
RESEARCH REVIEW 2019

We are collaborating with other
researchers to apply causal
learning to learn how to control
costs in software development and
sustainment.

DoD Problem
• DoD leadership needs to

understand why software
costs so much.

• DoD program offices need
to know where to intervene
to control software costs.

Why Causal Learning?
To reduce costs, the causes of
an outcome (good or bad) need
to be considered. Correlations
are insufficient due to Simpson’s
Paradox. For example, in the figure
below, if you did not segment your
data by team (User Interface [UI]
and Database [DB]), you might
conclude that increasing domain
experience reduces code quality
(downward line); however, within
each team, it’s clear that the
opposite is true (two upward lines).
Causal learning identifies when
factors such as team membership
explain away (or mediate)
correlations, and it works for much
more complicated datasets too.

Our Solution
Working with collaborators, we will
jointly apply causal learning to their
datasets to establish key cause-
effect relationships among project
factors and outcomes.

Our collaborators include the
University of Southern California,
U.S. Army, and a static code analysis
tool vendor.

For example, for effort, we might
have this causal graph:

This graph tells us that increasing
stakeholder reviews (SR) and
domain experience (DE) improves
the effectiveness of requirements,
analysis, coding, and testing,
thereby improving quality.

If the dataset is proprietary, the SEI
trains the collaborator to perform
causal searches on their own. The
SEI then needs information only
about what dataset and search
parameters were used as well as
the resulting causal graph.

Summary
Causal models offer better insight
for program control than models
based on correlation. Knowing
which factors drive which program
outcomes is essential to sustain
the warfighter by providing higher
quality, secure software in a timely
and affordable manner.

Reduce costs through
causal learning.

Michael Konrad | mdk@sei.cmu.edu
William Nichols, Robert Stoddard, David Zubrow

Distribution Statement A: Approved for Public Release;�
Distribution Is Unlimited

P9

Causal Models for Software Cost Prediction & Control (SCOPE)
Recent Results from Ongoing Studies

MANAGIN
G

PR
O

G
RAM

MING

BU
IL

DIN
G IN

 SECURITY PROCESSES & TO
O

LS

Architecture & Defects
Architecture pattern
violations → bugs

Team Work Environment
Good improvement data,
stress from overtime →
cost, schedule, quality

Function Points
Num of data entries/exits,
reads/writes; capability;
documentation → effort
(for SME SW)

Architecture &
Vulnerabilities
Architecture pattern
violations →
code security issues

Vul-fix in SW Sustainment
Super domain; ACAT; number
of funding sources, years,
platforms, variants →
vul-fix rate, effort

Code Structure (2020)
TBD Cause → effect

Coder Traits II (2020)
TBD Cause → effect

Complexity II (2020)
TBD Cause → effect

Team Performance (2020)
TBD Cause → effect

Coder Traits I Individual
traits for productivity and
attention-to-quality →
effort, bugs

Complexity I
Number of stakeholders
→ cognitive fog →
technical performance

EFFORT

R

C

T

ASR

DE

Co
de

 Q
ua

lit
y

Domain Experience

UI Team

DB Team

09_Causal_Models_for_Software_Cost_Control_(SCOPE)_4.indd 1 10/10/19 4:51 PM

Copyright 2019 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE
MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal use is granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.
External use:* This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other external and/or commercial use. Requests for
permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM19-1036

	Blank Page

