13] Hasan Cavusoglu, Huseyin Cavusoglu, and Srinivasan Raghunathan. Efficiency of vulner-
ability disclosure mechanisms to disseminate vulnerability knowledge. IEEE Transactions
on Software Engineering, 33(3):171–185, 2007.

[14] National Cyber Security Centre. Coordinated vulnerability disclosure: the guideline.
Technical report, National Cyber Security Centre, Netherlands (NCSC-NL), October
2018.

[15] CERT Coordination Center (CERT/CC). CERT vulnerability data archive. https:

//github.com/CERTCC/Vulnerability-Data-Archive. Accessed: 2020-06-08.

[16] John T. Chambers and John W. Thomson. National Infrastructure Advisory Coun-
cil’s vulnerability disclosure framework: Final report and recommendations. https:

//www.cisa.gov/publication/niac-vulnerability-framework-final-report, 2004.
Accessed: 2020-07-27.

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 96
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

https://datatracker.ietf.org/doc/html/rfc2119
https://github.com/CERTCC/Vulnerability-Data-Archive
https://github.com/CERTCC/Vulnerability-Data-Archive
https://www.cisa.gov/publication/niac-vulnerability-framework-final-report
https://www.cisa.gov/publication/niac-vulnerability-framework-final-report

[17] Steve Christey and Chris Wysopal. Responsible vulnerability disclosure process. https:

//tools.ietf.org/html/draft-christey-wysopal-vuln-disclosure-00, February
2002. Accessed: 2020-07-27.

[18] Melina Delkic. Ready, set, embargo. https://www.nytimes.com/2018/08/11/insider/

embargoes-reporting.html, Aug 2018.

[19] Marcel Dreef, Peter Borm, and Ben Van der Genugten. Measuring skill in games: Several
approaches discussed. Mathematical methods of operations Research, 59(3):375–391, 2004.

[20] Julia Driver. The History of Utilitarianism. In Edward N. Zalta, editor, The Stanford
Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Winter 2014
edition, 2014.

[21] Ryan Ellis, Keman Huang, Michael Siegel, Katie Moussouris, and James Houghton. New
Solutions for Cybersecurity, chapter Fixing a Hole: The Labor Market for Bugs., pages
129–159. MIT Press, 2018.

[22] FIRST Ethics SIG. EthicsfIRST: Ethics for Incident Response and Security Teams.
https://www.first.org/global/sigs/ethics/ethics-first, Dec 2019.

[23] Benjamin Eva. Principles of indifference. http://philsci-archive.pitt.edu/16041/,
April 2019.

[24] Stefan Frei, Dominik Schatzmann, Bernhard Plattner, and Brian Trammell. Modeling the
security ecosystem-the dynamics of (in) security. In Economics of Information Security
and Privacy, pages 79–106. Springer, 2010.

[25] Atul Gawande. The checklist manifesto: How to get things right. Profile Books, 2011.

[26] Dan Goodin. Rise of “forever day” bugs in industrial systems threatens critical infras-
tructure. https://arstechnica.com/information-technology/2012/04/rise-of-

ics-forever-day-vulnerabiliities-threaten-critical-infrastructure/, April
2012. Accessed: 2021-06-10.

[27] United States Government. Vulnerabilities Equities Policy and Process for the United
States Government. https://trumpwhitehouse.archives.gov/sites/whitehouse.gov/
files/images/External%20-%20Unclassified%20VEP%20Charter%20FINAL.PDF, Nov
2017. Accessed: 2021-02-22.

[28] Allen D Householder. Like nailing jelly to the wall: Difficulties in defining ”zero-day ex-
ploit”. https://insights.sei.cmu.edu/cert/2015/07/like-nailing-jelly-to-the-

wall-difficulties-in-defining-zero-day-exploit.html, Jul 2015.

[29] Allen D Householder, Jeff Chrabaszcz, Trent Novelly, David Warren, and Jonathan M
Spring. Historical analysis of exploit availability timelines. In Workshop on Cyber Secu-
rity Experimentation and Test. USENIX, 2020.

[30] Allen D Householder, Garret Wassermann, Art Manion, and Chris King. The CERT
guide to coordinated vulnerability disclosure. Technical report, Carnegie-Mellon Univ
Pittsburgh Pa Pittsburgh United States, 2017.

[31] ISO. Information technology — security techniques — vulnerability disclosure. Standard
29147:2018, International Organization for Standardization, Geneva, CH, October 2018.

[32] ISO. Information technology — security techniques — vulnerability handling processes.
Standard 30111:2019, International Organization for Standardization, Geneva, CH, Octo-
ber 2019.

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 97
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

https://tools.ietf.org/html/draft-christey-wysopal-vuln-disclosure-00
https://tools.ietf.org/html/draft-christey-wysopal-vuln-disclosure-00
https://www.nytimes.com/2018/08/11/insider/embargoes-reporting.html
https://www.nytimes.com/2018/08/11/insider/embargoes-reporting.html
https://www.first.org/global/sigs/ethics/ethics-first
http://philsci-archive.pitt.edu/16041/
https://arstechnica.com/information-technology/2012/04/rise-of-ics-forever-day-vulnerabiliities-threaten-critical-infrastructure/
https://arstechnica.com/information-technology/2012/04/rise-of-ics-forever-day-vulnerabiliities-threaten-critical-infrastructure/
https://trumpwhitehouse.archives.gov/sites/whitehouse.gov/files/images/External%20-%20Unclassified%20VEP%20Charter%20FINAL.PDF
https://trumpwhitehouse.archives.gov/sites/whitehouse.gov/files/images/External%20-%20Unclassified%20VEP%20Charter%20FINAL.PDF
https://insights.sei.cmu.edu/cert/2015/07/like-nailing-jelly-to-the-wall-difficulties-in-defining-zero-day-exploit.html
https://insights.sei.cmu.edu/cert/2015/07/like-nailing-jelly-to-the-wall-difficulties-in-defining-zero-day-exploit.html

[33] Jay Jacobs, Sasha Romanosky, Idris Adjerid, and Wade Baker. Improving vulnerability
remediation through better exploit prediction. Journal of Cybersecurity, 6(1), 09 2020.
tyaa015.

[34] Jay Jacobs, Sasha Romanosky, Benjamin Edwards, Michael Roytman, and Idris Adjerid.
Exploit prediction scoring system (EPSS). arXiv preprint arXiv:1908.04856, 2019.

[35] Shyamalendu Kandar. Introduction to automata theory, formal languages and computa-
tion. Always learning. Pearson, 1st edition edition, 2013.

[36] Patrick Larkey, Joseph B Kadane, Robert Austin, and Shmuel Zamir. Skill in games.
Management Science, 43(5):596–609, 1997.

[37] Paul Simon Lewis. The global vulnerability discovery and disclosure system: a thematic
system dynamics approach. PhD thesis, 2017.

[38] Andrew P Moore and Allen D Householder. Multi-method modeling and analysis of the
cybersecurity vulnerability management ecosystem. In 37th International Conference of
the System Dynamics Society, 2019.

[39] Lily Hay Newman. Senators fear meltdown and spectre disclosure gave china an edge.
https://www.wired.com/story/meltdown-and-spectre-intel-china-disclosure/,
Jul 2018.

[40] NIST. National vulnerability database. https://nvd.nist.gov. Accessed: 2020-06-08.

[41] Forum of Incident Response and Security Teams. Common vulnerability scoring system
v3.1: Specification document. https://www.first.org/cvss/v3.1/specification-

document, 2019. Accessed: 2021-05-18.

[42] Forum of Incident Response and Security Teams. Guidelines and practices for multi-
party vulnerability coordination and disclosure. https://www.first.org/global/sigs/

vulnerability-coordination/multiparty/guidelines-v1.1, 2020. Accessed: 2020-07-
27.

[43] Forum of Incident Response and Security Teams. Product security incident response
team (psirt) services framework version 1.1. https://www.first.org/standards/

frameworks/psirts/psirt_services_framework_v1.1, 2020. Accessed: 2021-05-17.

[44] Ivan Oransky. Why science news embargoes are bad for the public. https://www.vox.

com/science-and-health/2016/11/29/13765458/science-news-embargoes-bad-for-

public, Nov 2016.

[45] Andy Ozment and Stuart E Schechter. Milk or wine: does software security improve with
age? In USENIX Security Symposium, volume 6, 2006.

[46] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank cita-
tion ranking: Bringing order to the web. Technical report, Stanford InfoLab, 1999.

[47] Lorenzo Pupillo, Afonso Ferreira, and Gianluca Varisco. Software vulnerability disclosure
in Europe: Technology, policies and legal challenges. Technical report, Center for Euro-
pean Policy Studies (CEPS), 2018.

[48] Rapid7. Metasploit framework. https://github.com/rapid7/metasploit-framework.
Accessed: 2020-06-08.

[49] Luta Security. Vulnerability coordination security model. https://www.lutasecurity.

com/vcmm, 2020. Accessed: 2020-09-17.

[50] Offensive Security. Exploit db. https://github.com/offensive-security/exploitdb.
Accessed: 2020-06-08.

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 98
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

https://www.wired.com/story/meltdown-and-spectre-intel-china-disclosure/
https://nvd.nist.gov
https://www.first.org/cvss/v3.1/specification-document
https://www.first.org/cvss/v3.1/specification-document
https://www.first.org/global/sigs/vulnerability-coordination/multiparty/guidelines-v1.1
https://www.first.org/global/sigs/vulnerability-coordination/multiparty/guidelines-v1.1
https://www.first.org/standards/frameworks/psirts/psirt_services_framework_v1.1
https://www.first.org/standards/frameworks/psirts/psirt_services_framework_v1.1
https://www.vox.com/science-and-health/2016/11/29/13765458/science-news-embargoes-bad-for-public
https://www.vox.com/science-and-health/2016/11/29/13765458/science-news-embargoes-bad-for-public
https://www.vox.com/science-and-health/2016/11/29/13765458/science-news-embargoes-bad-for-public
https://github.com/rapid7/metasploit-framework
https://www.lutasecurity.com/vcmm
https://www.lutasecurity.com/vcmm
https://github.com/offensive-security/exploitdb

[51] Erik Silfversten, William D Phillips, Giacomo Persi Paoli, and Cosmin Ciobanu. Eco-
nomics of vulnerability disclosure. Technical report, European Union Agency for Network
and Information Security (ENISA), 2018.

[52] Jonathan M Spring, Eric Hatleback, Allen D. Householder, Art Manion, and Deana
Shick. Prioritizing vulnerability response: A stakeholder-specific vulnerability catego-
rization. Technical report, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA, 2019.

[53] Jonathan M Spring, Eric Hatleback, Allen D. Householder, Art Manion, and Deana
Shick. Prioritizing vulnerability response: A stakeholder-specific vulnerability catego-
rization. In Workshop on the Economics of Information Security, Brussels, Belgium, De-
cember 2020.

[54] Jonathan M Spring, Allen Householder, Eric Hatleback, Art Manion ad Madison Oliver,
Vijay Sarvapalli, Laurie Tyzenhaus, and Charles Yarbrough. Prioritizing vulnerability re-
sponse: A stakeholder-specific vulnerability categorization (version 2.0). Technical report,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, 2021.

[55] National Telecommunications and Information Administration. Software bill of materials.
https://www.ntia.gov/SBOM. Accessed: 2021-05-18.

[56] Yang Xiao, Bihuan Chen, Chendong Yu, Zhengzi Xu, Zimu Yuan, Feng Li, Binghong Liu,
Yang Liu, Wei Huo, Wei Zou, et al. Mvp: Detecting vulnerabilities using patch-enhanced
vulnerability signatures. In 29th USENIX Security Symposium (USENIX Security 20),
pages 1165–1182, 2020.

[57] Yifei Xu, Zhengzi Xu, Bihuan Chen, Fu Song, Yang Liu, and Ting Liu. Patch based vul-
nerability matching for binary programs. In Proceedings of the 29th ACM SIGSOFT In-
ternational Symposium on Software Testing and Analysis, pages 376–387, 2020.

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 99
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

https://www.ntia.gov/SBOM

Acronym List

CERT/CC CERT® Coordination Center operated by Carnegie Mellon University
CVD Coordinated Vulnerability Disclosure
CVSS Common Vulnerability Scoring System, maintained by FIRST
DFA Deterministic Finite Automaton
EoL End-of-Life
FIRST Forum of Incident Response and Security Teams
MPCVD Multi-Party Coordinated Vulnerability Disclosure
NTIA National Telecommunications and Information Administration
PSIRT Product Security Incident Response Team
SBOM Software Bill of Materials
SLE Service Level Expectation
VEP Vulnerability Equities Process
VCMM Vulnerability Coordination Maturity Model
VM Vulnerability Management

CMU/SEI-2021-SR-021 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 100
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

	Acknowledgments
	Abstract
	Introduction
	Approach
	Organization of This Document

	A State-based model for CVD
	Events in a Vulnerability Lifecycle
	Notation
	Deterministic Finite State Automata
	State Transitions
	Input Symbols
	Transition Function

	Sequences of Events and Possible Histories in CVD
	The Possible Histories of CVD
	On the Desirability of Possible Histories
	A Random Walk through CVD States

	Reasoning over Possible Histories
	History Frequency Analysis
	Event Order Frequency Analysis
	A Partial Order on Desiderata
	Ordering Possible Histories by Skill

	Discriminating Skill and Luck in Observations
	A Measure of Skill in CVD
	Computing d from Observations
	Calculating Measurement Error

	Observing CVD in the Wild
	Microsoft 2017-2020
	Commodity Exploits 2015-2019

	Discussion
	CVD Benchmarks
	Multi-Party Coordinated Vulnerability Disclosure
	State Tracking in MPCVD
	MPCVD Benchmarks

	CVD Roles and Their Influence
	Vendors
	System Owners
	Security Researchers
	Coordinators
	Governments

	Disclosure Policy Formalization
	Embargo Initiation Policies
	Embargo Continuation Policies
	CVD Service Level Expectations

	Improving Definitions of Common Terms
	Zero Day
	Forever Day

	Vulnerability Response Situation Awareness
	Vulnerability Equities Process (VEP)
	Recommended Action Rules for CVD

	Related Work
	Limitations and Future Work
	State Explosion
	The Model Does Not Address Transition Probabilities
	The Model Does Not Achieve a Total Order Over Histories
	The Model Has No Sense of Timing
	Attacks As Random Events
	Modeling Multiple Agents
	Gather Data About CVD
	Observation May Be Limited
	CVD Action Rules Are Not Algorithms
	MPCVD Criteria Do Not Account for Equitable Resilience
	MPCVD Is Still Hard

	Conclusion
	Request for Feedback
	Per-State Details
	vfdpxa
	vfdpxA
	vfdpXa
	vfdpXA
	vfdPxa
	vfdPxA
	vfdPXa
	vfdPXA
	Vfdpxa
	VfdpxA
	VfdpXa
	VfdpXA
	VfdPxa
	VfdPxA
	VfdPXa
	VfdPXA
	VFdpxa
	VFdpxA
	VFdpXa
	VFdpXA
	VFdPxa
	VFdPxA
	VFdPXa
	VFdPXA
	VFDpxa
	VFDpxA
	VFDpXa
	VFDpXA
	VFDPxa
	VFDPxA
	VFDPXa
	VFDPXA

	References/Bibliography

