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Design Rule Classification Rubric 

Design Rule Classification Guidance 
Quality attribute type is an orthogonal classification and not relevant to this rubric. 

DP1: Scope 

• Statement (ND1) 
− Almost always code problems and not design. 
− Not about accumulation of multiple violations of the rule. 
− Internal to method (switch, case, if/else, expression) 
− Empty methods, dead stores, fit here. 

• Module (go to DP2) 
− A class, component, Module, object.  
− The lowest level of “design” we might draw on paper. 
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− A group of statements (file) or a language construct (method, class) that can be executed in-
dependently, reused, tested, and maintained or is a composition of other modules. 

• System (DR-S) 
− Problems detected cross boundaries between languages and/or architectural layers. For in-

stance, it involves both the application code and the data access layer (CAST) 
− Metric thresholds (e.g., McCabe complexity > X, Component Balance < 7) typically fall 

here. 
− Allocation view specific details (e.g., package/file naming violations) may belong here. 

DP2: Abstraction Level 

• Specific (ND2) 
− Module level, syntax specific violations.  
− We cannot translate into another language or paradigm easily.  
− Might see keywords or reserved words or concepts, but can't be translated to generalizable 

concept. 
− E.g., Violating Spring naming conventions is a rule with no obvious commonalities in other 

frameworks. 
• Paradigm (DR-P) 

− Covers a paradigm (OO, Functional, Imperative, ...), Architectural Style (Concurrent, 
Pipe/Filter, PubSub, MVC, ...), or Design Pattern (Exception Handling, ...). 

Additional Resources 

This material supplements the research paper Bellomo, S.; Nord, R.; Ozkaya, I.; & Popeck, M. “What 
to Fix? Distinguishing Between Design and Non-Design Rules in Automated Tools,” in Proceedings of 
the IEEE International Conference on Software Architecture (ICSA 2017). 

This study is part of a wider SEI effort on technical debt. 

  

http://sei.cmu.edu/architecture/research/arch_tech_debt/arch_tech_debt_library.cfm
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Contact Us 
Software Engineering Institute 
4500 Fifth Avenue, Pittsburgh, PA 15213-2612 

Phone: 412/268.5800 | 888.201.4479 
Web: www.sei.cmu.edu  | www.cert.org 
Email: info@sei.cmu.edu 

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-
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