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Abstract. Almost all of today’s man-made mechanical and electronic systems are actually cyber-
physical systems (CPSs). Formerly physical systems, from rockets to hair dryers and faucets, gain 
capabilities from software sensing, calculating, and control. Although some software will remain 
mostly divorced from physical items (e.g., cloud systems), much complex software will control, 
sense, and communicate with physical systems, which are then called CPSs. Although many sys-
tems engineers did not come to the discipline from a software background, CPSs still need systems 
engineering. Additionally, software engineers must step out of their “subsystem” box and work 
with systems engineers to build tomorrow’s systems. To enable that, systems engineers should 
continue to apply systems engineering principles, including continuous learning (especially about 
software) and coordinating (including teaching software engineers about systems engineering). 
The time is now to take on new behaviors to meet the challenges of CPSs. Systems engineers must 
work alongside software engineers to reach the joint goal of system success. 

1. Introduction 
Systems engineers and software engineers must work together to properly engineer today’s and 
tomorrow’s cyber-physical systems (CPSs), including physical components and the related soft-
ware, to ensure system quality attributes such as safety, security, and maintainability. This is be-
cause without software, new capability is minimal, and without good systems engineering, the 
costs and schedule of the pieces may not be optimal, the integration may be problematic, and a 
delivered system may not meet customer needs. Software also provides a flexibility of options that 
is not seen in hardware. Both systems and software engineering are required for future systems. 
Their work must be coordinated. 
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This paper is organized as follows:1 Section 2 discusses some aspects of how engineering, systems 
engineering, software, and software engineering came to be what they are today. Section 3 com-
pares systems engineering and software engineering. Section 4 discusses systems of systems and 
CPSs. Section 5 shows that systems engineering and software engineering are still relevant. Sec-
tion 6 presents how to coordinate the systems and software engineering of CPSs, including under-
standing tasks and roles. And section 7 presents a vision of a high-performance systems–software 
interface. 

2. Systems and Software, Past to Present 

a. What Is Engineering? 
The hardware parts of the system, and the system as a whole, require engineering of the physical 
elements and combining physical properties with logical properties. Engineering has evolved as a 
discipline consistent with its key role in society: engineers invent the technology that has improved 
our quality of life and continues to change how we interact with each other, other living things, 
and the earth. Because of the importance of good engineering to societal safety and security, pro-
fessional engineers have legal responsibilities (Illinois Institute of Technology 2019). 

One important element of the discipline is a code of ethics. Table 1 shows the IEEE’s 10-statement 
“Code of Ethics” that all members agree to follow (IEEE 2018). Similar codes exist in the Society 
of Professional Engineers, indeed in most engineering societies, including INCOSE. 

Table 1. IEEE Code of Ethics 

We, the members of the IEEE, in recognition of the importance of our technologies in affecting the quality of life 
throughout the world, and in accepting a personal obligation to our profession, its members, and the communities 
we serve, do hereby commit ourselves to the highest ethical and professional conduct and agree: 
1. to hold paramount the safety, health, and welfare of the public, to strive to comply with ethical design and 

sustainable development practices, and to disclose promptly factors that might endanger the public or the 
environment; 

2. to avoid real or perceived conflicts of interest whenever possible, and to disclose them to affected parties 
when they do exist; 

3. to be honest and realistic in stating claims or estimates based on available data; 
4. to reject bribery in all its forms; 
5. to improve the understanding by individuals and society of the capabilities and societal implications of con-

ventional and emerging technologies, including intelligent systems; 
6. to maintain and improve our technical competence and to undertake technological tasks for others only if 

qualified by training or experience, or after full disclosure of pertinent limitations; 
7. to seek, accept, and offer honest criticism of technical work, to acknowledge and correct errors, and to credit 

properly the contributions of others; 
8. to treat fairly all persons and to not engage in acts of discrimination based on race, religion, gender, disability, 

age, national origin, sexual orientation, gender identity, or gender expression; 
9. to avoid injuring others, their property, reputation, or employment by false or malicious action; 

                                                 
1 This paper reflects a U.S. Department of Defense (DoD) point of view, but the conclusions apply to other systems 
engineering applications. The roles discussed here are most applicable to large complex CPSs. See the INCOSE hand-
book (Haskins 2006) and the Systems Engineering Body of Knowledge for broader roles and types of systems engi-
neering. 
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10. to assist colleagues and co-workers in their professional development and to support them in following this 
code of ethics 

Systems engineers are often engineers, and while not all systems engineers could pass a “profes-
sional engineer” exam, their backgrounds and duties are usually closer to engineering than those 
of software developers, who tend to have degrees in computer science or mathematics. 

The term software engineering was used at a NATO conference in 1968, but in an aspirational 
sense meaning roughly that “We shouldn’t just write software, we need to engineer it” (Naur & 
Randell 1969). Since then, “software engineering” has been a frequently-used term, but the prac-
tice is still an art in many ways. For example, there has been little requirement for software engi-
neers to meet codes of ethics, and often no consequence to the creator for software engineering 
errors. But the tide is turning: as discussed in Section 5c, Toyota had to pay $1.6 billion ($US) to 
settle a lawsuit about 89 people killed or injured when a car’s throttle software malfunctioned 
(Koopman 2014). Smart organizations are taking note. 

b. What Is Systems Engineering? 
Depending on the source, systems engineering may be defined as a discipline, a department, a 
career path, a process, or a set of activities. INCOSE defines systems engineering as follows 
(INCOSE 2019): 

Systems Engineering is an interdisciplinary approach and means to enable the realization 
of successful systems. It focuses on defining customer needs and required functionality 
early in the development cycle, documenting requirements, then proceeding with design 
synthesis and system validation while considering the complete problem: 

Operations; Cost & Schedule; Performance; Training & Support; Test; Disposal; Manu-
facturing   

Systems Engineering integrates all the disciplines and specialty groups into a team effort 
forming a structured development process that proceeds from concept to production to 
operation. Systems Engineering considers both the business and the technical needs of all 
customers with the goal of providing a quality product that meets the user needs. 

Some of the tasks assigned to systems engineering teams or individuals on a project include the 
12 roles first discussed in (Sheard 1996) and presented in Table 2. These tasks show the differences 
in assumptions about what systems engineering is and does among early papers and books. No one 
person is expected to take on all the roles; rather, who performs what role should be negotiated. 
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Table 2. Twelve Systems Engineering Roles (Sheard 1996) 
RO Requirements Owner 
SD System Designer 
SA System Analyst 
VV Validation/Verification Engineer 
LO Logistic/Ops Engineer 
G Glue Among Subsystems 
CI Customer Interface 
TM Technical Manager  
IM Information Manager 
PE Process Engineer 
CO Coordinator 
CA Classified Ads Systems Engineer  

Systems engineering started and matured somewhat before software was a big part of systems. 
Sheard (2014a) showed the evolution of software (solid red) within satellites (blue boxes), as 
shown in Figure 1. Software started out as a small part of one of the electronic units, then it became 
a larger part of more units, then point-to-point connections among a number of units appeared. 
Around 2000, data buses started appearing, then full software architecture. It is expected that in 
the future, hardware will be depicted as interconnecting existing software networks. 

 
Figure 1. Growth of software within satellites. 

With such an increase in the software content of today’s systems, systems engineers fear their 
discipline can become irrelevant if not updated (Lunney 2018). 
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c. What Is Software? 
In the 1960s and 1970s, software was written as small stand-alone programs, for business or engi-
neering purposes, in languages such as Basic, Cobol, and Fortran. Coding was easier, and the tools 
were more advanced than machine language and then assembly language. Today’s sophisticated 
languages and environments have made coding still easier, with fewer syntactic errors. 

Software exists today in many forms, including mobile games, the Internet of Things, large and 
small (e.g., web shopping carts) business platforms, science and engineering platforms, and em-
bedded systems. This paper addresses embedded systems, in which the software is intimately re-
lated to physical sensing and actions. Information systems, in which the relevant hardware is the 
computer platform (a commodity rather than special-purpose hardware), are not the topic of this 
paper. 

Software has become the dominant way “things” talk to each other. Using the Internet’s physical 
and logical backbone, software interconnects multiple computers along with the physical systems 
they monitor and control. Vehicles such as cars and airplanes are no longer internally controlled 
primarily by physical signals (cables, struts, chains, hydraulics, etc.) but rather by buses connecting 
the computers that run entertainment systems, heating and cooling, propulsion, navigation, and 
other systems. 

These systems evolve rapidly because the software within them (and on the external Internet) is 
evolving rapidly. Software enables the primary capabilities of most “things” today and empowers 
rapid growth in capabilities. 

d. What Is Software Engineering? 
Definitions of software engineering vary. Merriam-Webster calls it “a branch of computer science 
that deals with the design, implementation, and maintenance of complex computer programs” 
(Merriam-Webster 2019). The IEEE defines software engineering as “the systematic application 
of scientific and technological knowledge, methods, and experience to the design, implementation, 
testing, and documentation of software” (IEEE 2017), while Webopedia insists that a software 
engineer “is a licensed professional engineer who is schooled and skilled in the application of 
engineering discipline to the creation of software” (Stroud 2019). Note the progression from com-
puter science to application to licensed professional engineer. 

In the authors’ experience, most software engineers today consider the first or second definition to 
describe what they do, not the third. Hardly any software engineers are licensed professional en-
gineers.2 

Compared to systems engineers, software engineers must have more depth in their field, as indi-
vidual bits matter greatly to whether a program runs or crashes. Software engineers must also work 
much harder to stay current, as the field is rapidly evolving and highly complex. 

                                                 
2 In fact, the National Council of Examiners for Engineering and Surveying (NCEES), decided to discontinue its exam 
in “Principles and Practice of Engineering Software Engineering” exam after April 2019 for reasons that included 
the “low candidate population” and the “[low] potential for increasing the number of first-time examinees.” (Miller 
2018) 
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This high complexity is managed (and probably can only be managed) through the use of tools 
that constrain the potentially high complexity of the software. These include modeling, design, 
test, configuration management, and version control tools and are usually collectively called a 
software development environment. 

To the extent that software engineering is true engineering, systems engineering of software is 
usually performed by the more experienced software engineers who are interested in the big pic-
ture. These are often called software architects. Their job is broader than that of less experienced 
software engineers, but it is less broad and more detailed than systems engineering of more phys-
ical systems. Figure 2 compares a T-shaped systems engineer to a T-shaped software engineer 
(Sheard 2014b). 

 
Figure 2. T-shaped Skills: Systems Engineer and Software Engineer 

3. A Comparison of Systems Engineering and Software Engineering 
Today 

Figure 3 (Sheard 2014c) shows the differences and overlap between systems engineering and soft-
ware engineering responsibilities and tasks. Systems engineering performs the tasks in the left 
crescent, and software engineering performs the tasks in the right crescent. Where the systems and 
software tasks are nearly the same, they appear in the center, which includes both joint responsi-
bilities and a note that some terms are different on the left and right but are effectively the same 
(e.g., “ilities” and quality attributes are both non-functional requirements). This figure was created 
in 2014 and is still appropriate, although today under the red “Breadth” might be added emergence, 
judgment, and capabilities; and under the blue “Depth (SW)” might be added languages, features, 
epochs, media, open source tools and source code, machine learning, artificial intelligence, etc. 

For CPSs, systems engineering tasks, methods, and competencies overlap with many software 
engineering tasks, methods, and competencies; systems engineering also extends to a broader 
scope as necessary for a successful project. 
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Figure 3. Responsibilities and activities of systems engineering and software engineering. 

4. Today to Tomorrow: New Kinds of Systems 
Two new kinds of systems have been defined since the 1990s. Both are evolutions of the kinds of 
systems built up until then. Systems of systems (SoSs) are aggregations of smaller systems to 
enable new capabilities. CPSs have more software functionality than earlier physical systems. 

a. Systems of Systems 

Mark Maier’s seminal work in the 1990s defined “systems of systems” as different from “systems” 
in how they are engineered. SoSs are those that have (a) operational independence of the elements, 
(b) managerial independence of the elements, (c) evolutionary development, (d) emergent behav-
ior, and (e) geographic distribution (Maier 1998). 

In response to the ensuing rise of work on SoSs, the DoD pulled together a government–industry 
team to create its Systems Engineering Guide for Systems of Systems (ODUSD A&T 2008). Table 
3 shows core elements in the guide: systems engineering roles and activities that are different from 
systems engineering roles and activities when building standalone systems. 

Table 3. Core Elements of SoS Systems Engineering 
TCO  Translating Capability Objectives 
USR Understanding Systems & Relationships 
OUS Orchestrating Upgrades to SoS 
ARO Addressing New Requirements and Options 
MAC Monitoring and Assessing Changes 
DEM Developing, Evolving, and Maintaining SoS Design 
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APO Assessing Performance to Capability Objectives 

b. Cyber-Physical Systems 
Most of today’s man-made physical systems are actually CPSs, consisting of a significant amount 
of software, as shown in Figure 4. This software performs computational work to receive commu-
nications and data, store and process data, and issue communications and instructions for actuators, 
based on the computational results. The software controls and manages the physical system and 
carries out communications with external systems. Although physical components and software 
may each be well-engineered, the physical and logical concerns are not always balanced properly. 

 
Figure 4. Software in Cyber-Physical Systems 

CPSs are the systems of the future, but they are also the systems of today. It is of great urgency 
that systems and software engineers come to agreement as to how CPSs should be systems engi-
neered. 

Whereas software engineers can usually perform most or all of the systems engineering for the 
software in information systems, software engineers cannot speak for the non-software parts of 
CPSs. There should be a systems engineer who can and does, and there should be a software en-
gineer who speaks for the software and who performs systems engineering for the software. These 
two people should coordinate easily and often. All systems engineering work should be cleared 
for software acceptability, and all software engineering work should be cleared for systems ac-
ceptability.3 

On a program developing a complex CPS, a systems engineer performs the systems engineering. 
A software engineer systems engineers the software, with this external “system” being the com-
puter system on which the software will run, as well as the computer system’s external system. 

                                                 
3 John Klein, personal communication, 9 November 2018. 
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The two disciplines collaborate to ensure that the performance of the CPS and its development 
cost and schedule are satisfactory. 

5. Relevance 
The thoughtful combination of systems and software engineering will be relevant in the future 
because customers will continue to require high-capability, working systems that meet their needs. 
This sections shows three examples of the need for this joint work. 

a. Example: Processes and Agile 
The U.S. DoD has an extensive history of using a “waterfall” acquisition model that assumes re-
quirements are set, contracts are let, systems are built, and then the customer tests the systems to 
ensure they perform per the original requirements. In the 1990s, both government and contractors 
realized that the time frames to build systems were longer than the time that a requirement stayed 
steady, and even if it were practical to gather all requirements before a contract is begun, the re-
quirements would be obsolete before the system was delivered. 

For the past 20 years or so, software developers have created a method for developing software in 
pieces, from small numbers of requirements, which are then evolved to form increasingly capable 
software. Although the DoD is actively trying to ensure it has policies that permit and even en-
courage agile software development, the wheels of change roll slowly, and some engineers per-
ceive a disconnect between the older acquisition regulations and newer software practices. 

In the same time period, INCOSE has studied how to do engineering in a more agile manner and 
how to systems-engineer more agile systems (INCOSE 2018). Systems engineers who are aware 
of the constraints on both the government acquisition side and the agile software development side 
need to be aware of these resources in order to make both happen. 

b. Example: Early System Decomposition 
One major problem arises when the system is decomposed into physical pieces (and then contrac-
tual pieces) without the participation of software engineers and architects. A government systems 
engineer from the Office of the Secretary of Defense once lamented that analysis of a communi-
cation path in a major program showed that one calculation (which bounced around between phys-
ical parts) required fast Fourier transforms five times. The contractual structure led to various con-
tractors each building software that should have been common. They each transformed latitude 
and longitude to geo coordinates, had unshared memory hierarchies, and had separate support rou-
tines, data dictionaries, and mathematical routines like Fourier transforms. It would have been 
much better had software engineering been involved in early system decomposition decisions. 

Today, program managers treat systems engineers rather than software engineers as their technical 
points of contact. Often, software engineering concerns are unheard unless their systems engineer-
ing counterparts raise the issues to their managers. For example, the GAO reports, 

Of the 54 current and future programs we assessed, 41 reported software development as 
a high-risk area. Despite this, … half of the programs we assessed do not track the cost of 
their software development. (GAO 2017) 
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Systems engineering is understood to focus on the whole product, and it sets the scope for both the 
program and its elements, such as software. Software engineers needs to make their case initially 
and throughout the program in the scramble for resources, because software is too important to 
come in last with respect to hardware. 

c. Example: System Safety 
Can software kill? No one has died solely from the existence of sequences of 1s and 0s in comput-
ers, but people can and do die when software interacts with the physical components of CPSs.4 In 
2014, Toyota was required to pay $1.6 billion to settle a lawsuit concerning people injured or killed 
in accidents caused by throttle software in its vehicles. The large amount was due in part to Toyota 
continually reassuring the public that it was not the fault of the vehicles or their software (suggest-
ing driver error or interfering floor mats first), when it was indeed due to inadequately safe soft-
ware. The complexity of software is measured by an index that states the number of linearly inde-
pendent paths through a program’s source code, called cyclomatic complexity (also called McCabe 
complexity). Good software practice limits the cyclomatic complexity of programs to 25 or 30 for 
understandability, and programs with complexity over 50 are considered untestable. In compari-
son, the complexity of Toyota’s throttle angle function was 146, and there were 66 other functions 
with complexity over 50 (Koopman 2014). In this system, both software engineering and systems 
engineering seemed to have been inadequately performed for societal safety.5 

Safety continues to be an unresolved challenge. As of March 2017, the Boeing 737 Max airliners 
have all been grounded because of multiple crashes in a short timeframe. The last accident is too 
recent to identify the precise cause, but it appears to be related to mounting a too-big engine with 
a second control system (that fights with the original) and both use the same sensor, whose data is 
unreliable. (Evers, 2019) In any case, the larger question is how software deals with possibly un-
reliable sensors and whether, when, and how it communicates such information to the pilots. 

6. Adapting the Systems–Software Interface for the Future 
This section discusses what must be done to ensure that CPSs have the right systems and software 
engineering. Systems and software engineers must agree on who does what (roles and tasks), and 
both groups should modify what they do to improve communication between the two groups. 

a. Perform Coordinated Roles 
Table 4 shows tasks (first column) and roles for both systems engineering (middle column) and 
software engineering (last column). Entries in the systems engineering column are based on the 12 
systems engineering roles (Sheard 1996) in Table 2 (one- or two-letter roles), and on the 7 systems-
of-systems engineering tasks (ODUSD A&T 2008) in Table 3 (three-letter roles). 

                                                 
4 The question of whether the software is responsible when physical items harm humans is not trivial. If a Mafioso 
hacked into Fitbit’s geolocation database and thereby found the location of his target, is the subsequent murder the 
fault of software? 
5 Aviation accident reports provide another rich source of system safety experiences. 
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Table 4. Systems and Software Roles and Tasks 
Tasks Systems Roles and Activities Software Roles and Activities 

 Technical Roles 
1. Implement (none) Programmer or coder (from detailed de-

sign) and testing of the code 
Agile team roles involving coding 
Includes debugging and documentation as 

required 
Maintenance coding 
Maintain current software engineering 

skills 
2. Architect 
and design 

Systems Architect 
RO Requirements Owner 
SD System Designer 
G Glue Among Subsystems (including 

risk identification) 
TCO Translating Capability Objectives 
USR Understanding Systems and Rela-

tionships 
ARO Addressing New Requirements and 

Options 
DEM Developing, Evolving, and Main-

taining SoS Design 

Software architecture design 
Architecture analysis needed to perform 

software architecture design 
Agile team roles involving refactoring and 

structuring 
Refactoring needed during maintenance 
Software architecting, including detailed 

design. 
Includes identification of components, re-

lationships, and interfaces; allocation 
of requirements to next-level compo-
nents. 

3. Lead and  
coordinate 

Liaison to other disciplines, including 
software engineering, and to compo-
nent building groups 

Risk identification 
CO Coordinator 
OUS Orchestrating Upgrades to SoS 

Software risk identification and escalation 
to system risks 

Liaison with other software engineers 
building components and with sys-
tems engineering 

Agile team roles and maintenance roles 
involving leading and coordinating 

4. Analyze sys-
tem and own 
interface exter-
nal systems  
 

Perform system analyses including budg-
ets, margins, timing, and failure 
modes 

Maintain current system budgets with in-
puts from other groups 

Characterize external systems interfaces 
SA System Analyst 
CI Customer Interface 
APO Assessing Performance to Capabil-

ity Objectives 
MAC Monitoring and Assessing 

Changes 

Perform analyses including budgets, mar-
gins, timing, and failure modes 

Characterize external systems with which 
the software will interface 

Architecture analysis to determine best 
match of architecture to customer 
needs 

Analysis required during maintenance 

5. Verify and 
validate 

Plan and monitor system test processes 
and results 

Validate requirements through system 
operation 

VV Validation and Verification Engineer 
LO Logistics and Operations Engineer 

Architecture evaluation 
Plan and execute software verification and 

validation from earliest component 
tests through software part of system 
testing and in operations 
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Tasks Systems Roles and Activities Software Roles and Activities 
Agile team roles involving determining 

adequacy of structure relative to to-
day’s understanding of need and to 
backlog 

Verification and validation of software 
developed for maintenance, including 
debugging and testing 

  Management Roles   
6. Manage peo-
ple 

Manage systems engineers 
Ensure they can learn broadly 

Manage software engineers 
Ensure their skills remain current 

7. Coordinate 
with other 
groups 

Interact with system-level customers 
Obtain agreements and resources as 

needed 
CO Coordinator 
OUS Orchestrating Upgrades to SoS 

Interact with users and software-proficient 
customers 

Obtain agreements and resources as 
needed 

 
8. Plan and 
monitor 

Technical management 
TM Technical manager 
PE Process Engineer 
OUS Orchestrating Upgrades to SoS 

Software task or sprint management 
Agile sponsor roles 

9. Manage risk  
 

Balance application of resources to re-
duce/mitigate system-level risks 

SA System Analyst 
G Glue Among Subsystems 
TM Technical Manager 

Application of resources for software risk 
mitigation 

Escalation of risks to system risks 

10. Manage 
configurations, 
data, and  
quality  

Perform these tasks for system as a 
whole and possibly for some pieces 

IM Information Manager 

Perform these tasks for software, data, 
and possibly computer hardware 

b. Software Engineers Must Architect, Design, and Implement Their 
Software in a System Context 

Software engineers are primarily responsible for these tasks (note: numbers in parentheses refer to 
tasks in Table 4): 

• Design and implement the intelligence of the system. This is because the software imple-
ments the intelligence of the system, and the systems engineer may not have the back-
ground or years of experience to ensure this is done properly. If so, the software engineer 
or architect is critical. The systems engineer has secondary responsibility and should work 
closely with the software person to ensure the requirements are as correct as possible, ad-
dress constraints such as low vulnerabilities to cyber-attack or safety hazards, and deter-
mine strategies for contingency situations (1, 2). 
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• Take responsibility for the entire software product. Understand activities and concepts such 
as code review, security vulnerabilities and countermeasures, coding/architecture patterns, 
and systems engineering tasks and responsibilities6 (2, 6–10). 

• Engage in analysis and design, allocation of requirements (2), oversight of component de-
velopment (3), component integration (2), verification and validation (5), life-cycle sus-
tainment (1–5), and system retirement (4 and maybe 3) (SEBOK Wiki 2018). 

• Work with or as component specialists (for example, user interface, database, computation, 
and communication specialists) who construct or otherwise obtain the needed software 
components (1, 2) (SEBOK Wiki 2018). 

• Adapt existing components and incorporate components supplied by customers and affili-
ated organizations (1 and 7, with plenty of 2 and 4) (SEBOK Wiki 2018). 

• Allocate requirements to software modules; do component integration and test (1, 2, 5). 

• Write and document the code (1). 

• Verify and validate the code (5). 

• Interface with users (agile). Software is increasingly being developed using agile tech-
niques that include users on the teams. Thus software engineers are the primary contact 
with these users. In contrast, the customers who allocate the money for the software devel-
opment often interact with the management chain first and systems engineering second. If 
the users lead the project toward substantial requirements or scope changes, software en-
gineers should inform the systems engineers (1, 2, 3, 7, and some of 4). 

• Keep current with rapidly changing environments and conditions, especially cybersecurity, 
languages and operating systems, development methodologies such as agile practices, and 
development environments as they evolve. Software changes much faster than an engineer 
with a broad responsibility could track it. Software engineers should inform systems engi-
neers when industry changes lead to major changes in requirements or project scope (1, 4, 
6). 

• Maintain software: repair bugs (corrective), accommodate changes in the software envi-
ronment (adaptive), implement new or changed user requirements to established software 
(perfective), and keep software reliability and maintainability high (preventive). Every 
change goes through a miniature version of a full life cycle (1–10). 

c. Systems Engineers Must Adapt Systems Engineering Practices to 
Include Software Engineers as Important Participants 

Since systems engineers often are asked to help the program office early in the program, they need 
to be aware that “big-picture-aware” software engineers (sometimes these are the software archi-
tects) need to be invited “to the system table” for the earliest discussions about a potential solution 

                                                 
6 Note: Software architects are occasionally assumed to be just software developers with improved “soft skills” (John 
Klein, personal communication, 9 November 2018). While soft skills are indeed important for any kind of architect, 
software architects also need to have specific technical skills in addition to programming. 
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to a customer problem. Ideally this will occur before the program is broken into pieces to be let 
separately. This is because software will be providing the interfaces among those pieces, and split-
ting the right way will make the software, and even the non-software, parts of the program much 
easier to implement than if the pieces are broken apart in a way that makes software very difficult. 

Systems engineers also need to know what software engineers are asking for when they ask for 
data. For example, one responded, “Tell me what I need to know … not just what sensor data to 
send, but where do I get it, how often, to what accuracy, how often transmitted, validation, 
ack/nack, etc.”7 

Systems engineers are primarily responsible (with input from all disciplines) for these tasks (note: 
numbers refer to tasks in Table 4): 

• Design the system initially, in a preliminary way, down to the level of software, physical 
systems components, and system-wide concerns. Create requirements for software, com-
ponents, and interfaces. Identify tradeoff factors (including software-related). Ensure that 
software engineers participate in allocation decisions (2, 4). 

• Coordinate allocation of requirements to software and to physical subsystems, units, and 
modules. Liaise with disciplines, ensuring software is aware of pertinent decisions. Re-
spond to software engineers’ requests for information (3). 

• When software engineers need information that is not yet available, such as how often a 
sensor measurement should be read and how long it must be stored, coordinate with them 
to determine the best nominal information and a method and time when the information 
may be updated. 

• Make defensible decisions, documenting the rationale via trade studies (or other means) 
(3). 

• Ensure correct interfaces to hardware and to other systems in the environment, at a high 
level. Systems engineers are responsible for balancing technical details, budget, and sched-
ule across competing demands. Although systems engineers are not expected to understand 
the workings of software completely, they are required to understand them well enough, 
and to partner with software enough, to balance software against other aspects of the sys-
tem. This requires a transparent working relationship in which both parties agree on system 
and project goals as well as their own contributions to them (4). 

• Perform engineering, including evaluation of safety and security (4)—especially analyses 
regarding sociotechnical, safety, and security issues (2)—and ensure those issues are re-
spected in the system design (2, 3). 

• Identify, tally, manage, and assess system-level risks (2, 3, 4). 

• Interface with customers at a high level (customers, agencies, managers, and organizations) 
to understand the value stream (3, 4, 7). This includes ultimate system verification and 
customer validation (5). This is in contrast to software engineers’ responsibility for coor-
dinating with users. 

                                                 
7 J. Hudak, personal communication, 11 July 2018. 
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• Maintain expertise in customer (3), domain, total system (4), and systems engineering pro-
cesses and technologies. 

• Manage systems engineering (6–10), including the systems engineering team, the systems 
engineering process (8), systems engineering schedules and plans (8), and configuration 
and information management (10). 

d. Learn from Each Other’s Methods 
Systems engineers should use methods invented by software engineers. Software engineering 
methods that have been adapted to systems engineering are as follows (numbers refer to lines in 
Table 1) (SEBoK Wiki 2018, credited to Fairley & Willshire 2011): 

• Model-driven development (relates to model-based systems engineering), but systems en-
gineering also looks intensely for things that fall in cracks. Document each step (2, 4). 

• UML (software) – SysML (systems) (2, 4) 
• Use cases (2) for expressing requirements 
• Object-oriented design (2) 

(Note: There is an INCOSE working group on this topic.) 
• Iterative development (2) 

(The INCOSE Agile Systems & SE Working Group touches on this topic.) 
• Agile methods (the same INCOSE WG) (2, 3) 
• Continuous integration (3) 
• Process modeling (8) 
• Process improvement (8) 
• Incremental verification and validation (5, 7, 8) 

Software engineers should use methods invented by systems engineers. Methods developed 
within systems engineering that are or should be adapted to software engineering include the fol-
lowing (SEBoK wiki 2018, credited to Fairley & Willshire 2011): 

• Stakeholder analysis (3, 4) 
• Requirements engineering (2) 
• Functional decomposition (2, 4) 
• Design constraints (4) 
• Architectural design selection from options (2) 
• Design criteria and utility functions (3, 4) 
• Design tradeoff methods (3) 
• Interface specification (2, 4) 
• Traceability (2, 3, 4) 
• Configuration management (3) 
• Systematic verification and validation (5) 

e. Ask Questions of the Other Discipline 
INCOSE Past President Bill Schoening suggested that systems engineers could best engineer the 
system-wide aspects if they asked penetrating questions that “illuminate serious underlying issues 
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without sounding confrontational” (Schoening 1997). In this spirit, both systems and software en-
gineers should try to understand the other’s work through specific questions such as the following. 

Questions systems engineers should ask of software engineers. In addition to asking about cost, 
schedule, quality, and test, systems engineers should ask: 

• What is the software development process? What inputs is it expecting, and what outputs 
is it planning? What is the schedule? (7) 

• What major software architectural decisions are needed, and when? What impact will the 
various options have at the system level? (2) 

• What procedures reduce risk of cyberattack, and how might they change? (2) 
• What makes development difficult? How could you change that if you could? (8) 
• What software risks could become system risks? (3, 4) 
• What do you need from me, the systems engineer, and when? (3) 
• Will this change I’m asking you to make be a small change? Or might it become a huge 

problem? (3) 
• What decisions must be made to ensure that software is not unreasonably constrained, so 

developers will be able to create the software economically, and it will serve the opera-
tional needs correctly, including adaptation, reconfiguration, and graceful degradation? 
(3) 

Questions software engineers should ask of systems engineers. In addition to asking what the 
software requirements are, software engineers should ask: 

• How well versed in systems and software engineering are the project leaders and manag-
ers? How about the customers? (3) 

• What information will the project require from software engineering, and when? (3) 
• To what level of detail will you, the systems engineers, decompose the system before 

bringing in software architects? Can the software architects be part of the entire system 
design process? (2) 

• What groups and what systems will this system have to interface with, and to what speci-
fications? (3, 4) 

• Who can I talk to, to understand the customer value stream better? (3) 
• Who can I talk to, to understand how each sensor and actuator works? (2) 
• What “big picture” or overall analysis will be requested and when? (2, 4) 
• How final are these requirements, or when will they become final? (2) 
• What do you need from me, the software engineer, and when? (3) 

These questions should help build the transparent, open relationship that will help make CPSs 
functional, safe, and efficient throughout this century. 

f. Ensure Requirements Are Handled Correctly 
The complexity of today’s requirements merits special mention. Requirements consist of user re-
quirements, which tend to be feature-oriented and thus easy for software engineers to address, and 
system requirements. System requirements are either functional or non-functional (the latter are 
called “quality attributes” in the software world). While two of these nonfunctional requirements 
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types (reliability and availability) can be quantified and have well-accepted quantification algo-
rithms, assessing other nonfunctional requirements requires engineering judgment. Software engi-
neers prefer not to deal in judgments and tend to toss out such requirements early in the software 
requirements definition process. In contrast, systems engineers apply “engineering judgment” all 
the time. Such judgments are important when validating and verifying the system as a whole as 
well as compliance with quality attribute requirements. Both should be up front with the other 
about what is or is not known, qualitatively and quantitatively. 

Moreover, a joint decision also has to be made when requirements conflict. Relative to a product, 
security requirements are often at odds with performance or usability. Where’s the optimum com-
promise? This is not a question that can be solved by one group or by fiat. Thus software engineers 
need systems engineers to understand their concerns at a high level and bring them to the right 
management and sponsor personnel. 

g. Systems Engineers Must Still Do the “Other” 
Systems engineers must still do the “other”: necessary tasks that aren’t being done by subsystems 
and disciplines. Historically that has meant, for example, verifying that anomalies are being ex-
amined by the correct disciplines and subsystems, participating in investigations when the correct 
disciplines had not yet been determined, and leading the investigation into anomalies not addressed 
by anyone else and anomalies with clear system responsibilities. Some of the changes now and in 
the future are as follows. 

Systems engineering manages the things that there aren’t tools for. Much of systems engineer-
ing is human-facing: understanding, convincing, and discovering. Sometimes other engineers rec-
ognize only concrete issues, so systems engineers have to initiate work where the issues are not 
clear. If a tool is created to address a systems engineering responsibility, the importance of that 
responsibility shifts from doing the calculation to getting the right input and determining the mean-
ing (and recipient) of the output, rather than using the tool. 

Systems engineering addresses non-deterministic behaviors. Once software requirements are 
modeled and ready for implementation, the implemented software ordinarily has only determinis-
tic behaviors. Its functions and outputs can be predicted and measured. When the system as a 
whole, however, is complex, then system behaviors may be non-deterministic. Systems engineers 
have been taught during their career how to recognize, characterize, and integrate non-determinis-
tic elements, such as humans. Some software engineers consider that dealing with non-determin-
istic elements is “someone else’s job.” If this is the case, the systems engineer must understand 
and address the non-deterministic behaviors of the software. 

Systems engineers engineer emergence. Complex systems and integrated systems have emergent 
attributes, characteristics, properties, and behaviors. Systems engineers must recognize, catego-
rize, record, manage, and engineer these emergent behaviors to serve the needs of the customer 
and the operators or users and to provide value to the organizations that pay for the system. This 
is a broader viewpoint than most software engineers take. 

7. Vision 
A vision of a high-performance system–software interface for a CPS is as follows: 
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• Systems engineers and software engineers work closely together and ensure that the best 
CPS is designed, built, and maintained. 

• A chief software architect and chief systems engineer (or equivalent titles) coordinate 
regularly to benefit the CPS and its customers. Systems and software engineers jointly 
plan what information they need and when, and what they can provide and when. 

• Timely trade studies, performed jointly, ensure affordability. 
• Software architectural concerns are known and are satisfied during system architecture 

development. 
• Software people remain up to speed with a rapidly evolving knowledge base while sys-

tems people remain knowledgeable about a broad domain and customer. 
• Methods of identifying and escalating risks are jointly determined and used. 
• System designs are developed in modeling tools that interface seamlessly with the model-

ing tools used by software engineers. 
• Systems engineers maintain responsibility for the non-deterministic and emergent needs 

of the system, while software engineers help ensure their deterministic and evolving soft-
ware meets those needs as much as possible.  

8. Conclusion 
Both systems and software engineering are required for future systems. Their work must be col-
laborative, because without software there is no new capability; and without good systems engi-
neering the integration is problematic, and the delivered system may not meet customer needs. 
Both systems engineers and software engineers need to learn what they can about the other disci-
pline and establish coordinating relationships. Ask questions throughout, to ensure the most posi-
tive outcome for the system. 
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