
What to Fix? Distinguishing between design and
non-design rules in automated tools

Neil A. Ernst, Stephany Bellomo, Ipek Ozkaya, Robert L. Nord
Carnegie Mellon University Software Engineering Institute

Pittsburgh, PA
Email: {nernst,sbellomo,ozkaya,rn}@sei.cmu.edu

Abstract—Design problems, frequently the result of optimizing
for delivery speed, are a critical part of long-term software costs.
Automatically detecting such design issues is a high priority for
software practitioners. Software quality tools promise automatic
detection of common software quality rule violations. However,
since these tools bundle a number of rules, including rules
for code quality, it is hard for users to understand which
rules identify design issues in particular. Research has focused
on comparing these tools on open source projects, but these
comparisons have not looked at whether the rules were relevant
to design. We conducted an empirical study using a structured
categorization approach, and manually classified 466 software
quality rules from three industry tools—CAST, SonarQube, and
NDepend. We found that most of these rules were easily labeled as
either non-design (55%) or design (19%). The remainder (26%)
resulted in disagreements among the labelers. Our results are a
first step in formalizing a definition of a design rule, to support
automatic detection.

Index Terms—Software quality, software design, software cost

I. INTRODUCTION

Static analysis tools evaluate software quality using
rules that cover languages, quality characteristics, and
paradigms [1]. Software quality rules have accumulated as
practitioners gradually recognize code ‘smells’ and poor prac-
tices. The first tool to automate rule-checking was the C
language tool lint in 1979 [2]. Static analysis tools have
traditionally focused on what we might call the code-level,
rather than design. For instance, Johnson’s initial description
of lint mentions type rules, portability restrictions, and
“a number of wasteful, or error prone, constructions which
nevertheless are, strictly speaking, legal” [2].

Increasingly, quality rules are targeting design problems,
such as paradigm violations or architecture pattern violations
(e.g., the work of Aniche et al. on MVC frameworks [3]). This
is because design problems are often more significant than
coding errors for long-term software maintenance costs. This
view is supported by the results of recent survey and interview
[4] and issue tracker analysis [5] studies, which found that
syntax and coding problems are rarely important sources of
these long-term costs; instead, poor design choices lead to
accumulating costs and technical debt.

Static analysis tools often generate many false positives,
leading developers to ignore the results [6], [1], [7]. One
potential improvement to this problem is to separate design
rules from other rules. We examine the software quality rules

of three typical tools to understand the extent to which their
quality rules are design-related. This raises the question of
what we mean by design, a thorny question in software en-
gineering research [8, p.14]. We use an extensional definition
[9, ch 1.1] of design by creating a design rule classification
rubric, using rater agreement on classification labels as our
metric. Design is clearly more than what the (imperfect) rubric
suggests. Most importantly, our rubric is limited to the rules
we used as input, and each rater’s understanding of design.
In this sense, the rubric interprets design as a collection of
automatable conformance rules.

Our contributions and findings in this work include:
• A classification rubric for evaluating design rules.
• Tools do have rules that check for design quality. 19% of

the rules we examined were design-related.
• Rules included examples of complex design concepts,

such as design pattern conformance and run-time quality
improvements. 68% of the rules that were labeled as
design rules were examples of such rules.

II. BACKGROUND

Tools that incorporate design analysis ideally provide reli-
able, automated, repeatable results to address these goals:

• Find poor architectural decisions and shortcuts and iden-
tify refactoring opportunities [4], [10].

• Understand when payoff is economically justified [11].
• Find increased numbers of {defects bugs churn} above

baseline (hotspots) [12].
• Understand the trends and rate of change in key indicators

(e.g. lines of code, test coverage, or rule violations) [13].
• Provide traceability across architectural tiers, frame-

works, and languages [3].

A. Tool and Rule Selection

We chose rule sets from three commercial software quality
management tools that have stated they have capabilities to
detect design: NDepend1, SonarQube2, and CAST3, and that
we have access to (for reasons of licensing and installabil-
ity). While the tools provide broader capabilities for quality
management, we narrowly focused on their quality measures

1https://blog.ndepend.com/technical-debt-avoid-ndepend/
2https://blog.sonarsource.com/evaluate-your-technical-debt-with-sonar/
3http://www.castsoftware.com/research-labs/technical-debt



(a)

Fig. 1. Final version of Design Rule Classification Rubric

and rules for static analysis of code. We focused on Java and
.Net rules and rules that the tool documentation stated applied
generically to all code under analysis. Our analysis of the rules
in no way implies endorsement or critique of the tool itself.

B. Rubric Creation and Refinement

We created our initial design rules classification rubric based
on a taxonomy of quality analysis, empirical data collected in
our previous studies [4], [5], and example rules extracted from
the three tools. The rubric is also motivated by established
architecture principles, such as assessing the scope of an issue
as local, non-local and architectural [8].

We first created a simple definition of a design rule rubric,
then iterated on it with examples from interviews and survey
responses to ‘test’ how well it handled these cases. The input
for the rubric is a single rule from one of the example
rule sets. The labeler (person classifying the rule) considers
the rule, then applies the decision criteria to the rule. In
our classification guidelines we specified that labelers should
look at each rule on its own, without considering long-
term accumulated impact of multiple violations of the rule.
For example, numerous ‘dead stores’ may indicate a bigger
problem than a single instance would. We then refined the
rubric and conducted a final round of classification, rotating
assignments so two new labelers approached the dataset. The
results reported below apply to this final round.

III. CLASSIFICATION RUBRIC

Fig. 1 shows our final version of the rubric. The first deci-
sion point is rule scope (DP1), with three potential branches
as statement, module, and system. To explain how it works,
we give examples of each branch of the tree below.

Statement-level: At the statement-level filter, scope is
limited to a single code statement and rules are typically
syntactical. We categorized as ND-1 (non-design rule) if the
rule scope is limited to single code statement (e.g., internal
to method (switch, case, if/else, expression). Empty methods,
dead stores, also fit here. For loop stop conditions should be
invariant is an example rule labeled ND-1 as the violation is
likely to be found within a method, checking for how local
variables are set before for loops, a basic coding construct.

Module-level: Module-level filter includes groups of state-
ments (that might be bundled into a file or package) or a

SonarQube

CAST

NDepend

0% 25% 50% 75% 100%

26%

32%

20%

26%

17%

13%

48%

51%

68%

Not Design Design Unclear

Fig. 2. Categories of rater agreement, normalized across tools.

language construct (method, class) that can be executed inde-
pendently, reused, tested, and maintained or is a composition
of other modules. Module-level rules can include syntactical
as well as design aspects, leading to a DP2 decision point.

DR-P label aims to identify rules that encapsulate known
design paradigm principles. These include object-oriented,
functional, imperative programming, etc.; architectural styles,
such as concurrent, model-view-control, pipe-filter, etc.; use
of design patterns and paradigms, such as exception handling,
singletons and factories, etc. Action Classes should only call
Business Classes is a rule labeled as DR-P since it enforces
an aspect of the MVC pattern.

We label module-level syntax checking rules, similar to
statement-level, as non-design, ND-2. These rules typically
cannot translate easily into another language or paradigm,
encapsulate keywords or reserved words or concepts that can’t
be translated to generalizable concept (e.g., violating Spring
naming conventions is a rule with no obvious commonalities
in other frameworks).

System-level: System-level filter includes problems de-
tected across system boundaries (e.g., between languages
and/or architectural layers). This also includes rules where
system-level metric thresholds are reported (e.g., complex-
ity, dependency propagation). Avoid having multiple artifacts
deleting data on the same SQL table is a rule labeled DR-S.
This is a design rule because not multiple system elements are
involved, and their architectural responsibilities are critical, in
this case enforcing the data model.

Study artifacts include the categorization guidance (with
rubric), design rules spreadsheet, and labeling results. 4

IV. RESULTS

A. Applying the Rubric to Software Quality Rule Sets

Of the 466 rules we analyzed, 55% were easily labeled
as non-design and 19% were labeled as clearly design. The
remaining had rater disagreements, either because they had
characteristics making it hard to classify or where our rubric
did not provide sufficient guidance (Fig. 2). Table I lists
examples of design, non-design, and hard-to-classify rules.

Table II summarizes the inter-rater agreement (using Co-
hen’s Kappa) after applying this rubric on the data set. For
simplicity of reporting, we collapse both design (DR-S and
DR-P) and non-design (ND-1 and ND-2) labels together. The

4https://goo.gl/u82G2B



TABLE I
EXAMPLES OF DESIGN, NON-DESIGN, AND HARD TO CLASSIFY RULES

Design Rules
Action Classes should only call Business Classes
Avoid high number of class methods invoked in response to a message
Avoid Classes with a High Lack of Cohesion

Non-Design Rules
Try-catch blocks should not be nested
All script files should be in a specific directory

Hard to Classify
Avoid hiding attributes
Avoid defining singleton or factory when using Spring
Avoid declaring an exception and not throwing it
Lines of code covered by tests

TABLE II
RATER AGREEMENT. DR=DESIGN RULE. ND=NON-DESIGN. GRAY

CELLS SHOW AREAS OF RATER DISAGREEMENT.

DR ND
DR 39 33
ND 5 71

(a) NDepend. Cohen
κ = 0.48.N = 148

DR ND
DR 17 14
ND 12 90

(b) SonarQube. Cohen
κ = 0.44.N = 133

DR ND
DR 32 24
ND 35 94

(c) CAST. Cohen κ =
0.28, N = 185

low Cohen’s κ values were due to a high level of disagreement
over the hard-to-classify rules.

B. Validation Feedback

We validated our rubric with three senior architecture ana-
lysts, not connected with our team. Each person commented
on the rubric, and labeled a random sample (n=74) of the
hard to classify rules from the three tools. Our rationale for
validating only the hard to classify rules was to gather input
on the effectiveness of our subsequent classification rubric
improvements, but this may have contributed to low agreement
numbers and does not validate our two other categories (their
validity relied on internal rater agreement). We compared each
label to a reconciled set of labels that the authors created
(where reconciled means we discussed each disagreement to
derive a consensus label). We calculated Cohen’s Kappa and
confusion matrices, like that in Table II).

We asked the participants for their impressions of the rubric.
Scope. Validators 1 and 3 expressed difficulty in how to
interpret ‘scope’ for design relevance. Consider the rule: Con-
structors of abstract classes should be declared as protected
or private. Although the method visibility aspect of this rule
appeared to have design implications, Validator 3 struggled
with the scope being statement or system.
DR-P/DR-S overlap. The validators commented on the over-
lap between the decision branches leading to DR-P and DR-S.
For example, a violation that occurs at one location makes DR-
P applicable, however, system boundary implications make
DR-S also applicable. Validator 1 said the decision was further

complicated by trouble deciphering what it meant for problems
to cross system boundaries, “Is the problem located at multiple
points in the system? Does it affect multiple points?”
Metric threshold rules. Metric threshold is about rules such
as Module complexity over x limit. Validator 1 said that scope
frequently led him down the ND-2 module path because
heuristics are frequently applied at the method or class level.
However, metric thresholds show up as an example in DR-S,
too.

V. DISCUSSION AND RELATED WORK

Research on the fitness of quality analysis tools for design
analysis has taken the following approach: run multiple tools
on the same data sets, compare the results with each other [14],
or with some other design ground truth [15]. Such an approach
has limitations due to potential feature limitations of tools and
focus on what cannot be done. Our goal in analyzing the rule
sets is to assess the characteristics of automatable rules that
check for design problems.
Are syntactic rules checking for design conformance? Our
rubric led us to classify rules checking purely code-level
implementation as non-design. However, the goal of some
syntactic rules is to enforce design conformance. Examples of
such rules are “avoid declaring an exception and not throwing
it” or “classes should not be empty” indicating dead code in
some cases.
Are metric threshold rules indicative of design problems, and
thus design rules? While a number of software metrics violat-
ing a certain threshold are available as rules (e.g., “cyclomatic
complexity <7”, “depth-of-inheritance <5”), there is evidence
that such heuristics have a wide range of false positives
and disregard context. These thresholds make sense only
when combined and correlated with other system observations.
These rules are helpful in creating other complex rules, yet are
not useful for design assessment solely by themselves.
Are reporting rules design rules? Reporting rules measure
source lines of code, class size, method size, line length,
number of parameters used, and the like. We concluded that
they are non-design rules, but need to be treated as contextual
parameters for improved analysis of systems, particularly over
time.

Software quality tool vendors are grappling with the same
challenges. Recently SonarQube simplified its quality model
to create a better encapsulation of code issues, maintainability
issues and run-time aspects that are most critical such as vul-
nerabilities5. CISQ recently surveyed developers to understand
how they perceive the time to fix violations that such rules
tag to better assess technical debt6 in a similar attempt to
categorize such rules.

There is a renewed interest in software analytics, and
many corporations are adopting them. Sadowski et al. [6]
describe how Google integrates static analysis and technical
debt identification into Google’s development practices and

5https://goo.gl/rdGsgS
6http://it-cisq.org/technical-debt-remediation-survey/



environments, using a tool called Tricorder. Tricorder ad-
dresses the challenges by supporting domain-specific analysers
but mandating low (<15%) effective false positive rates, i.e.,
automatically disabling plugins with feedback developers label
annoying or uninformative.

We identified and address the following threats to validity:
Manual inspection: To minimize biased manual classifica-

tion, multiple researchers labeled the rules, and we revised
the classification guidance accordingly. Experts external to
the research team classified a random sampling of the issues.
Those classifying the rules are experts in software design, but
they are not all experts in the tools or languages studied.

External validity: Our results are based on the rules we
used from the three tools, and will not be applicable to other
tools unless they share similar rules (which they frequently
do). We continue to work on generic definitions of design
rules based on customer and open source projects.

Internal validity: We checked inter-rater reliability by
having two of us assess rules, and rotating raters between
rounds. We resolved disagreements and reflected the outcomes
in the rubric. We only focus on a subset of rules for Java and
C# for three tools. However, they focus on basic language
constructs that are transferable.

Construct Validity: Our rubric relies on our understanding
of design to characterize software quality rules, as well as the
literature and tool’s internal documentation.

VI. CONCLUSION

Software quality tools mix design rules and code quality
rules. Separating these is important since design problems of-
ten result in longer-term costs. This study labeled the software
quality rules of three tools as design or non-design, using an
iteratively defined classification rubric validated with experts.

Our study suggests that progress in automated design anal-
ysis can be achieved by addressing the following:

1) Defining design rule scope. Our classification results
revealed design rules go beyond statement level quality
checks. Tools that reported scope of impact (and not just
time to fix), would aid in classification.

2) Validating properties of design rules. Based on the
design rules we identified, we extracted initial properties
of design rules. Existing know-how on design tactics and
expert observations can help validate and improve the
properties of automatable design rules.

3) Improving context sensitivity. The hard to label rules
in our data are an important outcome of our study. Often,
the reason they were hard to label was due to context-
specificity. As reported by Microsoft researchers [16], it
is only when your analytics efforts work closely with
the information needs of the stakeholders that there is
real impact.

VII. ACKNOWLEDGMENTS

This material is based upon work funded and supported by
the Department of Defense under Contract No. FA8721-05-
C-0003 with Carnegie Mellon University for the operation of

the Software Engineering Institute, a federally funded research
and development center. References herein to any specific
commercial product, process, or service by trade name, trade
mark, manufacturer, or otherwise, does not necessarily con-
stitute or imply its endorsement, recommendation, or favoring
by Carnegie Mellon University or its Software Engineering
Institute.

[Distribution Statement A] This material has been approved
for public release and unlimited distribution. Please see Copy-
right notice for non-US Government use and distribution. DM-
0004376

REFERENCES

[1] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t
software developers use static analysis tools to find bugs?” in Proceed-
ings of the ACM/IEEE International Conference on Software Engineer-
ing, San Francisco, CA, USA, 2013, pp. 672–681.

[2] S. Johnson, “Lint, a C program checker,” Bell Labs, Tech. Rep. 65,
1979.

[3] M. Aniche, G. Bavota, C. Treude, A. van Deursen, and M. A. Gerosa,
“A validated set of smells in model-view-controller architecture,” in Pro-
ceedings of the IEEE International Conference on Software Maintenance
and Evolution, 2016.

[4] N. A. Ernst, S. Bellomo, I. Ozkaya, R. L. Nord, and I. Gorton, “Measure
it? manage it? ignore it? software practitioners and technical debt,”
in Proceedings of the ACM SIGSOFT International Symposium on
Foundations of Software Engineering, 2015, pp. 50–60.

[5] S. Bellomo, R. L. Nord, I. Ozkaya, and M. Popeck, “Got technical debt?:
surfacing elusive technical debt in issue trackers,” in Proceedings of
the International Working Conference on Mining Software Repositories,
2016, pp. 327–338.

[6] C. Sadowski, J. van Gogh, C. Jaspan, E. Soederberg, and C. Winter,
“Tricorder: Building a program analysis ecosystem,” in Proceedings of
the ACM/IEEE International Conference on Software Engineering, 2015.

[7] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-
Gros, A. Kamsky, S. McPeak, and D. Engler, “A few billion lines
of code later: Using static analysis to find bugs in the real world,”
Communications of the ACM, vol. 53, no. 2, pp. 66–75, Feb. 2010.

[8] R. Kazman and H. Cervantes, Designing Software Architectures: A
Practical Approach. Addison-Wesley, 2016.

[9] C. Menzel, “Possible worlds,” in The Stanford Encyclopedia of Philos-
ophy, winter 2016 ed., E. N. Zalta, Ed. Metaphysics Research Lab,
Stanford University, 2016.

[10] E. Bouwers, J. P. Correia, A. van Deursen, and J. Visser, “Quantifying
the Analyzability of Software Architectures,” in Proceedings of the
IEEE/IFIP Working Conference on Software Architecture, Boulder, CO,
Jun. 2011, pp. 83–92.

[11] K. Sullivan, P. Chalasani, and S. Jha, “Software Design as an Investment
Activity: A Real Options Perspective,” in Real Options and Business
Strategy: Applications to Decision Making, Dec. 1999, pp. 215–262.

[12] L. Xiao, Y. Cai, and R. Kazman, “Titan: a toolset that connects
software architecture with quality analysis,” in International Symposium
on Foundations of Software Engineering, 2014, pp. 763–766.

[13] K. Power, “Understanding the impact of technical debt on the capacity
and velocity of teams and organizations: viewing team and organization
capacity as a portfolio of real options,” in International Workshop on
Managing Technical Debt (MTD). IEEE, 2013, pp. 28–31.

[14] D. Falessi and A. Voegele, “Validating and prioritizing quality rules
for managing techncial debt: An industrial case study,” in International
Workshop on Managing Technical Debt, 2015.

[15] T. Lutellier, D. Chollak, J. Garcia, L. Tan, D. Rayside, N. Medvidovic,
and R. Kroeger, “Comparing software architecture recovery techniques
using accurate dependencies,” in Proceedings of the ACM/IEEE Inter-
national Conference on Software Engineering, 2015, pp. 69–78.

[16] D. Zhang, S. Han, Y. Dang, J.-G. Lou, H. Zhang, and T. Xie, “Software
analytics in practice,” IEEE Software, vol. 30, no. 5, pp. 30–37, 2013.


