

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY REV-03.18.2016.0
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

DESIGN RULE CLASSIFICATION RUBRIC AND
GUIDANCE
Neil A. Ernst, Stephany Bellomo, Ipek Ozkaya, and Robert L. Nord
April 2017

Design Rule Classification Rubric

Design Rule Classification Guidance
Quality attribute type is an orthogonal classification and not relevant to this rubric.

DP1: Scope

• Statement (ND1)
− Almost always code problems and not design.
− Not about accumulation of multiple violations of the rule.
− Internal to method (switch, case, if/else, expression)
− Empty methods, dead stores, fit here.

• Module (go to DP2)
− A class, component, Module, object.
− The lowest level of “design” we might draw on paper.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 2
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

− A group of statements (file) or a language construct (method, class) that can be executed in-
dependently, reused, tested, and maintained or is a composition of other modules.

• System (DR-S)
− Problems detected cross boundaries between languages and/or architectural layers. For in-

stance, it involves both the application code and the data access layer (CAST)
− Metric thresholds (e.g., McCabe complexity > X, Component Balance < 7) typically fall

here.
− Allocation view specific details (e.g., package/file naming violations) may belong here.

DP2: Abstraction Level

• Specific (ND2)
− Module level, syntax specific violations.
− We cannot translate into another language or paradigm easily.
− Might see keywords or reserved words or concepts, but can't be translated to generalizable

concept.
− E.g., Violating Spring naming conventions is a rule with no obvious commonalities in other

frameworks.
• Paradigm (DR-P)

− Covers a paradigm (OO, Functional, Imperative, ...), Architectural Style (Concurrent,
Pipe/Filter, PubSub, MVC, ...), or Design Pattern (Exception Handling, ...).

Additional Resources

This material supplements the research paper Bellomo, S.; Nord, R.; Ozkaya, I.; & Popeck, M. “What
to Fix? Distinguishing Between Design and Non-Design Rules in Automated Tools,” in Proceedings of
the IEEE International Conference on Software Architecture (ICSA 2017).

This study is part of a wider SEI effort on technical debt.

http://sei.cmu.edu/architecture/research/arch_tech_debt/arch_tech_debt_library.cfm

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 3
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Contact Us
Software Engineering Institute
4500 Fifth Avenue, Pittsburgh, PA 15213-2612

Phone: 412/268.5800 | 888.201.4479
Web: www.sei.cmu.edu | www.cert.org
Email: info@sei.cmu.edu

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-
05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded
research and development center. References herein to any specific commercial product, process, or service by
trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, rec-
ommendation, or favoring by Carnegie Mellon University or its Software Engineering Institute.

[Distribution Statement A] This material has been approved for public release and unlimited distribution. Please see
Copyright notice for non-US Government use and distribution.

DM-0004376

http://www.sei.cmu.edu/
http://www.cert.org/

	Design Rule Classification Rubric and guidance
	Design Rule Classification Rubric
	Design Rule Classification Guidance
	DP1: Scope
	DP2: Abstraction Level
	Additional Resources

