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Abstract—Increasing availability of machine learning (ML)
frameworks and tools, as well as their promise to improve solu-
tions to data-driven decision problems, has resulted in popularity
of using ML techniques in software systems. However, end-to-end
development of ML-enabled systems, as well as their seamless
deployment and operations, remain a challenge. One reason
is that development and deployment of ML-enabled systems
involves three distinct workflows, perspectives, and roles, which
include data science, software engineering, and operations. These
three distinct perspectives, when misaligned due to incorrect
assumptions, cause ML mismatches which can result in failed
systems. We conducted an interview and survey study where we
collected and validated common types of mismatches that occur
in end-to-end development of ML-enabled systems. Our analysis
shows that how each role prioritizes the importance of relevant
mismatches varies, potentially contributing to these mismatched
assumptions. In addition, the mismatch categories we identified
can be specified as machine readable descriptors contributing
to improved ML-enabled system development. In this paper, we
report our findings and their implications for improving end-to-
end ML-enabled system development.

Index Terms—software engineering, machine learning, soft-
ware engineering for machine learning, model engineering

I. INTRODUCTION

Despite advances in frameworks for machine learning (ML)
model development and deployment, integrating models into
production systems still remains a challenge [4] [5] [9] [11]
[13]. One reason is that the development and operation of
ML-enabled systems involves three perspectives, with three
different and often completely separate workflows and people:
the data scientist builds the model; the software engineer inte-
grates the model into a larger system; and then operations staff
deploy, operate, and monitor the system. These perspectives
often operate separately, using different processes and vocabu-
lary referring to similar concepts, leading to opportunities for
mismatch between the assumptions made by each perspective
with respect to the elements of the ML-enabled system, and
the actual guarantees provided by each element. Examples
of mismatch and their consequences include (1) poor system
performance because computing resources required to execute
the model are different from computing resources available
during operations, (2) poor model accuracy because model
training data is different from operational data, (3) develop-
ment of large amounts of glue code because the trained model
input/output is incompatible with operational data types, and
(4) monitoring tools are not set up to detect diminishing model

accuracy, which is the evaluation metric defined for the trained
model.

We therefore define ML Mismatch as a problem that
occurs in the development, deployment, and operation of an
ML-enabled system due to incorrect assumptions made about
system elements by different stakeholders (i.e., data scientist,
software engineer, operations) that results in a negative conse-
quence. ML mismatch can be traced back to information that
could have been shared between stakeholders that would have
avoided the problem.

The objective of our study is to develop a set of machine-
readable descriptors for system elements, as a mechanism
to enable mismatch detection and prevention in ML-enabled
systems. The goal of the descriptors is to codify attributes of
system elements in order to make all assumptions explicit. The
descriptors can be used by system stakeholders to consistently
document and share system attributes; and by automated
mismatch detection tools at design time and run time for
cases in which attributes lend themselves to automation. The
research questions therefore defined for this study are RQ1:
What are common types of mismatch that occur in the end-
to-end development of ML-enabled systems?, RQ2: What are
best practices for documenting data, models, and other system
elements that will enable detection of ML mismatch?, and
RQ3: What are examples of ML mismatch that could be
detected in an automated way, based on the codification of
best practices in machine-readable descriptors for ML system
elements?

The focus of this paper is to report on the first phase
of the study addressing RQ1, which is the results of prac-
titioner interviews and a survey that were conducted to gather
examples of real ML mismatches and their consequences.
Section II presents the study design and Section III shows the
results. In Section IV we discuss findings and analysis insights.
Section V outlines Phase 2 of our study on the path towards
automated mismatch detection. Finally, Section VI presents
limitations, Section VII talks about related work, and Section
VIII concludes the paper and presents next steps.

II. STUDY DESIGN

We conducted 20 practitioner interviews to gather mismatch
examples, and validated the interview results via a practitioner
survey, as described in the following subsections.



A. Interviews

The goal of each interview was to gather examples of mis-
match from practitioners in the roles of data scientist, software
engineer, or operations for ML-enabled systems. Prior to each
interview, each interviewee was sent a slide set describing the
study. During the one-hour interview we followed a script
to enable us to elicit examples of mismatch, consequences,
and information that they believed that if shared would have
avoided the mismatch. The presentation and interview guide
are both available in the replication package for this study.1

We conducted the interviews between November 2019 and
July 2020. All the people interviewed were contacts from
existing or previous collaborations or work engagements. We
only interviewed people that confirmed to have experience
developing or deploying operational ML-enabled systems.
We did not interview people that only had academic model
development experience or developed models that ran stand-
alone to produce reports. Demographics for interviewees are
presented in Figure 1.
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Fig. 1: Interviewee Demographics

Each interview was transcribed using a commercial tran-
scription service and processed as follows. Steps were derived
from well-established empirical software engineering guide-
lines [17] [18].

Step 1: Transcript Segmentation: Each transcript was im-
ported into an Excel spreadsheet by one researcher and divided
into segments based on breaks in the interview that indicated
when a new mismatch example was being discussed, e.g.,
”What is another example of a mismatch that you experi-
enced?”

Step 2: Mismatch Identification: Each segment was evalu-
ated independently by two researchers against the inclusion
and exclusion criteria shown in Table I to determine if the
segment exemplified a mismatch. A segment was identified
as a mismatch example if it met all of the inclusion criteria
and none of the exclusion criteria. For those identified as
a mismatch, the researcher added a specific quote from the
segment representative of the mismatch discussed, a short
description, and the information that was not communicated
that caused the mismatch.

1Replication package available at github.com/GALewis/ML-Mismatch/

Step 3: Mismatch Validation: Results from the previous step
were merged into a single spreadsheet. A third researcher
reviewed each segment for which there was a disagreement
and discussed with researchers until there was a consensus.
For each agreed-upon mismatch, the third researcher produced
a consolidated quote, short description, and information that
should have been shared.

Step 4: Mismatch Coding: After creating a spreadsheet with
only the validated, identified mismatches for all interviews,
two researchers performed mismatch-by-mismatch content
analysis using open coding [10] to categorize the types of
mismatch identified in the interviews. The question that each
researcher answered to perform the coding was “What element
of an ML system does the information that was not communi-
cated refer to?” The initial set of codes was created from the
examples of ML system elements provided to interviewees as
part of the project introduction slides.2 Codes were divided
into major categories (e.g., raw data, trained model, training
data) and subcategories (e.g., for trained model, subcategories
included programming language, API, version, etc.). The list
of categories and sub-categories was expanded as researchers
identified new codes. Given that mismatches could refer to
more than one code, a researcher could assign up to three
category/sub-category pairs per mismatch. A third researcher
consolidated codes after each round of open coding. Three
rounds were conducted until agreement was reached.

TABLE I: Inclusion and Exclusion Criteria
Inclusion Criteria

I1 The segment describes a situation in which a system stakeholder made an
assumption about a system element that was incorrect (e.g., software engineer
assumed that the model was ready to process operational data as-is).

I2 The situation described in the segment would not have occurred if information
would have been shared between stakeholders (e.g., data science team should
have included the data pre-processing code along with the model).

Exclusion Criteria
E1 The segment refers to problems that are internal to the data science process

followed (e.g., model parameters selected by the data scientist were not
correct).

E2 The segment refers to problems that are internal to the software engineering
process (e.g., different engineers were using different versions of Python).

E3 The segment refers to problems that are internal to the operations process
(e.g., the tool used for runtime monitoring did not have a good way to alert
users of problems).

E4 The situation described in the segment cannot be solved by sharing informa-
tion between stakeholders (e.g., the data science team did not have enough
data to train the model properly).

E5 The segment refers to a statement that is not related to a mismatch example
(e.g., introductory statements, small talk, this is how we did version control
in my previous job).

The resulting spreadsheet with anonymous results is in-
cluded in the replication package. Note that interview tran-
scripts are not included in the replication package per our
protocol for human subject research (HSR) approved by our
Institutional Review Board (IRB).

B. Validation Survey

We conducted a survey to validate the resulting ML mis-
match categories. In addition to demographics information,
the survey asked each participant to rate the importance of
sharing information related to each of the identified categories

2Slide 4 in ML-Mismatch-Project-Introduction.pdf in replication package.



and subcategories for preventing mismatch. The participants
were also given the opportunity to add any information that
they considered was important but missing from the survey.
The survey questions are also included in the replication
package. To ensure that the survey reached participants who
met the criteria of having experience developing or deploying
operational ML-enabled systems, we sent the survey only to
the interviewees and asked them to share it with people in
their organization according to the criteria. We used Qualtrics
(https://qualtrics.com) as the survey administration tool.

III. STUDY RESULTS

A. Interview Results

A total of 140 mismatches were identified in the interviews,
which resulted in 232 instances of information that was not
communicated that led to mismatch. The resulting mismatch
categories based on open coding and their occurrence are pre-
sented in Figure 2. Each category is divided into subcategories,
which are shown in Figure 3, along with their occurrence in
each category.
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Fig. 2: Mismatch Categories

Most identified mismatches refer to incorrect assumptions
about the Trained Model (36%), which is the model trained
by data scientists that is passed to software engineers for
integration into a larger system. The next category is Op-
erational Environment (16%), which refers to the computing
environment in which the trained model executes (i.e., model-
serving or production environment). Categories that follow
are Task and Purpose (15%) which are the expectations and
constraints for the model, and Raw Data (10%) which is
the operational or acquired data from which training data is
derived. Finally, in a smaller proportion are the Development
Environment (9%) used by software engineers for model
integration and testing, the Operational Data (8%) which is
the data processed by the model during operations, and the
Training Data (6%) used to train the model.

Trained Model (TM). Most mismatches were related to
lack of test cases and data that could be used for integration
testing (17%); and lack of model specifications and APIs
(17%). One software engineer interviewee stated ”I was never
able to get from the [data scientists] a description of what
components exist, what are their specifications, what would be
some reasonable test we could run against them so we could
reproduce all their results.” Other subcategories included
unawareness of decisions, assumptions, limitations, and con-
straints that affect model integration and deployment (14%);

information necessary to interpret model output, results, or
inferences (14%); programming language, ML framework,
tools, and libraries used in the development and training of the
model (12%); evaluation metrics and results of trained model
evaluation such as false positive rate, false negative rate, and
accuracy (11%); version information (8%); system configura-
tion requirements for trained model to execute, such as number
of CPUs and GPUs, libraries, tools, and dependencies (5%);
and data buffering or time window requirements that would
indicate that data has to be delivered in ”chunks” instead of
streamed (2%).

Operational Environment (OE). Most mismatches were
associated with lack of runtime metrics, logs, user feedback,
and other data collected in the operational environment to
help with troubleshooting, debugging, or retraining (54%).
One data scientist interviewee stated ”A typical thing that
might happen is that in the production environment, something
would happen. We would have a bad prediction, some sort
of anomalous event. And we were asked to investigate that.
Well, unless we have the same input data in our development
environment, we can’t reproduce that event.” Other subcate-
gories were unawareness of computing resources available in
the operational environment, such as CPUs, GPUs, memory,
and storage (32%); and required model inference time (i.e.,
time for the model to produce a result) (14%).

Task and Purpose (TP). Most mismatches were related
to lack of knowledge of business goals or objectives that
the model was meant to satisfy (29%). One data scientist
interviewee stated ”It feels like the most broken part of
the process because the task that comes to a data scientist
frequently is – hey, we have a lot of data. Go do some data
science to it ... And then, that leaves a lot of the problem
specification task in the hands of the data scientist.” Other
subcategories included unawareness of success criteria, client
expectations, validation scenarios, or acceptance criteria for
determining that the model is performing correctly (26%); task
that model is expected to perform (18%); how the results of the
model are going to be used by end users or in the context of a
larger system (15%); and known data rights, legal, privacy, and
other policies that need to be met by model and data (12%).

Raw Data (RD). Most mismatches were associated with
lack of metadata about raw data, such as how it was collected,
when it was collected, distribution, geographic location, and
time frames (48%); and lack of a data dictionary that describes
field names, description, values, and meaning of missing
or null values (31%). One data scientist interviewee stated
”Whenever they had data documentation available, that was
amazing because you can immediately reference everything,
bring it together, know what’s missing, know how it all relates.
In the absence of that, then it gets incredibly difficult because
you never know exactly what you’re seeing, like is this normal?
Is it not normal? Can I remove outliers? What am I lacking?
What do some of these categorical variables actually mean?”
Other subcategories were unawareness of the process used to
generate or acquire proxy data due to sensitivities, legal, or
policy reasons (13%); indication regarding data sensitivities
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Fig. 3: Mismatch Subcategories

that would prohibit for example upload to public cloud envi-
ronments (4%); and the process used to anonymize data due
to personally identifiable information constraints (4%).

Development Environment (DE). Most mismatches were
related to lack of knowledge of programming languages, ML
frameworks, tools, and libraries in the development environ-
ment (45%). One software engineer interviewee stated ”The
weird failures that you see porting models from R prototypes to
other languages is interesting . . . almost like re-optimizing the
whole model for a new language . . . I was able to diagnose
that the way floating point numbers are handled in R and
Python does not translate directly.” Other subcategories in-
clude unawareness of specifications or APIs for upstream and
downstream components (40%); computing resources avail-
able in the development environment (10%); and development
and integration timelines for the larger system (5%).

Operational Data (OD). Most mismatches were associated
with lack of operational data statistics that could be used
by data scientists to validate appropriateness of training data
(37%); and details on the implementation of data pipelines for
the deployed model (21%). One operations interviewee stated
”There’s the data inputs being restructured appropriately on

the prototypes with this big complicated data pipeline leading
up to them ... and we take it to deployment and you don’t have
the data coming through that same route anymore. You want to
have it being straight from the sensor data. If they reconstruct
that pipeline onboard ... there’s so many opportunities there
for mismatches.” Other subcategories were unawareness of
sources for operational data (21%); syntax and semantics of
the data that constitutes the input for the operational model
(16%); and rates at which operational data feeds into the
operational model (5%).

Training Data (TD). Most mismatches were related to lack
of details of data preparation pipelines to derive training data
from raw data (62%). One software engineer interviewee stated
”A group developed the architecture for a whole ML pipeline
. . . but as a consequence of that, I think they sort of went a
few steps further than they should have, creating lock-in, and
kind of took over the feature engineering phase as well ... The
mismatch was really at the design phase of the architecture
of the machine learning pipeline where it really precluded
us from doing more extensive research into alternative model
architectures.” Other subcategories include unawareness of
training data statistics (23%); and version information (15%).



B. Validation Survey Results

A total of 31 survey responses were collected, which are
included in the study replication package. Survey demograph-
ics are shown in Figure 4. We recognize the small number of
respondents in the Operations role as a limitation, which is
why our analyses will focus mostly on the Data Science and
Software Engineering roles. However, we also highlight that
because we were very specifically targeting practitioners, we
asked our original interviewees to help us identify people in
all three roles, and in most cases they could not identify an
Operations person on their team. While simply a conjecture,
the fact that Operations staff are not considered a key stake-
holder in the end-to-end development and evolution of ML-
enabled systems indicates the general lack of understanding of
the key role of operations, and especially runtime monitoring,
in these types of systems. For reporting purposes we combined
Operations with the Other category, which were respondents
who are currently in management-related roles. Results for all
responses are shown in Figure 5. As shown in this figure, the
importance of sharing information related to each subcategory
to avoid mismatch was mostly rated between Important and
Very Important for all, which demonstrates the validity of the
identified causes for mismatch.
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Fig. 4: Survey Respondent Demographics

IV. ANALYSIS AND DISCUSSION

In this section we analyze some of the interview and survey
results, and discuss implications for software engineering
practices and tools when developing ML-enabled systems.
While there are many observations that we could make about
the data, we limit our analysis to those that inform software
engineering best practices and tools. Numbers reported are
extracted from Figures 3 and 5 and Table II.
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Most mismatches identified during the interviews are related
to incorrect assumptions about the Trained Model (36%).
This is not surprising because the model constitutes the main
”hand off” from a data science team to a software engineering
team. Within this category, most mismatches were related to
Test Cases and Data and API/Specifications, which are two
pieces of information that are key for model integration into
a larger system. However, survey data shows that what is
most important to share about the trained model varies for
each role. For the Data Scientist it is Evaluation Metrics
because they (1) set expectations for model performance and
(2) establish a baseline for runtime monitoring of model
performance over time. What is most important for the Soft-
ware Engineer is a tie between Test Cases and Data, Deci-
sions/Assumptions/Limitations/Constraints, and Model Output
Interpretation. For a software engineer these two last pieces
of information provide insights into (1) any additional compo-
nents that needs to be developed to address incompatibilities
and (2) how to properly pass model results to downstream
components. For Operations + Others, System Configuration
is one of the most important categories, but it is not for the
other roles. This is an expected result because Operations is



TABLE II: Mismatch Categories Rated Very Important or
Important (VI+I) per Role

Data Software Operations
Science Engineering + Other

VI+I % VI+I % VI+I %
DE: Programming Language 11 69 8 80 5 100
DE: Up & Down Components 14 88 10 100 4 80
DE: Computing Resources 11 69 9 90 5 100
DE: Dev. & Integ. Timelines 14 88 9 90 5 100
OD: Data Statistics 15 94 10 100 4 80
OD: Data Pipelines 15 94 8 80 5 100
OD: Data Sources 14 88 9 90 5 100
OD: Data Syntax & Seman. 16 100 10 100 5 100
OD: Data Rates 11 69 10 100 4 80
OE: Runtime Metrics 13 81 9 90 3 60
OE: Computing Resources 14 88 10 100 5 100
OE: Model Inference Time 14 88 10 100 5 100
RD: Metadata 14 88 9 90 3 60
RD: Data Dictionary 16 100 10 100 4 80
RD: Proxy Data 14 88 9 90 4 80
RD: Restrictions 15 94 10 100 4 80
RD: Anonymization 14 88 9 90 5 100
TP: Business Goals 16 100 9 90 5 100
TP: Success Criteria 15 94 10 100 5 100
TP: Task 15 94 10 100 5 100
TP: Usage Context 15 94 10 100 5 100
TP: Data Rights & Policies 15 94 10 100 4 80
TM: Test Cases & Data 14 88 10 100 4 80
TM: API/Specifications 14 88 9 90 4 80
TM: Decisions/Constraints 15 94 10 100 5 100
TM: Output Interpretation 15 94 10 100 5 100
TM: Programming Language 11 69 7 70 4 80
TM: Evaluation Metrics 16 100 8 80 5 100
TM: Versioning 14 88 8 80 4 80
TM: System Configuration 12 75 7 70 5 100
TM: Data Buffering 14 88 8 80 4 80
TD: Data Preparation Pipelines 15 94 9 90 4 80
TD: Data Statistics 13 81 9 90 3 60
TD: Versioning 12 75 5 50 2 40

responsible for serving the model and meeting any established
service-level agreements (SLAs). It also hints at the fact that
the operational environment might not usually be considered a
constraint for model development, which leads to mismatches
identified in the interviews in which complex models are
created that cannot be served in the operational environment.

Specifically related to Test Cases & Data there were 14
mismatches. In some cases, software engineer interviewees
reported receiving test data and results from data scientists
that could be used for model integration testing. However, they
also reported that test data used for model development was
often also the cause for mismatch because it is not enough for
generating appropriate test cases; specificially it (1) does not
take into account the often uncertain nature of ML models,
i.e., output should be expressed as acceptable boundaries or
an expected order of results instead of exact values, and (2)
does not include error cases such as input errors and out-
of-distribution (OOD) data. While the concept of test cases
is common for software engineering, it is not common for
data scientists, which shows the value of having a shared
understanding between different perspectives and roles.

Data Syntax & Semantics for Operational Data rated most
important in surveys. However, there were only three mismatch
examples related to this subcategory in our interview data. This
could be because for many systems the Raw Data comes from
the Operational Data and therefore is already well-known or

documented, in which case no mismatch was observed. Further
collection of mismatch examples would be needed to better
understand this type of mismatch in practice.

With respect to the Operational Environment, Runtime Met-
rics received the most Not Important responses in the survey,
yet in the interviews runtime metrics had the largest number
of mismatch examples within this category (20). Runtime
metrics in ML-enabled systems are critical for continuous
improvement of the model, especially to detect model drift
and any other indicators that it is time to retrain and rede-
ploy the model. We attribute this disconnect to the fact that
the survey had the lowest number of respondents from the
Operations role. ML-enabled system development still does
not have agreed-upon, end-to-end development practices and
most of the attention is currently in model development and
not informed evolution, which can also explain the variance.
To quote one of our survey respondents ”Mismatch in under-
standing what it means to run successful under real-world con-
ditions is the #1 mismatch ... Some of the biggest mismatches
in operational environment have to do with how a production
system handles failure and overload.” We envision runtime
metrics comprising algorithm metrics related to data drift (e.g.,
differences in data distribution often referred to as training-
serving skew, non-expected inputs) and model performance
metrics (e.g., accuracy, false positive and false negative rates,
user feedback). This would require agreement between trained
model evaluation metrics and operational environment runtime
metrics to ensure feasibility and completeness. Agreement on
what information to log is also important (e.g., should logging
be done for all input/output pairs or only for anomalies).

Most mismatch subcategories under Task and Purpose
were rated as Very Important across all roles. We gathered
34 examples of mismatch caused by not having a shared
understanding of what basically constitutes the requirements
for the model. As stated by one of the mismatch examples
collected in our survey: ”It is key to understand the problem
being solved ... It is easy to get trapped tuning a model
that doesn’t actually solve the problem.” We envision model
requirements to include business requirements comprising the
subcategories listed under Task and Purpose, in addition to
technical requirements such as the subcategories listed under
Development Environment and Operational Environment in
Figure 3.

In general, the mismatch subcategory that was considered
least important by both interviewees and all survey respondent
roles was Training Data: Version. This was a surprising result
because of the tight relationship between model performance
and training data. For model troubleshooting and retraining,
knowing the exact data that was used to train the deployed
model would seem important. The other subcategories in
Training Data were also generally rated low in importance
even though the interviews showed several negative conse-
quences of not having this information, such as the inability
to perform data drift detection and other runtime monitoring
when Distribution and Data Statistics are not known. In
addition, when details of Data Preparation Pipelines are not



known there is lack of clarity of how much data manipulation
and validation happens inside the model code and how much
happens outside; this subcategory was rated of higher impor-
tance by software engineers, likely because they have to deal
with the consequences of not having this information.

Metadata in the Raw Data category related to 11 mismatch
examples and was considered Important/Very Important by
81% of survey respondents. Data Dictionary was related to
7 mismatch examples and was considered Important/Very Im-
portant by 94% of survey respondents. Using data dictionaries
is a practice that is common in the database community that
not surprisingly would be well received in the data science
community to better understand raw data. However, having
access to metadata provides insights into how representative
data is of operational data, which is equally or even more
important, which our survey results do not reflect as strongly.

Programming Language/ML Framework/Tools/Libraries
was a subcategory that contained a large number of interview
mismatch examples in both Development Environment (9) and
Trained Model (10), which can be seen as counterparts. Most
of these mismatches had to do with having to port models
because of language differences, which when combined
with lack of model API/Specifications is a very error-prone
activity. However, these two categories were not as important
among survey respondents. One explanation is that perhaps
these respondents did not have to deal with model porting,
which seemed to be common in interviewees mostly from
Government, in which models are developed by contractors
outside of their organizations. Another explanation is a
growing trend towards deploying models as microservices,
which would in fact hide some of these differences [15].

V. TOWARDS AUTOMATED MISMATCH DETECTION

As stated earlier, the end goal of our study is to use the
ML mismatch information extracted from the interviews and
survey responses to develop empirically-grounded machine-
readable descriptors for different elements of ML-enabled
systems. To this effect, in parallel we conducted a multi-
vocal literature review [6] to identify software engineering best
practices and challenges in the development and deployment
of ML-enabled systems from both the academic and the
practitioner perspective. Attributes for documenting elements
of ML-enabled systems were extracted or inferred from the
primary studies. In Phase 2 of our research, we will perform a
mapping between system element attributes and mismatches,
in which for each mismatch we identify the set of attributes
that could be used to detect that mismatch, and formalize the
mismatch as a predicate over those attributes, as shown in
the Formalization column in Figure 6. We will then perform
gap analysis to identify mismatches that do not map to any
attributes, and attributes that do not map to any mismatch. We
then complement the mapping based on information from the
interviews and survey plus our domain knowledge, by adding
attributes and potentially adding new mismatches that could
be detected based on the available attributes.

OE
A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 Am

Mismatch 1 X X X A1 + A2 > A4
Mismatch 2 X X A8 = A12

…
Mismatch N X X Chi-Square(A5, A14)
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Fig. 6: Mapping between Mismatches and ML-Enabled Sys-
tem Element Attributes

The resulting attributes will be codified into JSON Schema
documents (https://json-schema.org/) that can be used by au-
tomated mismatch detection tools. These tools can range from
a simple web-based client that reads in all descriptors and
presents them to a user evaluating documentation, to a more
elaborate tool or system component such as the one presented
in Figure 7, which uses the Distribution attribute from the
Training Data descriptor for runtime data drift detection,
by performing a chi-square test between the distributions of
training data and the operational data.
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Fig. 7: Data Drift Detection Tool

VI. LIMITATIONS

Although the selected interviewees and survey participants
have different affiliation, roles, and years of experience, as
shown in Figures 1 and 4, we recognize that they might not
be representative of all practitioners involved in the develop-
ment and deployment of ML-enabled systems; therefore, the
identified mismatches may not cover all potential mismatch
types. We are also aware that the majority of interviewees
and survey respondents are data scientists, and this might bias
the results towards the data science perspective. To address
this issue, in the interviews we always requested examples
of mismatch caused by both information not provided and
information not received, which gave us a broader set of
mismatch examples, and indirectly included software engineer
and operations as information providers. However, we fully
recognize this limitation and propose to repeat the study at a
larger scale and with a more balanced population.



VII. RELATED WORK

Similar to our study, there are several practitioner-oriented
studies that focus on software engineering challenges and best
practices for the development and deployment of ML-enabled
systems. Amershi et al [1] conducted a study with devel-
opers at Microsoft to understand how teams build software
applications with customer-focused AI features. The results
were a set of challenges and best practices, as well as the
beginnings of a model of ML process maturity. Lwakatare
et al [11] developed a taxonomy of software engineering
challenges based on studying the development of ML systems
in six companies. The challenges focused mostly on data
science and were organized around a set of maturity stages
related to the evolution of use of ML in commercial software-
intensive systems. More recently, Serban et al [16] conducted
an academic and gray literature review of best practices for
development of ML applications, and validated adoption in
real projects via a practitioner survey. From the descriptor
perspective, while there is existing, recent work in creating
descriptors for data sets [3] [7] [8], models [12], and online
AI services [2] [14], there are three main limitations: (1)
they do not address the software engineering and operations
perspectives, (2) they are not machine-readable, and (3) they
are targeted at selection or evaluation of existing data set
and models and not at end-to-end system development. Our
descriptors will address these three limitations.

VIII. CONCLUSIONS AND NEXT STEPS

Empirically-validated practices and tools to support soft-
ware engineering of ML-enabled systems are still in their
infancy. In this paper, we presented the results of our study
to understand the types of mismatch that occur in the de-
velopment and deployment of ML-enabled systems due to
incorrect assumptions made by different stakeholders. While
best practices for ML model development are readily avail-
able, understanding how to deploy, operate, and sustain these
models remains a challenge. The 7 categories of ML mismatch
that we identified, along with their 34 subcategories, contribute
to codifying the nature of the challenges. The Phase 1 results
of our study demonstrate that improved communication and
automation of ML mismatch awareness and detection can
help improve software engineering of ML-enabled systems.
The next steps of our study include developing the machine-
readable descriptors as described in Section V, validating the
descriptors in industry, and implementing their detection in
tools such as the web-based descriptor viewer and the runtime
data drift detector described in Section V. Our vision is to
make the descriptors publicly available and create a commu-
nity around tool development and descriptor extensions, with
the end goal of improving the state of the engineering practices
for development, deployment, operation, and evolution of ML-
enabled systems.
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