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Abstract 

This Department of Defense (DoD) Software Factbook provides an analysis of the most extensive 
collection of software engineering data owned and maintained by the DoD, the software resources 
data report (SRDR). The SRDR is the primary source of data on software projects and their 
performance.  

The Software Engineering Institute analyzed the SRDR data and translated it into information that 
is frequently sought-after across the DoD. Basic facts are provided about software projects, such 
as averages, ranges, and heuristics for requirements, size, effort, and duration. Factual, 
quantitatively derived statements provide easily digestible and usable benchmarks. 

Findings are also presented by system type or super domain. The analysis in this area focuses on 
identifying the most and least expensive projects and the best and worst projects within three 
super domains: real time, engineering, and automated information systems. It also provides 
insight into the differences between system domains and contains domain-specific heuristics. 

Finally, correlations are explored among requirements, size, duration, and effort and the strongest 
models for predicting change are described. The goal of this work was to determine how well the 
data could be used to answer common questions related to planning or replanning software projects. 
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1 How to Read this Document 

This Department of Defense Software Factbook is an analysis of the most extensive collection of software 
engineering data owned and maintained by the DoD. It explores the contents of the data set and provides high-
level, DoD-wide heuristics as well as domain-specific benchmark data. Each section is described below to help 
you locate the facts most applicable to your situation and needs. 

Executive Summary 

The Executive Summary contains the highest level summary of analysis results and provides general answers 
to commonly asked questions. It provides frequently sought-after information and heuristics that can establish 
much needed context about software development across the DoD.  

DoD Software Project 101 – Basic Facts  

The Basic Facts section provides averages, ranges, and heuristics via descriptive statistics of the key software 
parameters (requirements, ESLOC, effort, and duration/schedule). The analysis is translated into factual, 
quantitatively derived statements to provide easily digestible and usable benchmarks. For example: Based on 
the 198 real-time projects analyzed, a typical real-time build project consists of 449 requirements and 35,000 
ESLOC, requires about 40,000 person hours with a staff of 8 people, and takes about 3 three years to complete. 

Portfolio Performance 

This section highlights findings by system type, or super domain. The analysis focuses on identifying the most 
and least expensive projects, as well as the best and worst projects within three super domains: real time (RT), 
engineering (ENG), and automated information systems (AIS). It also provides insight into the differences 
between system domains and contains domain-specific heuristics.  

Project Planning, Trade-offs, and Risk 

In this section, we present our findings from a more extensive analysis of the data, where we explored 
correlations among requirements, size, duration, and effort. The goal of this work was to determine how well 
the data could be used to answer common questions related to planning or replanning software projects, such 
as “How much growth should we plan for?” and “How well can initial estimates be used to predict final 
outcomes?”  

Although more analysis will be done in this area as we obtain new data, we present the strongest models we 
found to predict changes in factors such as requirements, schedule, and productivity. 
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2 Executive Summary 

This Factbook presents an analysis of software engineering data gathered by the DoD from Software 
Resources Data Reports (SRDRs).1 The conclusions and benchmarks are statistically derived from real 
projects from the SRDR database; therefore they can be traced back to the source. Given the compilation 
across system domains, development organizations, and languages, this data summary is most useful to high-
level decision makers. The data can be used as a general rule of thumb when discussing software as part of the 
system at large, and the numbers we provide allow program managers and other senior engineering staff to 
answer common questions from senior executives about DoD software projects in general. 

Understanding Typical DoD Projects 

The table below presents the highest level summary of our analysis results to answer commonly asked 
questions about typical software projects. These heuristics are intended for those who simply want a general 
idea of how much a software project might cost or how long it might take. Results from the 25th and 75th 
percentiles are also provided along with the average or typical result to make it easier for you to compare your 
project to other DoD projects in the “normal” range. 

 

DoD Software Projects: Basic Benchmarks 
 

   

Requirements: What is the functional size of a DoD 
software project?  

100 requirements 400 requirements 1100 
requirements 

ESLOC: How many lines of code do DoD software 
projects contain? 

12,000  
lines of code 

40,000  
lines of code 

110,000  
lines of code 

Effort: How many hours of work does it take to 
complete DoD software projects? 

13,000 hours 40,000 hours 97,000 hours 

Duration: How long do DoD software projects last? 22 months 35 months 48.3 months 

Team size: How many people work on DoD 
software project teams? 

3.1 FTEs 8 FTEs 19.4 FTEs 

Productivity: How many lines of code per hour do 
DoD software projects produce? 

0.56  
ESLOC per hour 

1.07  
ESLOC per hour 

1.69  
ESLOC per hour 

Cost: How much do DoD software projects cost?* $1.1 M $3.3 M $8 M 

*Based on an $82.24 hourly rate 
The data set for this analysis used 287 projects from DoD SRDRs submitted by contractors for MDAP and MAIS projects.  

  

                                                        
1 For a full explanation of the data analyzed, see Appendix K: Data Source Details. 

Average/Typical 
 

Small projects 
(25th percentile) 

Large projects 
(75th percentile) 
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Notable Conclusions by Super Domain 

Beyond these basic benchmarks, findings in this report are also presented by system type or super domain. 
Further correlations are then explored among requirements, size, duration, and effort. Some of the most notable 
conclusions from our analyses are described below. 

Software growth can be predicted from initial estimates. 

Initial estimates enable statistically strong predictions of the realized software requirements, size, effort, and 
schedule reported upon final delivery. Schedule duration can also be predicted separately for Army, Air Force, 
and Navy programs. Predictions of productivity (ESLOC/person-month) are of moderate strength but can also 
be calculated separately for three super domains (automated information systems, engineering, and real time). 
Productivity (ESLOC/person-month) predictions would dramatically strengthen from a mid-course or interim 
data report. 

Real-time software is the most expensive software to develop, followed by engineering and automated 
information system software. 

The software data were divided into three super domains for analysis: real-time, engineering, and automated 
information system software.2 Analysis revealed that real-time software costs 14% more to develop than 
engineering software, and 39% more than automated information system software. The average cost per day 
for an average-size project is $3,324 for real-time, $2,912 for engineering, and $2,393 for automated 
information systems. 

Best-in-class software projects show significant gains in efficiency, speed, and cost reduction. 

Each group of software data was analyzed for best- and worst-in-class performance using an average-size 
project. Performance is defined in terms of development unit cost (efficiency), production rate (speed), and 
total cost. 

Analysis showed that best-in-class real-time projects are 2 times more efficient than average projects and 4.7 
times more efficient than worst-in-class projects. Best-in-class projects are also 1.8 times faster than an 
average project and 3.4 times faster than a worst-in-class project. Best-in-class projects cost $1.510M and 
worst-in-class projects cost $7.047M. 

Best-in-class engineering projects are 2.3 times more efficient than average projects and 5.3 times more 
efficient than worst-in-class projects. The best-in-class project is 1.6 times faster than an average project and 
2.6 times faster than a worst-in-class project. Best-in-class projects cost $1.190M and worst-in-class projects 
cost $5.385M. 

The best-in-class automated information system projects are 1.7 times more efficient than average projects and 
3 times more efficient than worst-in-class projects. Best-in-class projects are 2 times faster than average 
projects and 4 times faster than worst-in-class projects. Best-in-class projects cost $1.842M and worst-in-class 
projects cost $5.62 M. 

 

                                                        
2 See Appendix C for a comprehensive description of the super domains. 
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3 Introduction: DoD Software Projects 101 – Basic Facts 

This Factbook provides an analysis of the most extensive collection of software engineering data owned and 
maintained by the DoD, the software resources data report (SRDR).3 The SRDR is a contract data deliverable 
that formalized the reporting of software metrics data and is the primary source of data on software projects 
and their performance. The SRDR reports are provided at the project level or subsystem level, not at the DoD 
Acquisition Program level. The data points analyzed in this report are representative of software builds, 
increments, or releases. In many cases, several data points from the same Program are contained in the data set. 

The SRDR applies to all major contracts and subcontracts, regardless of contract type, for contractors 
developing or producing software elements within acquisition category (ACAT) I and IA programs and pre-
MDAP and pre-MAIS programs subsequent to milestone A approval for any software development element 
with a projected software effort greater than $20M.4 

It is designed to record both the estimates and actual results of new software developments or upgrades. The 
majority of the SRDR data used in this analysis is based on the final report that contains actual result data. 
Data for this analysis had to include the following information: 

• size data (functional and product) 
• effort data 
• schedule data 

The data set we used for this analysis included 287 projects from the product-event final report data. 
Similarly, we used 181 pairs of initial and final cases for analysis of the estimated versus actual performance 
in Section 2.  

3.1 Key Project Dimensions and Empirical Relationships 

Since the 1970’s research has been conducted into how to estimate to cost of software development. An entire 
industry focused on parametric software estimation has grown, and at the core of this industry is a fundamental 
assumption that the cost of developing software can be estimated based on an accurate estimate of the size of 
the software product to be developed. This concept might be more accurately described as an assumed 
empirical relationship between cost and software size.  

Figure 1 shows key parameters related to software cost: functional size (in requirements), physical size (in 
equivalent source lines of code), effort hours, and duration of software projects. In most DoD environments 
size is measured by requirements and the final physical size of the software product, which is commonly 
measured in source lines of code. The amount of effort required to deliver the software can be estimated if you 
know the size. Similarly, duration (or schedule) can be derived from the effort.   

                                                        
3  For a full explanation of the data analyzed, see Appendix K: Data Source Details. 

4  CSDR Requirements, OSD Defense Cost and Resource Center, http://dcarc.cape.osd.mil/CSDR/CSDROverview.aspx#Introduction 
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Figure 1:  Key Software Parameters  

Using the SRDR data for 287 data sets, each of the four key parameters is statistically described in Section 3.2 
through Section 3.5. Section 3.6 looks at typical team size, Section 3.7 examines productivity, and Section 3.8 
combines the results into a statistical view of a typical DoD software projects.  

Defining “Typical” in DoD Software Projects 

The number most people seek when asking about the analysis of software data is the average. When someone 
asks, “What is the average size/cost/duration of a software project?” they are looking for a general idea of the 
most common or typical result. It is rare for a program manager or other senior executive to ask for the 
statistically derived average, which is influenced by extreme values in the data set. Our use of the word 
“average” in this report follows common use and does not, in general, refer to the statistical concept. 

When the data set is normally distributed, the average provides a sound measure of the center of the data. The 
challenge is that our key software project parameters are not normally distributed (see Figure 2). The red line 
in the figure shows the distribution of the size data is skewed to the left, up against zero. Therefore, we 
normalized the data by transforming it by its natural log. Both the raw descriptive statistics and the natural 
logarithmic statistics were used to draw conclusions. Each of the analyses in this section provides an average 
project parameter in the general sense to be used as a heuristic to assist decision makers.  

3.2 Functional Size (Requirements)  

Functional size represents the overall magnitude of the software capabilities without regard to the final solution. 
The benefit of using functional measures is their availability early in the software development lifecycle. In the 
DoD acquisition community, requirements are rigorously derived and used as the contractual basis for acquiring 
systems. Therefore requirements and requirements documents are produced as part of the system acquisition life 
cycle and are readily available for the extraction of the number of requirements.  

The drawback of using functional measures is that the requirement does not consistently correlate to a unit of 
effort (i.e., not all requirements take the same amount of effort to satisfy). Using the total number of requirements 
to represent size is useful, but trying to attach a unit cost (i.e., the cost per requirement) is not advised.  

Figure 2 shows the skewed nature of the raw data related to requirements. The bulk of the data lies between 102 
(~100) and 1110 (~1100) requirements, which is a large range. Once the data is normalized using a natural log 
transformation (shown in Figure 3), the median is e6.04, or 420 requirements with a mean of 368 requirements. 
Both are much closer to the raw data median of 399 than the raw data mean of 1118 requirements. 

Requirements data analyzed by super domain are presented in Figure 4. As is in shown on the top of the figure, 
to the left of the line is the 25th percentile value. This indicates that 25% of the projects have less than 100 
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requirements. Similarly, on the right the 75th percentile value indicates that 25% of the projects have more than 
1100 requirements. Note that 50% of the projects have between 100 and 1100 requirements, with relatively 
more toward the lower end and a median or typical view of 400. The additional lines in the figure can be 
similarly interpreted. Similar figures are provided throughout this section showing the 25th percentile, median, 
and 75th percentiles. 

An easy heuristic for the average functional size of a DoD software project is 400 requirements.  

 

Figure 2:  Functional Size 

 

Figure 3:  Functional Size, Normalized 
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Figure 4:  Requirements Data by Super Domain 

3.3 Product Size (ESLOC)  

Another common measure of interest is product size, which is often measured in source lines of code (SLOC). 
A key issue in using SLOC as a measure of work effort and duration is the difference in work required to 
incorporate software from different sources, including: 

• new code 
• modified code (changed in some way to make it suitable) 
• reused code (used without changes) 
• auto-generated code (created from a tool and used without change) 

Each of these sources requires a different amount of work effort to incorporate into a software product. The 
challenge is in coming up with a single measure that includes all of the code sources. Equivalent source lines 
of code (ESLOC) normalize all code sources to the equivalent of a new line of code by computing a portion of 
the physical measures for modified, reused, and auto-generated code.5  

Figure 5 shows the ESLOC data, and Figure 6 shows it normalized using a natural log transformation. ESLOC 
by super domain is presented in Figure 7. An easy heuristic to use for average project size is around 40,000 
ESLOC for all projects.  

                                                        
5 This is explained in more detail in Appendix B.  
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Figure 5:  Product Size in ESLOC 

 

Figure 6:  Product Size in ESLOC, Normalized 

 

  

Figure 7:  ESLOC by Super Domain 
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3.4 Effort  

The amount of effort used to create software is the major driver of the cost of the development; the effort 
estimate in dollars provides the largest element in the cost estimate for software. Effort is usually collected in 
hours. For simplification purposes many estimation tools and equations use person months. When comparing 
effort data, ensure that the same conversion rate is used across the data set (i.e., the number of hours in a 
person month and/or number of hours in a full time equivalent). As detailed in Appendix G: Burden Labor 
Rate, it is assumed here that there are 152 hours in a labor month and 1824 hours per full-time equivalent 
(FTE), based on an annual labor rate of $150,000. 

Figure 8 shows the effort data; Figure 9 shows that data normalized. The effort hour data analyzed by super 
domain are presented in Figure 10. An easy heuristic to use for average project effort is around 40,000 hours, 
263 person months, or 22 FTEs for a DoD software project.  

 

Figure 8:  Effort 

 

Figure 9:  Effort, Normalized 

 



 

 
CMU/SEI-2017-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. 
Please see Copyright notice for non-US Government use and distribution.  10 

 
Figure 10: Effort Hours by Super Domain 

3.5 Duration 

Duration is a measure of the calendar time it takes to complete the software project. Many factors affect 
duration, including staffing profile, schedule constraints, and release plan. No adjustments are made for these 
factors in the data reported in this section. 

Figure 11 shows that most projects have a duration between 22.0 months and 48.3 months with a median 
duration of 35. Figure 12 shows the data normalized. The data indicate that the majority of projects take 
between 2 ½ to 3 years. An easy heuristic to use for the duration of an average DoD software project is 
approximately 3 years.  

Duration data analyzed by super domain is presented in Figure 13. 

 

Figure 11: Duration 
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Figure 12: Duration, Normalized 

 

   

Figure 13: Duration Data by Super Domain 

3.6 Team Size (People) 

The size of the development team reported here is based on measures of project effort and duration. The effort 
for a project is reported in labor hours. Labor hours are converted to person months of effort (based on 152 
hours/month) and divided by months of project duration. This derives the average level of project staffing or 
full time equivalent (FTE). The FTE for the 287 data points can be seen in Figure 14. 
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Figure 14: Team Size 

Figure 15 shows a histogram of the same data in natural log scale. It shows that most teams have 20 or fewer 
people. Recall that SRDRs are required for contracts over $20 million. These contracts have multiple product 
events resulting in seemingly small team sizes which, in fact, are due to low levels of effort over relatively 
long durations. 

 

Figure 15: Time Size, Normalized 

Figure 16 shows the data divided into three groups: small-, medium-, and large-team-size projects. The groups 
are based on a cumulative percentage divided into thirds. Small teams make up the lower third, medium size 
teams are in the middle third, and large teams make up the upper third. Based on the groupings the team sizes 
are as follows: 

• small-size teams:  < 5 average staff 
• medium-size teams:   5-14 average staff 
• large-size teams:  > 14 average staff 
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Medium and large team sizes are used in the effort/schedule tradeoff analysis. 

 

Figure 16: Team Size Distribution 

Team size data analyzed by super domain is presented in Figure 17. 

   

Figure 17: Team Size data by Super Domain 

3.7 Productivity 

Productivity (also referred to as efficiency) is the amount of product produced for an amount of resource. For 
software, productivity is commonly measured by size (ESLOC) divided by effort hours.  

Productivity in general is considered very competition sensitive and therefore rarely shared publicly by the 
private sector. Since the SRDR data set is owned and maintained by the government and the individual data 
provider’s productivity is protected, this compilation of data provides a rarely available insight into software 
productivity across the industrial base. 

Figure 18 shows the raw productivity data, and Figure 19 shows the data after normalization. For practical 
purposes, the data shows a 1:1 ESLOC: hour ratio. Productivity data analyzed by super domain is presented in 
Figure 20. 
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Figure 18: Productivity 

 

Figure 19: Productivity, Normalized 

 

 

Figure 20: Productivity by Super Domain 
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3.8 Summary: Profiles of Typical Projects 

Integrating the analysis results of the individual parameters provides a general software project profile. This 
section contains the profiles for a generic DoD software project, as well as profiles for RT, ENG, and AIS 
projects.  

3.8.1 Snapshot of a Typical DoD Software Project 

Figure 21 provides a snapshot of the overall dataset, showing the size and scope of a typical DoD software 
project. Keep in mind SRDR data points are typically submitted by subsystem or potential increment; these 
numbers do not represent an entire DoD program of record.  

 

Figure 21: Parameters of DoD Software Projects 

This data can be used to answer general questions about DoD software projects. For example, 

• Question: What is the typical (average) size of a software delivery? 
Answer: 40 KESLOC 

• Question: How long does an increment take?  
Answer: 35 months (~3 years) 

• Question: How many FTEs does a typical software project require?  
Answer: 8 FTEs; some large projects may require upwards of 20 FTEs. 

• Question: In general how much does a software project cost?  
Answer: Software projects tend to range between $1 and $8 M; without knowing any details about what 
type of software or its composition, a generic DoD project costs a little over $3 M. 

The percentile numbers help convey the variation in the data. These data can be utilized by oversight offices 
when assessing overall program feasibility. A project plan that contains parameter values outside the 25th and 
75th percentile range signifies a situation that is not common and might require additional scrutiny. In this case, 
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the oversight office would want to ask for more information about the engineering and technical rationale to 
justify this plan.  

Given the mix of system domains, language types, environments, platforms, functionality, and associated 
quality/performance parameters, these rules of thumb may not provide a lot of value to project managers 
estimating their software efforts. To get the information useful to them, they would need to isolate like projects 
in the dataset and generate a parameter profile that best represents the system they are developing. In this vein, 
the following sections provide heuristics by super domains.  

3.8.2 Snapshot of Real Time Software Projects 

RT software is typically the most complex and intricate type of software. It tends to be embedded in the system 
architecture and contributes to the success or failure of key performance parameters of the system. Given the 
level of rigor this type of software requires, the variations between the RT super domain parameters in Figure 
22 are not surprising. Of the 287 data points analyzed, 198 were classified as real time.  

 

 

Figure 22: Parameters of Real Time Software Projects 

It is logical that increased system complexity would require a more detailed articulation of the requirements, 
resulting in a higher requirements count and lower productivity in comparison to the overall data set. This can 
also be seen in the slightly higher effort hour percentile values.  

3.8.3 Snapshot of Engineering Software Projects 

ENG super domain software is of medium complexity. It requires engineering external system interfaces, high 
reliability (but not life-critical) requirements, and often involves coupling of modified software. Examples of 
software domains in this super-domain are: mission processing, executive, automation and process control, 
scientific systems, and telecommunications.  

Figure 23 shows the key software parameters for the 50 ENG super domain data points in the 287 data set.  
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Figure 23: Parameters of Engineering Software Projects 

In comparison to RT systems, ENG systems tend to state their requirements at a slightly higher level. For 
example, a typical requirement may be, “System X shall interface with System Y.” In this case there are 
several nuances to meeting this requirement. This can be seen by comparing the requirements parameters, 
ESLOC, and effort parameters of the RT data to the ENG data.  

3.8.4 Snapshot of Automated Information System Software Projects  

AIS software automates information processing. These applications allow the designated authority to exercise 
control over the accomplishment of the mission. Humans manage a dynamic situation and respond to user 
input in real time to facilitate coordination and cooperation. Examples of software domains in this super-
domain include intelligence and information systems, software services, and software applications. 

Figure 24 shows the key software parameters for the 35 AIS super domain data points in the 287 data set.  
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Figure 24: Parameters of Automated Information System Software Projects 

The size and productivity parameters vary the most from the overall super domain parameters. Based on the 
way AIS are developed (i.e., adaptation of existing COTS/GOTS applications), the increase in comparison to 
the other super domains is not surprising. 

3.8.5 Using the Heuristics 

For years, the software engineering community has avoided quantifying the basic parameters of software 
development. Our analysis provides high-level summaries from which useful (albeit very simplified) heuristics 
can be established. Responsible use is encouraged. When communicating the heuristics contained in this 
Factbook, it is advised to caveat the data with, “It depends, but based on 287 data points from the SRDR 
database, a typical software project …”  
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4 Portfolio Performance 

This section explores the findings by super domain to answer some common questions about different software 
types.  

4.1 Most and Least Expensive Software 

What are the most and least expensive software types to develop? 

Our analysis is based on the rationale that some types of software are more difficult to develop than other types 
and therefore require more effort to develop. The level of difficulty can be caused by factors such as execution 
timing constraints, interoperability requirements, commercial-off-the-shelf (COTS) software product 
incorporation, algorithmic complexity, communication complexity, data-bandwidth requirements, and security 
requirements. To account for the dissimilarities in project difficulty, projects are segregated into three super 
domains. 

The analysis proceeds by introducing two concepts: unit cost and production rate. 

• Unit cost is the cost of producing a unit of software with some amount of effort. In this case, the unit of 
software is thousands of equivalent source lines of code (KESLOC).6 The effort is reported in labor hours, 
which can be translated into cost using an average labor rate. 

• Production rate is the rate at which a unit of software is delivered over a period of time. The unit of 
software is a KESLOC and the time is days of project duration. 

• Cost is derived by applying a burdened labor rate7 to the number of labor hours worked in a day. Hours 
per day are determined by dividing total hours by the duration (total days). For example, if a real time 
project required 1,007 total hours and 25 days, the labor hours expended in a day is 40.3 (implying several 
people were working on the project). 

The analysis then normalizes the unit cost with the production rate, creating a high-level comparison. This is 
done because some projects may choose to employ more staff to increase their production rate and deliver the 
software sooner or vice versa. The resulting effort per day is then multiplied by an average burden labor rate to 
derive cost. 

4.1.1 Unit Cost 

With an average project size of 40,000 ESLOC, each of the three groups are analyzed separately. Trends for 
each group were created based on a natural log-transformation of the data. This transformation made it clearer 
to see the relationships between the three groups for an average project size of 40,000 ESLOC. 

The difference in unit costs between the three groups is shown in Table 1. Real-time software shows that for 
small amounts of size, a large amount of effort is required. Automated information system software data shows 
the opposite: for large amounts of size, a small amount of effort is required. 

                                                        
6   The rationale and formulation of ESLOC is explained in Appendix B. 

7   Burden labor rate used in this analysis is explained in Appendix G. 
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Table 1: Unit Costs for Different Domains 

Domain Hours / KESLOC 

Real Time Software 1,070 

Engineering Software 936 

Automated Information System Software 578 

4.1.2 Production Rate 

The production rate data analysis focused on the relationships between size and duration for the three super 
domains. The analysis revealed much greater variability than the unit cost plot. This indicates a very weak 
systematic relationship between size and duration. The dispersion of the data is attributed to other factors that 
influence the size-duration relationship (e.g., different levels of staffing on similar size projects can impact 
duration). This is an area for further research. 

For an average-size project, the production rate (how long it takes to deliver a unit of software) is shown in 
Table 2. 

Table 2: Production Rate for Different Domains 

Domain Days / KESLOC 

Real Time Software 25 

Engineering Software 26 

Automated Information System Software 20 

4.1.3 Cost Comparison 

When unit cost is divided by production rate, the average number of hours each month is determined. Using an 
average burden labor rate,8 the normalized monthly cost for each group is shown in Table 3. The hours/day 
indicate that more than one person is working per day. 

Table 3: Costs for Different Domains 

Domain Hrs / Day Cost / Day 

Real Time Software 40.4 $3,324 

Engineering Software 35.4 $2,912 

Automated Information System Software 29.1 $2,393 

Real-time software is the most expensive to develop and automated information system software is the least 
expensive. RT software costs 14% more to develop than ENG software and 39% more than AIS software.  

4.1.4 Cost Heuristics 

Units for cost vary based on the office reporting them and the types of decisions that are being made. 
Engineering organizations often prefer to discuss things in technical units (e.g., requirement and SLOC) and 
effort (e.g., hours or person months, months). Cost offices tend to communicate in terms of dollars and fiscal 

                                                        
8  Burden labor rate is explained in Appendix G: Burden Labor Rate. 
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years. The following is a translation table that shows the same unit cost, production rate, and cost data 
expressed in different units. 

Table 4: Unit Cost and Productivity 

Project Size (40 KESLOC) Unit Cost Production Rate     
Domain Hours / KESLOC Days / KESLOC Hrs / Day Cost / Day   
Real Time Software 1,007 25 40.4 $3,324   
Engineering Software 936 26 35.4 $2,912   
AIS Software 578 20 29.1 $2,393   
      
Project Size (40 KESLOC) Productivity     
Domain ESLOC / Hour ESLOC /Day People (FTEs) Cost Month Cost per Year 
Real Time Software 0.99 40 5.1 $99,720  $1,196,640  
Engineering Software 1.07 38 4.4 $87,360  $1,048,320  
AIS Software 1.73 50 3.6 $71,790  $861,480  
Table 4 provides the unit cost (hours/KESLOC) and its inverse, productivity (ESLOC/hour). Depending on the 
type of information needed, one of the metrics may be preferred over the other. Alternatively, production rate 
is a metric that can be expressed in terms of units of product produced in a period of time (days/KESLOC) or 
units of time to produce a single product (ESLOC/day). It also provides monthly and annual costs by domain. 
The cost by year represents the annual costs for an average project for a full calendar year. This number 
doesn’t help an engineering organization determine the total cost of a particular project, but it is a useful metric 
to technical managers when they are required to submit an annual budget.   

4.2 Best-in-class/Worst-in-class 

What differences are there between best-in-class and worst-in-class software projects? 

This analysis examines the best- and worst-in-class projects within each of the three super-domains discussed 
in the previous section. To assess differences between projects, the three derived metrics explained in the 
previous section are used: unit cost, production rate, and cost. 

4.2.1 Analysis Approach 

An average size project within each super domain is used to derive unit cost, production rate, and cost. A ±1 
standard error (SE) about the unit cost and production rate trend lines were used to identify best- and worst-in-
class projects.  

The definition of best-in-class and worst-in-class projects were developed as follows: 

• Best-in-class projects: at or below the −1 SE value are projects that used less effort or less time to finish 
than an average project. This boundary represents the worst of the best-in-class projects—performance 
may actually be better. 
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• Worst-in-class projects: at or above the +1 SE value are projects that used more effort or more time to 
finish than an average project. This boundary represents the best of the worst-in-class projects—
performance may actually be worse. 

4.2.2 Real Time (RT) Software 

4.2.2.1 Unit Cost  

The average-size RT project (34,000 ESLOC for the RT domain) expends 39,664 labor hours of effort. Best-
in-class projects expend 18,361 labor hours and worst-in-class projects expend 85,687 labor hours, a 10-fold 
increase. The difference between a best- or worst-in-class project from the average project is 21,304 labor 
hours. It is important to understand the context of the labor-hour differences in conjunction with project 
duration.  

4.2.2.2 Production Rate  

The average-size project delivers a product in 997 days (32.8 months). A best-in-class project delivers a 
product in 538 days (17.7 months). A worst-in-class project delivers a product in 1,848 days (60.8 months).  

4.2.2.3 Cost 

Table 5 summarizes the differences in unit cost and production rate between best-, average-, and worst-in-class 
RT projects. An average RT size project of 34,000 ESLOC was used to determine effort and schedule. Best-in-
class RT projects are 2 times more efficient than average projects and 4.7 times more efficient than worst-in-
class projects. Best-in-class projects are 1.8 times faster than an average projects and 3.4 times faster than a 
worst-in-class project. As mentioned earlier, the noted results for the best-in-class are the lowest reported 
numbers in the best-in-class bracket. Conversely, the reported results for worst-in-class are the highest reported 
numbers in the worst-in-class bracket. 

Table 5: Real Time Software Best and Worst Summary 

Metric Best-in-class Average Worst-in-class 

Effort (Labor Hours) 18,361 39,664 85,687 

Schedule (Days) 538 997 1,848 

Cost (per Day) $2,805 $3,271 $3,813 

Total Cost ($M) $1.510 $3.262 $7.047 

Using a burden labor rate of $150,000 per year,9 the best-in-class project saves $1.752 million dollars over an 
average project and $5.537 million over a worst-in-class project.   

                                                        
9  The burden labor rate is explained in Appendix G. 
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4.2.3 Engineering (ENG) Software 

4.2.3.1 Unit Cost  

There are 50 projects in the ENG super-domain. The average-size project (32,000 ESLOC for the ENG 
domain) expends 30,780 labor hours of effort. The best-in-class expends 14,468 labor hours and the worst-in-
class expends 65,485, a 4.5 increase times the amount of best in class. The difference between a best- and 
worst-in-class project from the average project is 16,312 hours.  

4.2.3.2 Production Rate  

The best-in-class project delivers a software product in 640 days (21 months), an average project in 1,031 days 
(33.9 months), and a worst-in-class project in 1,659 days (54.6 months).  

4.2.3.3 Cost 

Table 6 summarizes the differences in unit cost and production rate between best, average, and worst-in-class 
ENG projects. An average ENG size project of 32,000 ESLOC was used to determine effort and schedule. The 
best-in-class ENG projects are 2.3 times more efficient than average projects and 5.3 times more efficient than 
worst-in-class projects. The best-in-class project is 1.6 times faster than an average project and 2.6 times faster 
than a worst-in-class project. 

Table 6: Best and Worst Summary of Engineering Software 

Metric Best-in-class Average Worst in Class 

Effort (Labor Hours) 14,468 30,780 65,485 

Schedule (Days) 640 1,031 1659 

Cost (per Day) $1,859 $2,456 $3,246 

Total Cost ($M) $1.190 $2.531 $5.385 

Best-in-class projects save $1.341 million dollars over average projects and $4.195 million dollars over a 
worst-in-class project.  

4.2.4 Automated Information System (AIS) 

4.2.4.1 Unit Cost  

Using an average-size project of 72,000 ESLOC, best-in-class, average, and worst-in-class projects expended 
an average of 22,400, 39,114, and 68,297 labor hours of effort, respectively. There is a three-fold increase in 
effort between best and worst-in-class. The difference between a best or worst-in-class project and the average 
project is 16,713 labor hours. 

4.2.4.2 Production Rate  

The best-in-class average-size project delivers a product in 445 days (14.6 months). The average project 
delivers a product in 880 days (29 months). The worst-in-class a project delivers product in 1,743 days (57.3 
months). 
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4.2.4.3 Cost 

Table 7 summarizes the differences in unit cost and production rate between best, average, and worst-in-class 
projects. An average AIS size project of 72,000 ESLOC was used to determine effort and schedule. That 
makes best-in-class projects 1.7 times more efficient than average projects and 3 times more efficient than a 
worst-in-class projects. Best-in-class projects are 2 times faster than average projects and 4 times faster than 
worst-in-class projects.  

Best-in-class projects save $1.375 million over average projects and $3.774M over worst-in-class projects.  

Table 7: Best and Worst Summary of AIS Software 

Metric Best-in-class Average Worst-in-class 

Effort (Labor Hours) 22,400 (% of avg) 39,114 68,297 (% of avg) 

Schedule (Days) 445 880 1,743 

Cost (per Day) $4,144 $3,654 $3,223 

Total Cost ($M) $1.842 $3.217 $5.616 
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5 Project Planning, Trade-offs and Risk 

In Sections 3 and 4, we showed how SRDR data could be used to provide a set of general characteristics for 
DoD projects and compared the three super domains based on those characteristics. In this section, we present 
our findings from a more extensive analysis of the data, where we explored correlations among requirements, 
size, duration, and effort. The goal of this work was to determine how well the data could be used to answer 
common questions related to planning or replanning software projects, such as 

• How much growth should we plan for? 
• How well can initial estimates be used to predict final outcomes?  
The answers to the above questions are in the form of the following tables and graphs. Each is accompanied by 
a variety of statistics that are intended to help a reader make a reasonable assessment of the magnitude of 
growth, or in some cases reduction, in final actual values as compared to initial estimates.  Also, they convey 
the uncertainty regarding such a prediction in the form a 95% prediction interval. 
Each section first shows the equation describing the relationship between initial estimates and the final actual 
values obtained.  The equations are then used to construct the following tables. The tables show columns for an 
initial estimate, the predicted final actual value, the percentage difference between the initial estimate and 
predicted final actual value, and the corresponding values of the upper and lower 95% prediction interval.  The 
percentage difference changes with the initial estimate because of the nonlinear nature of the curves as shown 
in the figures. 
Finally come the graphs which visually show the relationship between the initial estimates and the final actual 
values.  For each of the graphs, the r2 for the plotted curve is reported.  This value ranges from 0 to 1 and is 
interpreted as the percentage of the variation in dependent variable that is explained or accounted for by the 
variable in the independent variable.  In the analysis, the initial estimate serves as the independent variable and 
the final actual value serves as the dependent variable.  Values closer to 1 are better and indicate a highly 
systematic relationship.  Values closer to 0 indicate a lack of relationship between the initial estimate and the 
corresponding final actual value.  On the graphs, the forecast line is the value that would be predicted by any 
given input.  Also shown are the upper and lower 95% prediction interval curves.  These are useful for 
depicting the magnitude of uncertainty associated with making a prediction of the final actual value based on a 
given initial estimate.  Finally, the graph also includes the dots representing the actual data used to fit the 
curves.  They help to visualize the variation in the data which drives magnitude in the range between the upper 
and lower 95% prediction curves. 
We present the strongest models we found to predict growth in requirements, ESLOC, schedule, and effort 
from the initial estimates. Each of the models can be used to construct predicted growth intervals for any given 
initial estimate, although we caution against using the model outside the bounds indicated by the 5th and 95th 
percentiles for each variable. 

5.1 Estimation Relationships  

Among the many factors and models for estimating effort, the SRDR data allows us to investigate the 
relationship between requirements and the size of the effort and then the relationship between the estimated 
size and the estimated effort as well as the final effort. A simple look at the correlations among requirements, 
size, duration, and effort found that the only actionable correlation was between size and effort.  
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Predicting Actual Total Effort by Estimated ESLOC 

The following model shows that an initial estimate of ESLOC can also be used to predict the total actual effort. 
Although the model is only moderately strong, it is presented here in case an initial estimate of effort is not 
available, but an estimate of size (ESLOC) is available. 

 

The table shows the predictions have a “sweet spot” that is +/- 10% in the range from 75KESLOL to 200 
KESLOC. The model accounts for over 67% of the variance. Below are the predicted (forecast) values and 
prediction ranges for a set of new given inputs, followed by a graphic showing the actual data fitted to the 
model along with the associated prediction intervals. Predicted values show an underestimate of the initial by 
158% at the low end (500 ESLOC) but an overestimate of -22% at the high end (500K ESLOC). This indicated 
that the model is reasonably good fit to the data. 

Table 8: Prediction Values for Actual Total Hours (Effort) Using ESLOC 

Initial ESLOC 
Estimate 

Forecast Total 
Hours 

Percent difference 
from Estimate 

Prediction Interval – Total Hours 

Lower 95% Upper 95% 

500 1,291 158% 264 6,305 

750 1,805 141% 372 8,747 

1,000 2,289 129% 475 11,040 

2,500 4,879 95% 1,024 23,235 

5,000 8,648 73% 1,828 40,911 

7,500 12,088 61% 2,562 57,025 

10,000 15,330 53% 3,255 72,213 

25,000 32,675 31% 6,949 153,635 

50,000 57,921 16% 12,300 272,755 

75,000 80,961 8% 17,158 382,026 

100,000 102,674 3% 21,717 485,437 

150,000 143,515 -4% 30,249 680,898 

200,000 182,006 -9% 38,248 866,094 

300,000 254,403 -15% 53,200 1,216,562 

400,000 322,634 -19% 67,199 1,549,009 

500,000 387,926 -22% 80,526 1,868,786 

 
 

n = 163 

Regression Equation:   

  ln Total Hours_Actual = 2.031 + 0.8259 ln ESLOC_Estimated 

which translates to: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = 7.614 ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸).83 
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Figure 25:  +/- 10 % is the range for 75,000 to 200,000 initial ESLOC estimates with +/- 10% 

5.2 Software Growth – Predicting Outcomes 

Can final outcomes be predicted from initial estimates?  

This section describes the project performance as represented by 181 paired initial and final contractor 
submissions. As such, we measured the difference between the initial estimates and the actual outcomes. 
Section 5.2.1 describes the breakdown by Service and the age of the data. Section 5.2.2 explains our approach 
to modeling. Sections 5.2.3–5.2.7 present the statistical models for changes from estimates to actuals for total 
requirements, total software size (ESLOC), total duration (schedule), total effort hours (cost), and productivity 
(as measured by ESLOC10 per person-month) for all records that had an initial SRDR paired with a final 
SRDR. Our intent is to present information to decision-makers regarding the usefulness of initial estimates in 
predicting project outcomes along these dimensions. 

5.2.1 Description of Paired Initial/Final Submissions 

Figure 26 shows the breakdown of paired submissions by service and their timelines. The initial reports were 
submitted between July 2001 and January 2013. The final reports were submitted between May 2003 and 
December 2012. 

                                                        
10  The definition and derivation of ESLOC (equivalent source lines of code) are explained in the Appendix B. 
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Figure 26: Paired Contractor Submissions by Service 

The analysis dataset is spread across the three services (Marine Corps projects are included with Navy 
projects): 

• Air Force (68) 
• Army (68) 
• Navy (45) 

The submission dates for the paired data range from July 2001 to January 2013. There are a few projects from 
2001 to 2004, but most of the projects are from the 2007 to 2012 timeframe. 

Figure 27 shows the difference between the estimated end dates from the initial submissions to the actual end 
dates reported in the final submissions. As such, it represents the change in schedule. 

 
Figure 27: Schedule Slippage of Initial to Final Submission 
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Between 2004 and 2009, not a single Program finished early. Yet the center line for every year since 2003 is 
less than 20% overrun. This tends to suggest that Programs don’t end early, occasionally they end on time, but 
most often they slip the planned end date from 0% to 20%.  

5.2.2 Statistical Analyses 

In Table 9 we show the value and percentage change using all cases for the five variables that form the focus 
of our analyses. The mean values are greater than the median values, indicating that the data is skewed. In this 
situation, the median (or 50th percentile) provides a better indication of the typical magnitude of change from 
the initial to final values as opposed to the mean (average) value. The median figures of percentage change 
provide a normalized indication of the magnitude of change. The variation between the initial and final values 
is evident by the wide ranges shown by the negative and positive percentage change columns, which represent 
over- and under-estimation in the initial submission. 

Table 9: Change from Initial to Final Submission - All Cases 

Comparison of Final Submission to Initial Submission11 
(Actual – Estimate) 

Change Variable Number of 
cases 

 Mean 
change 

Median 
change 

Largest negative % 
change 

Largest positive % 
change 

Total Requirements 167 
value 139 0 

-100% 44,747% 
percent 469% 0% 

Total ESLOC 181 
value 24,816 6,399 

-90% 1,440% 
percent 106% 42% 

Total Duration 
(Months) 181 

value 15 9 
-74% 625% 

percent 34% 8% 

Total Hours 180 
value 16,487 4,651 

-80% 1,162% 
percent 81% 19% 

Productivity 
(ESLOC/PM) 181 

value -32 -2 
-96% 3,365% 

percent 34% -1% 

Upon investigation, the 44747% increase appears to be due to the inconsistent use of a definition of a 
requirement.  The initial definition equated a requirement to all changes made to a system. The final reported 
figure must have been based on a definition more closely resembling the number of changes made to the 
software.  In other instances, it appears the scope of the project expanded significantly.  These extremes are 
omitted by trimming the data to produce relationships that are more typical in the data.  The analyses in the 
next section take this approach. 

 

 

 

 

                                                        
11  Percentages are calculated as (Actual-Estimate)/Estimate. 
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Table 10: Correlations of Change from Initial to Final Submission (Pearson Correlation Coefficients and p-values) 

Change Category Total Requirements Total ESLOC Total Duration Total Hours 

Total ESLOC -0.067 
0.390 

 
  

   

Total Duration -0.027 
0.732 

0.112 
0.134 

  

  

Total Hours 0.173 
0.025 

0.604 
0.000 

0.147 
0.049 

 

 

Productivity -0.075 
0.338 

0.251 
0.001 

0.138 
0.064 

-0.090 
0.228 

Table 10 shows very little correlation among these variables, which may seem counterintuitive. For example, 
given the enormous ranges of data for each of these variables, one might expect that when requirements 
increase during a project’s lifecycle that the ESLOC and schedule would also increase. The data, however, 
show that there are no discernible statistical patterns between these changes. Only the variability in Total 
Hours is moderately correlated with the variability in ESLOC, accounting for about 1/3 of the total variance. 

The changes in Total Requirements, Total ESLOC, Total Duration (Months), Total Hours, and Productivity 
(ESLOC/PM) and their percentage changes were extensively investigated for relationships to other project 
attributes reported in the SRDR. Except where noted in the individual models presented later, statistical 
techniques (including analysis of variance, regression, correlation, and covariance analysis) failed to uncover 
any statistically significant relationships with the following attributes: 
• project 
• service (Army, Navy, Air Force) 
• CMM/CMMI rating 
• application domain 
• super-domain 
• development process 
• personnel experience 
• peak staff 
• language 
• requirements volatility 
• negative and positive changes in productivity (using actual values minus estimated values) 

Trimmed Data 

After performing exploratory analyses on the full set of 181 paired cases, we found that extreme variability 
resulted in statistical models that yielded little predictive power. Each model evidenced extreme variability and 
resulted in many outliers. Rather than remove outliers—since we did not have access to substantive project 
information that might explain the circumstances behind any specific outlier—we instead chose to trim the 
extreme values for each of the five variables based on each variables’ percentage change from initial estimate 
to final outcome. 

We used the percentage change in each variable as the trim criteria so that cases which were less than the 5th 
percentile and greater than the 95th percentile were excluded for each variable in order to reduce the effects of 
extreme and possibly erroneous values. For example, the largest percentage growth in requirements was 
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44,747%, which seems highly suspicious. Each of the five variables (Total Requirements, Total ESLOC, Total 
Duration (Months), Total Hours, and Productivity (ESLOC/PM)) thus has its own dataset for each of the 
models presented in the following sections. The range of data values excluded are shown in the “percent 
change” histograms in the following sections. 

Table 11 shows the descriptive statistics for the trimmed datasets used for statistical modeling in Section 2.3 -
2.7. This is a version of Table 1 based on trimming the lowest 5% and the highest 5% values. Much of the 
skewness was trimmed, but further analysis yielded predictive models of low or moderate usefulness. This led 
us to investigating transformations of the original data. As discussed below, nonlinear models provided a 
strong ability to predict the final outcomes. 

Table 11: Change from Initial to Final Submission – Trimmed Cases 

Change of Final Submission from Initial Submission (Trimmed datasets) 
(Actual – Estimate) 

Change Variable number of 
cases 

 Mean 
change 

Median 
change 

Minimum change 
(5th percentile) 

Maximum change 
(95th percentile) 

Total Requirements 150 
value -104 0 -5,635 6047 

percent 1% 0% -76% 176% 

Total ESLOC 162 
value 22,752 6,686 -164,672 603,536 

percent 64% 42% -61% 420% 

Total Duration 
(Months) 161 

value 15 9 -17 78 

percent 20% 8% -37% 155% 

Total Hours 162 
value 15,256 4,505 -56,778 339,697 

percent 50% 19% -45% 453% 

Productivity 
(ESLOC/PM) 162 

value -18 -2 -1,094 269 

percent 7% -1% -75% 150% 

Sections 2.3 to 2.7 present the results of statistical modeling for predictive purposes using the initial estimates 
to predict the final outcomes. We found that the models of greatest utility were non-linear models based on 
natural logarithm transformations of both the initial and final values, of the form 

𝒀𝒀 = 𝒄𝒄𝑿𝑿𝜷𝜷𝝐𝝐 

which translates to the regression model 

ln y = ln c + β ln x + ln 𝜖𝜖 

Where y = the actual (final) outcome, c = constant, x = the initial estimate, β = the regression coefficient of the 
natural logarithm model, and 𝝐𝝐 represents the error term. For this particular type of model (both x and y 
transformed to natural log values), the coefficient β represents an elasticity (in economic terms); that is, a 1% 
change in x roughly equals a β% change in y. When translated from the natural log model, β is the exponent to 
the initial estimate X. 

Of course, estimators and decision makers want to more accurately predict the growth of project software 
which is often a cost and schedule driver. As shown in the following sections, using the initial estimate values 
we can predict the outcome for Total Requirements, Total ESLOC, total schedule duration (months), total 
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effort hours, and productivity using the initial estimates. We present the fit and equation for each model and 
include a table of the forecast values with their associated predication intervals based on a range of input 
values. This allows the reader to roughly gauge the expected outcomes based on an initial estimate.12 We also 
illustrate the model with a plot of the derived prediction intervals. The full statistical results for each model 
along with a scatterplot of the model’s fit can be found in Appendix F. 

All the models presented in Sections 2.3 to 2.7 use only one independent variable (x) for one dependent 
variable (y). As mentioned earlier, we found that adding more variables did not improve the models and 
usually degraded the fit. This means that the r2 statistic also represents the squared Pearson correlation 
between the x and y variables, so that when r2 equals .9, .8, or .7, the corresponding correlation coefficient 
equals .95, .89, or .84, respectively. 

Each of the models presented here show the number of cases, the original natural logarithm Minitab equation, 
the translated equation, and the r2 statistic. We also include a table of nominal values for the input estimate (x), 
the predicted (forecast) value (y’), the percentage difference between the predicted value and the estimate, and 
the prediction interval surrounding the predicted value. The table is followed by a scatterplot of the actual data 
(yi) values against the predicted regression line plus the prediction interval. 

The tables can be used to get a quick rough estimate of a final outcome for new cases by interpolating for a 
new value. Although this will yield a ball park prediction, the tables are not fine-grained enough to account for 
the non-linearity. For this reason we recommend that the actual equation be used. For even greater confidence 
in estimating a new case, please contact us for a copy of our datasets which then can be used with statistical 
software to reproduce the models and outputs. We are allowed to share our data, with the DoD cost community 
and do so using the U.S. Army AMRDEC SAFE website for secure transfer of files. 

                                                        
12  Statistical software enables the direct calculation of the forecast value and prediction interval for a given input value. Prediction 

intervals are the appropriate statistic to use for the forecast of a new data point. We used a 95% confidence level for the 
prediction intervals. We also present a prediction interval table for effort hours based on a 70% confidence level to show the 
trade-off in accuracy when certainty decreases. 
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5.2.3 Total Requirements 

 

Figure 28: Percentage Difference in Actual versus Estimated Total Requirements 

The percentage difference in estimated total requirements versus the actual total requirements (Table 3) shows 
the median percentage change in requirements to be zero. However the minimum and maximum values show 
that changes can range from -5,635 to 6,047 total requirements. Of the 150 cases, 59 cases showed a decrease 
in total requirements from the original estimate, 55 showed an increase, and 36 showed no change. All three 
services (Army, Navy, and Air Force) showed a median percentage change of 0%. Projects with negative or 
positive change in productivity also showed median percentage changes of zero. When considering the three 
super-domains, AIS, ENG, RT, the median percentage change for each was zero. Consideration of service, 
change in productivity, or super domain does not provide any additional information. 

For predictive purposes, the following model provides a very strong fit in predicting the total actual (final) 
requirements given only the initial estimate. The results of the regression model on the transformed data is 
presented below: 

 

The constant, 1.28, indicates that for small projects there is roughly a 28% increase in requirements from initial 
estimates to final values. However, as the number of requirements increases, the percentage increase is reduced 
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n = 148 

Regression Equation:   

   ln Total Reqts_Actual = 0.250 + 0.9456 ln Total Reqts_Estimated 

which translates to: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 1.28 ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅).95 

 

Trimmed Values 
 
8 cases <5th percentile: 

-100% to -77% 
 

9 cases >95th percentile: 
187% to 44,747% 

160.00%120.00%80.00%40.00%0.00%-40.00%-80.00%

70

60

50

40

30

20

10

0

%Δ Reqs

Fr
eq

ue
nc

y

Percent Change: Actual - Estimated Requirements



 

 
CMU/SEI-2017-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. 
Please see Copyright notice for non-US Government use and distribution.  34 

by the exponent, 0.95 when applied to the number of initial requirements. The first two columns in Table 12 
show requirements growth becoming inverted at 100. 

The adjusted r2 equals .936; the model accounts for over 93% of the variance. Below are the predicted 
(forecast) values and prediction ranges for a set of new given inputs, followed by a graphic showing the actual 
data fitted to the model along with the associated prediction intervals. Based on this model we see that 
requirements are underestimated for very low numbers and overestimated for most of the range of data, Here, 
predicted values show an underestimate by the initial submission of 16% at the low end (6 requirements) but 
show an overestimate of 23% at the high end (12,000 requirements), with the inflection point at 100 
requirements. 

Table 12: Prediction Interval Values for Total Requirements 

Initial 
Requirements 
Estimate 

Forecast 
Requirements 

Percent 
difference from 
Estimate 

Prediction Interval 

Lower 95% Upper 95% 

6 7 16% 3 15 

10 11 13% 5 25 

25 27 8% 12 59 

50 52 4% 24 113 

75 76 2% 35 166 

100 100 0% 46 218 

250 238 -5% 109 517 

500 458 -8% 210 996 

750 672 -10% 309 1,462 

1,000 882 -12% 405 1,921 

2,000 1,699 -15% 778 3,707 

5,000 4,040 -19% 1,843 8,857 

10,000 7,781 -22% 3,534 17,134 

12,000 9,245 -23% 4,193 20,385 



 

 
CMU/SEI-2017-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. 
Please see Copyright notice for non-US Government use and distribution.  35 

 
 

 
Figure 29: Prediction Interval for Actual Total Requirements 

The data suggests that planned total requirements tends to hold true and is a fairly good predictor of the total 
number of requirements when the project is complete. It also indicates a slight tendency to under estimate 
requirements when the planned number of requirements are few (i.e., less than 100) and a slight tendency to 
overestimate the total number of requirements when the planned number of requirements is over 100. For 
practical purposes, projects should plan a software project (i.e., build, increment, or release) to consist of 80-
120 requirements, adding additional projects, as needed to accommodate more requirements. 
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5.2.4 Total ESLOC 

 

Figure 30: Percentage Difference in Actual versus Estimated Total ESLOC 

Referring to Table 13, the change in total ESLOC shows a 42% median percentage increase in software size. 
The mean percentage change was 64%, indicating the data is skewed toward zero. The minimum amount of 
change (actual minus estimated) was -164.672 ESLOC and the maximum was 603,536. There were 39 cases 
that showed a decrease from the estimated size, 121 that showed an increase, and 2 that showed no change. 
Projects with a negative change in productivity showed a median increase of 7%, but projects with a positive 
change showed a 79% increase. The Army, Navy, and Air Force all had projects with median size increases of 
48%, 43%, and 38%, respectively. 

Projects segmented into the three super-domains all showed positive median size increases. AIS increased by 
70%, RT increased by 38%, and ENG increased by 28%. For predictive purposes, the following model 
provides a very strong fit in predicting the total actual (final) ESLOC given only the initial estimate. The 
results of the regression model on the transformed data is presented below: 
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n = 162 

Regression Equation:   

   ln ESLOC_Actual = 0.701 + 0.9640 ln ESLOC_Estimated 

which translates to: 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 2.02 ∗ (𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸).96 
 

 

Trimmed Values 
 

9 cases <5th percentile: 
-90% to -67% 

 
10 cases >95th percentile: 

527% to 1,440% 
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The adjusted r2 equals .849; the model accounts for over 84% of the variance. Below are the predicted 
(forecast) values and prediction ranges for a set of new given inputs, followed by a graphic showing the actual 
data fitted to the model along with the associated prediction intervals. The model shows that ESLOC is 
underestimated for the entire data range. Predicted values show an underestimate by the initial submission of 
71% at the low end (100 ESLOC) decreasing to a 26% underestimate at the high end (500,000 ESLOC). 

Table 13: Predicted Values for Total ESLOC 

Initial ESLOC 
Estimate 

Forecast 
ESLOC 

Percent difference 
from Estimate 

Prediction Interval 

Lower 95% Upper 95% 

100 171 71% 53 551 

500 806 61% 256 2,532 

1,000 1,572 57% 504 4,898 

2,000 3,066 53% 990 9,490 

5,000 7,416 48% 2,411 22,806 

10,000 14,466 45% 4,718 44,357 

15,000 21,385 43% 6,981 65,510 

25,000 34,991 40% 11,426 107,156 

50,000 68,257 37% 22,266 209,242 

100,000 133,148 33% 43,316 409,280 

250,000 322,064 29% 104,127 996,147 

500,000 628,247 26% 201,776 1,956,102 

 

 
Figure 31: Prediction Interval for Actual Total ESLOC 

Predicting Actual ESLOC from Initial Estimated  
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In practice, a 30% size growth factor has been widely used as a rule of thumb. Without a reference data to back 
up the rule of thumb, it has been dismissed during contract awards and negotiations. This data corroborates 
that rule of thumb for projects around 250 KESLOC. It also suggests it is overly conservative for smaller 
projects. Based on this data set, 25% size growth at a minimum, should be integrated into a project’s software 
estimation process.  

5.2.5 Total Duration (Schedule) 

 

 

 
Figure 32: Percentage Difference in Actual versus Estimated Total Duration (Months) 

Duration is measured as the start of requirements until the last phase is conducted as reported on the SRDR 
Form 2630-3. Referring to Table 14, total duration percentage change shows an overall positive median 
increase of 8%. The mean change percentage is 20% indicating the data is skewed toward zero. The change in 
months of duration ranged from -17 to 78. There were 38 cases that showed a decrease from the estimate, 88 
that showed an increase, and 35 that showed no change. Projects with a positive change in productivity showed 
a median value increase of 10% in duration while projects with negative productivity had a median change of 
zero. 

The grouping of the data by super-domain does not provide any additional information. The AIS, ENG, and 
RT, super-domains have a 0%, 2%, and 11% change in duration, respectively. Each super-domain’s minimum 
and maximum values overlap with the other super-domains. 

The Army, Navy, and Air Force services showed 1%, 18%, and 0% change in schedule duration.  

For predictive purposes, the following model provides a moderately strong fit in predicting the total actual 
(final) schedule duration given only the initial estimate. However, the addition of a services variable (Army, 
Navy, and Air Force) also proved statistically significant but did not add to the overall fit of the model. Instead 
we subdivided the data into three datasets – one for each service. The results show a different model for each 
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of the services and are presented below with their corresponding prediction tables and graphs, following the 
result for the overall model. 

 

The adjusted r2 equals .776; the model accounts for over 77% of the variance. Below are the predicted 
(forecast) values and prediction ranges for a set of new given inputs, followed by a graphic showing the actual 
data fitted to the model along with the associated prediction intervals. As with the requirements model, the 
duration model shows underestimated values at the low end and overestimated values at the high end. Here, 
predicted values show an underestimate by the initial submission of 131% at the low end (5 months) but show 
a -17% overestimate at the high end (120 months), with the inflection point at about 50 months. 

Table 14: Predicted Values for Schedule Duration – All cases 

 

 
 

Estimated 
Total Months 

Forecast Total 
Months 

Percent 
difference from 
Estimate 

Prediction Interval 

Lower 95% Upper 95% 

5 8 64% 5 14 

8 12 48% 7 20 

12 16 36% 10 27 

15 19 30% 12 32 

20 24 22% 15 40 

25 29 16% 18 48 

30 34 12% 20 56 

35 38 8% 23 63 

40 42 5% 25 70 

45 46 3% 28 77 

50 50 1% 30 83 

60 58 -3% 35 96 

70 66 -6% 39 109 

80 73 -9% 44 121 

90 80 -11% 48 133 

100 87 -13% 52 145 

110 94 -15% 56 156 

120 100 -17% 60 167 

ALL Cases 

n = 161 

Regression Equation:   

   ln Months_Actual = 0.8352 + 0.7878 ln Months_Estimated 

which translates to: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 2.31 ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷).79 
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Figure 33: Prediction Interval for Actual Total Duration (Months) 

The data suggests that projects planned for less than 3 years (i.e., 36 months) tend to finish 3-4 months late. 
And projects planned for more than 3 years tend to finish early, on time, or marginally late (i.e., less than 1 
month). Without further research into why this tends to be the case, it is unknown what drivers this outcome. It 
is most likely a combination of engineering, management, and funding factors. Although a project may resist 
planning a schedule slip, this data does provide a basis for quantifying the impact associated with the risk of a 
slippage. It does seem to imply that given more time, a project has the opportunity to react and revise their 
plan, the greater the probability of finishing the project within the planned duration. 

 

The adjusted r2 equals .829; the model accounts for over 82% of the variance. Below are the predicted 
(forecast) values and prediction ranges for a set of new given inputs, followed by a graphic showing the actual 
data fitted to the model along with the associated prediction intervals. Predicted values show an underestimate 
by the initial submission of 35% at the low end (5 months) but show a -12% overestimate at the high end (120 
months), with the inflection point at 45 months. 

 

Army – Schedule Duration 
n = 65 

Regression Equation:   

  ln Months_Actual = 0.5146 + 0.8657 ln Months_Estimated 

which translates to: 

Army:   𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 1.67 ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷).87 
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Table 15: Predicted Values for Schedule Duration - Army 

Estimated 
Total Months 

Forecast Total 
Months 

Percent 
difference from 
Estimate 

Prediction Interval 

Lower 95% Upper 95% 

5 7 35% 4 11 

8 10 27% 6 16 

12 14 20% 9 23 

15 17 16% 11 28 

20 22 12% 14 35 

25 27 9% 17 43 

30 32 6% 20 50 

35 36 4% 23 57 

40 41 2% 26 65 

45 45 0% 28 72 

50 49 -1% 31 78 

60 58 -3% 36 92 

70 66 -5% 41 106 

80 74 -7% 46 119 

90 82 -9% 51 132 

100 90 -10% 56 145 

110 98 -11% 61 158 

120 106 -12% 65 171 
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Figure 34: Prediction Interval for Actual Total Duration (Months) - Army 

The Army data suggests that projects planned for less than 3 years (i.e., 36 months) tend to finish 2 months 
late. Which is less of a slip compared to the 3-4 month slip when considering all the data.  And projects 
planned for more than 3 years tend to finish on time or early.  

 

 

The adjusted r2 equals .601; the model accounts for over 60% of the variance. Below are the predicted 
(forecast) values for a set of new given inputs, followed by a graphic showing the actual data fitted to the 
model along with the associated prediction intervals. Predicted values show an underestimate by the initial 
submission of 90% at the low end (5 months) but an overestimate of -20% at the high end (120 months), with 
the inflection point at about 49 months. 

 

 

Air Force – Schedule Duration 
n = 39 

Regression Equation:   

   ln Months_Actual = 1.085 + 0.7258 ln Months_Estimated 

which translates to: 

Air Force:  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 2.96 ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷).73 
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Table 16: Predicted Values for Schedule Duration - Air Force 

Estimated 
Total Months 

Forecast Total 
Months 

Percent 
difference from 
Estimate 

Prediction Interval 

Lower 95% Upper 95% 

5 10 90% 5 18 

8 13 67% 8 24 

12 18 50% 10 31 

15 21 41% 12 36 

20 26 30% 15 44 

25 31 22% 18 51 

30 35 16% 21 59 

35 39 12% 23 65 

40 43 8% 26 72 

45 47 4% 28 79 

50 51 1% 30 85 

60 58 -4% 34 98 

70 65 -8% 38 111 

80 71 -11% 41 123 

90 78 -14% 44 135 

100 84 -16% 48 147 

110 90 -18% 51 159 

120 96 -20% 54 170 
 
 

 
Figure 35: Prediction Interval for Actual Total Duration (Months) - Air Force 
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The Air Force data suggests that projects planned for less than 3 years (i.e., 36 months) tend to finish 4-6 
months late, whereas Army projects planned for less than 3 years (i.e., 36 months) tend to finish 3-4 months 
late. Generally, projects planned for more than 4 years tend to finish early. 

 

The adjusted r2 equals .793; the model accounts for over 79% of the variance. Below are the predicted 
(forecast) values and prediction ranges for a set of new given inputs, followed by a graphic showing the actual 
data fitted to the model along with the associated prediction intervals. Predicted values show an underestimate 
by the initial of 86% at the low end (5 months) but show a -18% overestimate at the high end (120 months), 
with the inflection point at about 55 months. 

 

Table 17: Predicted Values for Schedule Duration - Navy 

Estimated Total 
Months 

Forecast Total 
Months 

Percent 
difference from 
Estimate 

Prediction Interval 

Lower 95% Upper 95% 

5 9 86% 5 16 

8 13 64% 8 23 

12 18 48% 10 31 

15 21 40% 12 36 

20 26 30% 15 45 

25 31 22% 18 53 

30 35 17% 20 60 

35 39 12% 23 68 

40 43 8% 25 75 

45 47 5% 27 82 

50 51 2% 30 88 

60 59 -2% 34 101 

70 66 -6% 38 114 

80 72 -9% 42 126 

90 79 -12% 45 138 

100 86 -14% 49 150 

110 92 -17% 52 161 

120 98 -18% 56 172 
 
 

Navy – Schedule Duration 
n = 57 

Regression Equation:   

  ln Months_Actual = 1.036 + 0.7410 ln Months_Estimated  

which translates to: 

Navy:  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 2.8182 ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷).7410 
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Figure 36: Prediction Interval for Actual Total Duration (Months) - Navy 

The Navy data produced a better variance, yet comparing the estimate to the forecasted number in Table 17 
shows the Navy data, like the Air Force, indicate that projects planned for less than 3 years (i.e., 36 months) 
tend to finish 4-6 months late, which is a longer lag time than the what was observed in the Army data. For 
projects planned for more than 5 years, the data suggest that projects tend to finish on time or early. 
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5.2.6 Total Hours (Effort) 

 

Figure 37: Percentage Difference in Actual versus Estimated Total Hours 

Referring to Table 18, the median increase in hours between initial and final SRDRs was 19% overall (based 
on actual minus estimated values). The overall mean was 61%. The minimum value for the change in hours 
was -97,652 and the maximum increase was 350,591. There were 49 cases that showed a decrease from the 
initial estimate, 111 that showed an increase, and 2 that showed no change. Negative and positive productivity 
groups showed a 51% and 6% median increase in hours respectively. It makes sense that negative productivity 
groups expend more hours than positive productivity groups. 

The grouping of data by service showed about a 25% median increase in hours for the Army, a 19% increase 
for the Navy, and a 16% increase for the Air Force. Grouping by super-domains showed an 18% median 
increase in hours for AIS, a 37% increase for ENG, and a 22% increase RT. Neither of these factors offered 
any statistical insight into the differences in increased hours between initial and final SRDRS.13 

The results of the regression model on the transformed data is presented below: 

 

                                                        
13 Although the difference in means for the super domains were also suggestive, analysis of variance (ANOVA) proved negative. 
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n = 162 

Regression Equation:   

   ln Total Hours_Actual = 1.198 + 0.9097 ln Total Hours_Estimated 

which translates to: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = 3.31 ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻).91 
 
 
 

 

Trimmed Values 
 

9 cases <5th percentile: 
-80% to -50% 

 
10 cases >95th percentile: 

524% to 1,162% 
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The adjusted r2 equals .898; the model accounts for over 89% of the variance. Below are the predicted 
(forecast) values and prediction ranges for a set of new given inputs, followed by a graphic showing the actual 
data fitted to the model along with the associated prediction intervals. Predicted values show an underestimate 
by 89% at the low end (500 hours) but an overestimate of -5% at the high end (1 million hours), with the 
inflection point at about 577,500 total hours. 

Table 18: Prediction Values for Actual Total Hours (Effort) - 95% Confidence level 

Initial Total 
Hours Estimate 

Forecast Total 
Hours 

Percent 
difference from 
Estimate 

Prediction Interval 

Lower 95% Upper 95% 

500 945 89% 391 2,285 

1,000 1,776 78% 739 4,267 

5,000 7,677 54% 3,226 18,268 

10,000 14,423 44% 6,074 34,246 

50,000 62,361 25% 26,267 148,055 

100,000 117,157 17% 49,246 278,719 

250,000 269,637 8% 112,815 644,452 

500,000 506,559 1% 210,898 1,216,711 

750,000 732,526 -2% 303,925 1,765,551 

1,000,000 951,660 -5% 393,779 2,299,912 

 
 

 
Figure 38: 95% Prediction Interval for Actual Total Hours (Effort) 

The following table and graph are presented to contrast the forecast and the prediction intervals of actual total 
hours using a 70% confidence level for the prediction rather than a 95% confidence level. Forecast values 
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remain the same; only the interval for predicting new cases changes. Note how the intervals are narrowed 
when we reduce the surety. The graph also reflects the increased risk of inaccuracy by showing that many of 
the cases now fall outside of the predicted intervals. Decision makers should be aware of this trade-off when 
judging the range of outcomes for any variable. 

Table 19: Prediction Values for Actual Total Hours (Effort) - 70% Confidence level 

Initial Total 
Hours Estimate 

Forecast Total 
Hours 

Percent 
difference from 
Estimate 

Prediction Interval 

Lower 70% Upper 70% 

500 945 89% 594 1,504 

1,000 1,776 78% 1,119 2,817 

5,000 7,677 54% 4,864 12,118 

10,000 14,423 44% 9,148 22,740 

50,000 62,361 25% 39,555 98,316 

100,000 117,157 17% 74,232 184,903 

250,000 269,637 8% 170,428 426,595 

500,000 506,559 1% 319,348 803,521 

750,000 732,526 -2% 460,964 1,164,072 

1,000,000 951,660 -5% 598,010 1,514,452 

 

 

Figure 39: 70% Prediction Interval for Actual Total Hours (Effort) 

Using a 95% confidence bound produces a range that is useless in practice. As shown above, if the initial effort 
is estimated to be 100,000 hours then based on the SRDR data set, the forecasted actual hours is 117,157. And 
based on the Upper 95% Confidence interval the project is unlikely to exceed 278,719 hours. For planning 
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purposes this number is essentially useless. A program manager cannot plan to hold over two times the point 
estimate budget in risk reserve. A more practical approach is to reduce the confidence interval to a reasonable 
level. As shown in Table 19, the confidence interval was lowered to 70%. This yields an upper prediction 
interval of 184,903 hours. This value is less than the planned budget and may be a more useful number for 
quantifying risk.  

5.2.7 Productivity 

 

Figure 40: Percentage Difference in Actual versus Estimated Productivity (ESLOC/PM) 

Productivity is a question often raised in comparing software development projects. We define productivity as 
the amount of ESLOC produced per person-month. Additionally, we use 152 hours per person-month14. 

Productivity shows a -1% median change across all projects between initial and final SRDRs (Table 3). The 
mean change was 7%. To varying degrees, 83 cases overestimated their productivity and 79 cases were 
underestimated. When the projects were grouped into negative and positive productivity groups, the negative 
group had a -31% median change and the positive group had a 44% increase. Recall that the positive 
productivity group increased in productivity between initial and final SRDR when requirements, software size, 
and duration increased. 

When projects were grouped by service, the productivity differences were small. The grouping shown in 
Figure 41 illustrates that there is also no statistical distinction overall between the super-domains, given the 
relatively large amount of variation in each group. The median changes for AIS, ENG, and RT were 20%, -
20%, and -3%, respectively. 

 

                                                        
14 See Appendix G;  Burden Labor Rate 
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151% to 3,365% 
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Figure 41: Percentage Change for Productivity by Super-Domain 

There are several interesting aspects about the productivity data. First, the overall model for predicting the 
final productivity using the initial estimate is only moderate. If we factor in the super domain, we derive 
statistically significant models for AIS, ENG, and RT systems, also of moderate predictive strength. These 
models are presented following the overall model. 

Second, when the data is divided into those cases whose productivity was underestimated (an increase in 
productivity compared to the initial estimate) versus overestimated, we derive stronger predictive models. 
Also, when super domain is included we can derive separate models for AIS, ENG, and RT, although some of 
these models have a very limited number of cases.15 This, of course, requires that we have paired initial and 
final submissions to make such a determination and the usefulness for predicting a new project’s productivity 
is limited to use by analogy. However, if a determination can be made at some point during the software 
development lifecycle as to whether the productivity was over- or underestimated, then these models can be 
applied at that time to predict better final estimates. 

                                                        
15 See Appendix F for the models. Use of a predictive model with a small number of cases is usually not recommended. 
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The results of the regression models on the transformed data are presented below: 

 

The adjusted r2 equals .55; the model accounts for 55% of the variance. Below are the predicted (forecast) 
values and prediction ranges for a set of new given inputs, followed by a graphic showing the actual data fitted 
to the model along with the associated prediction intervals. Predicted values show an underestimate by the 
initial of 88% at the low end (10 ESLOC/person-months) but an overestimate of -52% productivity at the high 
end (2,000), with the inflection at about 118. 

Table 20: Predicted Values for Actual Productivity (ESLOC/Person-Months) 

Initial 
Productivity 
Estimate 

Forecast 
Productivity 

Percent difference 
from Estimate 

Prediction Interval 

Lower 95% Upper 95% 

10 19 88% 7 54 

20 31 57% 11 88 

50 62 25% 23 172 

75 84 12% 31 232 

100 104 4% 38 286 

200 175 -13% 64 479 

500 345 -31% 125 954 

750 467 -38% 168 1,298 

1,000 578 -42% 207 1,616 

1,250 682 -45% 243 1,917 

1,500 781 -48% 277 2,204 

1,750 876 -50% 310 2,482 

2,000 968 -52% 341 2,750 
 

n = 162 

Regression Equation:   

  ln Productivity_Actual = 1.2212 + 0.7439 ln Productivity_Estimated 

which translates to: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 3.39 ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃).74 

 
 
 

 



 

 
CMU/SEI-2017-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. 
Please see Copyright notice for non-US Government use and distribution.  52 

 

Figure 42: Prediction Interval for Actual Productivity 

Given the inflection point is 118, it represents the point at which estimated productivity is statistically most 
likely to actual productivity. Productivity estimates lower than 118 ESLOC per person month are likely to 
experience greater productivity. Productivity estimates greater than 118, are likely to experience lower 
productivity.  

118 ESLOC per person month is equal to .77 ESLOC per hour. This is significantly lower than the rule of 
thumb of 2 SLOC hour used in the 1970’s and 1980’s.  

In practice, estimated productivity is hard to defend. There are several factors which affect realized 
productivity. As well documented some of the most important influences are related to people (i.e., team 
cohesion, management effectiveness, etc.). When faced with evaluating productivity estimates, it may be most 
useful to focus on the area outside the prediction intervals. Anything outside the 95% confidence interval is by 
definition statistically very unlikely to occur (i.e. dead zone). If a project estimates a productivity outside the 
confidence interval it warrants further investigation. For example, the largest productivity value in Table 20 is 
2750 ESLOC per person month, which equals 18 SLOC per hour. If a project’s plan contains a productivity 
greater than that, it is statistically unlikely to be realized.   

 

AIS – Productivity 

n = 21 

Regression Equation:   

   ln Productivity_Actual = 2.0539 +0.6651 ln Productivity_Estimated 

which translates to: 

AIS:  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑙𝑙 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 7.80 ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃).67 
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The adjusted r2 equals .47; the model accounts for over 47% of the variance. Below are the predicted (forecast) 
values and prediction ranges for a set of new given inputs, followed by a graphic showing the actual data fitted 
to the model along with the associated prediction intervals. Predicted values show an underestimate by the 
initial of 110% at the low end (50) but an overestimate of -13% at the high end (700), with the inflection point 
at 460. 

Table 21: Predicted Values for AIS Actual Productivity (ESLOC/Person-Months) 

Initial 
Productivity 
Estimate 

Forecast 
Productivity 

Percent difference 
from Estimate 

Prediction Interval 

Lower 95% Upper 95% 

50 105 110% 43 260 

75 138 84% 59 320 

100 167 67% 74 374 

150 218 46% 101 474 

200 264 32% 123 568 

300 346 15% 160 748 

400 419 5% 191 920 

500 486 -3% 217 1,088 

600 549 -8% 240 1,254 

700 608 -13% 261 1,418 

 
 
 

 
Figure 43: Prediction Interval for AIS Actual Productivity 

Given the inflection point is 460, it represents the point at which estimated productivity is statistically most 
likely to actual productivity. Productivity estimates lower than 460 ESLOC per person month are likely to 
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experience greater productivity. Productivity estimates greater than 460, are likely to experience lower 
productivity. For AIS, 460 ESLOC per month is equal to 3 ESLOC per hours. 

 

The adjusted r2 equals .57; the model accounts for about 57% of the variance. Below are the predicted 
(forecast) values and prediction ranges for a set of new given inputs, followed by a graphic showing the actual 
data fitted to the model along with the associated prediction intervals. Predicted values show an underestimate 
of 60% at the low end (50) but show a -62% overestimate at the high end (700), with an inflection point of 
100. 

Table 22: Predicted Values for ENG Actual Productivity (ESLOC/Person-Months) 

Initial 
Productivity 
Estimate 

Forecast 
Productivity 

Percent difference 
from Estimate 

Prediction Interval 

Lower 95% Upper 95% 

25 40 60% 10 155 

50 63 27% 17 229 

75 83 10% 23 292 

100 100 0% 29 349 

150 131 -13% 38 452 

200 159 -21% 46 547 

300 208 -31% 60 721 

500 292 -42% 82 1,035 

750 382 -49% 105 1,393 

1,000 462 -54% 124 1,730 

1,250 536 -57% 140 2,052 

1,500 605 -60% 155 2,363 

1,750 670 -62% 168 2,666 

 
 

ENG – Productivity 

n = 20 

Regression Equation:   

  ln Productivity_Actual = 1.5502 +0.6639 ln Productivity_Estimated 

which translates to: 

ENG:  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 4.71 ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃).66 
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Figure 44: Prediction Interval for ENG Actual Productivity 

With an inflection point of 100 for ENG projects. Productivity estimates lower than 100 ESLOC per person 
month are likely to experience greater productivity. Productivity estimates greater than 100, are likely to 
experience lower productivity. One hundred ESLOC per person month is equal to approximately 0.7 ESLOC 
per hour.    

 

The adjusted r2 equals .505; the model accounts for over 50% of the variance. Below are the predicted 
(forecast) values and prediction ranges for a set of new given inputs, followed by a graphic showing the 
actual data fitted to the model along with the associated prediction intervals. Predicted values show an 
overestimate of 97% at the low end (10) but show an underestimate of -44% at the high end (700), with an 
inflection at 97. 

RT – Productivity 

n = 118 

Regression Equation:   

  ln Productivity_Actual = 1.3600 + 0.7027 ln Productivity_Estimated  
which translates to: 

RT:  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 3.90 ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃).70 
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Table 23: Predicted Values for RT Actual Productivity (ESLOC/Person-Months) 

Initial 
Productivity 
Estimate 

Forecast 
Productivity 

Percent difference 
from Estimate 

Prediction Interval 

Lower 95% Upper 95% 

10 20 97% 7 56 

25 37 50% 14 103 

50 61 22% 23 164 

75 81 8% 30 217 

100 99 -1% 37 266 

150 132 -12% 49 353 

200 161 -19% 60 432 

300 215 -28% 80 577 

400 263 -34% 97 710 

500 307 -39% 113 834 

600 349 -42% 128 951 

700 389 -44% 142 1,064 

 
 

 
Figure 45: Prediction Interval for RT Actual Productivity 

The RT data set yielded the lowest inflection point at 97. Productivity estimates lower than 97 ESLOC per 
person month are likely to experience greater productivity. Productivity estimates greater than 97, are likely to 
experience lower productivity. Ninety seven ESLOC per person month is equal to 0.6 ESLOC per hour for RT.   

The following models use a subset of the data based on an increase in productivity when comparing the initial 
estimate to the final outcome, which represents an initial underestimate by the contractor. The first model is for 
all such cases, followed by separate models for AIS, ENG, and RT. 



 

 
CMU/SEI-2017-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. 
Please see Copyright notice for non-US Government use and distribution.  57 

Positive Productivity  

 

The adjusted r2 equals .886; the model accounts for over 88% of the variance. Below are the predicted 
(forecast) values and prediction ranges for a set of new given inputs, followed by a graphic showing the 
actual data fitted to the model along with the associated prediction intervals. Since this dataset comprises those 
cases with positive productivity outcomes, the initial submission values will all be under estimates. The data 
show an underestimate of 83% at the low end (10) and an underestimate of 22% at the high end (1000). 

Table 24: Predicted Values for Cases with Underestimated Productivity 

Initial 
Productivity 
Estimate 

Forecast 
Productivity 

Percent difference 
from Estimate 

Prediction Interval 

Lower 95% Upper 95% 

10 18 83% 11 30 

20 34 72% 21 56 

50 79 58% 49 127 

75 115 53% 72 184 

100 149 49% 93 238 

200 280 40% 175 449 

300 406 35% 253 652 

500 647 29% 400 1,046 

750 936 25% 574 1,525 

1,000 1,217 22% 742 1,995 
 
 
 

Cases with a Positive Change in Productivity 

n = 79 

Regression Equation:   

   ln Productivity_Actual = 0.804 + 0.9120 ln Productivity_Estimated 
which translates to: 

Positive Change: 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 2.2352 ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃).912 
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Figure 46: Prediction Interval for Actual Productivity – Cases with Positive Change 

In practice, it is essentially impossible to know if a project is going to experience positive or negative 
productivity. This analysis reveals that once a project is underway and has exhibited positive productivity 
compared to the initial estimate, then the data can be used to predict the final productivity with far less 
variance when considering all cases.  

 

The adjusted r2 equals .761; the model accounts for over 76% of the variance. Below are the predicted 
(forecast) values and prediction ranges for a set of new given inputs, followed by a graphic showing the actual 
data fitted to the model along with the associated prediction intervals. For AIS projects that experienced 
positive productivity gains, the initial submission values will all be under estimates. The data show an 
underestimate of 209% at the low end (25) and an underestimate of 13% at the high end (700). 

AIS – Cases with a Positive Change in Productivity 

n = 13 

Regression Equation:   

 ln Productivity_Actual = 2.0991 + 0.6983 ln Productivity_Estimated 

which translates to: 

AIS: 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 8.1589 ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃).6983 
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Table 25: Predicted Values for Actual Productivity – AIS Cases with Positive Change 

Estimated 
Productivity 

Forecast 
Productivity 

Percent difference 
from Estimate 

Prediction Interval 

Lower 95% Upper 95% 

25 77 209% 37 162 

50 125 151% 67 233 

75 166 122% 95 292 

100 203 103% 119 346 

200 330 65% 201 543 

300 438 46% 264 727 

400 535 34% 316 906 

500 626 25% 362 1,082 

600 711 18% 402 1,256 

700 791 13% 439 1,428 

 

 
Figure 47: Prediction Interval for Actual Productivity – AIS Cases with Positive Change 

Given all positive increases in productivity, the focus is on how much productivity growth is a project likely to 
experience. Table 25 and Figure 54, show the larger the initial productivity, the less likely huge productivity 
increase will be realized. For modest estimates (i.e., 25-100 ESLOC per person month), positive productivity 
gains over a 100% are statistically feasible. More significant forecasts (i.e., 500-700 ESLOC per person 
month) are statistically likely to experience 25% or less growth in productivity.  
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The adjusted r2 equals .924; the model accounts for over 92% of the variance. Below are the predicted 
(forecast) values and prediction ranges for a set of new given inputs, followed by a graphic showing the 
actual data fitted to the model along with the associated prediction intervals. 

Table 26: Predicted Values for Actual Productivity – ENG Cases with Positive Change 

Estimated 
Productivity 

Forecast 
Productivity 

Percent 
difference from 

Estimate 

Prediction Interval 

Lower 95% Upper 95% 

10 13 25% 6 28 

25 34 35% 18 62 

50 72 44% 43 120 

75 111 49% 69 180 

100 152 52% 95 245 

150 236 58% 145 387 

200 323 62% 193 542 

250 412 65% 239 710 

300 502 67% 283 888 

400 685 71% 369 1,273 
 
 
 

ENG – Cases with a Positive Change in Productivity 

n = 9 

Regression Equation:   

  ln Productivity_Actual = 0.0302 + 1.0848 ln Productivity_Estimated 
which translates to: 

ENG: 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 1.0307 ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)1.0848 
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Figure 48: Prediction Interval for Actual Productivity – ENG Cases with Positive Change 

Although the analysis was conducted with only 9 data points, the resulting strength in the variance is 
significant. Given all positive increases in productivity, the focus is on how much productivity growth is a 
project likely to experience. Table 26 and Figure 48 show productivity increases as initial productivity 
estimates increase. ENG productivity forecasts are statistically likely to experience a 25% -71% increase in 
productivity.  

 

The adjusted r2 equals .878; the model accounts for over 872% of the variance. Below are the predicted 
(forecast) values and prediction ranges for a set of new given inputs, followed by a graphic showing the 
actual data fitted to the model along with the associated prediction intervals. 

 

RT – Cases with a Positive Change in Productivity 

n = 55 

Regression Equation:   

 ln Productivity_Actual = 0.8851 + 0.8873 ln Productivity_Estimated 
which translates to: 

RT: 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 2.4233 ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃).8873 
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Table 27: Predicted Values for Actual Productivity – RT Cases with Positive Change 

Estimated 
Productivity 

Forecast 
Productivity 

Percent 
difference from 
Estimate 

Prediction Interval 

Lower 95% Upper 95% 

10 19 90% 11 31 

15 27 80% 16 44 

20 35 75% 21 56 

30 50 67% 31 80 

50 78 56% 49 125 

75 112 49% 70 178 

100 144 44% 91 229 

200 267 34% 167 425 

500 601 20% 371 975 

600 707 18% 434 1,152 
 
 

 
Figure 49: Prediction Interval for Actual Productivity – RT Cases with Positive Change 

Given all positive increases in productivity, the focus is on how much productivity growth is a project likely to 
experience. Table 27 and Figure 49 show the larger the initial productivity, the less likely a huge productivity 
increase will be realized. For modest estimates (i.e., 10-20 ESLOC per person month), positive productivity 
gains over 75% are statistically feasible. More significant forecasts (i.e., greater than 75 ESLOC per person 
month) are statistically likely to experience 50% or less growth in productivity.  
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Negative Productivity 

The following models use a subset of the data based on a decrease in productivity when comparing the initial 
estimate to the final outcome, which represents an initial overestimate by the contractor. The first model is for 
all such cases, followed by separate models for AIS, ENG, and RT. 

 

The adjusted r2 equals .758; the model accounts for over 75% of the variance. Below are the predicted 
(forecast) values and prediction ranges for a set of new given inputs, followed by a graphic showing the 
actual data fitted to the model along with the associated prediction intervals. 

 

Table 28: Predicted Values for Actual Productivity – All Cases with Negative Change 

Estimated 
Productivity 

Forecast 
Productivity 

Percent difference 
from Estimate 

Prediction Interval 

Lower 95% Upper 95% 

10 8 
80% 

4 19 

20 16 
80% 

7 35 

50 35 
70% 

16 76 

75 51 
68% 

24 108 

100 65 
65% 

31 140 

200 121 
61% 

57 258 

500 274 
55% 

128 588 

750 394 
53% 

182 851 

1,000 509 
51% 

234 1,107 

1,250 621 
50% 

283 1,359 

1,500 730 
49% 

332 1,608 

1,750 838 
48% 

378 1,855 

2,000 944 
47% 

424 2,099 
 

 

Cases with a Negative Change in Productivity 

n = 83 

Regression Equation:   

  ln Productivity_Actual = 0.077 + 0.8910 ln Productivity_Estimated 
which translates to: 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 1.0802 ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃).891 
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Figure 50: Prediction Interval for Actual Productivity – Cases with Negative Change 

As stated earlier, it is essentially impossible to know if a project is going to experience positive or negative 
productivity. What this analysis reveals is that once a project is underway and has exhibited negative 
productivity compared with the initial estimate, then this analysis can be used to predict the final productivity 
with far less variance when considering all cases. 

 

The adjusted r2 equals.982; the model accounts for over 98% of the variance. Below are the predicted 
(forecast) values and prediction ranges for a set of new given inputs, followed by a graphic showing the 
actual data fitted to the model along with the associated prediction intervals. 

AIS: Cases with a Negative Change in Productivity 

n = 8 

Regression Equation:   

 ln Productivity_Actual = -0.078 + 0.9832 ln Productivity_Estimated 
which translates to: 

AIS: 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 0.9254 ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃).9832 
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Table 29: Prediction Interval for Actual Productivity – AIS Cases with Negative Change 

Estimated 
Productivity 

Forecast 
Productivity 

Percent difference 
from Estimate 

Prediction Interval 

Lower 95% Upper 95% 

100 86 
86% 

70 105 

150 128 
85% 

106 153 

200 169 
85% 

142 202 

250 211 
84% 

178 250 

300 252 
84% 

212 300 

350 294 
84% 

247 350 

400 335 
84% 

280 400 

450 376 
84% 

313 452 

500 417 
83% 

345 504 

600 499 
83% 

409 609 

700 580 
83% 

471 716 

 

 

Figure 51: Prediction Interval for Actual Productivity – AIS Cases with Negative Change 

Given all negative decreases in productivity, the focus is on how much productivity loss is a project likely to 
experience. Table 29 and Figure 51 show a decrease between 83% and 86% across the range of estimated 
productivity values, however with only 8 data points, it is judicious to validate this result against local 
historical data. 
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The adjusted r2 equals .852; the model accounts for over 85% of the variance. Below are the predicted 
(forecast) values and prediction ranges for a set of new given inputs, followed by a graphic showing the 
actual data fitted to the model along with the associated prediction intervals. 

Table 30: Prediction Interval for Actual Productivity – ENG Cases with Negative Change 

Estimated 
Productivity 

Forecast 
Productivity 

Percent difference 
from Estimate 

Prediction Interval 

Lower 95% Upper 95% 

50 25 
50% 

8 74 

100 49 
49% 

18 136 

150 73 
49% 

27 197 

200 98 
49% 

37 258 

300 146 
49% 

56 382 

500 244 
49% 

93 642 

750 365 
49% 

135 983 

1,000 486 
49% 

176 1,343 

1,250 607 
49% 

214 1,717 

1,500 728 
49% 

252 2,104 

1,750 848 
48% 

287 2,504 

 

ENG: Cases with a Negative Change in Productivity 

n = 11 

Regression Equation:   

 ln Productivity_Actual = -0.693 + 0.9958 ln Productivity_Estimated 
which translates to: 

ENG: 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 0.5001 ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃).9958 
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Figure 52: Prediction Interval for Actual Productivity – ENG Cases with Negative Change 

Given all negative decreases in productivity, the focus is on how much productivity loss is a project likely to 
experience. Table 30 and Figure 52 show a decrease between 48% and 50% across the range of estimated 
productivity values with only 11 data points but a strong calculated variance; it is judicious to validate this 
result against local historical data. 

 

 

The adjusted r2 equals .704; the model accounts for over 70% of the variance. Below are the predicted 
(forecast) values and prediction ranges for a set of new given inputs, followed by a graphic showing the 
actual data fitted to the model along with the associated prediction intervals. 

RT: Cases with a Negative Change in Productivity 

n = 63 

Regression Equation:   

  ln Productivity_Actual = 0.302 + 0.8431 ln Productivity_Estimated 
which translates to: 

RT: 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 1.3529 ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃).8431 
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Table 31: Prediction Interval for Actual Productivity – RT Cases with Negative Change 

Estimated 
Productivity 

Forecast 
Productivity 

Percent difference 
from Estimate 

Prediction Interval 

Lower 95% Upper 95% 

10 9 
90% 

4 22 

20 17 
85% 

8 38 

50 37 
74% 

17 79 

75 52 
69% 

24 110 

100 66 
66% 

31 139 

150 92 
61% 

44 196 

200 118 
59% 

56 250 

250 142 
57% 

67 302 

300 166 
55% 

78 353 

400 211 
53% 

99 452 

500 255 
51% 

119 549 

600 298 
50% 

138 643 

700 339 
48% 

156 736 
 

 

Figure 53: Prediction Interval for Actual Productivity – RT Cases with Negative Change 

Given all negative decreases in productivity, the focus is on how much productivity growth is a project likely 
to experience. Table 31 and Figure 60, show the larger the initial productivity, the less likely a huge 
productivity decrease will be realized. For modest estimates (i.e., 10-50 ESLOC per person month), negative 
productivity loss over a 75% are statistically likely. More significant forecasts (i.e., greater than 600 ESLOC 
per person month) are statistically likely to experience 50% decrease productivity. 
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5.2.8 Software Growth Summary 

Based on historical MDAP/MAIS SRDR data transformed to natural logarithms, we can predict (with a known 
degree of certainty) the expected outcomes for software size, schedule, and effort. The models presented 
enable predictions of final outcomes based on initial estimates for MDAP/MAIS programs. Each of the models 
can be used to construct outcome prediction intervals for any given initial value, although we caution against 
using the model outside the bounds indicated by the 5th and 95th percentiles for each variable. 

To summarize, here are the strongest models to emerge from this analysis: 

 

Predicting productivity is less strong unless we separate the underestimated cases from the overestimated 
cases, which then yield very strong models (r2 equals .886 and .758, respectively). This indicates that if the 
productivity could be assessed during the development effort, then the actual outcome could be more 
accurately predicted. If we also account for the type of super domain, these models increase in strength. 

Schedule duration can also be separately predicted for the three services. We show that total effort hours can 
also be predicted by using the initial estimate for ESLOC, although the fit is not as strong (r2 = .674) as using 
the initial estimate for hours. We also show how the prediction interval becomes tighter when the confidence 
level for the prediction is reduced. 

Perhaps the most useful takeaway from this analysis are the prediction tables. The tables provide the predicted 
value along with the prediction interval at a 95% confidence level. These can be used in the absence of any 
available estimates, or as a sanity check against estimates coming from other sources. New values can easily 
produce a ballpark forecast by interpolation or the actual equation can be used for calculation. The datasets we 
used are also available for distribution which enable users to reproduce the models with their own statistical 
software. 

As mentioned earlier, no further adjustments were made in case selection once the data were trimmed. 
Undoubtedly, the models could be improved (and the predictive intervals narrowed) with substantive 
knowledge concerning the behavior of outliers which could provide meaningful reasons for their exclusion 
from a model. Also, any additional data supplied during the interim of the project—which is under 
consideration by the DoD—could further calibrate and improve a model’s fit. This would be especially useful 
in the productivity models where the best fits were determined by whether the original submission over- or 
underestimated the productivity. A midcourse determination of productivity would then indicate which sub-
model was appropriate to estimate the final productivity for the project.  

 

Requirements   (r2 = .936) 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 1.2838 ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅).9456 

ESLOC  (r2 = .849) 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 2.0157 ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸).964 

Schedule (r2 = .776) 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 2.3054 ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷).7878 

Effort  (r2 = .898) 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = 3.3128(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐻𝐻𝐻𝐻𝑢𝑢𝑢𝑢𝑢𝑢).9097 
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6 Conclusions and Next Steps 

This analysis shows that the cost of software development varies depending on several factors. The class or 
super-domain of software makes a difference in the cost of software. Different super domains have different 
levels of difficulty that cause more effort to be expended on more difficult software. On an average-size 
project, AIS software costs $31,350 a month and RT software costs $101,250 a month—more than three times 
as much. 

The time to develop software also drives cost. Based on an average-size project, shorter duration projects cost 
disproportionately more than longer duration projects. It was shown that team size is clearly NOT determined 
solely by the size of the software to be built. 

The performance of a project also drives cost. The analysis looked at best, average, and worst performing 
projects within each super-domain. Unfortunately there was not enough background data on projects to 
investigate why best and worst projects perform differently. This leads to the next steps. 

There is an effort to link the project data back to source documents and other data to provide the capability to 
investigate the data more fully. There is a lot of data and source material, and some progress has been made to 
date with a lot more to do. 

There is additional SRDR data that can be added to this analysis, and new data is submitted every quarter. 
More data would increase the fidelity of grouping the data into different super-domains of software, providing 
a more robust analysis. 

The intent of this report is to provide a characterization of the Department of Defense software portfolio and to 
demonstrate how the SRDR data is useful in gaining insights into software development costs. More analysis 
can be done, but what we want to know from you is, “What are the important questions that need answers?” 
The authors wish to receive feedback on this report and input for useful extensions. For comments and 
suggestions, please contact: 

fact-book@sei.cmu.edu 
 

 

  

mailto:fact-book@sei.cmu.edu
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Appendix A: Acronyms and Definitions 

AIS Automated Information System Software. See Appendix C: Super-domains. 

DACIMS Defense Automated Cost Information Management System 

ENG Engineering Software. See Appendix C: Super-domains. 

ESLOC Equivalent source lines of code. See Appendix B: Equivalent Source Lines of Code. 

FTE Full-time equivalent; the number of total hours worked divided by the maximum number of compensable hours 
in a full-time schedule. For example, if the normal schedule for a quarter is defined as 35 hours per week * (52 
weeks per year / 4), 411.25 hours, then someone working 100 hours during that quarter represents 100/411.25 
= 0.24 FTE. 

KESLOC Thousands (K) of ESLOC 

Ln Natural log 

MAIS Major Automated Information System 

MDAP Major Defense Acquisition Program 

MS Mission-Support Software. See Appendix C: Super-domains. 

OpEnv Operating environment. See Appendix D: Operating Environment. 

PD Person days; a measure of effort based on 8 hours per day for requirements through final qualification testing 
activities; 1 PD = 1 calendar day only when one person is working on the project. 

PM Person months; a measure of effort based on an average of 152 labor hours in a month. The average includes 
vacation time, sick time, and holidays. 

Project Data Data from an SRDR product event 

RT Real Time Software systems. See Appendix C: Super-domains. 

SD Standard deviation; the amount of variation about the mean value of a measure. ±1 standard deviation covers 
about 67% of projects 

SE Standard error; a measure of the accuracy of the predictions from a regression model. 

SRDR Software Resources Data Report 
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Appendix B: Equivalent Source Lines of Code (ESLOC) 

This analysis uses a product-size measure based on software source lines of code (SLOC). A key issue in using 
SLOC as a measure of work effort and duration is the difference in work required to incorporate software from 
different sources:  

• new code 
• modified code (changed in some way to make it suitable) 
• reused code (used without changes) 
• auto-generated code (created from a tool and used without change) 

Each of these computer code sources requires a different amount of work effort to incorporate into a software 
product. The challenge is in coming up with a single measure that includes all of the code sources. 

The approach taken here is to normalize all code sources to the equivalent of a new line of code. This is done 
by taking a portion of the measures for modified, reused, and auto-generated code. The portioning is based on 
the percentage of modification to the code based on changes to the design, code and unit test, and integration 
and test documents. This approach is adopted from the COCOMO II Software Cost Estimation Model.16 

Equivalent source lines of code (ESLOC), then, is the homogeneous sum of the different code sources. The 
portion of each code source is determined using a formula called an Adaptation Adjustment Factor (AAF): 

AAF = (0.4 x %DM) + (0.3 x %CM) + (0.3 x %IM) 

Where 

%DM: Percentage Design Modified 

%CM: Percentage Code and Unit Test Modified 

%IM: Percentage Integration and Test Modified 

Using a different set of percentages for the different code sources, ESLOC is expressed as 

ESLOC = New SLOC + 
(AAFM x Modified SLOC) + 
(AAFR x Reused SLOC) + 
(AAFAG x Auto-Generated SLOC) 

New code does not require any adaptation parameters, since nothing has been modified. 

Auto-generated code does not require the DM or CM adaptation parameters. However, it does require testing, 
IM. If auto-generated code does require modification, then it becomes modified code, and the adaptation 
factors for modified code apply. 

                                                        
16  Boehm, B., Abts, C., Brown, W, Chulani, S., Clark, B., Horowitz, E., Madachy, R., Reifer, R., and Steece, B., Software Cost 

Estimation with COCOMO II, Prentice Hall, 2000, p. 22. 
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Reused code does not require the DM or CM adaptation parameters, either. It also requires testing, IM. If 
reused code does require modification, then it becomes modified code and the adaptation factors for modified 
code apply. 

Modified code requires the three parameters, DM, CM, and IM, representing modifications to the modified 
code design, code, and integration testing. 

The equivalent sizes for all of the projects are shown in the next two histogram graphs. The first histogram 
shows that sizes for the projects do not have a normal distribution. The analyses in this Factbook rely on 
statistical methods that require a normally distributed dataset. 

 

Figure 54: Final Submissions - ESLOC 

 

Figure 55: Final Submission - Transformed (LN) ESLOC 
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Appendix C: Super Domains 

Real Time (RT) 

Real time is the most complex type of software. These projects take the most time and effort for a given system 
size due to the lower language levels, high level of abstraction, and increased complexity: 

• tightly coupled interfaces 
• real time scheduling requirements 
• very high reliability requirements (life critical) 
• generally severe memory and throughput constraints 
• often executed on special-purpose hardware 

Examples of software domains in this super-domain are: sensor control and signal processing, vehicle control, 
vehicle payload, and real time embedded. 

Engineering (ENG) 

Engineering is a software type of medium complexity. 

• multiple interfaces with other systems 
• constrained response-time requirement 
• high reliability but not life critical 
• generally executed on commercial off-the- shelf (COTS) software applications 

Examples of software domains in this super-domain are: mission processing, executive, automation and 
process control, scientific systems, and telecommunications. 

Support (SUP) 

Support is the least complex type of software.17 Software is often written in more human-oriented languages 
and performs common business functions such as order entry, inventory, human resources, financial 
transactions, and data processing and storage. 

• relatively less complex 
• self-contained or few interfaces 
• less stringent reliability requirement 

Examples of software domains in this super-domain are: planning systems, non-embedded training, software 
tools, and non-embedded test software. 

                                                        
17  Because there were so few projects in the SUP domain in our data set, we did not include the SUP domain in the analysis 

results in this report. 
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Automated Information Systems (AIS) 

AIS is software that automates information processing. These applications allow the designated authority to 
exercise control over the accomplishment of the mission. Humans manage a dynamic situation and respond to 
user input in real time to facilitate coordination and cooperation. 

Examples of software domains in this super-domain are: intelligence and information systems, software 
services, and software applications. 
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Appendix D: Operating Environments 

Aerial Vehicle (AV) 

Examples of aerial vehicles are 

• manned: fixed-wing aircraft, helicopters 
• unmanned: remotely piloted air vehicles 

Ground Site (GS) 

Examples of ground sites are 

• fixed: command post, ground operations center, ground terminal, test faculties 
• mobile: intelligence-gathering stations mounted on vehicles, mobile missile launcher, handheld devices 

Ground Vehicle (GV) 

Examples of ground vehicles are 

• manned: tanks, howitzers, personnel carrier, mobile missile launcher 
• unmanned: robots 

Maritime Vessel (MV) 

Examples of maritime vessels are 

• manned: aircraft carriers, destroyers, supply ships, submarines 
• unmanned: mine-hunting systems, towed sonar array 

Ordnance Vehicle (OV) 

Examples of ordnance vehicles are 

• air-to-air missiles, air-to-ground missiles, smart bombs, strategic missiles 

Space Vehicle (SV) 

Examples of space vehicles are 

• manned: passenger vehicle, cargo vehicle, space station 
• unmanned: orbiting satellites (weather, communications), exploratory space vehicles 
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Appendix E: Transforming Data 

The data means, standard deviations, and 
trend lines through data used in this 
analysis assume that the data has a bell-
shaped normal distribution. 

For example, the two figures at right show 
the same data for the number of FTEs. The 
top chart shows the data skewed up against 
the left axis with a non-bell-shaped 
distribution. The data in the bottom chart 
has been transformed into a near normal 
distribution by converting the data to their 
natural log values, i.e., ln (FTE).18 

The impact of non-normal distribution 
versus normal distribution in the data for 
the value of the mean can be seen in these 
two charts. 

• mean, non-normal distribution  
(top chart): 10.389 

• mean, normal distribution  
(bottom chart): 5.2 

The difference between the two means 
shows that the mean for non-normal data is 
twice the value for the mean for normal 
data and is very misleading. Note that the 
transformed mean is relatively close to the 
median of the untransformed data. It is 
always best practice to check the normality 
assumption of data before reporting the 
data’s parametric statistics. 

Throughout this report, the data used for 
prediction models were transformed to their 
natural logarithm values (loge = log2.718). 

                                                        
18  To achieve a more normal distribution of data it is common practice to use a log transformation.Throughout this report we 

chose to use a natural log transformation for the sake of consistency. The authors felt that a natural log transformation 
adequately satisfied the assumption of a normal data distribution and its consistent use eased its explanation and 
interpretation. 
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Appendix F: Predictive Models 

We statistically investigated many variables to establish predictive relationships to the outcome variables 
(Total Requirements, Total ESLOC, Total Duration, Total Hours, and Productivity). We found that 
surprisingly little explanatory power was discovered using the difference or percentage change comparing the 
estimated values to the final values. Instead we found statistically significant relationships using the initial 
estimates to predict the final outcomes when the data were transformed to their natural logarithm values. 

The results of these models are presented and discussed in Section 5. We present the full Minitab statistical 
output here. Each of these models utilized datasets created by trimming the bottom 5% and the top 5% of the 
cases based on each variables’ percentage change. The resulting spread of values is reported in Section 5.2. 

Presented below are the best fitted statistical model outputs. 

Total Requirements 
Regression Analysis: ln Total Req_Final versus ln Total Reqs_initial 
 
Analysis of Variance 
 
Source                DF   Seq SS  Contribution   Adj SS   Adj MS  F-Value  P-Value 
Regression             1  330.739        93.65%  330.739  330.739  2153.59    0.000 
  ln Total Reqs_i_1    1  330.739        93.65%  330.739  330.739  2153.59    0.000 
Error                146   22.422         6.35%   22.422    0.154 
  Lack-of-Fit        129   20.056         5.68%   20.056    0.155     1.12    0.419 
  Pure Error          17    2.366         0.67%    2.366    0.139 
Total                147  353.161       100.00% 
 
Model Summary 
 
       S    R-sq  R-sq(adj)    PRESS  R-sq(pred) 
0.391887  93.65%     93.61%  23.0106      93.48% 
 
Coefficients 
 
Term                 Coef  SE Coef       95% CI       T-Value  P-Value   VIF 
Constant            0.250    0.122  ( 0.009,  0.491)     2.05    0.042 
ln Total Reqs_i_1  0.9456   0.0204  (0.9054, 0.9859)    46.41    0.000  1.00 
 
Regression Equation 
 

ln Total Req_F_1 = 0.2498 + 0.9456 ln Total Reqs_i_1 
 
which translates to: 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 1.2838 ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅).9456 
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Figure 58: Fitted Regression Plot - Actual Requirements 

Total ESLOC 
Regression Analysis: ln ESLOC_F versus ln ESLOC_i 

Analysis of Variance 
 
Source         DF  Seq SS  Contribution  Adj SS   Adj MS  F-Value  P-Value 
Regression      1  289.99        85.03%  289.99  289.993   908.56    0.000 
  ln ESLOC_i    1  289.99        85.03%  289.99  289.993   908.56    0.000 
Error         160   51.07        14.97%   51.07    0.319 
Total         161  341.06       100.00% 
 
Model Summary 
 
       S    R-sq  R-sq(adj)    PRESS  R-sq(pred) 
0.564959  85.03%     84.93%  52.2909      84.67% 
 
Coefficients 
 
Term          Coef  SE Coef       95% CI       T-Value  P-Value   VIF 
Constant     0.701    0.325  ( 0.060,  1.342)     2.16    0.032 
ln ESLOC_i  0.9640   0.0320  (0.9008, 1.0271)    30.14    0.000  1.00 
 
Regression Equation 
 

ln ESLOC_F = 0.701 + 0.964 ln ESLOC_i 
 
which translates to: 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 2.0157 ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸).964 
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Figure 59: Fitted Regression Plot - Actual ESLOC 

Total Schedule Duration 
Regression Analysis: ln Months_F versus ln Months_i  
 
Analysis of Variance 
 
Source          DF  Seq SS  Contribution  Adj SS   Adj MS  F-Value  P-Value 
Regression       1  35.928        77.79%  35.928  35.9278   556.89    0.000 
  ln Mos i       1  35.928        77.79%  35.928  35.9278   556.89    0.000 
Error          159  10.258        22.21%  10.258   0.0645 
  Lack-of-Fit   95   8.789        19.03%   8.789   0.0925     4.03    0.000 
  Pure Error    64   1.469         3.18%   1.469   0.0229 
Total          160  46.186       100.00% 
 
Model Summary 
 
       S    R-sq  R-sq(adj)    PRESS  R-sq(pred) 
0.253998  77.79%     77.65%  10.6158      77.01% 
 
Coefficients 
 
Term        Coef  SE Coef       95% CI       T-Value  P-Value   VIF 
Constant   0.835    0.111  ( 0.615,  1.055)     7.50    0.000 
ln Mos i  0.7878   0.0334  (0.7219, 0.8537)    23.60    0.000  1.00 
 
Regression Equation 
 

ln Mos F = 0.8352 + 0.7878 ln Mos i 
 

which translates to:   𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 2.3054 ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷).7878 
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Figure 60: Fitted Regression Plot - Actual Duration 

 

Results for: ARMY Schedule Duration (Subset) 
 
Regression Analysis: ln Months_F versus ln Months_i  
 
Analysis of Variance 
 
Source         DF   Seq SS  Contribution   Adj SS   Adj MS  F-Value  P-Value 
Regression      1  16.0477        83.16%  16.0477  16.0477   311.14    0.000 
  ln Mos i      1  16.0477        83.16%  16.0477  16.0477   311.14    0.000 
Error          63   3.2493        16.84%   3.2493   0.0516 
  Lack-of-Fit  35   2.9766        15.42%   2.9766   0.0850     8.73    0.000 
  Pure Error   28   0.2728         1.41%   0.2728   0.0097 
Total          64  19.2971       100.00% 
 
Model Summary 
 
       S    R-sq  R-sq(adj)    PRESS  R-sq(pred) 
0.227105  83.16%     82.89%  3.54211      81.64% 
 
 
Coefficients 
 
Term        Coef  SE Coef       95% CI       T-Value  P-Value   VIF 
Constant   0.515    0.162  ( 0.190,  0.839)     3.17    0.002 
ln Mos i  0.8657   0.0491  (0.7676, 0.9638)    17.64    0.000  1.00 
 
Regression Equation 
 

ln Mos F = 0.5146 + 0.8657 ln Mos i 
  
which translates to: 

ARMY:   𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 1.6729 ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷).8657 
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Figure 61: Fitted Regression Plot - Actual Duration (Army) 

 

Results for: AF Schedule Duration (Subset) 
 
Regression Analysis: ln Months_F versus ln Months_i  
 
Analysis of Variance 
 
Source         DF   Seq SS  Contribution   Adj SS   Adj MS  F-Value  P-Value 
Regression      1  3.70572        61.30%  3.70572  3.70572    58.62    0.000 
  ln Mos i      1  3.70572        61.30%  3.70572  3.70572    58.62    0.000 
Error          37  2.33915        38.70%  2.33915  0.06322 
  Lack-of-Fit  28  2.32441        38.45%  2.32441  0.08301    50.67    0.000 
  Pure Error    9  0.01474         0.24%  0.01474  0.00164 
Total          38  6.04487       100.00% 
 
Model Summary 
 
       S    R-sq  R-sq(adj)    PRESS  R-sq(pred) 
0.251437  61.30%     60.26%  2.65284      56.11% 
 
Coefficients 
 
Term        Coef  SE Coef       95% CI       T-Value  P-Value   VIF 
Constant   1.085    0.327  ( 0.421,  1.748)     3.31    0.002 
ln Mos i  0.7258   0.0948  (0.5337, 0.9179)     7.66    0.000  1.00 
 
Regression Equation 
 

ln Mos F = 1.0847 + 0.7258 ln Mos i 
 
which translates to: 

Air Force:   𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 2.9587 ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷).7258 
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Figure 62: Fitted Regression Plot - Actual Duration (Air Force) 

 

Results for: NAVY Schedule Duration (Subset) 
 
Regression Analysis: ln Months_F versus ln Months_i  
 
Analysis of Variance 
 
Source         DF   Seq SS  Contribution   Adj SS   Adj MS  F-Value  P-Value 
Regression      1  15.5168        79.66%  15.5168  15.5168   215.45    0.000 
  ln Mos i      1  15.5168        79.66%  15.5168  15.5168   215.45    0.000 
Error          55   3.9611        20.34%   3.9611   0.0720 
  Lack-of-Fit  42   3.6669        18.83%   3.6669   0.0873     3.86    0.006 
  Pure Error   13   0.2942         1.51%   0.2942   0.0226 
Total          56  19.4779       100.00% 
 
Model Summary 
 
       S    R-sq  R-sq(adj)    PRESS  R-sq(pred) 
0.268367  79.66%     79.29%  4.42219      77.30% 
 
Coefficients 
 
Term        Coef  SE Coef       95% CI       T-Value  P-Value   VIF 
Constant   1.036    0.166  ( 0.704,  1.368)     6.25    0.000 
ln Mos i  0.7410   0.0505  (0.6399, 0.8422)    14.68    0.000  1.00 
 
Regression Equation 
 

ln Mos F = 1.0361 + 0.7410 ln Mos i 
 
which translates to: 

NAVY:  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 2.8182 ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷).7410 
 

4.003.753.503.253.002.752.50

4.5

4.0

3.5

3.0

2.5

2.0

S 0.251437
R-Sq 61.3%
R-Sq(adj) 60.3%

ln Mos i

ln
 M

os
 F

Regression
95% CI
95% PI

Fitted Regression Plot - Air Force Schedule Duration
ln Mos F = 1.085 + 0.7258 ln Mos i



 

 
CMU/SEI-2017-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. 
Please see Copyright notice for non-US Government use and distribution.  84 

 
Figure 63: Fitted Regression Plot - Actual Duration (Navy) 

Total Hours 
Regression Analysis: ln Total Hrs_F versus ln Total Hrs_i  

Analysis of Variance 
 
Source             DF   Seq SS  Contribution   Adj SS   Adj MS  F-Value  P-Value 
Regression          1  269.536        89.86%  269.536  269.536  1417.46    0.000 
  ln Total Hrs_i    1  269.536        89.86%  269.536  269.536  1417.46    0.000 
Error             160   30.425        10.14%   30.425    0.190 
  Lack-of-Fit     159   30.082        10.03%   30.082    0.189     0.55    0.820 
  Pure Error        1    0.342         0.11%    0.342    0.342 
Total             161  299.960       100.00% 
 
Model Summary 
 
       S    R-sq  R-sq(adj)    PRESS  R-sq(pred) 
0.436066  89.86%     89.79%  31.3742      89.54% 
 
Coefficients 
 
Term              Coef  SE Coef       95% CI       T-Value  P-Value   VIF 
Constant         1.198    0.245  ( 0.714,  1.682)     4.89    0.000 
ln Total Hrs_i  0.9097   0.0242  (0.8620, 0.9574)    37.65    0.000  1.00 
 
Regression Equation 
 

ln Total Hrs_F = 1.1978 + 0.9097 ln Total Hrs_i 
 
which translates to: 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = 3.3128 ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻).9097 
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Figure 64: Fitted Regression Plot - Actual Total Effort 

 

The following model is included in case an initial estimate for total hours is not available, but there is an initial 
estimate of size (ESLOC). The strength of the fit is only moderate. 

 
Regression Analysis: ln Total Hrs_F versus ln ESLOC_i  
 
Analysis of Variance 
 
Source         DF  Seq SS  Contribution  Adj SS   Adj MS  F-Value  P-Value 
Regression      1  202.26        67.43%  202.26  202.265   331.26    0.000 
  ln ESLOC_i    1  202.26        67.43%  202.26  202.265   331.26    0.000 
Error         160   97.70        32.57%   97.70    0.611 
Total         161  299.96       100.00% 
 
Model Summary 
 
       S    R-sq  R-sq(adj)    PRESS  R-sq(pred) 
0.781407  67.43%     67.23%  100.336      66.55% 
 
Coefficients 
 
Term          Coef  SE Coef       95% CI       T-Value  P-Value   VIF 
Constant     2.031    0.460  ( 1.122,  2.940)     4.41    0.000 
ln ESLOC_i  0.8259   0.0454  (0.7363, 0.9155)    18.20    0.000  1.00 
 
Regression Equation: 
 

ln Total Hrs_F = 2.0307 + 0.8259 ln ESLOC_i 
 

which translates to: 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = 7.6192 ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸).8259 
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Figure 65: Fitted Regression Plot - Actual Total Effort by ESLOC 

Productivity 
Regression Analysis: ln Prod F versus ln Prod i  
 
Analysis of Variance 
 
Source        DF  Seq SS  Contribution  Adj SS   Adj MS  F-Value  P-Value 
Regression     1   51.25        55.24%   51.25  51.2468   197.49    0.000 
  ln Prod i    1   51.25        55.24%   51.25  51.2468   197.49    0.000 
Error        160   41.52        44.76%   41.52   0.2595 
Total        161   92.76       100.00% 
 
Model Summary 
 
       S    R-sq  R-sq(adj)    PRESS  R-sq(pred) 
0.509396  55.24%     54.96%  42.4649      54.22% 
 
Coefficients 
 
Term         Coef  SE Coef       95% CI       T-Value  P-Value   VIF 
Constant    1.221    0.269  ( 0.689,  1.753)     4.54    0.000 
ln Prod i  0.7439   0.0529  (0.6393, 0.8484)    14.05    0.000  1.00 
 
Regression Equation 
 

ln Prod F = 1.2212 + 0.7439 ln Prod i 
 
which translates to:   𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 3.3914(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃).7439 
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Figure 66: Fitted Regression Plot - Actual Productivity 

 

Results for AIS Productivity (Subset) 
  
Regression Analysis: ln Prod F versus ln Prod i  
 
Analysis of Variance 
 
Source       DF  Seq SS  Contribution  Adj SS  Adj MS  F-Value  P-Value 
Regression    1   2.385        49.68%   2.385  2.3853    18.76    0.000 
  ln Prod i   1   2.385        49.68%   2.385  2.3853    18.76    0.000 
Error        19   2.416        50.32%   2.416  0.1272 
Total        20   4.802       100.00% 
 
Model Summary 
 
       S    R-sq  R-sq(adj)    PRESS  R-sq(pred) 
0.356614  49.68%     47.03%  2.90187      39.56% 
 
Coefficients 
 
Term        Coef  SE Coef      95% CI      T-Value  P-Value   VIF 
Constant   2.054    0.836  (0.304, 3.804)     2.46    0.024 
ln Prod i  0.665    0.154  (0.344, 0.987)     4.33    0.000  1.00 
 
Regression Equation 
 

ln Prod F = 2.0539 + 0.6651 ln Prod i 
 
which translates to: 

AIS: 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 7.7983 ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃).6651 
 
 
Results for ENG Productivity (Subset) 
  
Regression Analysis: ln Prod F versus ln Prod i  
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Analysis of Variance 
 
Source       DF  Seq SS  Contribution  Adj SS  Adj MS  F-Value  P-Value 
Regression    1   8.553        59.02%   8.553  8.5530    25.92    0.000 
  ln Prod i   1   8.553        59.02%   8.553  8.5530    25.92    0.000 
Error        18   5.940        40.98%   5.940  0.3300 
Total        19  14.493       100.00% 
 
Model Summary 
 
       S    R-sq  R-sq(adj)    PRESS  R-sq(pred) 
0.574435  59.02%     56.74%  7.09712      51.03% 
 
Coefficients 
 
Term        Coef  SE Coef      95% CI      T-Value  P-Value   VIF 
Constant   1.550    0.693  (0.093, 3.007)     2.24    0.038 
ln Prod i  0.664    0.130  (0.390, 0.938)     5.09    0.000  1.00 
 
Regression Equation 
 

ln Prod F = 1.5502 + 0.6639 ln Prod i 
 
which translates to: 

ENG: 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 4.7124(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃).6639 
 
Results for RT Productivity (Subset) 
 
RT Regression Analysis: ln Prod F versus ln Prod i  
 
Analysis of Variance 
 
Source        DF  Seq SS  Contribution  Adj SS   Adj MS  F-Value  P-Value 
Regression     1   29.48        50.91%   29.48  29.4847   120.29    0.000 
  ln Prod i    1   29.48        50.91%   29.48  29.4847   120.29    0.000 
Error        116   28.43        49.09%   28.43   0.2451 
Total        117   57.92       100.00% 
 
Model Summary 
 
       S    R-sq  R-sq(adj)    PRESS  R-sq(pred) 
0.495099  50.91%     50.48%  29.3631      49.30% 
 
Coefficients 
 
Term         Coef  SE Coef       95% CI       T-Value  P-Value   VIF 
Constant    1.360    0.318  ( 0.730,  1.990)     4.28    0.000 
ln Prod i  0.7027   0.0641  (0.5758, 0.8296)    10.97    0.000  1.00 
 
Regression Equation 
 

ln Prod F = 1.360 + 0.7027 ln Prod i 
 
which translates to: 

RT: 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 3.8969(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃).7027 
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The following models are based on the difference between the initial estimated productivity and the final 
actual productivity. As such, it requires data from both the 2630-2 and the 2630-3. It cannot be calculated 
using only the initial estimate. However, if data can be accessed at some midway point in the development 
lifecycle, this approach should result in more reliable estimates of the outcome. These models can also be used 
when considering analogies for estimation by comparing other project attributes. 

First we present the model for all cases with a positive change (underestimate) in productivity, followed by the 
breakout models for AIS, ENG, and RT. Next, we show the model for all cases with a negative change 
(overestimate) in productivity followed by the super domain breakout models. 

 
Results for Cases with Positive Change in Productivity 
 
Regression Analysis: ln Prod F versus ln Prod i  
 
Analysis of Variance 
 
Source       DF  Seq SS  Contribution  Adj SS   Adj MS  F-Value  P-Value 
Regression    1  32.958        88.63%  32.958  32.9578   600.13    0.000 
  ln Prod i   1  32.958        88.63%  32.958  32.9578   600.13    0.000 
Error        77   4.229        11.37%   4.229   0.0549 
Total        78  37.186       100.00% 
 
Model Summary 
 
       S    R-sq  R-sq(adj)    PRESS  R-sq(pred) 
0.234345  88.63%     88.48%  4.44599      88.04% 
 
Coefficients 
 
Term         Coef  SE Coef       95% CI       T-Value  P-Value   VIF 
Constant    0.804    0.181  ( 0.444,  1.165)     4.44    0.000 
ln Prod i  0.9120   0.0372  (0.8378, 0.9861)    24.50    0.000  1.00 
 
Regression Equation 
 

ln Prod F = 0.8043 + 0.9120 ln Prod i 
 

which translates to: 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 2.235(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃).912𝜖𝜖 
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Figure 67: Fitted Regression Plot - Actual Positive Productivity (underestimated) 

 
 

Results for AIS Cases with Positive Change in Productivity (Subset) 
  
Regression Analysis: ln Prod F versus ln Prod i  
 
Analysis of Variance 
 
n = 13 
 
Source       DF  Seq SS  Contribution  Adj SS   Adj MS  F-Value  P-Value 
Regression    1  1.6636        76.09%  1.6636  1.66363    35.00    0.000 
  ln Prod i   1  1.6636        76.09%  1.6636  1.66363    35.00    0.000 
Error        11  0.5229        23.91%  0.5229  0.04754 
Total        12  2.1865       100.00% 
 
Model Summary 
 
       S    R-sq  R-sq(adj)     PRESS  R-sq(pred) 
0.218025  76.09%     73.91%  0.659752      69.83% 
 
Coefficients 
 
Term        Coef  SE Coef      95% CI      T-Value  P-Value   VIF 
Constant   2.099    0.633  (0.707, 3.491)     3.32    0.007 
ln Prod i  0.698    0.118  (0.439, 0.958)     5.92    0.000  1.00 
 
Regression Equation 
 

ln Prod F = 2.0991 + 0.6983 ln Prod i 
 

which translates to: 
AIS: 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 8.1589 ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)..6983 
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Results for ENG Cases with Positive Change in Productivity (Subset) 
  
Regression Analysis: ln Prod F versus ln Prod i  
 
Analysis of Variance 
 
n = 9 
 
Source       DF  Seq SS  Contribution  Adj SS   Adj MS  F-Value  P-Value 
Regression    1  3.0973        92.38%  3.0973  3.09729    84.83    0.000 
  ln Prod i   1  3.0973        92.38%  3.0973  3.09729    84.83    0.000 
Error         7  0.2556         7.62%  0.2556  0.03651 
Total         8  3.3529       100.00% 
 
Model Summary 
 
       S    R-sq  R-sq(adj)     PRESS  R-sq(pred) 
0.191079  92.38%     91.29%  0.467369      86.06% 
 
Coefficients 
 
Term        Coef  SE Coef       95% CI      T-Value  P-Value   VIF 
Constant   0.030    0.542  (-1.251, 1.312)     0.06    0.957 
ln Prod i  1.085    0.118  ( 0.806, 1.363)     9.21    0.000  1.00 
 
Regression Equation 
 

ln Prod F = 0.0302 + 1.0848 ln Prod i 
 

which translates to: 
ENG: 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 1.0307 ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)1.0848 

 
 

Results for RT Cases with Positive Change in Productivity (Subset) 
  
Regression Analysis: ln Prod F versus ln Prod i  
 
Analysis of Variance 
 
n = 55 
 
Source       DF  Seq SS  Contribution  Adj SS   Adj MS  F-Value  P-Value 
Regression    1  20.392        88.01%  20.392  20.3920   389.13    0.000 
  ln Prod i   1  20.392        88.01%  20.392  20.3920   389.13    0.000 
Error        53   2.777        11.99%   2.777   0.0524 
Total        54  23.169       100.00% 
 
Model Summary 
 
       S    R-sq  R-sq(adj)    PRESS  R-sq(pred) 
0.228920  88.01%     87.79%  2.98327      87.12% 
 
Coefficients 
 
Term         Coef  SE Coef       95% CI       T-Value  P-Value   VIF 
Constant    0.885    0.213  ( 0.457,  1.313)     4.15    0.000 
ln Prod i  0.8873   0.0450  (0.7971, 0.9775)    19.73    0.000  1.00 
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Regression Equation 
 

ln Prod F = 0.885 + 0.8873 ln Prod i 
 
which translates to: 

RT: 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 2.4233 ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃).8873 
 
 

Results for Cases with Negative Change in Productivity 
 
Regression Analysis: ln Prod F versus ln Prod i  
 
Analysis of Variance 
 
Source       DF  Seq SS  Contribution  Adj SS   Adj MS  F-Value  P-Value 
Regression    1   36.09        75.79%   36.09  36.0862   253.56    0.000 
  ln Prod i   1   36.09        75.79%   36.09  36.0862   253.56    0.000 
Error        81   11.53        24.21%   11.53   0.1423 
Total        82   47.61       100.00% 
 
Model Summary 
 
       S    R-sq  R-sq(adj)    PRESS  R-sq(pred) 
0.377252  75.79%     75.49%  12.0880      74.61% 
 
Coefficients 
 
Term         Coef  SE Coef       95% CI       T-Value  P-Value   VIF 
Constant    0.077    0.296  (-0.512,  0.666)     0.26    0.795 
ln Prod i  0.8910   0.0560  (0.7797, 1.0023)    15.92    0.000  1.00 
 
Regression Equation 
 

ln Prod F = 0.0771 + 0.8910 ln Prod i 
 
which translates to: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 1.0802 ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃).891 
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Figure 68: Fitted Regression Plot - Actual Negative Productivity (overestimated) 

 
Results for AIS Cases with Negative Change in Productivity (Subset) 
  
Regression Analysis: ln Prod F versus ln Prod i  
 
Analysis of Variance 
 
Source       DF   Seq SS  Contribution   Adj SS   Adj MS  F-Value  P-Value 
Regression    1  1.66477        98.46%  1.66477  1.66477   383.74    0.000 
  ln Prod i   1  1.66477        98.46%  1.66477  1.66477   383.74    0.000 
Error         6  0.02603         1.54%  0.02603  0.00434 
Total         7  1.69080       100.00% 
 
Model Summary 
 
        S    R-sq  R-sq(adj)      PRESS  R-sq(pred) 
0.0658660  98.46%     98.20%  0.0452579      97.32% 
 
Coefficients 
 
Term         Coef  SE Coef       95% CI       T-Value  P-Value   VIF 
Constant   -0.078    0.280  (-0.763,  0.608)    -0.28    0.791 
ln Prod i  0.9832   0.0502  (0.8604, 1.1061)    19.59    0.000  1.00 
 
Regression Equation 
 

ln Prod F = -0.078 + 0.9832 ln Prod i 
 

which translates to: 
 𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 0.9254 ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃).9832 
 
 

Results for ENG Cases with Negative Change in Productivity (Subset) 
  
Regression Analysis: ln Prod F versus ln Prod i  
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Analysis of Variance 
 
Source       DF  Seq SS  Contribution  Adj SS  Adj MS  F-Value  P-Value 
Regression    1   9.640        86.67%   9.640  9.6399    58.52    0.000 
  ln Prod i   1   9.640        86.67%   9.640  9.6399    58.52    0.000 
Error         9   1.483        13.33%   1.483  0.1647 
Total        10  11.123       100.00% 
 
Model Summary 
 
       S    R-sq  R-sq(adj)    PRESS  R-sq(pred) 
0.405875  86.67%     85.19%  2.35519      78.83% 
 
Coefficients 
 
Term         Coef  SE Coef       95% CI      T-Value  P-Value   VIF 
Constant   -0.693    0.760  (-2.412, 1.027)    -0.91    0.386 
ln Prod i   0.996    0.130  ( 0.701, 1.290)     7.65    0.000  1.00 
 
Regression Equation 
 

ln Prod F = -0.693 + 0.9958 ln Prod i 
 

which translates to: 
 𝐸𝐸𝐸𝐸𝐸𝐸 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 0.5001 ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃).9958 
 
 
 

Results for RT Cases with Negative Change in Productivity (Subset) 
  
Regression Analysis: ln Prod F versus ln Prod i  
 
Analysis of Variance 
 
Source       DF  Seq SS  Contribution  Adj SS   Adj MS  F-Value  P-Value 
Regression    1  20.512        70.84%  20.512  20.5125   148.18    0.000 
  ln Prod i   1  20.512        70.84%  20.512  20.5125   148.18    0.000 
Error        61   8.444        29.16%   8.444   0.1384 
Total        62  28.957       100.00% 
 
Model Summary 
 
       S    R-sq  R-sq(adj)    PRESS  R-sq(pred) 
0.372058  70.84%     70.36%  8.97412      69.01% 
 
Coefficients 
 
Term         Coef  SE Coef       95% CI       T-Value  P-Value   VIF 
Constant    0.302    0.357  (-0.411,  1.015)     0.85    0.400 
ln Prod i  0.8431   0.0693  (0.7046, 0.9816)    12.17    0.000  1.00 
 
Regression Equation 
 
ln Prod F = 0.302 + 0.8431 ln Prod i 
 

which translates to: 
 𝑅𝑅𝑅𝑅 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 1.3529 ∗ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃).8431 
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Appendix G: Burden Labor Rate 

A burden labor rate is used in this analysis to derive cost. The rate includes: 

• wages 
• payroll taxes 
• worker's compensation and health insurance 
• paid time off 
• training and travel expenses 
• vacation and sick leave 
• pension contributions 
• and other benefits 

The burdened rate may be as much as 50% higher than payroll costs alone (i.e., more than 50% of wages). 

An average burden labor rate of $150,000 per year is assumed. This rate breaks down to $12,500/month and 
$82.24/hour using 1,824 labor hours in a year. The 1,824 labors hours is based on 152 labor hours per month 
for 12 months. 
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Appendix H: Most-Least Expensive Software Analysis Details 

Average project size for this data set is 40,000 ESLOC or 40 KESLOC. The natural log equivalent is 10.6 
ln_ESLOC or 3.69 ln_KESLOC, respectively. 

RT Regression Analysis: ln_Hrs versus ln_KESLOC  

The regression equation is 
ln_Hrs = 7.322 + 0.8897 ln_KESLOC 
 
S = 0.775026   R-Sq = 77.1%   R-Sq(adj) = 77.1% 
 
Analysis of Variance 
Source       DF       SS       MS       F      P 
Regression    1  577.565  577.565  961.54  0.000 
Error       285  171.190    0.601 
Total       286  748.754 

RT Regression Analysis: ln_Days versus ln_KESLOC  

The regression equation is 
ln_Days = 6.480 + 0.1151 ln_KESLOC 
 
S = 0.603608   R-Sq = 8.5%   R-Sq(adj) = 8.2% 
 
Analysis of Variance 
Source       DF       SS       MS      F      P 
Regression    1    9.663  9.66275  26.52  0.000 
Error       285  103.838  0.36434 
Total       286  113.500 
 

ENG Regression Analysis: ln_Hrs versus ln_KESLOC  

The regression equation is 
ln_Hrs = 7.295 + 0.8772 ln_KESLOC 
 
S = 0.754953   R-Sq = 81.0%   R-Sq(adj) = 80.6% 
 
Analysis of Variance 
Source      DF       SS       MS       F      P 
Regression   1  116.460  116.460  204.33  0.000 
Error       48   27.358    0.570 
Total       49  143.818 
 

ENG Regression Analysis: ln_Days versus ln_KESLOC  

The regression equation is 
ln_Days = 6.541 + 0.1146 ln_KESLOC 
 
S = 0.476289   R-Sq = 15.4%   R-Sq(adj) = 13.7% 
 
Analysis of Variance 
Source      DF       SS       MS     F      P 
Regression   1   1.9884  1.98839  8.77  0.005 
Error       48  10.8889  0.22685 
Total       49  12.8773  
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AIS Regression Analysis: ln_Hrs versus ln_KESLOC  

The regression equation is 
ln_Hrs = 6.754 + 0.8932 ln_KESLOC 
 
S = 0.557389   R-Sq = 79.7%   R-Sq(adj) = 79.1% 
 
Analysis of Variance 
Source      DF       SS       MS       F      P 
Regression   1  40.1725  40.1725  129.30  0.000 
Error       33  10.2525   0.3107 
Total       34  50.4250 
 

 

AIS Regression Analysis: ln_Days versus ln_KESLOC  

The regression equation is 
ln_Days = 6.036 + 0.1741 ln_KESLOC 
 
S = 0.683082   R-Sq = 9.0%   R-Sq(adj) = 6.3% 
 
Analysis of Variance 
Source      DF       SS       MS     F      P 
Regression   1   1.5267  1.52668  3.27  0.080 
Error       33  15.3979  0.46660 
Total       34  16.9245 
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Appendix I: Best-in-class/Worst-in-class Software Analysis Details 

Average project size for this data set differed by super-domain. Table 32 shows the average sizes and their 
natural log equivalents. 

Table 32: Super-Domain Average project Size 

 Average Size Ln Equivalent 

Real Time (RT) 34,000 10.43 

Engineering (ENG) 32,000 10.37 

Automated Information Systems (AIS) 72,000 11.18 

RT Average Project Size 

Variable    N  N*    Mean  SE Mean  StDev  Minimum     Q1  Median      Q3  Maximum 
ln_ESLOC  198   0  10.289    0.111  1.560    6.317  9.175  10.445  11.459   14.047 
Mean: 29,407 
Median: 34,372 
Average project size is: 34,000 ESLOC 

RT Regression Analysis: ln_Hrs versus ln_ESLOC  

The regression equation is 
ln_Hrs = 0.8344 + 0.9348 ln_ESLOC 
 
S = 0.770250   R-Sq = 78.3%   R-Sq(adj) = 78.2% 
 
Analysis of Variance 
Source       DF       SS       MS       F      P 
Regression    1  419.108  419.108  706.42  0.000 
Error       196  116.284    0.593 
Total       197  535.392 

RT Regression Analysis: ln_Days versus ln_ESLOC  

The regression equation is 
ln_Days = 5.629 + 0.1223 ln_ESLOC 
 
S = 0.616806   R-Sq = 8.8%   R-Sq(adj) = 8.3% 
 
Analysis of Variance 
Source       DF       SS       MS      F      P 
Regression    1   7.1682  7.16816  18.84  0.000 
Error       196  74.5682  0.38045 
Total       197  81.7363 

 

ENG Average Project Size 

Variable   N  N*    Mean  SE Mean  StDev  Minimum     Q1  Median      Q3  Maximum 
ln_ESLOC  50   0  10.314    0.249  1.757    4.851  9.319  10.388  11.632   14.099 
Mean: 30,152 
Median: 32,468 
The average project size is: 32,000 
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ENG Regression Analysis: ln_Hrs versus ln_ESLOC  

The regression equation is 
ln_Hrs = 1.235 + 0.8772 ln_ESLOC 
 
S = 0.754953   R-Sq = 81.0%   R-Sq(adj) = 80.6% 
 
Analysis of Variance 
Source      DF       SS       MS       F      P 
Regression   1  116.460  116.460  204.33  0.000 
Error       48   27.358    0.570 
Total       49  143.818 

ENG Regression Analysis: ln_Days versus ln_ESLOC  

The regression equation is 
ln_Days = 5.749 + 0.1146 ln_ESLOC 
 
S = 0.476289   R-Sq = 15.4%   R-Sq(adj) = 13.7% 
 
Analysis of Variance 
Source      DF       SS       MS     F      P 
Regression   1   1.9884  1.98839  8.77  0.005 
Error       48  10.8889  0.22685 
Total       49  12.8773 

AIS Average Project Size 

Variable   N  N*    Mean  SE Mean  StDev  Minimum      Q1  Median      Q3  Maximum 
ln_ESLOC  35   0  11.198    0.206  1.217    8.475  10.215  11.180  11.994   13.641 
Mean = 72,984 
Median = 71,682 
Average project size = 72,000 

AIS Regression Analysis: ln_Hrs versus ln_ESLOC  

The regression equation is 
 
ln_Hrs = 0.5843 + 0.8932 ln_ESLOC 
 
S = 0.557389   R-Sq = 79.7%   R-Sq(adj) = 79.1% 
 
Analysis of Variance 
Source      DF       SS       MS       F      P 
Regression   1  40.1725  40.1725  129.30  0.000 
Error       33  10.2525   0.3107 
Total       34  50.4250 

AIS Regression Analysis: ln_Days versus ln_ESLOC  

The regression equation is 
ln_Days = 4.833 + 0.1741 ln_ESLOC 
 
S = 0.683082   R-Sq = 9.0%   R-Sq(adj) = 6.3% 
 
Analysis of Variance 
Source      DF       SS       MS     F      P 
Regression   1   1.5267  1.52668  3.27  0.080 
Error       33  15.3979  0.46660 
Total       34  16.9245
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Appendix J: Initial/Final Cases with Complete Schedule Change Data 

Table 33 shows the changes in schedule for those cases with complete schedule data reported by phase.  

 

Table 33: Summary of Schedule Change (in Months) – SRDR Pairs with Complete Phase Data 

 

 

 

 

 

 

 

 

 

 

 

 

ALL cases 
(58) 

Change in Schedule (Actual - Estimate) by SW Development Phase 
(in months) 

Change in Mean Median 
Minimum 

value 
Maximum 

value 
no change 
reported 

n reporting 
change missing 

Start Date 0 0 -2 12 46 12 0 

End Date 3 0 -43 57 19 39 0 

Total  Duration 14 8 -42 78 8 58 0 

Total Hours 12,998 1,201 -56,778 350,591 0 58 0 

Reqs End Date 8 2 -45 58 10 48 0 

Arch End Date 5 3 -10 58 14 44 0 

Code End Date 12 9 -9 61 4 54 0 

INT End Date 5 1 -17 59 12 46 0 

Qual End Date 4 1 -42 59 10 48 0 

DTE End Date 4 1 -20 56 10 48 0 
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Table 34 shows an increasing correlation in schedule change (i.e., when schedule changes in one phase, succeeding phases also experience a schedule 
change).19 The correlation of change generally increases with each succeeding software development phase (requirements to architecture to coding to 
integration to qualification testing and to development test and evaluation (DTE).  

Table 34: Change in Schedule Correlations 

 
End Date Total 

Hours 
Total 

Duration 
Reqs 

End Date 
Arch 

End Date 
Code 

End Date 
INT 

End Date 
Qual 

 End Date 

Total Hours 0.368        
p-value 0.005        

Total  Duration 0.517 0.082       
p-value 0 0.543       

Reqs End Date 0.489 0.358 0.159      
p-value 0 0.006 0.233      

Arch End Date 0.618 0.559 0.243 0.686     
p-value 0 0 0.066 0     

Code End Date 0.607 0.439 0.233 0.513 0.752    
p-value 0 0.001 0.079 0 0    

INT End Date 0.74 0.48 0.36 0.417 0.816 0.794   
p-value 0 0 0.006 0.001 0 0   

Qual End Date 0.908 0.422 0.5 0.545 0.694 0.711 0.84  
p-value 0 0.001 0 0 0 0 0  

DTE End Date 0.848 0.392 0.402 0.362 0.727 0.643 0.865 0.787 
p-value 0 0.002 0.002 0.005 0 0 0 0 

                                                        
19  The data used for this analysis was limited due to the constraints that an initial and final SRDR pair had to exist and there had to be values for each software development phase 

in the initial and final data. This resulted in 58 pairs of data being analyzed. 
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The conclusion is that once schedule begins to slip, the slip propagates to succeeding phases.  

The analysis of growth revealed several things: 

• Additional requirements is associated with an increase in productivity. 
• The largest size increases occurred in projects that experienced a positive productivity increase between initial 

and final SRDRs. 
• Projects with positive productivity showed the strongest median value increase in duration of 42%. 
• Negative productivity group projects showed the most increase in expended hours between initial and final 

SRDRs, 54%. 
• Once schedule begins to slip, succeeding phases also slip in schedule. 

During the course of the analyses, several results suggested further study and analyses. There is more to understand 
in comparing initial SRDR data to final SRDR data which is beyond the scope of this current effort. Future research 
should investigate: 

• An area of special analytical interest is the difference between those projects/builds which performed better 
than expected versus those that did not. One measure which drives cost is productivity. Estimates of 
productivity which are higher than achieved can drive cost/schedule overruns. The following tables give 
breakdowns of several of the key variables for all pairs followed by the same breakdowns by those cases which 
under-performed their productivity estimates and the cases which performed better than their productivity 
estimates. 

• Another area of analytical interest is the cascading effect schedule slippage as seen in Table 34. There is very 
limited data with complete information for all software development phases. Interestingly, changes increase as 
development phases progress. However, while this effect is mirrored with the change in end date we do not see 
this relationship to total hours. Future effort could further investigate this cascading effect by expanding the 
dataset with closer examination of cases with incomplete data.
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Appendix K: Data Source Details 

Background 

A spreadsheet of transcribed DACIMS SRDR data that was produced by the Naval Air Systems Command 
(NAVAIR) and dated July 2013 forms the basis of analysis in this document. Under the leadership of Michael 
Popp, NAVAIR evaluated the contractor submissions regularly to incorporate new data, which they used to 
establish/revise cost estimating relationships. This team’s activity provided a valuable service to the Department 
of Defense (DoD) cost community. Efforts are underway to replicate this activity at the Service cost centers. 
Wilson Rosa (formerly with the Air Force Cost Analysis Agency, now with the Naval Center for Cost Analysis) 
used a version of this spreadsheet to investigate project performance and cost estimating relationships of interest 
to the Air Force. 

The spreadsheet produced by NAVAIR dated July 2013 comprised 2,445 entries transcribed from the original 
contractor submissions. SEI also obtained a copy of all SRDR files submitted to DCARC as of September 2013. 
After removing duplicates, these 1679 files include initial and final Software Resource Data Reports (SRDRs), 
data dictionary files, validation memos from the Defense Cost and Resource Center (DCARC), and other auxiliary 
information files sometimes provided by the contactors. SEI constructed a repository of the contractor 
submissions which mirrored the structure of the Defense Automated Cost Information Management System 
(DACIMS) on the DCARC website as of September 2013 (http://dcarc.cape.osd.mil/csdr/default.aspx).  

To facilitate research, SEI cross-linked over 90% of the source documents (contractor submissions) obtained from 
DCARC to the entries in the NAVAIR spreadsheet and to the Rosa revisions. This enables quick traceability 
between the source, NAVAIR, and Rosa data whenever issues arise concerning specific entries. SEI also 
constructed a programming tool for verification purposes. This tool successfully extracts the information from the 
standard Excel form for 2630-2 (initial) and 2630-3 (final) reports and stores the data in a usable format in a 
Microsoft Access database, along with the appropriate link addresses. Unfortunately, contractors are able to 
generate their own variations of the form so that a tool making the data in the files comparable requires a great 
deal of manual effort. The SEI tool requires further development to address all the different formats and file types, 
but did extract 1,632 separate entries from 462 files that complied with the standard Excel format. We also cross-
linked the appropriate data dictionaries. 

The NAVAIR spreadsheet is filled with more than 1,100 comments inserted to help explain and assess particular 
contractor entries. Much of the data reported is considered suspicious for analytical purposes and NAVAIR has 
indicated which entries it considers good for use. When at AFCAA, Wilson Rosa further evaluated several of the 
submissions for “reasonableness,” which led him to contact several of the contractor development teams directly 
for clarification and revision. These communications resulted in several corrections to specific values in the 
dataset. In our early collaboration with Wilson Rosa, we have incorporated these revisions to the NAVAIR July 
2013 dataset. However, the Rosa dataset was based on data collected in 2012. For traceability of the revisions, 
Wilson Rosa also made available the notes and emails of his communications with the various contractors. 

We have identified all the differences between the Rosa dataset and the NAVAIR dataset and have accepted 
Rosa’s revisions when they seemed appropriate. Data evaluated by NAVAIR forms the vast bulk of the data, but 
for verification, SEI undertook the linkage of actual source documents provided by CAPE/DCARC to the dataset 
(CAPE stands for Cost Assessment and Program Evaluation). The dataset we constructed thus uses original 

http://dcarc.cape.osd.mil/csdr/default.aspx
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contractor submission data as represented in the NAVAIR spreadsheet with specific revisions as communicated to 
Wilson Rosa by the contractors, along with a few revisions we made based on the original contractor reports. 

The selection of which case to use for analysis is the crux of the problem with this type of data. The DACIMS 
SRDR repository maintained by CAPE/DCARC comprised over 1,700 files in 2013. The data came in various 
types of files (Excel, Word, PDF, PowerPoint) and in various data formats. Some files included one submission 
while other files included dozens. The task performed by NAVAIR in transforming this data into a usable form 
represented considerable effort. Of the 2,445 contractor submissions in the NAVAIR dataset a mix of only 638 
initial and final submissions were recommended BY NAVAIR as good for use. We took this as a starting point for 
the analysis of actual project performance as represented by the contractors’ final submissions. Similarly, 
NAVAIR identified 394 cases as suitable for pairing, that is, the comparison of estimated versus actual 
performance as represented by the difference between the initial and final submissions. 

We performed our own assessment of the data by selecting cases to use for analysis based on the NAVAIR and 
Rosa recommendations and comments but also using the information contained in the submitted data dictionaries. 
Our dataset differs slightly from both the NAVAIR and Rosa datasets in this regard since we used our best 
judgment in comparing all these sources of information for the selection process. Of the 441 final submissions 
rated good for use by NAVAIR, we created 287 records for analysis. Of the 197 pairs rated good, we selected 181 
after our investigation of the data. We maintain a linked database of the NAVAIR and Rosa spreadsheets together 
with the original source submissions and data dictionaries. All revisions made by any party are identified and 
traceable to the source documents. The inclusion of all comments by NAVAIR, AFCAA, and SEI should prove 
useful to any analyst wishing to make use of the data. 

Data Demographics 

The Software Resources Data Report (SRDR) is the primary source of data on software projects and their 
performance. It is a contract data deliverable that formalized the reporting of software metrics data. It consists of 
the following two forms: 

1. Data Report 
2. Data Dictionary 

It is designed to record both the estimates and actual results of new software developments or upgrades. 

The SRDR applies to all major contracts and subcontracts, regardless of contract type, for contractors developing 
or producing software elements within Acquisition Category (ACAT) I and IA programs and pre-MDAP and pre-
MAIS programs subsequent to Milestone A approval for any software development element with a projected 
software effort greater than $20M.20 

Reporting Frequency 

Projects submit reports for two types of reporting events: 

• contract event—an SRDR is required at contract start (Initial Developer Submission, Form 2630-2) and at 
contract completion (Final Developer Submission) 

                                                        
20  CSDR Requirements, OSD Defense Cost and Resource Center, 

http://dcarc.cape.osd.mil/CSDR/CSDROverview.aspx#Introduction 
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• product event—an SRDR is required at the start of a product increment (Initial Developer Submission) and at 
the completion of a product increment (Final Developer Submission, Form 2630-3). An increment is a partial 
delivery of a product capability. Increments are also referred to as spirals, builds, and releases. 

The SRDRs for the start and end of a contract event will contain all of the data for all product events within the 
contract. Therefore, care must be taken to analyze only records that are from either contract events or product 
events but not both. 

The SRDR event data used in this analysis is based on product event data and is referred to as project 
data in this Factbook. 

The SRDR data used in this analysis is based on the final report that contains actual result data. Data for this 
analysis had to include the following information: 

• size data 
• effort data 
• schedule data 

Based on this criterion, the dataset for this analysis used 287 projects from the product-event final report data. 
Similarly, we used 181 pairs of initial and final cases for analysis of the estimated versus actual performance. See 
Appendix J for details on the paired data. 

As more data is added to the Defense Automated Cost Information Management System (DACIMS), this analysis 
can be expanded and updated. 

Distribution by Service 

The analysis dataset is spread across the three services (Marine Corps projects are included with Navy projects): 

• Army (15) 
• Air Force (12)  
• Navy (18)  
Note, that each program rather than each submission is counted only once. 
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Figure 69: SRDR Final Submissions by Service 

1.4 Distribution by Super-domain 

The analysis dataset can be segregated into different classes called super-domains. Super-domains are high-level 
groupings of software application domains, as shown in Figure 70. We initially determined four super-domains: 

• engineering software (50) 
• real time software (198) 
• automated information system software (35) 
• mission support software (4) 

The Mission Support domain is omitted from the analyses in this report due to its small number of projects. A 
more detailed explanation of the super-domains is provided in the Appendix C: Super-domains. 
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Figure 70: Final Submission by Super Domain 

Distribution by Application Domains 

Super-domains are a categorization of the thirteen application domains which are identified on the contractor 
submissions. The following chart lists the application domains and are color coded to indicate the super-domain 
category. Real Time Embedded, Command and Control, and Signal Processing make up more than half of the 
entries. 

 

Figure 71: Program Distribution by Application and Super Domain 

Given the limited number of data points in some of the domains, the analysis in this report was conducted on 
Super domains. Overall, the user should consider the results in the Factbook to be most relevant to the individual 
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domains containing the most data points (i.e., the summary data are most likely to resemble Real Time Embedded 
Projects).  

Distribution by Operating Environment 

The analysis dataset can also be grouped into the operating environments (OpEnv) in which the software operates, 
as shown in Figure 4. The most common environment was Mobile followed by Aerial Vehicle. 

 

Figure 72: Project Distribution by Operating Environment 

Examples of these environments are provided in Appendix D, Operating Environments. 

Distribution by Programming Language 

Programming languages are shown in the following chart. By far, the C families dominate, which includes C, 
ANSI C, C++, C#, C/Assembly, and C# Net. Ada still represents a significant portion of software development, 
which continues to be problematic for future efforts since Ada is no longer commonly taught or supported outside 
of legacy DoD applications. 
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Figure 73: Program Distribution by Language Family 

If a Program is using a programming language other than C, Ada, or Java, the analysis in this Factbook will need 
to be normalized to account for the impact to ESLOC heuristics.  

Reported Software Process Maturity Levels 

In figure 6, the histogram shows the reported maturity levels in the analysis dataset. Most projects reported the 
highest level of maturity. The following are the counts at each maturity level: 

• Level 2 (3) 
• Level 3 (122) 
• Level 4 (23) 
• Level 5 (221) 
• Not Available (37) 
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Figure 74: Reported Maturity Levels 

Given the majority of the data used to generate the findings in this report comes from higher maturity programs, it 
would be suspect for a Program to forecast greater performance or productivity than cited in this report by 
claiming they are operating at a higher maturity level.  

Data Age 

The age of the data was derived from the Report As Of date. Submission dates in the analysis dataset of the Final 
Developer Report range from July 2001 to January 2013. As Figure 75 shows, there are a few projects from 2001 - 
2004. Most of the projects are from the 2007 to 2012 timeframe. 

 

Figure 75: Data Age 
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Data age is important to consider when utilizing the resulting analysis The majority of the data used to generate 
this report was collected between 2004 and 2012. The relevance of historical data depends on how well the past 
represents future performance. In a DoD weapons systems environment, where the laws of physics govern many 
aspects of the software (e.g. avionics), historical data can remain relevant for quite a long time. On the other hand, 
AIS can be greatly influenced by COTS and the external environment (e.g., operating systems, cybersecurity, 
etc.), so the relevance of historical data needs to be balanced with how well the current environment resembles the 
historical software development environment.  

Data Sharing 

We have been granted permission to share all the data and source documents with the DoD cost community. 
Currently we use the AMRDEC SAFE Web Application (https://safe.amrdec.army.mil/safe/) to transfer these files 
securely. For information on obtaining the data and associated documentation, please contact the authors. 
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